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Abstract: This paper formulates the image super resolution problem as various denoising problems. In 
particular, the discrete cosine transform zero padding approach is used to generate an initial high resolution 
image. Then, three different time frequency analysis based denoising methods are applied iteratively to 
improve the quality of the super resolution image. In particular, the two dimensional quaternion valued 
singular spectrum analysis (2DQSSA) based denoising method, the empirical mode decomposition (EMD) 
based denoising method and the discrete cosine transform based denoised method are applied. For the 
2DQSSA based denoising method, the luminance plane is used as the real part of the quaternion valued 
image. Since different color planes in the quaternion valued image are fused together via the quaternion 
valued operation, some high frequency information missing in one color plane can be generated using those 
in other color planes. On the other hand, for the EMD based denoising method, the selection of the intrinsic 
mode functions (IMFs) is formulated as a binary linear programming problem. Here, the high frequency 
components generated by the aliasing are removed by discarding some IMFs. The computer numerical 
simulation results show that our proposed method can achieve the super resolution performance better than 
those without performing any one of the above three time frequency analysis based denoising. 

Keywords: Super resolution image, two dimensional quaternion valued singular spectrum analysis, 
empirical mode decomposition, discrete cosine transform, binary linear programming. 

1. Introduction
For some applications such as the consumer

electronic applications, the overall costs of the 
products are limited by the affordability of the 
consumers. Hence, the qualities of the image 
acquisition devices are low. Only the low 
resolution images can be obtained [2]. In this 
case, it is required to perform the image super 
resolution. That is, to construct the high 
resolution images from the low resolution 
images [1]. However, since the low resolution 
images are suffered from the aliasing, the 
information in the images is lost. Hence, 
performing the image super resolution is very 
challenging [3]. 

Traditional image super resolution mainly 
employs the interpolation based methods such as 
the nearest neighbor interpolation based methods, 

the bilinear interpolation based methods and the 
bicubic interpolation based methods [4] to 
generate the super resolution images. Although 
these methods are widely used in many science 
and engineering applications due to their low 
computational complexity, the blurred edges and 
the unclear textures are usually found in the 
obtained high resolution images due to the lack 
of high frequency details. 

The sparse coding [5], [6] is one of the 
representative image super resolution methods. 
The overlapping patches are first obtained by 
cropping from the original image. Then, the 
cropped images are normalized. Next, the 
normalized patches are then encoded using a low 
resolution dictionary. The high resolution 
patches are then constructed using the high 
resolution dictionary based on the corresponding 
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sparse coefficients. In particular, the sparse 
coefficients are obtained via finding the solution 
of an optimization problem based on the given 
dictionary. Then, the efficient mapping functions 
are constructed [5]-[7]. 

The convolutional neural network based 
super resolution (SRCNN) is a deep learning 
based single image super resolution. The neural 
network mainly consists of three convolutional 
layers, a nonlinear layer mapping the high 
dimensional vectors to the new high dimensional 
vectors. Finally, a high resolution image is 
reconstructed [8]. Although the deep learning 
methods have also been recently proposed [9], 
the required computational power is very high. 
Also, the overfitting usually occurs. Hence, this 
approach is not robust. 

To address the above problem, first the 
discrete cosine transform zero padding approach 
is used to generate an initial high resolution 
image. Now, the size of the image is increased. 
However, as the high frequency components are 
set to zero, the image quality is poor. To enhance 
the image quality, it becomes a denoising 
problem. This paper proposes three different 
time frequency analysis based denoising 
methods for performing the color image super 
resolution. In particular, the 2DQSSA [11], [12] 
based denoising method, the EMD [13] based 
denoising method and the discrete cosine 
transform [14] based denoising method are 
applied iteratively to obtain the final high quality 
super resolution images. 

For the conventional quaternion valued 
image processing, the RGB color planes are 
usually taken as the imaginary parts of the 
quaternion valued image and the zero matrix is 
usually taken as the real part of the quaternion 
valued image. In fact, they are other color spaces 
such as the HIS color space, the HSV color space 
and the CMY color space. Since the HSV color 
space is mainly used for performing the image 
segmentation via separating the chromaticity and 
the intensity information from the image for 
enhancing the image contrast [10], this paper 
takes the luminance plane as the real part of the 
quaternion valued image. 

This paper aims to generate the super 
resolution images with the high quality via 
formulating the super resolution problem as the 
denoising problem. The outline of this paper is as 
follows. Section 2 presents our proposed method. 
Section 3 shows the computer numerical 
simulation results. Finally, a conclusion is drawn 
Section 4. 
 

2.  Our proposed method 
The flowchart of our proposed method is 

shown in Figure 1. The details of these 
procedures are discussed in the following 
sub-sessions: 

 
Figure 1. The flowchart of our proposed method. 
2.1.  Quaternion valued image 

Let 𝐻  be the set of quaternion valued 
number. Let q ∈ 𝐻  be a quaternion valued 
number. It has one real part and three imaginary 
parts. Let 𝑞! be its real component as well as 
	𝑞", 𝑞# and 𝑞$ be its i imaginary component, 
its j imaginary component and its k imaginary 
component, respectively. That is, 

𝑞 = 𝑞! + 𝑞"𝑖 + 𝑞#𝑗 + 𝑞$𝑘. (1) 
Here, i, j and k obey the following rules of 
algebra: 

𝑖" = 𝑗" = 𝑘" = 𝑖𝑗𝑘 = −1, 
𝑖𝑗 = −𝑗𝑖 = 𝑘, 
𝑗𝑘 = −𝑘𝑗 = 𝑖 

and 
𝑘𝑖 = −𝑖𝑘 = 𝑗. (2) 

A color image consists of three color planes. 
For the representation using the RGB space, they 
are the red color plane, the green color plane and 
the blue color plane. The luminance plane of the 
color image is a weighted sum of these three 
color planes. Let (𝑥, 𝑦) be the location index of 
a pixel. Here, the pixel is located at the 𝑥th row 
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and the 𝑦 th column of the image. Let 
𝑙(𝑥, 𝑦) , 	𝑟(𝑥, 𝑦) , 	𝑔(𝑥, 𝑦)  and 𝑏(𝑥, 𝑦)  be the 
luminance pixel value, the red color pixel value, 
the green color pixel value and the blue color 
pixel value at the location (𝑥, 𝑦). In this paper, 
let 𝐼 be a low resolution image. Let 𝐿!	 × 𝐿" be 
the total number of pixels in 𝐼 . That is, 𝐼 ∈
𝑅&!×&"×#. Let Y be the initial high resolution 
image obtained by performing the discrete cosine 
transform zero padding approach. In particular, 
the discrete cosine transform is applied to each 
column of each color plane of the low resolution 
image. Then, the zeros are padded in the discrete 
cosine transform domain and the inverse discrete 
cosine transform is applied to obtain the initial 
high resolution image. Let S be the ratio of the 
total number of columns in the high resolution 
image to that of the low resolution image. 
Obviously, the total number of pixels in 𝑌 is 
𝑆𝐿! × 𝐿". That is, 𝑌 ∈ 𝑅(&!×&"×#. 

Now, a quaternion valued image is formed 
such that its real part is the luminance plane, as 
well as these imaginary parts are the red color 
plane, the green color plane and the blue color 
plane. Let 𝑞(𝑥, 𝑦)  be the quaternion valued 
pixel at the location (𝑥, 𝑦). That is, 

𝑞(𝑥, 𝑦) = 𝑙(𝑥, 𝑦) + 𝑟(𝑥, 𝑦)𝑖 + 𝑔(𝑥, 𝑦)𝑗 + 𝑏(𝑥, 𝑦)𝑘. (3) 
Let 𝐻(&!×&"  be the set of the 𝑆𝐿! ×
𝐿"	quaternion valued matrices. Let 𝑍 ∈ 𝐻(&!×&" 
be this quaternion valued image. That is, 

Z = #

q(0,0)
q(1,0)
…

q(SL! − 1,0)

q(0,1)
q(1,1)
…

q(SL! − 1,1)

⋯
⋯
⋯
⋯

q(0, L" − 1)
q(1, L" − 1)

…
q(LS! − 1, L" − 1)

/.(4) 

2.2.  2DQSSA based denoising 
2.2.1.  Decomposition phase of the 2DQSSA 

Z is decomposed by the 2DQSSA. The first 
step is to perform the embedding. That is to 
generate the augmented quaternion valued 
trajectory matrix. Let 𝑢 × 𝑣 be the size of the 
window. Here, 1 ≤ 𝑢 ≤ 𝑆𝐿!  and 1 ≤ 𝑣 ≤ 𝐿" . 
Let 

𝑊!,# = %
𝑞(𝑠, 𝑡) 𝑞(𝑠, 𝑡 + 1) … 𝑞(𝑠, 𝑡 + 𝑣 − 1)

𝑞(𝑠 + 1, 𝑡) 𝑞(𝑠 + 1, 𝑡 + 1) … 𝑞(𝑠 + 1, 𝑡 + 𝑣 − 1)
…

𝑞(𝑠 + 𝑢 − 1, 𝑡) 𝑞(𝑠 + 𝑢 − 1, 𝑡 + 1)
…
…

…
𝑞(𝑠 + 𝑢 − 1, 𝑡 + 𝑣 − 1)

2(5) 

be the windowed quaternion valued image. Here, 
𝑊),+ ∈ 𝐻,×- . Then, the elements of 𝑊),+  are 
rearranged into a column vector. Let 𝑊AAA⃗ ),+ are be 
this column vector. That is: 
𝑊"""⃗!,# = [𝑞(𝑠, 𝑡) … 𝑞(𝑠 + 𝑢 − 1, 𝑡) … 𝑞(𝑠, 𝑡 + 𝑣 − 1) … 𝑞(𝑠 + 𝑢 − 1, 𝑡 + 𝑣 − 1)]$. (6) 
Here, 𝑊AAA⃗ ),+ ∈ 𝐻,-×!. Next, the window is moved 
from left to right and from top to bottom. Finally, 
the quaternion valued trajectory matrix is 
constructed as follows: 
𝑊 = 1𝑊222⃗ !,! … 𝑊222⃗ !,#3$% … 𝑊222⃗&#4$',! … 𝑊222⃗&#4$',#3$%5.(7) 
Here, 	𝑊 ∈ 𝐻,-×((&!/,0!)(&"/-0!) . Let 𝑊23 , 
𝑊43, 𝑊53 and 𝑊63 be the involutions of 𝑊 

about the real axis, the 𝑖 imaginary axis, the 𝑗 
imaginary axis and the 𝑘  imaginary axis, 
respectively. Let 

	𝑊7 =	 [𝑊23 𝑊43 𝑊53 𝑊63]3 (8) 
be augmented quaternion valued trajectory 
matrix of 𝑊 . Here, 	𝑊7 ∈
𝐻$,-×((&!/,0!)(&"/-0!). 

The second step is to perform the 
quaternion valued singular value decomposition 
to generate the 2DQSSA components. Let 𝐶7 
be the covariance matrix of 𝑊7. That is, 𝐶7 =
𝐸(𝑊7𝑊78) . Then, the quaternion valued 
singular value decomposition is performed on 
𝑊7. Let 𝜆9 be the ith singular value. Let 𝑢9 and 
𝑣9 be the ith left singular vector and the ith right 
singular vector, respectively. Let H𝜆9𝑢9𝑣98  be 
the ith 2DQSSA component of Z. Let r be the 
total number of the positive singular values. That 
is, 𝑟 = 𝑚𝑎𝑥{𝑖: 𝜆9 > 0}. Let {1,2, … , 𝑟} be the 
index set of H𝜆9𝑢9𝑣98. 
2.2.2.  Reconstruction phase of the 2DQSSA 

In this stage, first H𝜆9𝑢9𝑣98 are categorized 
into a finite number of groups. Let M be the total 
number of groups and 𝐼: for 𝑚 = 1,… ,𝑀 be 
the index set of these groups. Now, putting 
H𝜆9𝑢9𝑣98 into one of these groups is equivalent 
to perform the partition on {1,2, … , 𝑟}. Let 

𝑊S:7 = ∑ H𝜆9𝑢9𝑣989∈<3 .  (9) 
It can be seen that 

𝑊7 = ∑ 𝑊S:7=
:>! .  (10) 

Second, the de-Hankelization is performed to 
obtain the grouped 2DQSSA components. In 
particular, let 𝑊: be the matrix containing the 
first uv rows of 𝑊S:7 . 𝑊:  is divided into 
𝑣 × (𝐿" − 𝑣 + 1) blocks with the size of each 
block being 𝑢 × (𝑆𝐿! − 𝑢 + 1). Let 𝑊S:,),+7  be 
these blocks. That is: 

𝑊: =

⎣
⎢
⎢
⎡𝑊
S:,!,!7 𝑊S:,!,"7 … 𝑊S:,!,&"/-0!

7

𝑊S:,",!7 𝑊S:,","7 … 𝑊S:,",&"/-0!
7

…
𝑊S:,-,!7 𝑊S:,,-,"7 …

…
…

𝑊S:,-,&"/-0!
7 ⎦

⎥
⎥
⎤
. (11) 

Let 𝑊[:,),+7  be the block obtained by performing 
the averaging among the off diagonal elements 
within 𝑊S:,),+7 . That is, all the elements in the 
same off diagonal of 𝑊[:,),+7  are the same. Let 

𝑊[: =

⎣
⎢
⎢
⎡𝑊
[:,!,!7 𝑊[:,!,"7 … 𝑊[:,!,&"/-0!

7

𝑊[:,",!7 𝑊[:,","7 … 𝑊[:,",&"/-0!
7

…
𝑊[:,-,!7 𝑊[:,,-,"7 …

…
…

𝑊[:,-,&"/-0!
7 ⎦

⎥
⎥
⎤
. (12) 

Let 𝑊\:,?7  be the blocks obtained by performing 
the averaging among the off diagonal blocks in 
𝑊[:. Let 
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𝑍]: =

⎣
⎢
⎢
⎡𝑊
\:,!7 𝑊\:,"7 … 𝑊\:,&"/-0!

7

𝑊\:,"7 𝑊\:,#7 … 𝑊\:,",&"/-0"
7

…
𝑊\:,-7 𝑊\:,-0!7 …

…
…

𝑊\:,&"
7 ⎦

⎥
⎥
⎤
.  (13) 

Here, all the blocks in the same off diagonal 
blocks in 𝑍]:  are the same. Finally, the 
de-Hankelization is performed on 𝑍]:. Let 𝑍_: 
be the obtained de-Hankelized matrix. Here, the 
𝑛+@  column of 𝑍_:  is obtained by performing 
the de-Hankelization on 𝑊\:,?7 . Obviously, the 
dimension of 𝑍_: is the same as that of 𝑍. Let 
𝑍_:,4 , 𝑍_:,9 , 𝑍_:,A  and 𝑍_:,B  be the real 
component, the i imaginary component, the j 
imaginary component and the k imaginary 
component of 𝑍_:, respectively. That is, 

𝑍_: = 𝑍_:,4 + 𝑖𝑍_:,9 + 𝑗𝑍_:,A + 𝑘𝑍_:,B.  (14) 
Since different color planes in the quaternion 
valued image are fused together via the 
quaternion valued operation, some high 
frequency information missing in one color plane 
can be generated using those in other color 
planes. 

The last step is to generate the denoised 
image. Let 𝑍_  be the reconstructed quaternion 
valued image. Likewise, let 𝑍_4, 𝑍_9, 𝑍_A and 𝑍_B 
be the real component, the i imaginary 
component, the j imaginary component and the k 
imaginary component of 𝑍_, respectively. That is, 

𝑍_ = 𝑍_4 + 𝑖𝑍_,9 + 𝑗𝑍_A + 𝑘𝑍_B.  (15) 
Here, 𝑍_4  is the luminance plane while 𝑍_9 , 𝑍_A 
and 𝑍_B are the red color plane, the green color 
plane and the blue color plane of the 
reconstructed image, respectively. In this paper, 
𝑍_4 is ignored because the further processing is 
no longer based on the quaternion valued image. 
As the further processing only based on the color 
image, 𝑍_9, 𝑍_A and 𝑍_B are selected as follows: 

𝑍_9 = 𝑍_!,9 + 𝑍_",9 + 𝑍_$,9 + 𝑍_C,9, 
𝑍"! = 𝑍"",! + 𝑍"$,! + 𝑍"%,! + 𝑍"&,! + 𝑍""',! + 𝑍""(,! + 𝑍""),! 

and 
𝑍_B = 𝑍_!,B + 𝑍_",B + 𝑍_#,B + 𝑍_D,B + 𝑍_E,B + 𝑍_C,B. (16) 
Here, the selections of the grouped 2DQSSA 
components are based on the expert knowledge. 
Since the high frequency components generated 
by the aliasing are removed by discarding some 
grouped 2DQSSA components, the 2DQSSA 
based denoising can enhance the image quality 
and yield a good super resolution performance. 
2.3.  EMD based denoising 
2.3.1. EMD 

For each color plane except the luminance 
plane of the reconstructed image, let 𝑢(𝑥, 𝑦) be 
the pixel value at the location (𝑥, 𝑦) of this 

color plane. The EMD represents 𝑢(𝑥, 𝑦) as the 
sum of a finite number of components called the 
IMFs and the residual. The details procedures for 
performing the EMD are as follows: 
Step 0: Initialize 𝑘 = 0 as the iteration index, 

𝑙 = 0 as the IMF index and 𝜀 > 0 as a 
parameter for terminating the algorithm. 
Initialize 

             ℎB(𝑥, 𝑦) = 𝑢(𝑥, 𝑦).  (17) 
Step 1: Find out all edges corresponding to the 

local minima and the local maxima of 
ℎB(𝑥, 𝑦). 

Step 2: Let eFGH(x, y) and eFIJ(x, y) be the 
planes corresponding to the upper 
envelope and the lower envelope 
interpolated based on the edges 
corresponding to the local maxima and 
the local minima of  ℎB(𝑥, 𝑦) , 
respectively. 

Step 3: Let eGKLMGNL(x, y) be the mean of the 
planes corresponding to the upper 
envelope and the lower envelope. That 
is: 
𝑒7-O475O(𝑥, 𝑦) =

O345(P,Q)0	O367(P,Q)
"

.(18) 
Step 4: Subtract ℎB(𝑥, 𝑦) from eGKLMGNL(𝑥, 𝑦) . 

Let ℎB0!(𝑥, 𝑦) be the obtained signal. 
That is, 

      ℎ*+"(𝑥, 𝑦) = ℎ*(𝑥, 𝑦) − e,-./,0.(𝑥, 𝑦). (19) 
Step 5: In order to determine whether 

ℎB0!(𝑥, 𝑦)  is an IMF or not, the 
following criterion is defined: 
∑ ∑ |@89!(P,Q)/@8(P,Q)|"

:"
;<!

=:!
7<!

∑ ∑ |@8(P,Q)|"
:"
;<!

=:!
7<!

£𝜀. (20) 

If the above criterion is satisfied, then 
ℎB0!(𝑥, 𝑦) is used to approximate the 
𝑙+@ IMF. Define 

𝐼𝑀𝐹2(𝑥, 𝑦) = ℎB0!(𝑥, 𝑦). (21) 
Otherwise, increment the value of 𝑘   
and go back to Step 1. 

Step 6: Compute the residual signal as follow: 
𝑟𝑒𝑠(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) − ∑ 𝐼𝑀𝐹1(𝑥, 𝑦)2

13' . 
(22) 
Reset 𝑘 = 0, increment the value of 𝑙 
and set ℎB(𝑥, 𝑦) = 𝑟𝑒𝑠(𝑥, 𝑦). Go back 
to Step 1 until there is no edge in the 
residual for interpolating the envelope. 

Let 𝐾 − 1 be the total number of the obtained 
IMFs. Then, we have 

𝑢(𝑥, 𝑦) = ∑ 𝐼𝑀𝐹9(𝑥, 𝑦)T/!
9>! + 𝑟𝑒𝑠(𝑥, 𝑦)	.(23) 

Denote 𝐼𝑀𝐹T(𝑥, 𝑦) = 𝑟𝑒𝑠(𝑥, 𝑦) . Hence, there 
are in total 𝐾 components. 
2.3.2.  Selection of the IMFs via a binary linear 

programming approach 
It is worth noting that the low resolution 
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images are obtained based on the devices with 
the low sampling rates. Hence, they are suffered 
from the aliasing. To address this issue, some 
high frequency components should be discarded 
in order to minimize the aliasing effect. On the 
other hand, as the whole frequency band of 
𝑢(𝑥, 𝑦)  are covered by different IMFs and 
different IMFs have different time frequency 
characteristics, the aliasing effect can be 
suppressed by an appropriate choice of the IMFs. 

It is worth noting that the sizes of the IMFs 
are 𝑆𝐿! × 𝐿" . However, the sizes of the 
corresponding color planes of the original low 
resolution image are 𝐿! × 𝐿" . Hence, it is 
difficult to define the objective function in the 
pixel domain to select the IMFs. To address this 
difficulty, this paper proposes an IMF selection 
method in the frequency domain so that the 
comparison between the color planes of the low 
resolution image and the IMFs of the color 
planes of the 2DQSSA processed image can be 
performed. 

Now, each IMF of each color plane of the 
2DQSSA processed image and each color plane 
of the low resolution image are divided into 
blocks. Here, the block sizes of the IMFs are 
different from those of the corresponding color 
planes of the low resolution image. However, the 
total number of the blocks in each IMF is the 
same as that in the corresponding color plane of 
the low resolution image. Let 𝐺:!,?!  be the 
(𝑚!, 𝑛!)th block of a particular color plane of the 
low resolution image. Likewise, let 𝐵:!,?!,2 be 
the corresponding block in the 𝑙th  IMF of the 
corresponding color plane of the 2DQSSA 
processed image. Let 𝑏:!,?!,2 be the coefficient 
representing whether 𝐵:!,?!,2 is selected or not. 
Here, “1” represents that 𝐵:!,?!,2  has been 
selected. On the other hand, “0” represents that 
𝐵:!,?!,2 has been discarded. Let 

	𝑏:!,?! = l𝑏:!,?!,! 			…			𝑏:!,?!,Tm
3
. (24) 

Let 	𝐽o𝑏:!,?!p  be the objective function for 
selecting the IMFs. Let ξ = [1,… ,1]3  be a 𝐾 
dimensional column vector. Since the low 
resolution image should be visually 
indistinguishable with the high resolution image, 
most of 𝐵:!,?!,2		should be selected. Hence, our 
objective is to retain as much as these blocks of 
the IMFs as possible. Therefore, we define 

𝐽o𝑏:!,?!p = r𝜉 − 𝑏:!,?!r!.  (25) 
Let 𝐵t:!,?!,2(𝜔!, 𝜔")  be the two dimensional 
discrete time Fourier transform of 𝐵:!,?!,2 . 
Likewise, let 𝐺t:!,?!(𝜔!, 𝜔")  be the two 

dimensional discrete time Fourier transform of 
𝐺:!,?!. That is, 
𝐵7(4,)4,*(𝜔+, 𝜔,) = ∑ ∑ 𝐵(4,)4,*(𝑝, 𝑞)𝑒

$-(/401/32)20  (26) 
and 
𝐺7(4,)4(𝜔+, 𝜔,) = 		∑ ∑ 𝐺(4,)4(𝑝, 𝑞)𝑒

$-(/401/32)20 .  (27) 
Define 
𝐵V#$,$$,&(𝜔!, 𝜔") = Y𝐵Z#$,$$,!(𝜔!, 𝜔")		…			𝐵Z#$,$$,'(𝜔!, 𝜔")\

(. (28) 
Then, 𝐵]:!,?!(𝜔!, 𝜔")

3𝑏:!,?!  is the two 
dimensional discrete time Fourier transform of 
the block in the corresponding color plane of the 
image after performing the IMF selection. Here, 
v𝐵]:!,?!(𝜔!, 𝜔")

3𝑏:!,?! − 𝐺t:!,?!(𝜔!, 𝜔")v  is 
the modulus error between the block in the 
corresponding color plane of the image after 
performing the IMF selection and that in the 
original low resolution image. In order to enforce 
the image after performing the IMF selection 
closed to the original low resolution image, this 
modulus error should be bounded for all the 
frequencies. Define 𝛿  be the specification on 
the upper bound of both the real part and the 
imaginary part of the absolute value of 
𝐵]:!,?!(𝜔!, 𝜔")

3𝑏:!,?! − 𝐺t:!,?!(𝜔!, 𝜔") . That 
is: 
>𝑟𝑒𝑎𝑙(𝐵@(4,)4(𝜔+, 𝜔,)

4𝑏(4,)4 − 𝐺7(4,)4(𝜔+, 𝜔,))> ≤ 𝛿. (29) 
and 
>𝑖𝑚𝑎𝑔(𝐵@(4,)4(𝜔+, 𝜔,)

4𝑏(4,)4 − 𝐺7(4,)4(𝜔+, 𝜔,))> ≤ 𝛿.(30) 
That is equivalent to 

⎣
⎢
⎢
⎢
⎡ real(B

=5!,6!(ω7, ω8)9)
−real(B=5!,6!(ω7, ω8)9)
imag(B=5!,6!(ω7, ω8)9)
−imag(B=5!,6!(ω7, ω8)9)⎦

⎥
⎥
⎥
⎤

b5!,6! ≤

⎣
⎢
⎢
⎢
⎢
⎡ real(G

J5!,6!(ω7, ω8))
−real(GJ5!,6!(ω7, ω8))
imag(GJ5!,6!(ω7, ω8))
−imag(GJ5!,6!(ω7, ω8))⎦

⎥
⎥
⎥
⎥
⎤

+	δ M
1
1
1
1

O.(31) 

Let 

𝐴(𝜔!, 𝜔") =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑟𝑒𝑎𝑙(𝐵

]:!,?!(𝜔!, 𝜔")
3)

−𝑟𝑒𝑎𝑙(𝐵]:!,?!(𝜔!, 𝜔")
3)

𝑖𝑚𝑎𝑔(𝐵]:!,?!(𝜔!, 𝜔")
3)

−𝑖𝑚𝑎𝑔(𝐵]:!,?!(𝜔!, 𝜔")
3)⎦
⎥
⎥
⎥
⎥
⎤

 

and 

𝑝(𝜔+, 𝜔,) =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑟𝑒𝑎𝑙(𝐺

7(4,)4(𝜔+, 𝜔,))
−𝑟𝑒𝑎𝑙(𝐺7(4,)4(𝜔+, 𝜔,))
𝑖𝑚𝑎𝑔(𝐺7(4,)4(𝜔+, 𝜔,))
−𝑖𝑚𝑎𝑔(𝐺7(4,)4(𝜔+, 𝜔,))⎦

⎥
⎥
⎥
⎥
⎤

+	𝛿 K
1
1
1
1

M.(32) 

Then, the IMF selection problem can be 
formulated as the following optimization 
problem: 
Problem (𝑃:!,?!) 
𝑚𝑖𝑛
𝑏:!,?!

      𝐽o𝑏:!,?!p = rξ − 𝑏:!,?!r!, 

subject to A(ω+, ω,)b54,64 ≤ p(ω+, ω,).     (33) 
It is worth noting that the frequency domain is a 
continuous set. Therefore, Problem (𝑃:!,?!) is an 
infinite constrained optimization problem. To 
address this problem, the frequency domain is 
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sampled into a set of sampling points. Now, the 
IMF selection problem becomes a standard linear 
binary programming problem. There are many 
existing efficient methods for finding the 
solution of the linear binary programming 
problem. After finding the solution of Problem 
(𝑃:!,?!) for all the blocks in all the color planes, 
the super resolution image is constructed. 
2.4.  Discrete cosine transform based denoising 

This paper also employs the discrete cosine 
transform based denoising method to further 
improve the super resolution performance. First, 
the error between the initial high resolution 
image obtained by performing the discrete cosine 
transform zero padding approach and the EMD 
processed image is computed. Next, this error 
image is downsampled to obtain the 
corresponding low resolution error image. After 
that, the bi-cubic interpolation method is applied 
to obtain a new high resolution error image. Now, 
a new image is reconstructed by summing up the 
EMD processed image and the new high 
resolution error image. Finally, the 2DQSSA 
based denoising method, the EMD based 
denoising method and the discrete cosine 
transform based denoising method are repeated 
until the algorithm is converged. 
 
3.  Computer numerical simulation results 
3.1. Dataset 

This paper takes the images from the 
ImageNet image library (ILSVRC2013) for 
demonstrating the effectiveness of our proposed 
method. This library consists of 395,909 color 
images with the bitmap format. The camera 
quality in terms of the sizes of the images is to 
𝐿! × 𝐿" = 60 × 40  [15], [6]. However, only 
those representative low resolution images with 
different types of contents are demonstrated in 
this paper because of the page limit. In particular, 
they are the images of a bird, a baby, a human 
face, a bunch of flowers, a pepper, a monkey and 
a woman. Figure 2 shows these images. 

 

(a)       (b)        (c)     (d) 

 

 (e) (f) (g) 
Figure 2. The low resolution images. (a) A bird. 

(b) A baby. (c) A human face. (d) A bunch of 
flowers. (e) A pepper (f) A monkey. (g) A 

woman. 
3.2. Parameter selections 

The objective of the image super resolution 
is to double the total number of the rows of the 
low resolution image. Hence, 𝑆 = 2 . In the 
2DQSSA based denoising, a large window size 
requires a very heavy computation. On the other 
hand, a small window size does not exploit the 
correlation among the pixels in the same color 
plane. To tradeoff between these two factors, this 
paper sets the window size at 4´4. That is, 𝑢 =
4 and 𝑣 = 4. Besides, as the window size is 
4´4, the maximum value of 𝑟 is 32. This is not 
a very large number. In order to simplify the 
grouping procedures in the 2DQSSA based 
denoising, the total number of the SSA groups is 
set to the value of 𝑟. That is, 𝑀 = 𝑟. In this case, 
no grouping is required. In the EMD based 
denoising, 𝜀 is set at 0.001. This is because this 
is the typical value used in the EMD. In the 
binary linear programing, the total number of the 
sampling points in the frequency domain is set at 
225. Since the sampling step size is "]

""D
, it is 

small enough for the majority natural images. 
This is because the majority natural images are 
narrow band signals. On the other hand, it is 
worth noting that a very small value of 𝛿 will 
result to the feasible set of Problem (𝑃:!,?!) to be 
empty. Whereas, a very large value of 𝛿 will 
result to all the decision vectors being in the 
feasible set of Problem (𝑃:!,?!). In this case, the 
constraint functions are not meaningful and the 
optimization problem becomes the 
corresponding unconstrained optimization 
problem. To tradeoff between these two factors, 
this paper sets 𝛿 at 70. 
3.3. Results 

Figure 3 show the high resolution images 
obtained via our proposed method. It can be seen 
that the images have not been blurred even 
though the total number of the rows is doubled. 
Besides, Table 1 show the peak signal to noise 
ratio (PSNR) between the original high 
resolution images before performing the 
downsampling and the high resolution images 
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obtained by our proposed method. It can be seen 
that our proposed method can achieve the PSNR 
between 25.2800dB and 30.9981dB, which is 
high enough for the majority science and 
engineering applications. 

     
(a)        (b)        (c)      (d) 

   
 (e) (f)      (g) 

Figure 3. The high resolution images obtained 
via our proposed method. (a) A bird. (b) A baby. 
(c) A human face. (d) A bunch of flowers. (e) A 

pepper (f) A monkey. (g) A woman. 
In order to demonstrate the effectiveness of 

our proposed method, our proposed method 
without performing the discrete cosine transform 
based denoising, the EMD based denoising and 
the 2DQSSA based denoising are compared. The 
processed images are shown in Figure 4, Figure 
5 and Figure 6, respectively. It can be seen that 
our proposed method outperforms the 
comparison methods in terms of the quality of 
the processed images. Besides, Table 2 shows the 
PSNRs between the original high resolution 
images before performing the downsampling and 
the high resolution images obtained by our 
proposed method without performing various 
time frequency analysis based denoising. It can 
be seen easily from Table 1 and Table 2 that the 
differences of the PSNRs yielded by our 
proposed method with performing all these three 
time frequency analysis based denoising and that 
without performing the discrete cosine transform 
based denoising are between 5.0186dB and 
9.6046dB, that without performing the 2DQSSA 
based denoising are between 5.2869dB and 
13.4406dB, as well as that without performing 
the EMD based denoising are between 2.1828dB 
and 9.1725dB. As the improvements are very 

significant, this demonstrates the effectiveness of 
our proposed method. 

In order to compare the effects of different 
color spaces on our proposed method, the 
quaternion valued images are generated using the 
following methods. First, the real part of the 
quaternion valued image is set to the luminance 
plane and these three imaginary parts of the 
quaternion valued image are set to the red color 
plane, the green color plane and the blue color 
plane of the RGB color space. This quaternion 
valued image is denoted LRGB. Second, the real 
part of the quaternion valued image is set to the 
zero matrix and these three imaginary parts of 
the quaternion valued image are set to the red 
color plane, the green color plane and the blue 
color plane of the RGB color space. This 
quaternion valued image is denoted 0RGB. Third, 
the real part of the quaternion valued image is set 
to the V plane of the HSV color space and these 
three imaginary parts of the quaternion valued 
image are set to the red color plane, the green 
color plane and the blue color plane of the RGB 
color space. This quaternion valued image is 
denoted VRGB. Fourth, the real part of the 
quaternion valued image is set to the luminance 
plane and these three imaginary parts of the 
quaternion valued image are set to the cyan color 
plane, the magenta color plane and the yellow 
color plane of the CMY color space. This 
quaternion valued image is denoted LCMY. 
Table 3 shows the PSNRs between the original 
high resolution images before performing the 
downsampling and the high resolution images 
obtained by our proposed method using different 
planes of different color spaces for generating 
the quaternion valued images. It can be seen that 
the performances yielded by our proposed 
method using different planes of different color 
spaces for generating the quaternion valued 
images are similar. Hence, the effects of using 
different planes of different color spaces for 
generating the quaternion valued images on our 
proposed method are very minor. This 
demonstrates the robustness of our proposed 
method. 

Besides, our proposed method is compared 
to the state of the art methods. In particular, 
Table 4 shows the PSNRs between the original 
high resolution images before performing the 
downsampling and the high resolution images 
obtained by the sparse coding based method [5], 
[6], the SRCNN based method [9] and our 
proposed method. It can be seen that our 
proposed method can yield the range of the 
PSNRs between 25.2800dB and 30.9981dB, 



Multimedia Tools and Applications 

8 
 

while the sparse coding based method can only 
yield the range of the PSNRs between 23.0321B 
and 25.6414dB while the SRCNN based method 
can only yield the range of the PSNRs between 
19.3421dB and 26.1917dB. Obviously, our 
proposed method significantly outperforms the 
state of the art method. 

     
(a)      (b)        (c)      (d) 

   
            (e)      (f)        (g) 

Figure 4. The high resolution images obtained 
via our proposed method without performing the 
discrete cosine transform based denoising. (a) A 
bird. (b) A baby. (c) A human face. (d) A bunch 

of flowers. (e) A pepper (f) A monkey. (g) A 
woman. 

       
(a)    (b)    (c)      (d) 

   
 (e)  (f)       (g) 

Figure 5. The high resolution images obtained 
via our proposed method without performing the 
EMD based denoising. (a) A bird. (b) A baby. (c) 

A human face. (d) A bunch of flowers. (e) A 
pepper (f) A monkey. (g) A woman. 

     
(a)    (b)    (c)      (d) 

   
 (e)     (f)       (g) 

Figure 6. The high resolution images obtained 
via our proposed method without performing the 
2DQSSA based denoising. (a) A bird. (b) A baby. 
(c) A human face. (d) A bunch of flowers. (e) A 

pepper (f) A monkey. (g) A woman. 

Table 1. The PSNRs (dB) between the original high resolution images before performing the downsampling 
and the high resolution images obtained by our proposed method. 

Table 2. The PSNRs (dB) between the original high resolution images before performing the downsampling 
and the high resolution images obtained by our proposed method without performing various time 

frequency analysis based denoising. 

Images Bird Baby Face Flowers Pepper Monkey Woman 
PSNR 27.6150 29.7081 30.9981 25.2800 28.5679 30.2468 28.0936 

Images Bird Baby Face Flowers Pepper Monkey Woman 
PSNRs yielded by our 

proposed method 
21.1191 20.1035 21.9325 20.2614 22.5079 20.2392 20.7238 
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Table 3. The PSNRs (dB) between the original high resolution images before performing the downsampling 
and the high resolution images obtained by our proposed method using different planes of different color 

spaces for generating the quaternion valued images. 

Table 4. The PSNRs (dB) between the original high resolution images before performing the downsampling 
and the high resolution images obtained by the state of the art methods. 

 
4. Conclusion 

This paper formulates the super resolution 
problem as the denoising problems. In particular, 
a combination of three different types of time 
frequency analysis based denoising methods is 
proposed. First, the initial high resolution images 
are generated using the discrete cosine transform 
zero padding approach. Then, a combination of 
the 2DQSSA based denoising method, the EMD 
based denoising method and the discrete cosine 
transform based denoising method is applied 
iteratively. For the 2DQSSA based denoising 
method, as the red color plane, the green color 
plane and the blue color plane are fused together 
via the quaternion valued operation, some high 
frequency information missing in one color plane 
can be generated using those in other color 
planes. On the other hand, some distorted high 
frequency components are removed by 
discarding some IMFs. Therefore, our proposed 
method outperforms the methods without 
performing any one of these three time frequency 

analysis based denoising. 
It is worth noting that the existing deep 

learning methods require a very huge 
computation power. Also, it is highly dependent 
on the given training images. These drawbacks 
result to the difficulty of applying the deep 
learning methods to perform the video super 
resolution. In future, the feasibility of applying 
our proposed method to perform the video super 
resolution will be investigated. 
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