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Abstract 13 

Informatization and automatization are considered mainstream trends in the future architecture-14 
engineering-construction/facility management (AEC/FM) industry. Building information 15 
modeling (BIM) is an effective technology to digitize building information, whereas artificial 16 
intelligence (AI) techniques facilitate automation. It could be contributive to focus on how to 17 
integrate BIM with AI techniques and apply them in actual projects. However, a comprehensive 18 
review of integrated applications is still lacking. This study reviews BIM-AI integrations in the 19 
AEC/FM industry by systematic-bibliometric analysis, and 183 eligible literature items are 20 
adopted. Bibliometric analysis reveals time series, journals, keywords co-occurrence, and co-21 
authorship of eligible literature. Findings are summarized from perspectives of techniques and 22 
applications. Three typical integrated modes are determined based on the findings. Ultimately, 23 
current challenges and future directions of the development of BIM-AI integrations are proposed. 24 
This review contributes to systematically exploring applications of BIM-AI integrations in 25 
AEC/FM industry and deliveries valuable development directions for BIM and AI. 26 

Keywords: Architecture-engineering-construction/facility management; Building information 27 
modeling; Artificial intelligence; Automation; Systematic review; Bibliometric analysis. 28 

1. Introduction 29 

In the Fourth Industry Revolution, the architecture-engineering-construction/facility 30 
management (AEC/FM) industry needs to be more informationalized and intelligentized to 31 
improve efficiency. Traditionally, the AEC/FM industry is characterized by large scale, high cost, 32 
high risk and low efficiency. With the popularization of computers and growth in computing power, 33 
widespread adoption of computer-aided and intelligent technologies becomes possible, enabling 34 
the AEC/FM industry has entered into a new era of information and intelligence [1]. The 35 
informatization of the AEC/FM industry is facilitated by building information modeling (BIM),  36 
the concept of which derived from the “Building Description System” (BDS) was proposed by 37 
Eastman in 1975 [2]. Until now, this idea of building modeling has become a critical element in 38 
the AEC/FM industry to deal with the increasing amount of information and data generated in the 39 
life cycle of building projects [1]. The United States National Institute of Building Sciences (NIBS) 40 
has proposed a universal definition of BIM in the National Building Information Modeling 41 
Standard (NBIMS, pp.21), “A BIM is a digital representation of physical and functional 42 
characteristics of a facility. As such it serves as a shared knowledge resource for information 43 
about a facility forming a reliable basis for decisions during its lifecycle; defined as existing from 44 
earliest conception to demolition. A basic premise of BIM is collaboration by different 45 
stakeholders at different phases of the lifecycle of a facility to insert, extract, update or modify 46 
information in the BIM to support and reflect the roles of that stakeholder.” 47 
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 48 
BIM has become a widely used tool in the AEC/FM industry for providing digital information 49 

on projects, with several studies conducted in recent years. Previous reviews summarized the 50 
development of BIM from different perspectives. Most of them focused on reviewing the 51 
evolutionary development of the BIM research area [3, 4], showing that BIM gradually adapted to 52 
the requirements of different lifecycle phases for facilitating project management [5, 6], risk 53 
management [7, 8] and facility management [9, 10]. Furthermore, BIM has been widely adopted 54 
to contribute to sustainability [11], and opportunities for cooperation with other interdisciplinary 55 
technologies have also been found. The reviews have recapitulated and predicted the future trend 56 
of integration with the internet of things (IoT) [12], blockchain, and the geographical information 57 
system (GIS) [13, 14]. These integrations have assisted BIM in replenishing new data streams and 58 
enriching building models.  59 

 60 
Artificial intelligence (AI) is a branch of computer science that deals with developing intelligent 61 

machines and computer systems with human-like reasoning, learning and problem-solving 62 
capabilities. Given these capabilities, numerous studies have been conducted using AI techniques 63 
such as machine learning (ML) to tackle the AEC/FM problems [15]. Existing reviews focused on 64 
analyzing the state-of-the-art of research on AI in the AEC industry [15] and the use of a few 65 
selected AI techniques in certain AEC areas [16]. Integrating BIM with AI plays a crucial role in 66 
the digital transformation of the AEC/FM industry through automated applications such as big 67 
data analytics. Hence, recent studies have combined BIM and AI techniques in tackling complex 68 
AEC/FM problems. Despite the usefulness of such integrated applications, there is a lack of 69 
comprehensive review on these areas in regard to future research and practice. The existing body 70 
of knowledge only consists of reviews on the separate applications of BIM and AI. 71 

 72 
To address this gap, our study aims to review integrated applications of BIM and AI techniques 73 

in the AEC/FM industry via a systematic-bibliometric analysis. This paper is organized as follows. 74 
Section 2 establishes systematic literature review protocols for identifying relevant articles. 75 
Section 3 presents a bibliometric analysis of 81 contributive articles. Section 4 presents the 76 
findings of this review, summarizing the BIM-AI applications from diverse aspects, including the 77 
main AI techniques integrated with BIM, applications in the AEC/FM projects lifecycle, and the 78 
main application fields. Section 5 discusses diverse integrated BIM-AI modes and proposes future 79 
trends of BIM-AI applications. Finally, Section 6 concludes the study. 80 
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2. Systematic literature review  81 

A literature review is helpful in understanding the research and development (R&D) in one 82 
domain. This study adopts a systematic literature review (SLR) as a scientific and strict procedure, 83 
in order to avoid omissions in literature selection and subjective bias in literature screening [17]. 84 
The systematic literature review methodology proposed by the Cochrane handbook [18] was 85 
adapted to conduct a detailed review of BIM-AI applications in the AEC/FM industry. The 86 
methodology follows the following principles: (1) articles applying to both BIM and AI techniques 87 
are included; (2) current evidence regarding the contributions of BIM-AI applications are explored; 88 
(3) bibliometric analysis is conducted for more in-depth analysis of the literature; and (4) 89 
knowledge gaps and future research directions are explored. The overall methodology is shown in 90 
Fig. 1 and is described below. 91 

2.1. Literature search 92 

This review focuses on integrated BIM-AI applications in the AEC/FM industry, so the 93 
literature search keywords should relate to BIM, AI and the AEC/FM industry. Since the AEC/FM 94 
industry consists of numerous components, it is challenging to set exact keywords for all 95 
components of AEC/FM industry, to search all relevant articles. Also, not all research indicates 96 
their application areas in detail, and omitting valuable literature cannot be avoided by searching 97 
keywords related to AEC/FM industry. Therefore, BIM- and AI-related keywords were adopted 98 
in the literature search, and literature that is irrelevant to AEC/FM industry was excluded through 99 
screening. Nevertheless, since BIM is mainly used in the AEC/FM industry, it was reasonable to 100 
use only BIM- and AI-related keywords.  101 

 102 
The BIM-related search words included the abbreviation of “BIM” and the full name of 103 

“building information model*1”. As for the AI-related search words, those proposed in the review 104 
of AI in AEC industry [15] were adopted, including “automatic”, “artificial intelligence”, 105 
“machine learning”, “genetic algorithms”, etc. Compared to other databases, Web of Science 106 
(WoS) provides subscription-based access to multiple databases2, including the most influential 107 
journals belonging to different databases [19]. Thus, the literature search was decided to conduct 108 
in WoS. The language was set to English, and the document type was set as article, rather than 109 
book, conference paper, etc., since the contributions of journal articles are usually more complete, 110 
up to date, and peer-reviewed. The TS refers to search words in titles, abstracts, or keywords of 111 

 
1 The asterisk (*) represents any group of characters, model* contains “model”, “modeling”, and “modelling”. 

2 https://en.wikipedia.org/wiki/Web_of_Science 
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articles, while the TI means searching key words only in titles. Boolean operators (AND, OR, 112 
NOT, SAME and NEAR) were applied to create a query of advanced search in WoS from 1979-113 
2020. The detailed search query (resulting in 367 records) is as follows:  114 

(TS=("BIM" OR "building information model*") AND (TS=("artificial intelligence" OR 115 
"machine intelligence" OR "machine learning" OR "deep learning" OR "expert system*" OR 116 
"genetic algorithm*" OR "neural network*" OR "case-based reasoning" OR "data mining" OR 117 
"fuzzy logic" OR "fuzzy set*" OR "robotics" OR "knowledge-based system*" OR "support 118 
vector machine*" OR "Bayes classifier" OR "natural language processing" OR "artificial 119 
general intelligence" OR "computational intelligence"))) OR (TI=("BIM" OR "building 120 
information model*") AND (TI=(“automation” OR “automated” OR “automatic” OR 121 
“intelligence”))) AND Language=("English") AND Type=("Article") 122 

2.2. Literature screening 123 

There were irrelevant articles in the 367 records from 1970-2020. The screening was essential 124 
first to select BIM-AI-based articles related to AEC/FM industry, and then those that actually 125 
applied BIM-AI integration, not just mentioning the search keywords in their titles, abstracts or 126 
keywords. The screening process is divided into four steps: 127 

(1) Title screening 128 
Here, titles of articles were checked for focus on AEC/FM industry. 42 articles were 129 
excluded because their titles did not focus on AEC/FM industry.  130 

(2) Abstract screening 131 
Abstracts of the remaining 325 articles were checked. At this step, articles were filtered 132 
based on two criteria: (1) the article content is irrelative to AEC/FM industry; and (2) the 133 
BIM-AI integration is not the main research objective. This led to excluding 101 articles.  134 

(3) Full-text screening 135 
Full texts of the remaining 224 articles were downloaded and read carefully by authors. 136 
Articles proposing feasible ideas, frameworks or approaches of BIM-AI integrated 137 
application are retained. Other articles only mention the BIM and AI techniques in content, 138 
but do not focus on integrated applications of BIM and AI techniques. These articles should 139 
be removed. Finally, 42 articles were excluded from the list.  140 

(4) Reference screening 141 
To avoid omission of contributive articles, references of the remaining 182 articles are 142 
screened according to protocols. One eligible reference has been added to the list of articles.  143 
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 144 
Fig. 1. Literature search and screening process. 145 
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3. Bibliometric analysis 146 

3.1. Annual publication trend 147 

Though the timespan for the literature search was the default setting of WoS, 1970 to 2020, all 148 
the qualified articles were published from 2010 to 2020, indicating that BIM-AI integration gained 149 
the majority of attention in the last decade. Fig. 2 illustrates the annual publication trend of the 150 
articles. At the beginning of the 2010s, BIM-related research was immature [3], and only a few 151 
studies explored the possibilities of BIM-AI integration from 2010 to 2013. After 2014, the number 152 
of articles began to increase. However, the upward trend was unstable, with several declines in 153 
2016 and 2017. There was a significant increase in BIM-AI publications from 2017-2020, 154 
suggesting that BIM-AI applications gained momentum in the AEC/FM industry. This could be 155 
attributed to the fact that during last three years, many countries have encouraged BIM applications 156 
[20] and formulated national AI strategies [21], significantly promoting BIM-AI applications in 157 
the AEC/FM industry. 158 

 159 
Fig. 2. Annual BIM-AI publication trend (2010-2020). 160 
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3.2. Journal analysis 161 

183 qualified articles were published in 65 different journals. Table 1 summarizes journals 162 
where more than one article was published. As shown in Table 1, few journals published a large 163 
proportion of BIM-AI applications. For instance, 53 (29%) articles appeared in Automation in 164 
Construction, 16 (9%) articles in Advanced Engineering Informatics, 13 (7%) articles in Journal 165 
of Computing in Civil Engineering, while the remaining 101 were dispersed across other 62 166 
journals from different research fields, like construction, engineering, computing and ecology. 167 
Such journal analysis can help researchers and practitioners identify useful information sources on 168 
the frontiers of integrated BIM-AI applications, and determine where they can publish their 169 
valuable relevant work.  170 

 171 
Table 1  172 
BIM-AI research journals 173 

Journals Number of qualified publications 
Automation in Construction 53 
Advanced Engineering Informatics 16 
Journal of Computing in Civil Engineering 13 
Remote Sensing 6 
Applied Sciences-Basel 5 
Journal of Civil Engineering and Management 4 
Journal of Information Technology in Construction 4 
Computer-Aided Civil and Infrastructure Engineering 3 
Energy and Buildings 3 
International Journal of Construction Management 3 
Journal of Asian Architecture and Building Engineering 3 
Sensors 3 
Advances in Civil Engineering 2 
Advances in Computational Design 2 
Building and Environment 2 
Buildings 2 
Built Environment Project and Asset Management 2 
Construction Innovation-England 2 
Engineering Construction and Architectural Management 2 
International Journal of Architectural Heritage 2 
Journal of Cleaner Production 2 
Journal of Construction Engineering and Management 2 
Journal of Engineering Design and Technology 2 
Journal of Management in Engineering 2 
KSCE Journal of Civil Engineering 2 
Sustainability 2 
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3.3. Co-occurrence analysis 174 

Co-occurrence analysis is adopted to identify the relationships between BIM-AI research 175 
keywords [22-24], and is useful in understanding the main research topics in this area. In co-176 
occurrence analysis, keywords refer to word-groups or phases automatically extracted from the 177 
titles, abstracts and keywords of articles, and co-occurrence is the situation where two keywords 178 
occur together. After extracting 532 keywords from the 183 articles, identical keywords (e.g. “GA” 179 
and “genetic algorithm”) were merged. The keyword “BIM”, as this study’s focus, is connected 180 
with most of other keywords, so that it is omitted for more reasonable scalability. The keyword 181 
“Artificial intelligence” was kept because there are different types of AI techniques. The keywords 182 
co-occurrence network (Fig. 3) was created using ORA-LIFE, a meta-network analysis tool 183 
developed by CASOS of Carnegie Mellon University. The network consists of 450 nodes and 863 184 
weighted links, with nodes colored by Louvain clustering and sized by total-degree centrality. For 185 
an optimum overview, only nodes with total-degree centrality over 12 are labeled in Fig. 3. 186 

 187 
Fig. 3. Co-occurrence network of keywords of identified articles. 188 

Two main topics can be discovered from labeled keywords: One reveals the hottest applications 189 
of BIM-AI integrations, including facility management, safety management, fault detection and 190 
diagnosis, etc. The other type of keywords shows the main AI techniques integrated with BIM, 191 
such as genetic algorithm, machine learning (e.g. artificial neural network), knowledge-based 192 
system, and laser scanning, etc. As a neutral and open file format for describing and exchanging 193 
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construction data, the IFC(industry foundation classes) standard is also highlighted, as it plays vital 194 
interoperability roles in BIM-AI application. 195 

3.4. Co-authorship analysis  196 

Co-authorship analysis was conducted to detect the cooperation among different researchers 197 
and experts in BIM-AI research. VOSviewer was used to construct the co-authorship network (Fig. 198 
4). In Fig. 4, the node represents identified authors, the node size indicates the frequency of authors, 199 
the line between two nodes shows the cooperation of two authors, and the color of nodes and lines 200 
presents the time of co-authorship. Previous research on BIM-AI integrations was carried out fairly 201 
independently. Authors usually cooperate with fixed partners each time, but seldom cooperate with 202 
other research groups. 203 

 204 
Fig. 4. Co-authorship network for BIM-AI research. 205 

4. Findings 206 

After analyzing the contributions of the 183 articles, the findings of this review are summarized 207 
from the perspectives of techniques and applications: main AI techniques integrated with BIM, 208 
and the main applications in AEC/FM projects.  209 
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4.1. Main AI techniques integrated with BIM 210 

Based on the analysis of the reviewed papers, four main categories of AI techniques integrated 211 
with BIM were determined: knowledge-based reasoning, metaheuristics, machine learning and 212 
hybrid AI (Fig. 5). 213 

 214 
Fig. 5. The summary of main AI techniques integrated with BIM 215 

4.1.1. Knowledge-based reasoning 216 

Knowledge-based reasoning (KBR) is an early form of AI, which uses a symbolic 217 
representation of domain knowledge (e.g. experience of experts and previous cases) to build 218 
knowledge-based systems rather than using complex algorithms. Therefore, computers can 219 
rationally draw valid inferences efficiently from the real world [25]. Integrating KBR with BIM is 220 
the so-called extension to building knowledge modeling (BKM) [26]. According to Ref.[27], KBR 221 
can be categorized into rule-based reasoning (RBR) and case-based reasoning (CBR).  222 
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(1) Rule-based reasoning 223 

The RBR system is principally composed of two modules: a knowledge base and an inference 224 
engine [28]. It constructs knowledge base based on not only explicit knowledge (e.g. technical 225 
manuals, standard specifications) but also tacit knowledge, which is empirical and associated with 226 
diversity and uncertainty [27]. Specifically, experts are interviewed to retrospectively share their 227 
tacit experiences in similar cases, such as how to determine the types of BIM clashes [29] or how 228 
to check the safety of BIM designs [30]. Most knowledge is in the form of unstructured human 229 
language, so that symbolic rule “IF (premise) THEN(conclusion)” is typically used for 230 
representation. Given the constructed knowledge base, the inference engine performs knowledge 231 
searching by either forward chaining or backward chaining, in order to find an applicable action 232 
or conclusion. RBR is widely integrated with BIM in the AEC/FM industry, and some application 233 
examples are shown in Table 2. 234 

(2) Case-based reasoning 235 

While RBR can provide reliable results, encapsulating all the knowledge into a set of rules is 236 
not always guaranteed. CBR is proposed as a supplementary KBR method in BIM, which focuses 237 
on reusing the knowledge from past cases [31]. Although CBR’s data resources are similar to 238 
RBR’s (expert interviews, technical reports, etc.), it stores knowledge by attributes representing 239 
the cases rather than the rules. These attributes extracted from BIM can be used to calculate the 240 
similarity between current and past cases by numerical calculations (e.g. Euclidean distance or 241 
cosine similarity). Non-numeric attributes require a further transformation to numeric values, like 242 
using discrete values to represent different BIM components [28]. CBR is usually used in BIM-243 
based maintenance, as shown in Table 2. Beyond retrieving solutions from similar cases, CBR also 244 
emphasizes revising the proposed solution and retaining the new solution, making itself an 245 
incremental and self-learning KBR. 246 

Table 2 247 
Application examples of integrations of KBR and BIM  248 

Algorithm Application example Reference 
RBR Construction safety [27, 30, 32-35] 

Design optimization [29, 36, 37] 
Cost estimation [38, 39] 

CBR Building maintenance [26, 31, 40, 41] 

4.1.2. Metaheuristic algorithm 249 

BIM provides a suitable framework to support decision-making by aggregating the necessary 250 
information, clarifying details and existing conditions [42]. At the same time, different objectives 251 
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and constraints should be satisfied simultaneously for an optimal decision, namely the multi-252 
objective optimization problem (MOOP). However, candidate solutions are generally discrete, 253 
infinite and nonlinear, which makes the optimization problem NP-hard (non-deterministic 254 
polynomial hard). The Metaheuristic approach, a generic algorithm structure for almost all 255 
optimization problems [43], is also popular in BIM-related MOOPs [44]. Among different kinds 256 
of metaheuristic algorithms, the evolutionary algorithm (EA) and swarm intelligence (SI) have 257 
received the most attention [45].  258 

(1) Evolutionary Algorithm 259 

The genetic algorithm (GA) is the most common EA in BIM, based on techniques from 260 
evolutionary biology, including generation, selection, crossover and mutation [44]. A population 261 
of individuals (solutions) is generated at first, and only those with higher fitness are saved to 262 
transmit their genes (components) to the next generation, while mutation is finally executed to 263 
avoid local optimum [46]. Due to the GA’s ability to iteratively improve solutions without complex 264 
formulations, it is a powerful method for BIM-enabled design and construction optimization, both 265 
of which have different or even conflicting objectives. Table 3 lists some popular application 266 
examples of GA-BIM integrations. For instance, sustainable BIM design requires meeting both 267 
economic and environmental metrics, the construction schedule should fix overlapped production 268 
sequences, and parameter estimation should be optimized for facility monitoring. Related metrics 269 
can be collected from BIM or onsite, and a near-optimal plan could be finally visualized in 4D/5D 270 
BIMs. Other EAs like differential evolution and evolutionary strategies are rarely used in BIM 271 
studies. 272 

(2) Swarm Intelligence 273 

SI is composed of population-based iterative procedures as well, but differs from EA in its self-274 
organization [47]. An individual in SI evolves by modifying itself according to its relationship 275 
with other individuals and the environment [48]. While this trait is claimed with selection bias [49], 276 
SI performs relatively better than GA when the number of allowed function calls is low [45]. 277 
Particle swarm optimization (PSO) is a SI variant that originated from the social behavior of fish 278 
schools and bird flocks [50], which was utilized in Refs. [51, 52] for BIM design optimization. 279 
Two other similar SIs, the ant colony optimization (ACO) and the firefly algorithm (FA), were 280 
inspired by the ants’ pheromone trail of ants and the bioluminescence of fireflies respectively. 281 
ACO is proven to perform well in evacuation planning on a lightweight BIM platform [53], and 282 
FA shows good performance in BIM-based layout planning [54]. Simulated annealing (SA) is a 283 
special SI variant allowing worse resolutions during the initial phase, so that users can make 284 
significant changes during preliminary iterations. This property of SA was utilized in [55] to speed 285 
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up the optimization of BIM design clashes. Unlike other SIs, symbiotic organism search (SOS) 286 
requires no specific algorithm parameters, which can help simplify dynamic layout planning for 287 
BIM users [56]. Table 3 lists the application examples of different SIs. 288 

Table 3 289 
Application examples of the integrations of the metaheuristic algorithm and BIM  290 

Category Algorithm Application example Reference 
Evolutionary 
Algorithm 

GA  Design optimization [46, 57-59] 
Construction optimization [60, 61] 
Facility monitoring [62-64] 

Swarm Intelligence PSO Design optimization [51, 52] 
ACO Construction safety [53] 
FA Layout optimization [54] 
SA Design optimization [55] 
SOS Layout optimization [56] 

4.1.3. Machine learning 291 

Unlike KBR and the metaheuristic algorithm, ML adopts an end-to-end training system rather 292 
than traditional programming for problem analysis [65]. This process requires a large data set but 293 
less expert analysis and fine-tuning. Supervised learning and unsupervised learning are two typical 294 
ML branches in BIM, while deep learning is herein treated as a deeper extension of ML for data 295 
and hardware [66]. 296 

(1) Supervised Learning 297 

Supervised learning is an ML task in mapping an input to an output, whose function is inferred 298 
from the labeled training set [67]. The artificial neural network (ANN) is the most basic supervised 299 
learning approach, including an input layer, one or more hidden layers, and an output layer [68]. 300 
The neurons in each layer are connected by neuron links, which have the outstanding ability to 301 
approach most non-linear patterns in BIM projects [69], especially in classification problems. For 302 
instance, ANN can find suitable commands for BIM design clashes after learning the relationship 303 
between commands and clash attributes from similar operation samples [55]. An ANN trained by 304 
correspondence between the IoT-connected BIM and the facility performance is useful to check 305 
the status of the mechanical electrical piping (MEP) or steel structure [68, 70], occupants’ comfort 306 
levels [71] and building’s energy consumption [72, 73]. The convolutional neural network (CNN) 307 
is a variant of ANN for image classification, whose hidden layers are further divided into 308 
convolutional, pooling, and fully connected layers. The convolutional layer can extract the 309 
prominent features from each position of the input data and form a feature map. Due to the high 310 
dimensionality of feature maps, it can be simplified by the pooling layer to relieve computation 311 
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loads, while the final fully connected layer plays the role of classifier [74]. CNN architecture may 312 
vary with cases (e.g., AlexNet, VGGNet, ResNet), but it generally shares a similar principle. For 313 
one thing, CNNs are trained with semantically labeled images or point clouds from sites or BIM 314 
models, which will later identify the most similar BIM components from the input data. As shown 315 
in Table 4, the CNN shows positive performance in as-is BIM reconstruction, indoor localization 316 
and facility monitoring. Other variants of ANN are not common, so that they are not discussed in 317 
detail, but they are helpful in specific cases. For instance, the recurrent neural network (RNN) and 318 
the long short-term memory neural network (LSTMNN) can extract the spatial value of sequential 319 
data. 320 

Neural network-based supervised learning learns sample patterns by tuning numerous neural 321 
parameters. This process promises a high accuracy but lacks transparency, and is claimed as “a 322 
black box”. Hence, supervised learning with better interpretability has drawn the attention of some 323 
BIM researchers, mainly including K nearest neighbor (KNN), support vector machine (SVM) and 324 
decision tree (DT). KNN is quite straightforward supervised learning approach, whose groups are 325 
formulated by minimizing the total distance among training samples’ attributes, and a new query 326 
will automatically be labeled the same as the closed set. Ref.[75] demonstrated that KNN works 327 
well in parameter estimation for BIM design assessment. SVM is slightly more complicated than 328 
KNN, where labeled classes are separated by hyperplanes in multi-dimensional feature space [76]. 329 
These identified hyperplanes visually interpret the classification rationale, and they are proven 330 
effective for BIM components classification, which is a crucial part of BIM semantic management  331 
[76, 77]. As non-parametric supervised learning, DT is extensively used for logic formalism with 332 
its IF-THEN form, consisting of nodes (attributes), branches (interval of attribute value) and leaves 333 
(classification). Its variant random forest, an ensemble of different DTs, is utilized in BIM-based 334 
cost evaluation due to good interpretability and low overfitting [78]. 335 

(2) Unsupervised Learning 336 

Free from the need for labeling datasets, unsupervised learning is a process of learning patterns 337 
from untagged data, particularly knowledge hidden in BIM. Clustering is typical unsupervised 338 
learning technique to categorize unstructured data based on their similarity to each other [79], and 339 
has three general structures, namely K-means clustering (KMC), hierarchical clustering (HC) and 340 
clustering network (CN). KMC is extensively adopted for facility monitoring due to its simplicity 341 
[79-81]. Depending on the real-time BIM database, hidden facility status can be identified into 342 
pre-defined K clusters. Further, HC is symbolized in its multi-level hierarchy structure, and does 343 
not require a pre-defined number of clusters at first. It was demonstrated by Ref. [39] that HC is 344 
suitable for modular construction planning (e.g. MEP system) in BIM projects. CN can project 345 
non-linear statistical relationships into low-dimensional space, and keep the most crucial 346 
topological relation. An improved variant of CN named the efficient fuzzy Kohonen CN was 347 
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proposed in Ref.[82] to figure out the design preference and productivity of BIM designers from 348 
BIM log files. 349 

Apart from the similarity, causality and relevance between BIM data are also valuable, and are 350 
the focuses of association rule mining (ARM). ARM uses support to measure the probability of 351 
items containing combinations, and confidence to indicate the degree of certainty one contains 352 
another. Frequent pattern mining (FPM) is a basic ARM adopted in BIM-enabled construction 353 
scheduling, by which deep rules can be extracted for relevant work orders [80, 81]. To deal with 354 
sequential data, sequential pattern mining (SPM) is proposed to extract patterns in a source’s 355 
recorded order. This feature can help managers capture the performance differences among BIM 356 
modelers according to the time spent on their operations [83], providing valuable hints for design 357 
improvement. 358 

Table 4 359 
Application examples of integrations of machine learning and BIM 360 

Category Algorithm Application example Reference 
Supervised learning ANN  

 
Design optimization [55] 
Facility monitoring [68, 70-73] 

CNN As-is BIM reconstruction [84-88] 
Indoor localization [74, 89, 90] 
Facility monitoring [91] 

RNN Design optimization [92] 
Indoor localization [90] 

KNN Program evaluation [75] 

SVM BIM semantic management [76, 77] 

DT Program evaluation [78] 
Unsupervised 
learning 

KMC Facility monitoring [79] 

HC Construction optimization [39] 

CN Design optimization [82] 

FPM Construction optimization [80, 81] 

SPM Design optimization [83] 

4.1.4. Hybrid AI 361 

Nowadays, BIM studies are undergoing rapid digital transformation. Many advanced domain-362 
specific technologies have been adopted in BIM by integrating various AI algorithms, named here 363 
as “Hybrid AI”. We focus on three crucial hybrid AI techniques: computer vision (CV), natural 364 
language process (NLP), and AI robotics.  365 
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(1) Computer Vision 366 

CV is a hybrid topic consisting of traditional CV and ML-based CV, and the latter was discussed 367 
as CNN in Section 4.1.3. ML-based CV has proven its superiority of great accuracy and few expert 368 
interventions, but it is certainly not the panacea for all problems. Especially when the training 369 
dataset is limited and high interpretability is required, the traditional CV is more efficient with full 370 
transparency [65], consisting of data processing, feature extraction and registration. Firstly, data 371 
processing is adopted to improve the quality of the input data by filtering and transformation. For 372 
instance, Ref.[93] proposed normal vector-based filtering, where the angles of as-is BIM point 373 
clouds are calculated as a reference to remove outliers. Transformations, like scaling and 374 
translating, can be applied in data augmentation to improve the accuracy of as-is BIM classification 375 
[84]. As another branch of traditional CV, feature extraction is a process of dimensionality 376 
reduction of the input data, where the input data can be represented by feature groups without 377 
losing important information. Both low level features (e.g. edge [84], corner [94]) and high level 378 
features (e.g. shape [95], distance [96], direction [97], gradient distribution [88]) are proven to be 379 
effective in the object detection of as-is BIM data. Finally, registration should be executed to 380 
transform different sets of data into the same coordinate system, which is a crucial step for 3D 381 
reconstruction (for example, structure from motion (SfM)) [84, 98]. In particular, 3D registration 382 
is commonly used to compare the as-is BIM and the as-designed BIM, which can be realized by 383 
calculating the transformation matrix [99] or point-to-point algorithm [97]. Based on the 384 
combination of these three steps, as-is BIM reconstruction and facility monitoring can be 385 
successfully realized. 386 

(2) Natural Language Processing 387 

NLP integrates linguistics, computer science, and mathematics, helping extend BIM semantics 388 
through natural language. It mainly includes three processes: lexical analysis, syntactic analysis, 389 
and semantic analysis [100]. Firstly, lexical analysis containing tokenization (work segmentation) 390 
and tagging is used to divide natural sentences into tags, like nouns, verbs, adjectives. In the 391 
syntactic analysis, parsing is executed to obtain the relationship between segments [100], and 392 
classification based on feature weighting methods is used to support extract keywords [101]. 393 
Finally, semantic analysis is used to map each keyword to the wanted entity based on similarity 394 
measurement. Efficient NLP-based query methods were proposed in Refs. [100, 102]to find 395 
wanted IFC entities or properties during facility maintenance. Moreover, NLP could serve for BIM 396 
semantic management, such as regulating the information form for compliance checking [103] and 397 
sorting the functions of disordered BIM cases [101]. 398 
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(3) AI robotics 399 

AI robotics fuse AI and robots [104], regarded as quite vogue but a practical technique in BIM 400 
domains. Unlike factory robots that blindly execute preprogrammed instructions regardless of the 401 
surrounding, an AI-robot is more intelligent. It is situated in the real world, senses the external 402 
world by perceptron, maximizes its chances of success by control systems, and executes 403 
instructions by effectors [104]. The unmanned aerial vehicle (UAV) is a common robot for 404 
intelligent data collection, and is usually used to offer valuable data (images or point clouds) for 405 
BIM-CV studies [105, 106]. Most AI robots’ control systems employ AI techniques to optimize 406 
the path automatically, without manual control. In addition, automated construction is another 407 
focal point of BIM-enabled AI robotics. Typically, construction robotics can orchestrate the 408 
necessary tasks by leveraging the BIM models, while other AI techniques can be used to optimize 409 
its operation (e.g. CV techniques for calculating reference coordinates, and GA for trajectory 410 
optimization [107]). 411 

Table 5 412 
Application example of integrations of machine learning and BIM 413 

Category Application example Reference 
Computer Vision As-is BIM reconstruction [84, 96] 

Facility monitoring [88, 94, 95, 97, 98] 
Natural Language Processing Facility maintenance [100, 102] 

BIM semantic management  [101, 103] 
AI robotics Automatic data collection [105, 106] 

Automated contruction [107-109] 

4.2. Main application fields in AEC/FM industry 414 

By summarizing the contributions of relevant articles, it is easy to find that BIM-AI integrations 415 
have been applied in the diverse fields of the AEC/FM industry, covering the whole lifecycle of 416 
projects and other key domains of development. The main applications of BIM-AI integrations are 417 
summarized in Fig. 6. 418 

 419 
Fig. 6. The summary of main applications 420 
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4.2.1. Planning & Design phase 421 

AEC/FM projects should start from planning and design. The initial BIM provides 3D 422 
visualization models for researchers, experts and companies [110], then the 3D model evolves into 423 
4D by adding time series, and then 5D by adding cost dimension. The multiple dimensional models 424 
have profoundly improved the productivity of building planning and design. Now, AI techniques 425 
help to further promote the performance of BIM in planning and design.  426 

(1) Design collaboration and revision 427 

In the design phase, a widely used function of BIM-AI applications is AI-aided design 428 
collaboration and revision in BIM. The BIM-based design support system has been developed to 429 
facilitate building design. AI techniques are adopted to extend the functions of the design support 430 
system, making it more intelligent to use. NLP can automatically interpret natural language 431 
constructs as computable design constraints [111]. According to design rules and constraints, 432 
design algorithms aid in generating design alternatives of boarding [37], steel reinforcement [112], 433 
facade structural components [113], manufacturing of wood-framed panels for modular residential 434 
buildings [114], or other building elements. In addition, AI techniques have also been added to 435 
improve the efficiency of the design support system, such as providing recommendations to ensure 436 
that BIMs of the final design can pass ARC [29, 36], supporting the design decision-making by 437 
retrieving knowledge and experience [115], and optimizing building components for balancing 438 
multiple objectives [58]. 439 

 440 
Due to the large number of stakeholders involved in a single building project, different design 441 

targets may lead to conflict. AI techniques are used to balance conflicting design targets in the 442 
multi-objective optimization framework [116]. Since the different parts of drawings are generally 443 
completed by different designers, design clashes are usually inevitable as well [29]. Project 444 
managers have to coordinate with designers and constructors in reviewing drawings, and the 445 
process of revision wastes much time. Therefore, design clashes result in the suspension of 446 
construction. BIM is widely used to pre-check designs visually and automatically for reducing 447 
clashes [117], but its detection precision of design clashes is not sufficiently high. Because the 448 
detection algorithms in BIM are too simple [118], final results of detection usually contain many 449 
irrelative clashes, like the correct design, harmless design clashes to construction, or clashes that 450 
can be solved easily in construction sites. Supervised learning, especially the Jrip method, is 451 
adopted to develop classifiers to screen irrelative design clashes [117]. The remaining clashes still 452 
need a compromise between designers and constructors. SA algorithm helps to resolve design 453 
clashes based on constructors’ expertise before the coordination [55].  454 
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(2) Design performance in BIM environments 455 

Owing to the high requirement of designers’ working capability in the BIM environment, 456 
assessment and prediction of the BIM capacity of design teams help to evaluate and select design 457 
teams before the designing commences [119]. Most BIM software is enabled to capture digital 458 
information during the design process and create the event log files [120]. By analyzing BIM log 459 
files with AI techniques, project managers can obtain characteristics of design behavior and the 460 
productivity of design teams [82, 83], as well as the predictive design commands for improving 461 
modeling efficiency [92]. Furthermore, user emotional feedback towards design alternatives is 462 
recognized and classified by electroencephalography-based ML, assisting designers in deciding 463 
alternative design schemes [121]. 464 

(3) Highway alignment design 465 

BIM has great potential in building design, but has not reached a similar level of maturity in 466 
transportation infrastructure [122]. Considering a large amount of environmental, geographical, 467 
traffic and social information, traditional design approaches on highway design were complicated 468 
and time-consuming. GAs, SIs, or other AI techniques have been applied to design and optimize 469 
the highway alignment in BIM environment [51, 122] and GIS-BIM environment [123]. And the 470 
integration of the digital twin technique, ML and BIM was developed to timely predict the highway 471 
pavement performance [124]. 472 

(4) Spatial planning 473 

Many AI techniques have been combined with BIM to accelerate the design process, but less 474 
applied in the planning, due to the lack of environmental and geographical information. 475 
Considering territorial planning documents, Ref.[125] processed a neural network in BIM to 476 
generate a spatial planning model of buildings as the basis of further building information 477 
modeling. 478 

4.2.2. Construction phase 479 

Construction is a complex and dynamic process involving many elements, like building 480 
materials, machines, workers, managers and time. BIM records, analyzes and manages the massive 481 
dynamic information generated in the construction phase. Integration with AI techniques in the 482 
construction phase can enhance construction management, risk management and automated 483 
construction.  484 
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(1) Construction management  485 

In the construction management, BIM-AI integrations are implemented mainly for site planning 486 
and construction progress. The construction site is a complicated area containing many elements 487 
and concurrent procedures. When concurrent procedures are physically adjacent, the risk of 488 
collision will increase. To avoid accidents, BIM-AI integrations contribute to generating the 489 
construction site layouts to minimize the moving distances of workers automatically [126], 490 
simulating the interference level of the workspace on construction sites [127]. Since conditions of 491 
the construction elements are dynamic during the construction period, manual arrangement of 492 
construction site layout leads to low efficiency. AI techniques are integrated with BIM to identify 493 
the availability of site spaces [64], then the layout of construction sites is optimized automatically 494 
and visually [56], with consideration of dynamic requirements on supply, space availability, and 495 
travel paths of constructors and equipment [64, 128].  496 

 497 
As the most crucial piece of equipment in the construction phase, the crane needs to be planned 498 

well at the beginning of the construction. The choice of crane and the location on site strongly 499 
impacts on the cost and efficiency of construction [129]. Metaheuristics algorithms help project 500 
managers to determine the best type, number and location of tower cranes, followed by BIM 501 
software to automatically generate the layout of cranes through clash detection and other 4D 502 
detections [35, 54, 129, 130]. Scaffolding is another critical temporary facility on site, which must 503 
be thoroughly designed, procured and managed [34]. With the help of BIM-AI integrations, 504 
automatic plans and safety hazard identification for scaffolding are realized in the BIM 505 
environment [34, 131]. 506 

 507 
Other main application of AI techniques in BIM environment at the construction stage is to 508 

assist in construction scheduling, monitoring, and finally delivery. The construction progress can 509 
be scheduled automatically by BIM-AI integrations, including determining the BIM construction 510 
sequence [60, 132], automating the formulation of schedule [133], seeking the optimal balance of 511 
construction duration and cost [134-136], minimizing overlaps of construction activities with high 512 
risks [137]. The construction progress monitoring is essential to ensure actual activities follow the 513 
determined schedule, owing to dynamic conditions on sites [138]. Automatic on-site process 514 
monitoring is generally realized by measuring the construction progress and comparing it with the 515 
schedule in BIM [97, 139]. However, it is quite tricky to capture and update real-time on-site data. 516 
Classification algorithms are integrated with BIM to identify objects from images [91]. Besides 517 
images, researchers have also tried to create more accurate and complete 3D point clouds to update 518 
the real-time progress in BIM [140, 141]. Photogrammetry helps to label the images of 519 
construction sites as the training database of ML [142], then trained ML can reflect the real-time 520 
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progress by object detection [105, 143]. Regarding project delivery, integrated project delivery 521 
(IPD) in integration with BIM is regarded as an optimal approach for delivering construction 522 
projects [144]. AI techniques are integrated with BIM to foster the adoption of IPD [133], such as 523 
developing automated cost structure for IPD risk/reward sharing [144], automating the formulation 524 
of schedule [133]. 525 

(2) On-site risk management  526 

Construction is dangerous with many risks on sites. Injuries may occur accidentally, like falls 527 
or crushing. Current identifications of risk mainly rely on manual inspection, lacking in efficiency 528 
[145]. For realizing automated risk management, ML algorithms are trained with numerous 529 
empirical safety reports, to predict safety outcomes of different construction sites by construction 530 
attributes in BIMs [146]. And the expert system is also a good alternative to identify risks in terms 531 
of expert knowledge [27]. Statistics reveal that risks are different under diverse scenarios. Workers 532 
are regarded as in danger under some particular scenarios, like working high above the ground. 533 
Thus, targeted integrated applications are developed to cope with high-risk work, such as 534 
automatically checking whether workers wear harness, preventing them from falling from heights 535 
[147], detecting the scaffolding safety [144]. 536 

(3) Automated construction 537 

As mentioned above, the construction progress is dynamic, complicated and high-risk, it is 538 
necessary to advance automation for safer and more efficient construction. The robotic technique 539 
is wide-used for working in a hostile environment and in finishing repetitive tasks [107]. With the 540 
digital information provided by BIM for robots, integrations of BIM and robotic techniques enable 541 
the automated operations of tasks [108], and ensures operations without collisions between robots 542 
[107]. Even though robotic techniques cannot yet carry out a completed construction process, some 543 
tasks can be undertaken by robots [148], like brick assembly [108], routine fabricating, material 544 
dispatching [148], and welding [107]. 545 

4.2.3. O&M phase 546 

The operation and maintenance (O&M) phase is the most prolonged period in the lifecycle of 547 
buildings. The O&M of buildings contains many tasks to guarantee buildings can perform as 548 
designed [149]. BIM has been utilized by facility managers to record, process and analyze the 549 
large-scale digital information generated during the O&M phase.  O&M information recorded in 550 
BIM provides the vital basis of the following processes, but manual records often have wrong 551 
inputs. AI techniques are integrated with BIM to solve this issue. 552 
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(1) Indoor localization and safety 553 

In the indoor environment, it is difficult to use global positioning system (GPS), which is mainly 554 
used outdoors [74]. Image retrieval is an alternative way to identify users’ indoor locations. 555 
Conducting image retrieval method requires rebuilding a 3D indoor model, or establishing 556 
databases of rendered BIM images [74]. ML algorithms are trained to recognize the location by 557 
comparing images from cameras or augmented reality (AR) devices with 3D indoor models or 558 
fine-tuned rendered BIM images [89, 150]. Besides, the idea of intelligent indoor safety 559 
management system was raised by the integrated digital twin, IoT sensors and SVM with BIM, to 560 
realize automatic indoor danger warning, danger classification and level assessment [151]. For 561 
enhancing fire monitoring and awareness, ML algorithms are adopted to classify videos obtained 562 
from visual and thermal cameras, and the results of classification are linked back to BIM via 563 
semantics [152]. Regarding safety in emergency evacuation, neural networks or other algorithms 564 
are used to develop real-time evacuation systems to plan dynamic escape paths [53, 153, 154]. 565 

(2) Building maintenance 566 

In the O&M phase, building maintenance is a major task, whose cost accounts for 65% of the 567 
total cost [155]. Much valuable maintenance information obtained from users, engineers and 568 
experts is unstructured, so this information is hard to be directly linked to BIM to deal with 569 
maintenance issues automatically. The cloud-based spoken dialogue BIM system can gather real-570 
time structured maintenance information from users [41], and ML algorithms help classify the 571 
work orders created by users [156]. The cost information of each component replacement can be 572 
retrieved from the IFC. Based on the above information in maintenance and knowledge cases, the 573 
most suitable maintenance plan can be developed automatically [40, 41]. However, such reactive 574 
maintenances have limitations on the difficulty to prevent failure and the repairment in advance to 575 
extend the facility lifetime. Therefore, ML algorithms are used to develop predictive maintenance 576 
strategies to predict the future condition for advanced maintenance planning [68]. After damage 577 
occurs, a quick loss estimation of the buildings can be conducted to achieve timely recovery [157]. 578 

(3) Structural health monitoring 579 

Considering damage occurs during the long-term O&M phase, so monitoring structural health, 580 
especially dynamic monitoring, is reasonably necessary to keep the building and infrastructure 581 
safe [70]. Since the performance of bridges is profoundly affected by weather, traffic conditions, 582 
earthquakes, and other factors, AI-aided dynamic monitoring methods are mainly implemented in 583 
bridge projects. According to real-time data collected by sensors or unmanned aircraft systems, 584 



24 
 

BIM can visualize the time-series structural health monitoring in dynamic 3D models, and the 585 
damage patterns of bridges can be identified by ML algorithms automatically [106, 158].  586 

4.2.4. Demolition phase 587 

In the last period of the building lifecycle, owners have to determine whether it should be 588 
refurbished to begin a new lifecycle or demolished to build a new structure. Few AI techniques 589 
have been adopted in this phase, except construction waste management. In order to predict the 590 
waste in construction and demolition by fitting an S-curve, ANN is used to train the relations 591 
between the building characteristics and parameters of S-curve [159].  592 

4.2.5. Lifecycle cost 593 

The cost is critical to the whole lifecycle of buildings. According to the well-known project 594 
management triangle, time, quality and cost are three key constraints in each project. Project 595 
managers must balance the three constraints under different situations. Since BIM contains lots of 596 
financial information on buildings, it is considered as an excellent platform to manage the lifecycle 597 
cost. By taking advantage of the cost information, AI techniques are integrated with BIM for 598 
automated retrieval and optimization of lifecycle cost, such as providing cost-optimal replacement 599 
of building components [40], deciding the economic building design schemes with appropriate 600 
duration among alternatives [59, 135]. Otherwise, without detailed cost information, the lifecycle 601 
cost can be predicted according to the key features of a project [160, 161]. Besides, BIM 602 
implementation results in additional costs [78]. In order to make the exact estimation of the BIM 603 
implementation costs for initial decision-making, supervised learning algorithms are integrated 604 
with BIM to predict additional costs at different levels of development (LOD) [78, 162]. 605 

4.2.6. Automatic modeling 606 

BIM is regarded as an efficient platform to manage and process the digital data of buildings, 607 
but the processes of building modeling, especially for as-built buildings, are quite complicated and 608 
time-consuming [163]. Several integrations of BIM and AI techniques have been proposed to 609 
facilitate automated modeling.  610 

(1) IFC 611 

IFC is an open international standardization organization (ISO) standard of the lifecycle data of 612 
buildings, supporting these data to be shared and exchanged among various sources. However, 613 
several issues exist in practice. IFC cannot support automatic compliance checking (ACC) 614 
conveniently. Researchers have put forward ways to extract items, which have similar concepts 615 
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with the rules of compliance checking (CC), from IFC, and use ML algorithms to estimate 616 
deviations between the CC rules and similar IFC items, and then ACC can be conducted 617 
automatically based on the IFC schema [164]. Moreover, due to low semantic integrity of mapping 618 
to IFC classes, mistakes often occur during data exchange, like mismatches, omissions, and 619 
contradictions [76]. BIM-AI integrations are proposed to detect these mistakes in mapping [77], 620 
then perfect the semantic integrity [76]. Because the general semantics of BIM cannot meet 621 
increasing requirements on integration, exchange and query of data, AI techniques are also 622 
introduced to extend the semantic BIM, such as fuzzy-logic-based semantic extension for 623 
imprecise query and representation of knowledge and information [165], and ML-based semantic 624 
enhancement for classifying building objects [166]. 625 

(2) Automatic checking 626 

All buildings must meet the regulatory code and requirements. Since the traditional manual 627 
CC is usually costly, time-consuming and error-prone [167], automatic approaches to CC are more 628 
effective and improves checking quality. Successful ACC needs to complete and correct regulatory 629 
code information and building information. AI techniques are applied to supplement missing or 630 
incorrect information, such as semantic enrichment for automatic normalization of building 631 
information [167], extracting and coding the regulatory information from textual documents [103]. 632 
In order to guarantee the construction work, BIM-AI integrations also contribute to other checking 633 
processes, like automatic geometry checking to detect the errors in the geometry of building 634 
structures and constructions [93, 168], and automatic safety rule checking to identify and correct 635 
on-site hazards before the construction commences [30, 169]. 636 

(3) Identifying and updating building information 637 

For as-built buildings, BIM is helpful to their maintenance, retrofits, emergency and energy 638 
management [170], while for new buildings, it is also necessary to use BIM to monitor and track 639 
changes of building information from the very beginning [171]. Images and point clouds, captured 640 
by uncalibrated cameras or laser scanners, form the basis for automatically identifying, classifying 641 
and updating building information. Since the image-based method requires lower cost and less 642 
professional operators, automatic identification from the as-constructed photos and scanned as-643 
built drawings were proven to be feasible [172, 173]. The point cloud-based methods are more 644 
expensive and require higher operating techniques, but more flexible to adapt to different scenes. 645 
Syntactic point clouds are generated to train neural networks to promote the performance of 3D 646 
point cloud semantic segmentation [85, 86]. Until now, building materials (wood, plastic, stone, 647 
concrete, etc.) [171] and building objects (door, window, wall, floor, etc.) [84, 163, 170] are 648 
classified automatically by the features of images and point clouds. Besides, more detailed 649 
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information can be added to BIM automatically, like material and textural information based on 650 
thermal infrared sensing [174] and office furniture objects based on the 3D point cloud [88]. 651 

(4) Optimizing modeling process 652 

The automated generation framework of BIM is proposed to collaborate in multidisciplinary 653 
techniques, like scanning & sensing, feature recognition, object classification, and 654 
parameterization of BIM. Since the existing resources for modeling keep increasing with the high-655 
speed development of BIM, repetitive 3D models can be reused to save time. Relevant existing 656 
3D geometric models or components are automatically recommended to designers in BIM 657 
environment [175], considerably improving the efficiency of BIM modeling [176].  658 

4.2.7. Sustainable development 659 

The AEC/FM industry is regarded as a major industry with high energy consumption and 660 
carbon emission. AI techniques are integrated to assist BIM in sustainable development.  661 

(1) Sustainable assessment 662 

Authoritative sustainable assessments can guide the promotion of sustainable development 663 
further. International certifications (LEED, BREEAM, etc.) set detailed requirements on building 664 
components. Since the majority of useful building information can be extracted from BIMs, 665 
building sustainability can be assessed in BIM automatically according to international 666 
certifications. With the adoption of AI techniques, building information that cannot be extracted 667 
directly can be estimated [177], and missing data in BIM can be predicted [75]. More specifically, 668 
automatic assessment of the concrete usage index, one sustainable criteria, has proven effective in 669 
creating a sustainability report for buildings [178]. 670 

(2) Energy management 671 

In the sustainable development of AEC/FM industry, building energy performance has attracted 672 
lots of attention with more AI techniques linked to BIM for effective energy management. AI 673 
techniques contribute to seeking the necessary data from the considerable lifecycle data in BIMs 674 
[80], enhancing the accuracy of simulation of building energy consumption by occupants’ behavior 675 
[73], and providing potential energy-saving suggestions automatically [179]. In the future 676 
development at a larger scale (for example, urban scale), it is impossible to establish a detailed 677 
model and accomplish the lifecycle assessment without AI techniques [180]. 678 
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(3) Energy-efficient building design 679 

To reduce the energy consumption of a building, energy-efficient building design is 680 
indispensable. Building performance analysis and simulation are effective can assist designers in 681 
decision-making among different design schemes [181]. Specifically, researchers focus on 682 
particular building components that impact heavily on energy consumption, like thermal systems 683 
and lighting systems. In order to facilitate energy-efficient design, AI techniques have been applied 684 
to determine the optimal envelope design [182] and internal illumination [52], and to automatically 685 
provide energy-saving suggestions [71].  686 

Moreover, considering the higher budget of energy-efficient buildings, BIM-AI integrations are 687 
developed to configure the allocation of the building envelope and the reinforced concrete 688 
structures to optimize the lifecycle cost of buildings [46, 57, 183]. Additionally, more studies have 689 
focused on operational energy, but in practice, a slight decrease in operational energy may cause 690 
a larger increase in embodied energy. AI techniques are also adopted to balance embodied energy 691 
and operational energy [184]. 692 

5. Discussion 693 

The development of software has spurred BIM application and research, providing automated 694 
platforms to effectively manage and process ‘big multi-dimensional data’ during the lifecycle of 695 
buildings, and AI techniques are at the core of these platforms. This study has reviewed integrated 696 
BIM-AI applications in the AEC/FM industry. The following subsections discuss key findings. 697 

5.1. Diverse BIM-AI integrated modes 698 

The ways to integrate AI techniques with BIM are quite diverse and can be regarded as three 699 
integrated modes. 700 

Mode 1: Collecting and updating BIMs by AI techniques 701 
Since the condition of buildings keeps changing during the whole life cycle, digital information 702 

on buildings is always dynamic. It is challenging to capture real-time data generated by buildings, 703 
automatically update them, and store historical data in BIMs. The first integrated mode addresses 704 
this kind of issue, using AI techniques to collect and update digital data in BIMs. Generally, AI 705 
techniques accelerate the collection or update of BIMs by automatically identifying building 706 
information from multi-source materials, such as on-site videos, images, audios, texts and 3D point 707 
clouds, as well as knowledge from previous cases. For instance, images [163, 170] and point clouds 708 
[84, 171] are major inputs of AI techniques for updating and classifying building materials, 709 
elements, or components, and then auto-write the results in BIMs. Computer vision can provide 710 
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further detailed information on buildings to BIM, and can update construction progress 711 
information using real-time images [143] and collect indoor localization using indoor images [74]. 712 

Mode 2: Managing and analyzing BIMs by AI techniques 713 
A considerable amount of building information is stored in BIMs, and the information keeps on 714 

increasing as time goes on. It is tedious and time-wasting to process this information manually. 715 
Therefore, AI techniques are also integrated with BIM to assist the management and analysis of 716 
BIM information efficiently and automatically. In the management of life cycle data, AI techniques 717 
are efficient in eliminating design clashes in the design phase, correcting records and work orders 718 
from operational data in the O&M phase, and also managing lifecycle cost data. In further data 719 
analyses in BIM have been realized with BIM-AI integrations. AI techniques enable BIM to extend 720 
its analysis functions of optimization, forecast, assessment, decision-making, feedback and 721 
simulation. For example, based on high-quality data in BIMs, several functions of energy analysis 722 
have been developed with the assistance of AI techniques for optimizing building sustainability 723 
performance, like energy prediction, and decision-making in green design [73, 80]. In sum, AI 724 
techniques can maximize the value of the building information stored in BIMs. This is the latest 725 
trend of integrated BIM-AI applications.  726 

Mode 3: Implementing BIM-based tasks by AI techniques 727 
The last integrated mode deals with executing BIM-based tasks automatically with the support 728 

of AI techniques. This mode is mainly applied in automated construction based on the robotics. 729 
Manufacturing robots are usually adopted to carry out standard and repetitive tasks or high-risk 730 
tasks. In practice, BIM-based robotic models or platforms can guide and adjust the activities of 731 
robots by linking construction to design directly [108, 109]. 732 

5.2. Challenges and future directions 733 

5.2.1. Technical aspect 734 

(1) Challenges and future directions of problem formulation 735 
In order to run AI techniques smoothly, problem formulation should be firstly 736 

completed for the targeted problem. However, the reality is generally too complex to be 737 
fully covered, therefore most AI methods have to simplify their scenario formulations. For 738 
instance, potential conflicts (e.g. tagline) [35] or extra installation cost [39] may be 739 
disregarded in KBR-based planning, and only limited parameters are saved in ANN-740 
enabled studies. The chain reaction problem brought by the simplification is the decline of 741 
generalization, indicating that some AI-BIM applications are not promised success in 742 
similar scenarios [112, 126]. 743 

To deal with these challenges, three directions could be taken in the future. Firstly, more 744 
complex formulation configurations are acceptable (e.g. more parameters, more complex 745 
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features) if given powerful hardware support. In addition, BIM-AI frameworks need to be 746 
tested on several case examples resembling various properties to ensure robustness. Finally, 747 
sensitive analysis and reliability analysis are highly recommended in parameter selection, 748 
allowing AI techniques to automatically identify crucial points without complicating the 749 
formulation [185]. 750 

(2) Challenges and future directions of data preparation 751 
The data is required to be well prepared before running BIM-AI integrations. 752 

Unfortunately, data quantity cannot always be guaranteed. For instance, the expected BIM 753 
models could be unavailable for temporary facilities [34], specific BIM categories may be 754 
rare in history files [101]. In the collection stage, no matter whether labeling a training set 755 
of SL or interviewing experts is time-consuming, UGV-based collection could be quite 756 
expensive, and qualified data may not be achieved after collection. For example, KBR’s 757 
rules are susceptible to human errors [27], while motion blur and perceptual aliasing are 758 
harmful to CV applications [90].  759 

Data augmentation is favored for increasing the data quantity and meeting the various 760 
distribution [186], and recommendations have been proposed for future improvement of 761 
data preparation. Automatic tools deserve more attention, involving trained USLs for 762 
automated labeling, existing NLPs for expert interviews, and IoT sensors for relieving the 763 
UAV workload. In the final case of data errors, a standard ontology should be designed to 764 
regulate the least acceptable criterion of input data. 765 

(3) Challenges and future directions of AI technique execution 766 
Although representative BIM-AI integrations have been mentioned above, there are still 767 

uncertainties when users are faced with several qualified alternatives, and the method of 768 
random selection is likely to perform unstably. Hence, it is recommended researchers make 769 
selections based on statistical errors and precision-recall performance [187]. Furthermore, 770 
technique improvement is another challenge for users, aiming for shorter running time and 771 
better performance [188, 189]. In the future, the focus could be devoted to studying the 772 
scenario essentials rather than only the mathematics of algorithms, so that suitable variants 773 
can be realized in different datasets or environments [190, 191]. Fusing multiple AI 774 
techniques into a hybrid AI could be an upgrade direction [186, 192]. Lastly, the absence 775 
of regulation is a common but urgent challenge for advanced techniques, particularly for 776 
AI robotics [109]. Thus, relevant companies, governments and universities are encouraged 777 
to propose necessary regulations cooperatively in the future. 778 

5.2.2. Application aspect 779 
 780 

(1) Integrated applications in the lifecycle of projects  781 
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A main advantage of BIM is covering the lifecycle information of buildings from 782 
planning to demolishment. BIM not only helps to realize the execution of tasks in different 783 
phases, but also facilitates information sharing and interdisciplinary cooperative work. 784 
Functions of BIM in the building lifecycle have been further expanded by introducing AI 785 
techniques. In terms of elaboration of Section 4.2.1, the BIM-AI integrations have not been 786 
applied evenly in every phase of the building lifecycle. For instance, the processes of 787 
construction and O&M are complicated, and the safety of workers and occupants must be 788 
considered as well. It is therefore urgent to employ AI techniques to improve efficiency 789 
and avoid accidents. In contrast, AI techniques have not integrated with BIM very much in 790 
the demolishing phases, mainly because functions or models provided by BIM are 791 
sufficient to meet requirements of building demolition. In the future, more BIM-AI 792 
integrated applications will be developed to cope with serious issues in the demolishing 793 
phases, and it is expected that future BIM-AI integrations can gradually cover the whole 794 
lifecycle of buildings, for promoting the overall automation in AEC/FM industry. 795 

Moreover, existing utilization of AI techniques in the lifecycle cost of buildings assists 796 
in capturing cost information from manufacturers and predicting the overall lifecycle cost. 797 
Such utilization can solve several painful points of the lifecycle cost. In the future, AI 798 
techniques may be linked to BIM to manage cost automatically in the whole lifecycle, 799 
capturing the cost information, detecting wrong cost data, predicting the lifecycle cost, 800 
balancing the cost, quality and time, and providing economic strategies to maintain 801 
building components.  802 

(2) Integrated applications in automated modeling 803 
Building modeling is one of the most intractable problems in the application of BIM. 804 

For large buildings or infrastructure, a considerable amount of information on building 805 
components must be inputted in BIM; while for as-built buildings, their BIMs have to be 806 
remodeled according to the actual conditions. AI techniques are imported to the modeling 807 
process to improve efficiency. Several central and urgent issues for automated modeling 808 
have been solved by appropriate AI techniques, such as semantic enhancement and IFC 809 
extensions for data exchange and retrieval, automatic identification and classification of 810 
building objects for data update, and recommendation of existing suitable models for 811 
avoiding repetitive modeling.  812 

Even though automated modeling has already been realized to the same degree, further 813 
challenges have to be overcome in the future development of integrated applications. 814 
Despite checking and detecting errors or misclassifications of data mapping in IFC files, 815 
automatic correcting and modifications are expected to realize further semantic 816 
enhancement. It is proven that several types of AI techniques perform well in semantic 817 
enhancement. Thus, how to decide on the appropriate AI technique to solve different kinds 818 
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of semantic issues should be considered more. In addition, new automated modeling 819 
approaches are designed to work separately, resulting in some functions of modeling 820 
approaches overlapping with each other. Ideally, these overlapped functions should be 821 
integrated into one completed automated modeling system, which can create and update 822 
all essential building information automatically based on collected raw data from actual 823 
buildings.  824 

(3) Integrated applications in sustainable development 825 
In order to protect the global environment and guarantee benign development, 826 

sustainability is regarded as the most critical index in the AEC/FM industry. AI-aided 827 
secondary developments of BIM have provided plug-ins to assess the sustainability of 828 
buildings conveniently, and to aid energy management and energy efficiency design. 829 
However, at present, AI techniques are only involved in secondary developments of BIM 830 
for particular points, rather than in the overall sustainable development. For instance, 831 
integrated applications have been proposed only for the design of building envelopes. In 832 
the future, how to enhance the overall sustainable performance of buildings by extension 833 
of the integrated applications should be taken into consideration. In addition, the 834 
assessment of sustainability usually adopts popular certification of green buildings as the 835 
basis of ranking criteria, like LEED, mainly consisting of environmental and ecological 836 
sustainability. The data on the ranking criteria are retrieved from BIMs or estimated by AI 837 
techniques, so AI techniques should assist in extracting more social and economic 838 
sustainability for sustainable assessment. 839 

After the in-depth discussion about current challenges and future trends of the main application 840 
fields, it is evident that BIM-AI integrations are still in the early stages of development. These 841 
integrations still work separately in AEC/FM industry, omitting some critical points which should 842 
be addressed, and generating overlaps among different functions. Besides the applications 843 
mentioned above, this study also points out another three integrated applications which need 844 
further attention. 845 

(4) Integrated applications in decision-making 846 
Currently, AI techniques are imported in BIM to achieve a single purpose, such as 847 

automatic identification of building components, automatic assessment of building 848 
performance, and detecting potential on-site hazards. However, decision-making in the 849 
AEC/FM industry is generally complicated, and multiple objectives need to be considered, 850 
like safety, costs, performance and efficiency. During the life cycle of buildings, 851 
stakeholders need to commit considerable time in decision-making, not only determining 852 
the design, planning, materials, but also optimizing construction methods, construction 853 
equipment, and scheduling. The integrations for decision-making should be multi-purpose. 854 
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Traditional decision-making is a subjective decision-making process principally depending 855 
on experts’ experience and stakeholders’ opinions, and may cause uncertainty in achieving 856 
multiple purposes. Adopting AI techniques can help balance different purposes more 857 
objectively and rationally. Future research should pay more attention to multi-purpose 858 
models with the assistance of BIM and AI integrations. 859 

(5) Integrated applications for promoting the human-computer interaction 860 
As is known, due to the high difficulty in handling BIM software, employees need to be 861 

trained and tested to become professional BIM modelers. As functions of BIM software 862 
increase gradually, BIM modelers and users have to spend more time on learning the 863 
operational approaches. Many BIM modelers and users consider parts of the operations too 864 
complicated and inconvenient, leading to a relatively weak experience in human-computer 865 
interaction. Some simple secondary developments on BIM software have been developed 866 
for smoother operations. However, owing to the diverse habits and requirements of 867 
different users (e.g. architectural modeler, structure modelers, users of simulation function, 868 
etc.), it is hard to provide uniform BIM software to meet all requirements. The AI technique 869 
is an appropriate tool to deal with changing demands of users by recommending and 870 
optimizing procedures for different users in BIM software. In the future, AI techniques can 871 
be integrated with BIM software to ascertain the requirements and habits of users, and then 872 
offer uniform operational procedures for all users. 873 

(6) Integrated applications with more cooperations 874 
As shown in the bibliometric analysis and findings, it is clear that the majority of BIM-875 

AI integrations are independent, and lack deep cooperation with other disciplines, 876 
institutions and platforms. This status quo results in several problems, such as overlapped 877 
functions, unsystematic utilizations, or non-creative improvements. Future research can 878 
enhance integrated applications in the following aspects: (1) Interdisciplinary cooperation. 879 
Architecture, construction, planning, and design are traditional disciplines in the AEC/FM 880 
industry. However, traditional disciplines cannot independently support the sustainable 881 
development of AEC/FM industry very well, since both BIM and AI techniques belong to 882 
different disciplines. For accelerating advanced and efficient functions of integrated 883 
applications, it is essential to take advantage of AI techniques to cooperate with other 884 
disciplines like management, economics, geography, transportation, computer science, 885 
automation, etc. (2) Inter-institutional cooperation. The co-authorship network (as shown 886 
in Fig. 4) reveals researchers of integrated applications are used to working independently 887 
or cooperating with few familiar institutions. However, a single institution has difficulty in 888 
handling interdisciplinary knowledge related to the AEC/FM industry. Further, contacting 889 
researchers from other institutions would be enlightening by proposing more creative 890 
integrated applications; (3) Cross-platform cooperation. Each discipline has developed its 891 
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own professional and mature platforms, like GIS platform for geography, ArcBUS for 892 
facility management, DeST for energy simulation, and Anylogic for modeling and 893 
simulation. In future integrated applications, AI techniques can be used to exchange data 894 
and information between BIM and other platforms, enhancing the cross-platforms 895 
cooperation of BIM. 896 

6. Conclusions  897 

With the development of both BIM and AI techniques, increasing researchers have paid 898 
attention to the development of BIM-AI integrations for promoting the AEC/FM industry. In 899 
reviewing BIM-AI integrated applications, we conducted a systematic literature review and 900 
bibliometric analysis of previous articles. Based on the search and screening protocol, 183 articles 901 
were identified as eligible materials for bibliometric analysis. The bibliometric analysis revealed 902 
the characteristics of time series, journals of publication, keywords co-occurrence and co-903 
authorship networks of eligible articles. BIM-AI integrated applications proposed by the eligible 904 
articles were summarized from two perspectives: main AI techniques integrated with BIM and 905 
main integrated applications in AEC/FM industry. According to findings, we discuss how to 906 
integrate BIM with AI techniques, and what are the current challenges and future trends of the 907 
development of integrated applications in AEC/FM industry. 908 

 909 
Regarding theoretical terms, we reviewed BIM-AI integrated applications by combining the 910 

systematic review with bibliometric analysis, offering an appropriate way to conduct the review, 911 
pointing out three integrated modes of BIM and AI techniques. Following the research trend, 912 
which aims at making achievements in BIM-AI integrations in the AEC/FM industry, three 913 
integrated modes were determined. In addition, future research is required to deal with technical 914 
challenges. Future trends would indicate valuable directions in which to make breakthroughs. In 915 
practice terms, AI techniques will engage in BIM, and even AEC/FM industries, more deeply by 916 
developing creative integrated plug-ins and systems. This study elaborates on main application 917 
fields, recommending appropriate BIM-AI integrations to solve problems in different fields of the 918 
AEC/FM industry. 919 

 920 
However, this review still has some limitations, such as taking WoS as the only database, and 921 

English as the only language for better authoritativeness and readability. These limitations may 922 
result in omitting some useful integrated applications. In future reviews, the protocol of the search 923 
and screening of articles should be revised, and more researchers who can understand different 924 
languages can be invited to cover contributive studies more widely.  925 
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