This is a pre-copyedited, author-produced version of an article accepted for publication in Postgraduate Medical Journal following peer review. The version of record Shu-Xian Zhang and others, Association of serum uric acid levels with cardiovascular and all-cause mortality in hypertensive patients in China: a cohort study, Postgraduate Medical Journal, Volume 99, Issue 1173, July 2023, Pages 708–714 is available online at: https://doi.org/10.1136/pmj-2021-141313.

# Postgraduate Medical Journal

# The association of serum uric acid levels with cardiovascular and all-cause mortality in hypertensive patients in China: a cohort study

| Journal:                      | Postgraduate Medical Journal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | postgradmedj-2021-141313.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Article Type:                 | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date Submitted by the Author: | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Complete List of Authors:     | Zhang, Shu-Xian; South China University of Technology School of Medicine, Cardiology; Guangdong Provincial People's Hospital, Cardiology Yu, Yu-Ling; Guangdong Provincial People's Hospital, Cardiology TANG, Song-tao; Community Health Center of Liaobu County Lo, Kenneth; Guangdong Provincial People's Hospital, Cardiology Feng, Ying Qing; Guangdong Provincial People's Hospital, Cardiology Chen, Ji-Yan; South China University of Technology School of Medicine, Cardiology; Guangdong Provincial People's Hospital, Cardiology |
| Keywords:                     | Hypertension < CARDIOLOGY, EPIDEMIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

SCHOLARONE™ Manuscripts The association of serum uric acid levels with cardiovascular and all-cause mortality in hypertensive patients in China: a cohort study

**Authors:** Shu-Xian Zhang, MD<sup>1,2</sup>, Yu-Ling Yu, MD<sup>2</sup>, Song-Tao Tang, MD<sup>3</sup>, Kenneth Lo, PhD<sup>2,4,5</sup>, Ying-Qing Feng, MD<sup>2</sup>, Ji-Yan Chen, MD<sup>1,2</sup>

# **Affiliations:**

- 1: Department of Cardiology, School of Medicine, South China University of Technology, Guangzhou, China
- 2: Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- 3: Department of Cardiology, Community Health Center of Liaobu Town, Dongguan, China
- 4: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- 5: Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, Providence, Rhode Island, United States

Corresponding author: Dr. Kenneth Lo, Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China, <a href="mailto:kenneth\_lo@brown.edu">kenneth\_lo@brown.edu</a>, Dr. Ying-Qing Feng, Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China, <a href="mailto:651792209@qq.com">651792209@qq.com</a>, and Dr. Ji-Yan Chen, Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Cardiology, School of Medicine, South China University of Technology, Guangzhou, China, <a href="mailto:chenjiyandr@126.com">chenjiyandr@126.com</a>

Word counts: 244 (for abstract), 2,366 (for text)

Contributions: Conceptualization: SXZ, KL, YQF and JYC. Methodology: SXZ, YLY, KL, YQF and JYC. Formal analysis: SXZ and KL. Data curation: SXZ, YLY, STT, KL, YQF and JYC. Writing—original draft preparation: SXZ and KL. Writing—review and editing: SXZ and KL. Supervision: KL, YQF and JYC. All authors drafted the manuscript.

**Declaration of Interest:** None declared.

**Acknowledgement:** None.

**Disclaimers:** The views expressed in the submitted article are our own and not an official position of the institution or funder.

Funding/sources of support: This research was supported by Science and Technology Plan Program of Guangzhou (No. 201803040012), the Key Area R&D Program of Guangdong Province (No. 2019B020227005), Guangdong Provincial People's Hospital Clinical Research Fund (Y012018085), the Fundamental and Applied Basic Research Foundation Project of Guangdong Province (2020A1515010738), and the Climbing Plan of Guangdong Provincial People's Hospital (DFJH2020022).

**Competing interest:** No potential competing interest was reported by the authors.

**Data availability statement:** Raw data were generated at the Guangdong Provincial People's Hospital. Derived data supporting the findings of this study are available from the corresponding author on request.

**Transparency declaration:** The lead author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

#### **Abstract**

## **Purpose**

The present study aimed to assess the association of elevated serum uric acid (SUA) and hypouricemia with all-cause mortality and cardiovascular mortality in Chinese hypertensive patients.

#### Methods

In the present prospective cohort, 9,325 hypertensive patients from Dongguan, China were enrolled from 2014 to 2018 for analysis. Participants were categorized by quintiles of SUA. The hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between SUA, all-cause and cardiovascular mortality were evaluated using the multivariate Cox regression model. After adjusting for multiple confounders, restricted cubic spline analysis was conducted to demonstrate the shape of relationship.

#### Results

After a median follow-up of 4.18 years for 9,325 participants, there were 409 (4.4%) and 151 (1.6%) reported cases of all-cause and cardiovascular mortality, respectively. By using the third quintile of SUA (6.68 to < 7.55 mg/dL for males, 5.63 to < 6.42 mg/dL for females) as reference, the highest quintiles of SUA was associated with an elevated risk of all-cause (HR: 1.34, 95% CI= 1.00, 1.80) in the crude model, but the association was not significant after adjusting for multiple comparisons. The association between low SUA and mortality, and the dose-response analysis on the non-linearity of SUA-mortality relationship were not statistically significant.

#### **Conclusions**

Although the association between SUA levels, all-cause and CVD mortality did not appear to be significant among Chinese hypertensive patients, the findings might be confounded by their medical conditions. Further studies are needed to verify the optimal SUA levels for hypertensive patients.

# Keywords

Hyperuricemia, hypouricemia, all-cause mortality, cardiovascular mortality, hypertension

# **Key Messages**

# What is already known on this topic

- Elevated levels of serum uric acid (SUA) may increase the risk of all-cause and cardiovascular mortality.
- The magnitude of association between SUA and mortality appears to be inconsistent across different medical conditions.

# What this study adds

- This prospective cohort has examined the association of high and low SUA with mortality among hypertensive patients in China.
- The mortality rate did not differ substantially among SUA quintiles, which might be confounded by the medical conditions.

# How this study might affect research, practice or policy

• Future studies should explore the optimal SUA levels for hypertensive patients.

#### INTRODUCTION

Elevated blood pressure (BP) is one of the major risk factors for global disease burden, 1 it can cause severe target organ damage, and a higher risk for mortality. Moreover, serum uric acid (SUA), as the end product of purine metabolism, 2 has been related to hypertension, diabetes, dyslipidemia, and obesity. 3 4 SUA is also being regarded as an independent risk factor for cardiovascular disease (CVD), 5 including heart failure. 6 7 Some studies demonstrated a positive association between hyperuricemia and cardiovascular mortality. 8-11 However, the influence of a low uric acid level on mortality and clinical outcomes has not been established, since only several studies have been performed. A Korean study has demonstrated low uric acid level to be associated with higher all-cause mortality in patients undergoing dialysis. 12 A cohort study in Japan reported that low uric acid level (<4.6 mg/dl in men and<3.3 mg/dl in women) can increase the risk of CVD mortality. 13 Despite the aforementioned studies, the prospective impact of hyperuricemia and hypouricemia in the risk of mortality has not been investigated adequately, including people with hypertension. To address this research gap, we aimed to assess the association of elevated SUA and

hypouricemia with all-cause mortality and cardiovascular mortality in Chinese hypertensive patients.

#### **METHODS**

# Study population

All participants were essential hypertensive patients aged 18 years or above, who lived in Liaobu community in Dongguan, Guangdong Province of China. Patients were enrolled during January and December 2014 and being followed until 31 December 2018. Participants with missing baseline data on SUA levels or blood pressure (BP), or patients that took diuretic and other uric acid lowering drugs were excluded (Figure 1). Finally, 9,325 participants were included in this analysis. This study was following the principles outlined in the Declaration of Helsinki and was approved by the institutional medical ethical committee of the Guangdong Provincial People's Hospital, Guangzhou, China (reference number: 2012143H). All participants provided informed written consent to participate.

#### Data collection

To measure the level of SUA, fasting blood samples were drawn after 8 to 10 hours of overnight fasting. After that, the samples were centrifuged at 3,500 rounds per minute for 15 minutes to obtain a serum layer for analysis. The concentration of SUA was measured using an automatic biochemical analyzer (Hitachi 7170A).¹⁴ Demographic data from participants were obtained using a standardized questionnaire, including age, sex, race, lifestyle habits such as smoking (yes or no), alcohol intake (yes or no), history of hypertension (yes or no), coronary heart diseases (CAD) (yes or no), diabetes (yes or no), stroke (yes or no) and antihypertensive medication use (antihypertensive drugs: β-receptor blockers (Beta), calcium channel blockers (CCB), angiotensin converting enzyme inhibitors(ACEI)/angiotensin (ARB)). Height and weight were measured using an automatic scale, and body mass index (BMI) was calculated using these measurements as follow: BMI = body weight/height². Diabetes mellitus (DM) was defined as fasting blood glucose (FBG) ≥126 mg/dL, the use of

hypoglycemic agents, or self-reported history of diabetes. <sup>14</sup> Blood samples drawn from the antecubital vein were obtained after overnight fasting. Serum levels of uric acid, FBG, total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) were measured by standard method in core clinical laboratory. BP and heart rate (HR) were measured by the Omron HBP-1100u professional portable BP monitor (Japan) placed on the right arm, while the individual was in a sitting position more than 5 minutes. The average measurement values of systolic BP (SBP) and diastolic BP (DBP) were used. Hypertension was defined as SBP ≥140 mm Hg and/or DBP ≥90 mm Hg or self-reported use of antihypertensive drug in the last 2 weeks. <sup>14</sup>

# Outcome assessment and follow-up

All-cause and cardiovascular mortality were the outcomes of the present study, which were assessed according to the ICD-10.<sup>15</sup> All-cause mortality included deaths from all causes. Cardiovascular mortality was defined by International Classification of Diseases, 10th Edition, Clinical Modification System codes (ICD-10) (I00-I09, I11, I13, and I20-I51) derived from death-certificate data. From the time of enrolment until 31 December 2018, data on mortality were obtained from the local medical insurance administration of Dongguan City, which were investigated by clinic visit or phone call during follow-up.

# Statistical methods

Continuous variables were reported as means and standard deviation (SD), and categorical variables were reported as frequencies with percentages. By using predefined normal values (3.5 to 7.2 mg/dL for males, 2.6 to 6.0 mg/dL for females) of SUA, 16 only very few patients from the present study sample were low in SUA (0.6% for males and 0.3% for females). Therefore, participants were categorized by sexspecific quintiles in the study population for all analyses instead. For males, the range of quintiles were < 5.76 mg/dL, 5.76 to < 6.68 mg/dL, 6.68 to < 7.55 mg/dL, 7.55 to < 8.68 mg/dL and  $\geq$ 8.68 mg/dL, respectively. For females, the range of quintiles were < 4.83 mg/dL, 4.83 to < 5.63 mg/dL, 5.63 to < 6.42 mg/dL, 6.42 to < 7.46 mg/dL and  $\geq$ 

7.46 mg/dL, respectively. These categories were used to explore the nonlinear associations and better delineate the effects of low and high SUA levels on mortality risk. With the use of Cox proportional hazards models (the third quintile as referent), hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated to demonstrate the association between SUA, all-cause and cardiovascular mortality. Two regression models were built. Model 1 only included SUA, while model 2 was additionally adjusted for age, sex, BMI, SBP, DBP, smoking, alcohol intake, TG, HDL-C, CHOL, FBG comorbidities (stroke, DM, CAD) and medication use (Beta, CCB, ACEI/ARB). Trend analysis was performed by assigning median values of each SUA quintile and treating it as a continuous variable in the regression model.<sup>17</sup> We performed restricted cubic spline analysis with 3 knots (25th, 50th and 75th percentiles) to detect the shape of dose-response relationships of SUA and mortality, using the median of SUA as the reference point, adjusted by all covariates in Model 2.18 We used Wald-type statistics testing that a beta-coefficient for second spline is not equal to zero. 19 For the subgroup analyses, we stratified participants by age (<80 or ≥80 years), sex (male or female), antihypertensive medication use (yes or no), and BMI (<25 or ≥25 kg/m²) to investigate potential sources of effect modification. All p values were two sided, and p values < 0.05 were considered statistically significant. To avoid false-positive findings due to multiple comparisons, the significance level of all statistical analyses has been adjusted using Bonferroni correction. All analyses were performed with R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria).

#### **RESULTS**

#### Baseline characteristics

The baseline characteristics of all the participants according to SUA levels are summarized in Table 1. A total of 9,325 (48.5% male) participants with an average age of 62.22±13.62 years were enrolled at baseline. The overall BMI of participants was 24.9 (SD = 3.93), demonstrating that half of the study population tended to be overweight. There were significant differences in age, SUA, SBP, alcohol intake, BMI, the use of antihypertensive drugs, CHOL, HDLC and TG across the quintiles of SUA

(all P<0.05). In general, all aforementioned variables increased across quintiles except for HDLC that decreased across quintiles.

# Exploring the non-linear Association Between SUA and Mortality

There were 409 deaths documented during the follow up period (average = 4.18 years). Among the total cases of deaths, 151 (36.9%) events were attributed by CVD. Univariate and multivariate Cox regression analyses were performed to study the association of SUA level with cardiovascular and all-cause mortality (Table 2). When compared to the third quintile, the highest quintile of SUA was associated with the elevated risk of all-cause (HR: 1.34, 95% CI= 1.00, 1.80) in the crude model (Model 1), but the association was not statistically significant after adjusting for multiple comparisons (p= 0.48). Furthermore, the strength of association of the highest quintile of SUA with all-cause mortality attenuated after being fully adjusted in Model 2 (HR: 0.87, 95% CI= 0.64, 1.18). In the trend analysis, SUA was associated with the elevated risk of all-cause (HR: 1.10, 95% CI= 1.05, 1.16) in the crude model after adjusting for multiple comparisons (Model 1), but the association (HR: 0.98, 95% CI= 0.92, 1.04) was not significant after being fully adjusted in Model 2. For the dose-response analysis (Figure 2), the p-value for nonlinearity was not significant for both all-cause (p=0.29) and CVD mortality (p=0.45).

# Subgroup Analyses

As shown in Table 3, after multivariate adjustment for confounders, subgroup analyses were performed in age (≥80 yeas vs. <80 years), sex (male vs. female), the use of antihypertensive drug (yes vs. no) and BMI (≥25 kg/m² vs. <25 kg/m²), respectively. The only significant interaction was found between age and SUA in the relationship between SUA and all-cause mortality, but the association between SUA in quintiles, all-cause and cardiovascular mortality were not significant regardless of subgroups.

# **DISCUSSION**

In a cohort of 9,325 patients with hypertension in China, the present study has

examined the association between both higher and low SUA levels and the risk of all-cause and cardiovascular mortality. Although SUA at the highest quintile might associate with an elevated risk of all-cause mortality in the crude model, the magnitude of association was insignificant after adjusting for multiple comparisons. The dose-response analysis on the non-linearity of SUA-mortality relationship was also insignificant.

The association of elevated SUA levels with all-cause and cardiovascular mortality was examined in several studies.<sup>20-24</sup> For example, one study categorized SUA into quartiles,<sup>14</sup> and they found that hyperuricemia was an independent risk factor of mortality from all causes and total CVD in Taiwanese population. Moreover, few studies have explored the role of both high and low uric acid level in mortality risk. Kuo et al found that individuals with either high (>11.4 mg/dl) or low (<2.9 mg/dl) SUA levels were at high risk for all-cause and cardiovascular mortality by setting the reference group as 5-6 mg/dl.<sup>22</sup> However, the study quality of Kuo et al might be affected by not adjusting for smoking, alcohol intake and BMI, which were the key cardiovascular risk factors.

To date, the underlying pathophysiologic mechanism of for the association between low SUA levels and mortality is still unclear. Uric acid is known for two important opposing properties, namely the antioxidant properties and its role in endothelial dysfunction. Several experimental investigations have demonstrated the free radical-scavenging capacity of SUA, while it can induce endothelial dysfunction.<sup>25-</sup>

A Taiwanese study showed that low uric acid level can also be a marker of malnutrition, and further pointed out that low SUA level was only predictive of increased mortality in older people who were malnourished (as defined by Geriatric Nutritional Risk Index, albumin and BMI).<sup>28</sup>

While previous studies have explored the influence of elevated and low SUA levels on the risk of death, inconsistent results were observed for different patient groups. For example, a study on people with diabetes showed that SUA has no independent role on cardiovascular mortality.<sup>29</sup> In another study of 15,366 participants in the Atherosclerosis Risk in Communities, there was a significant association between

hyperuricemia and mortality (HR 1.18, 95% CI= 1.04, 1.33) in a non-CKD population, while the association in the CKD population was not significant.<sup>30</sup> The connection between hypertension and hyperuricemia also attracts people's attention. Zhang et al reported that SUA level was positively associated with DBP and SBP in both men and women in general population.<sup>31</sup> In a study conducted among Chinese hypertensive patients, hyperuricemia was associated with higher risk for all-cause and cardiovascular mortality.<sup>32</sup> Uric acid is the final oxidation product of purine metabolism,<sup>33</sup> which approximately two-thirds of SUA is excreted by the kidneys, and its excretion level is affected by renal function.<sup>20</sup> In hypertensive patients, increased SUA levels may reflect early renal vascular alterations, with reduction in cortical blood flow and depressed tubular secretion of urate as caused by its reduced delivery to the tubular secretory sites.<sup>34</sup> Besides this, the increased activity of the sympathetic nervous system and hyperinsulinemia have been proved to be associated with reduced renal excretion of uric acid.<sup>35</sup> <sup>36</sup>

In order words, the insignificant association between SUA and mortality in our study population might be attributed by several reasons. First, when compared to other studies conducted among general population, all participants in the present study were with essential hypertension. Although we have performed multivariable Cox regression analysis to minimize the interference of other potential risk factors and comorbidities, one also must consider the possibility that hypertension itself may be a risk factor for mortality, and consequently, the presence of hypertension may attenuate the association of SUA with mortality. Second, only very few patients (0.6% for males and 0.3% for females) from the present study sample were low in SUA (<3.5 mg/dL for males and < 2.6 mg/dL for females). 16 In other words, patient in the present study might not reach the threshold level of exposure to elevate the mortality risk. Third, when compared to the study conducted among Chinese hypertensive patients,<sup>32</sup> the present study has lower all-cause mortality rate (27.4% vs. 4.4%) and a shorter follow-up period (5.75 years vs. 4.18 years on average). The relatively fewer cases of death and shorter follow-up duration for the present study might limit the statistical power to detect associations between SUA and the risk of mortality. To explore the influence of SUA on mortality

risk across a wider range of exposure, more studies among hypertensive from diverse population should be conducted. In long term, optimal SUA levels for hypertensive patients can be established.

Some potential limitations of the present study should be considered. First, we determined uric acid level at a single time point, and might not account for the changes in SUA with time. Second, information such as smoking status, alcohol use and medical history was self-reported through a questionnaire, and could have resulted in recall bias. Third, some cardiovascular risk factors (e.g. diet and mental health) were not adjusted in the present study, and might result in residual confounding effect. Fourth, this study was conducted solely the Chinese population, so therefore the conclusions of the study cannot be extrapolated to other ethnic population.

#### **CONCLUSION**

In summary, this study indicated that SUA levels did not have significant association with all-cause and CVD mortality among Chinese hypertensive patients, which might be confounded by their medical conditions. Further studies are needed to verify the optimal SUA levels for hypertensive patients.

#### FIGURE LEGEND

Figure 1 Flow chart for participant selection

**Figure 2** Association of serum uric acid with all-cause (left) and cardiovascular (right) mortality using restricted cubic spline regression models

#### REFERENCES

- Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. *Lancet* 2012;380(9859):2224-60.
- 2. Keenan T, Zhao W, Rasheed A, et al. Causal Assessment of Serum Urate Levels in Cardiometabolic Diseases Through a Mendelian Randomization Study. *J Am Coll Cardiol* 2016;67(4):407-16.

- 3. Gavin AR, Struthers AD. Hyperuricemia and adverse outcomes in cardiovascular disease: potential for therapeutic intervention. *Am J Cardiovasc Drugs* 2003;3(5):309-14.
- 4. De Becker B, Borghi C, Burnier M, et al. Uric acid and hypertension: a focused review and practical recommendations. *J Hypertens* 2019;37(5):878-83.
- 5. Zhao G, Huang L, Song M, et al. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. *Atherosclerosis* 2013;231(1):61-8.
- 6. Maloberti A, Giannattasio C, Bombelli M, et al. Hyperuricemia and Risk of Cardiovascular Outcomes: The Experience of the URRAH (Uric Acid Right for Heart Health) Project. *High Blood Press Cardiovasc Prev* 2020;27(2):121-28.
- 7. Si K, Wei C, Xu L, et al. Hyperuricemia and the Risk of Heart Failure: Pathophysiology and Therapeutic Implications. *Front Endocrinol (Lausanne)* 2021;12:770815.
- 8. Zuo T, Liu X, Jiang L, et al. Hyperuricemia and coronary heart disease mortality: a meta-analysis of prospective cohort studies. *BMC Cardiovasc Disord* 2016;16(1):207.
- 9. Xu Q, Zhang M, Abeysekera IR, et al. High serum uric acid levels may increase mortality and major adverse cardiovascular events in patients with acute myocardial infarction. *Saudi Med J* 2017;38(6):577-85.
- 10. Wu CY, Hu HY, Chou YJ, et al. High Serum Uric Acid Levels Are Associated with All-Cause and Cardiovascular, but Not Cancer, Mortality in Elderly Adults. *J Am Geriatr Soc* 2015;63(9):1829-36.
- 11. Stubnova V, Os I, Hoieggen A, et al. Gender differences in association between uric acid and all-cause mortality in patients with chronic heart failure. *BMC Cardiovasc Disord* 2019;19(1):4.
- 12. Bae E, Cho HJ, Shin N, et al. Lower serum uric acid level predicts mortality in dialysis patients. *Medicine* 2016;95(24):e3701.
- 13. Zhang W, Iso H, Murakami Y, et al. Serum Uric Acid and Mortality Form Cardiovascular Disease: EPOCH-JAPAN Study. *J Atheroscler Thromb* 2016;23(12):1365-66.
- 14. Zhang S, Liu L, Huang YQ, et al. The association between serum uric acid levels and ischemic stroke in essential hypertension patients. *Postgrad Med* 2020;132(6):551-58.
- 15. Glasheen WP, Cordier T, Gumpina R, et al. Charlson Comorbidity Index: ICD-9 Update and ICD-10 Translation. *Am Health Drug Benefits* 2019;12(4):188-97.
- 16. Kivity S, Kopel E, Maor E, et al. Association of serum uric acid and cardiovascular disease in healthy adults. *Am J Cardiol* 2013;111(8):1146-51.
- 17. Choi HK, Liu S, Curhan G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the Third National Health and Nutrition Examination Survey. *Arthritis Rheum* 2005;52(1):283-9.
- 18. Huang J, Hu D, Wang Y, et al. Dose-response relationship of serum uric acid levels with risk of stroke mortality. *Atherosclerosis* 2014;234(1):1-3.
- 19. Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline

- functions in public health research. Stat Med 2010;29(9):1037-57.
- 20. Cho SK, Chang Y, Kim I, et al. U-Shaped Association Between Serum Uric Acid Level and Risk of Mortality: A Cohort Study. *Arthritis Rheumatol* 2018;70(7):1122-32.
- 21. Chen JH, Chuang SY, Chen HJ, et al. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. *Arthritis Rheum* 2009;61(2):225-32.
- 22. Kuo CF, See LC, Yu KH, et al. Significance of serum uric acid levels on the risk of all-cause and cardiovascular mortality. *Rheumatology (Oxford)* 2013;52(1):127-34.
- 23. Rahimi-Sakak F, Maroofi M, Rahmani J, et al. Serum uric acid and risk of cardiovascular mortality: a systematic review and dose-response meta-analysis of cohort studies of over a million participants. *BMC Cardiovasc Disord* 2019;19(1):218.
- 24. Ioachimescu AG, Brennan DM, Hoar BM, et al. Serum uric acid is an independent predictor of all-cause mortality in patients at high risk of cardiovascular disease: a preventive cardiology information system (PreCIS) database cohort study. *Arthritis Rheum* 2008;58(2):623-30.
- 25. Glantzounis GK, Tsimoyiannis EC, Kappas AM, et al. Uric acid and oxidative stress. *Curr Pharm Des* 2005;11(32):4145-51.
- 26. Waring WS, Webb DJ, Maxwell SR. Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. *J Cardiovasc Pharmacol* 2001;38(3):365-71.
- 27. Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction. *Kidney Int* 2005;67(5):1739-42.
- 28. Beberashvili I, Sinuani I, Azar A, et al. Serum uric acid as a clinically useful nutritional marker and predictor of outcome in maintenance hemodialysis patients. *Nutrition* 2015;31(1):138-47.
- 29. Panero F, Gruden G, Perotto M, et al. Uric acid is not an independent predictor of cardiovascular mortality in type 2 diabetes: a population-based study. *Atherosclerosis* 2012;221(1):183-8.
- 30. Navaneethan SD, Beddhu S. Associations of serum uric acid with cardiovascular events and mortality in moderate chronic kidney disease. *Nephrol Dial Transplant* 2009;24(4):1260-6.
- 31. Zhang L, Li JL, Guo LL, et al. The interaction between serum uric acid and triglycerides level on blood pressure in middle-aged and elderly individuals in China: result from a large national cohort study. *BMC Cardiovasc Disord* 2020;20(1):174.
- 32. Wang J, Wang Y, Zhao D, et al. Association between serum uric acid and mortality in a Chinese population of hypertensive patients. *Ren Fail* 2015;37(1):73-6.
- 33. Wu XW, Muzny DM, Lee CC, et al. Two independent mutational events in the loss of urate oxidase during hominoid evolution. *J Mol Evol* 1992;34(1):78-84.
- 34. Verdecchia P, Schillaci G, Reboldi G, et al. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study.



| Table 1. The baseline char | racteristic of particip | pants according to  | the quintiles of se | rum uric acid       |                     |                     |         |
|----------------------------|-------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------|
|                            | Overall                 | Q1                  | Q2                  | Q3                  | Q4                  | Q5                  | p^      |
|                            | 9325                    | 1865                | 1865                | 1865                | 1865                | 1865                |         |
| Age, y                     | $62.22 \pm 13.62$       | $60.21 \pm 14.28$   | $61.42 \pm 13.33$   | $62.01 \pm 13.31$   | $62.89 \pm 13.34$   | $64.56 \pm 13.43$   | < 0.001 |
| Male, n,%                  | 4525 (48.5)             | 905 (48.5)          | 905 (48.5)          | 905 (48.5)          | 905 (48.5)          | 905 (48.5)          | 1.00    |
| SUA, mg/dl                 | $6.71 \pm 1.78$         | $4.54 \pm 0.74$     | $5.73 \pm 0.56$     | $6.55 \pm 0.59$     | $7.47 \pm 0.66$     | $9.25 \pm 1.24$     | < 0.001 |
| SBP, mmHg                  | $136.85 \pm 18.96$      | $134.97 \pm 18.88$  | $136.26 \pm 18.60$  | $136.70 \pm 18.59$  | $137.57 \pm 18.56$  | $138.74 \pm 19.96$  | < 0.001 |
| DBP, mmHg                  | $80.46 \pm 11.98$       | $79.93 \pm 11.95$   | $80.83 \pm 11.78$   | $80.63 \pm 11.93$   | $80.52 \pm 11.66$   | $80.39 \pm 12.53$   | 1.00    |
| Smoking, n,%               | 2628 (28.2)             | 496 (26.6)          | 547 (29.3)          | 540 (29.0)          | 523 (28.1)          | 522 (28.0)          | 1.00    |
| Alcohol intake, n,%        | 1505 (16.1)             | 259 (13.9)          | 276 (14.8)          | 330 (17.7)          | 316 (17.0)          | 324 (17.4)          | 0.03    |
| BMI, kg/m2                 | $24.91 \pm 3.93$        | $23.70 \pm 3.71$    | $24.31 \pm 3.66$    | $25.08 \pm 3.97$    | $25.45 \pm 3.86$    | $26.01 \pm 4.01$    | < 0.001 |
| Antihypertensive Drugs     | ,                       |                     |                     |                     |                     |                     |         |
| n, %                       |                         |                     |                     |                     |                     |                     |         |
| Beta                       | 655 (7.0)               | 99 (5.3)            | 96 (5.1)            | 116 (6.2)           | 147 (7.9)           | 197 (10.6)          | < 0.001 |
| CCB                        | 2580 (27.7)             | 474 (25.4)          | 501 (26.9)          | 499 (26.8)          | 546 (29.3)          | 560 (30.0)          | 0.08    |
| ACEI/ARB                   | 4025 (43.2)             | 697 (37.4)          | 752 (40.3)          | 790 (42.4)          | 838 (44.9)          | 948 (50.8)          | < 0.001 |
| Comorbidity, n,%           |                         |                     |                     |                     |                     |                     |         |
| Diabetes mellitus          | 1991 (21.4)             | 414 (22.3)          | 407 (21.9)          | 375 (20.2)          | 377 (20.3)          | 418 (22.5)          | 1.00    |
| Coronary artery            | 190 (2.0)               | 30 (1.6)            | 34 (1.8)            | 32 (1.7)            | 36 (1.9)            | 58 (3.1)            | 0.08    |
| disease                    |                         |                     |                     |                     |                     |                     |         |
| Stroke                     | 242 (2.6)               | 43 (2.3)            | 41 (2.2)            | 59 (3.2)            | 51 (2.7)            | 48 (2.6)            | 1.00    |
| CHOL, mg/dl                | $213.64 \pm 46.06$      | $207.78 \pm 44.54$  | $212.60 \pm 45.56$  | $214.59 \pm 43.97$  | $216.07 \pm 46.29$  | $217.14 \pm 49.19$  | < 0.001 |
| HDLC, mg/dl                | $56.96 \pm 14.72$       | $58.79 \pm 13.67$   | $57.85 \pm 13.67$   | $56.64 \pm 14.96$   | $55.84 \pm 12.46$   | $55.67 \pm 18.02$   | < 0.001 |
| TG, mg/dl                  | $158.57 \pm 144.93$     | $131.13 \pm 117.87$ | $144.53 \pm 137.19$ | $156.45 \pm 135.13$ | $165.25 \pm 135.56$ | $195.49 \pm 182.62$ | < 0.001 |
| FBG, mmol/L                | $5.60 \pm 1.78$         | $5.72 \pm 2.21$     | $5.55 \pm 1.74$     | $5.58 \pm 1.82$     | $5.53 \pm 1.54$     | $5.61 \pm 1.52$     | 1.00    |

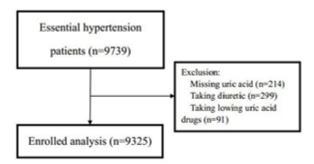
**Note:** Values are mean  $\pm$  standardized differences or n (%).

**Abbreviation:** BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; CHOL, cholesterol; HDL, high-density lipoprotein; TG, triglycerides; FBG, fasting blood glucose; SUA, serum uric acid.

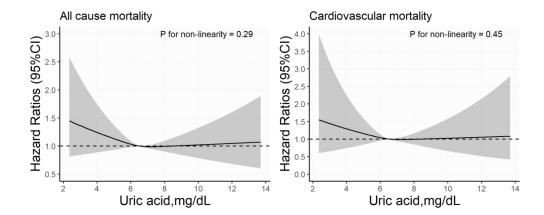
<sup>^</sup> All p-values are being adjusted by Bonferroni correction.

|                             |                 | Model 1#         | •        | Model 2#         |          |
|-----------------------------|-----------------|------------------|----------|------------------|----------|
| All-cause mortality         | Case/total (%)  | HRs (95%CI)      | P-value^ | HRs (95%CI)      | P-value^ |
| SUA, mg/dl                  |                 |                  |          |                  |          |
| Continuous variable         | 409/9325 (4.4%) | 1.10 (1.05,1.16) | <0.001*  | 0.98 (0.92,1.04) | 1.00     |
| Q1                          | 59/1865 (3.2%)  | 0.94 (0.67,1.33) | 1.00     | 0.95 (0.67,1.36) | 1.00     |
| Q2                          | 60/1865 (3.2%)  | 0.88 (0.63,1.25) | 1.00     | 0.92 (0.65,1.31) | 1.00     |
| Q3                          | 72/1865 (3.9%)  | 1.00 (Ref)       |          | 1.00 (Ref)       |          |
| Q4                          | 100/1865 (5.4%) | 1.26 (0.93,1.70) | 1.00     | 0.98 (0.71,1.34) | 1.00     |
| Q5                          | 118/1865 (6.3%) | 1.34 (1.00,1.80) | 0.48     | 0.87 (0.64,1.18) | 1.00     |
| Cardiovascular<br>mortality | Case/total (%)  | HRs (95%CI)      | P-value  | HRs (95%CI)      | P-value  |
| SUA, mg/dl                  |                 |                  |          |                  |          |
| Continuous variable         | 151/9325 (1.6%) | 1.09 (1.00,1.19) | 0.47     | 0.98 (0.88,1.07) | 1.00     |
| Q1                          | 21/1865 (1.1%)  | 0.90 (0.51,1.60) | 1.00     | 0.92 (0.50,1.67) | 1.00     |
| Q2                          | 19/1865 (1.0%)  | 0.75 (0.42,1.35) | 1.00     | 0.79 (0.43,1.45) | 1.00     |
| Q3                          | 27/1865 (1.4%)  | 1.00 (Ref)       |          | 1.00 (Ref)       |          |
| Q4                          | 42/1865 (2.3%)  | 1.40 (0.86,2.27) | 1.00     | 1.04 (0.62,1.74) | 1.00     |
| Q5                          | 42/1865 (2.3%)  | 1.26 (0.78,2.05) | 1.00     | 0.75 (0.44,1.26) | 1.00     |

#Model 1 did not adjust for any covariates; Model 2 adjust for age, sex, body mass index, systolic blood pressure, diastolic blood pressure, smoking, alcohol intake, cholesterol, high-density lipoprotein, triglycerides, fasting blood glucose, comorbidities (stroke, diabetes, and coronary artery disease), and medication use (antihypertensive drugs: β-receptor blockers, calcium channel blockers, angiotensin converting enzyme inhibitors). \*p<0.05.


^ All p-values are being adjusted by Bonferroni correction.

Abbreviations: SUA, serum uric acid; CI, confidence interval; Q, quintile; Ref, reference.


|                                                     | Continuous        | Q1                | Q2                | Q3         | Q4               | Q5               |  |
|-----------------------------------------------------|-------------------|-------------------|-------------------|------------|------------------|------------------|--|
|                                                     | HRs (95%CI)       |                   |                   |            |                  |                  |  |
| All-cause mortality                                 |                   |                   |                   |            |                  |                  |  |
| Age, years (p-interaction=0.03)                     |                   |                   |                   |            |                  |                  |  |
| ≥80                                                 | 0.96 (0.87,1.05)  | 0.92 (0.52,1.61)  | 1.28 (0.76,2.15)  | 1.00 (Ref) | 0.81 (0.49,1.33) | 0.73 (0.45,1.18) |  |
| <80                                                 | 1.00 (0.92, 1.07) | 0.93 (0.59,1.48)  | 0.74 (0.46,1.21)  | 1.00 (Ref) | 1.12 (0.74,1.69) | 0.97 (0.64,1.45) |  |
| Sex (p-interaction=0.88)                            | ,                 | , , , , , ,       |                   | , ,        |                  | ·                |  |
| Male                                                | 1.00 (0.93, 1.08) | 1.11 (0.69,1.77)  | 0.82 (0.50,1.35)  | 1.00 (Ref) | 1.03 (0.67,1.58) | 1.02 (0.67,1.54) |  |
| Female                                              | 0.97 (0.89,1.06)  | 0.76 (0.44,1.33)  | 1.13 (0.68, 1.87) | 1.00 (Ref) | 0.96 (0.61,1.53) | 0.79 (0.50,1.24) |  |
| Use of antihypertensive drug (p- 🧖                  | /X:               |                   |                   | , ,        |                  |                  |  |
| interaction=0.32)                                   |                   |                   |                   |            |                  |                  |  |
| Yes                                                 | 0.95 (0.89, 1.02) | 0.87 (0.55,1.37)  | 0.97 (0.64,1.48)  | 1.00 (Ref) | 0.96 (0.67,1.39) | 0.77 (0.54,1.12) |  |
| No                                                  | 1.11 (1.09,1.12)  | 1.09 (0.60,2.00)  | 0.71 (0.36,1.39)  | 1.00 (Ref) | 0.93 (0.50,1.74) | 1.07 (0.60,1.91  |  |
| <b>BMI</b> , kg/m <sup>2</sup> (p-interaction=0.10) |                   |                   | , ,               | ` ,        | , ,              |                  |  |
| ≥25                                                 | 0.96 (0.88,1.05)  | 0.71 (0.40,1.28)  | 0.76 (0.43,1.35)  | 1.00 (Ref) | 0.86 (0.54,1.38) | 0.61 (0.39,0.98  |  |
| <25                                                 | 0.98 (0.91,1.06)  | 1.13 (0.72,1.79)  | 1.02 (0.65,1.60)  | 1.00 (Ref) | 1.03 (0.67,1.58) | 1.03 (0.68,1.56  |  |
| Cardiovascular mortality                            |                   |                   |                   |            |                  |                  |  |
| Age, years (p-interaction=0.26)                     |                   |                   |                   |            |                  |                  |  |
| ≥80                                                 | 1.00 (0.86, 1.15) | 0.71 (0.29,1.73)  | 1.03 (0.45,2.32)  | 1.00 (Ref) | 0.82 (0.39,1.74) | 0.73 (0.35,1.52) |  |
| <80                                                 | 0.93 (0.82,1.07)  | 1.12 (0.49, 2.60) | 0.56 (0.21,1.50)  | 1.00 (Ref) | 1.31 (0.63,2.71) | 0.74 (0.34,1.59  |  |
| Sex (p-interaction=0.50)                            | , , ,             | , , ,             |                   | ` ,        | , , ,            |                  |  |
| Male                                                | 1.01 (0.88, 1.16) | 1.65 (0.69, 3.98) | 0.77 (0.27,2.20)  | 1.00 (Ref) | 1.40 (0.62,3.18) | 1.12 (0.50,2.55) |  |
| Female                                              | 0.96 (0.84,1.11)  | 0.48 (0.20,1.19)  | 0.83 (0.38,1.79)  | 1.00 (Ref) | 0.79 (0.40,1.56) | 0.58 (0.29,1.15  |  |
| Use of antihypertensive drug (p-interaction=0.85)   | , ,               | , ,               |                   |            | , ,              | , .              |  |
| Yes                                                 | 0.97 (0.87,1.08)  | 1.05 (0.51,2.17)  | 0.87 (0.43,1.77)  | 1.00 (Ref) | 1.04 (0.57,1.89) | 0.91 (0.50,1.64  |  |
| No                                                  | 0.99 (0.80,1.22)  | 0.83 (0.27,2.55)  | 0.54 (0.15,1.96)  | 1.00 (Ref) | 1.08 (0.39,3.01) | 0.35 (0.10,1.26  |  |
| BMI, kg/m² (p-interaction=0.20)                     | 0.55 (0.00,1.22)  | 0.00 (0.27,2.00)  | 0.0 ( (0.10,1.50) | 1.00 (101) | 1.00 (0.55,5.01) | 0.55 (0.10,1.20  |  |
| ≥25                                                 | 0.96 (0.82,1.12)  | 0.41 (0.11,1.52)  | 1.02 (0.40,2.59)  | 1.00 (Ref) | 0.86 (0.37,1.97) | 0.56 (0.25,1.27  |  |
|                                                     | 1.00 (0.88,1.14)  | 1.23 (0.59,2.54)  | 0.65 (0.29,1.47)  | 1.00 (Ref) | 1.22 (0.62,2.38) | 0.89 (0.44,1.78  |  |

When analyzing a subgroup variable, age, sex, body mass index, systolic blood pressure, diastolic blood pressure, smoking, alcohol intake, cholesterol, high-density lipoprotein, triglycerides, fasting blood glucose, comorbidities (stroke, diabetes, and coronary artery disease), and medication use (antihypertensive drugs: β-receptor blockers, calcium channel blockers, angiotensin converting enzyme inhibitors) were all adjusted except the variable itself.

Abbreviations: BMI, body mass index; HRs, hazard ratios; CI, confidence interval; Q, quintile.



Flow chart for participant selection 53x30mm (144 x 144 DPI)



Association of serum uric acid with all-cause (left) and cardiovascular (right) mortality using restricted cubic spline regression models

203x84mm (300 x 300 DPI)