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ABSTRACT:

Although a number of emerging point-cloud semantic segmentation methods achieve state-of-the-art results, acquiring fully in-
terpreted training data is a time-consuming and labor-intensive task. To reduce the burden of data annotation in training, semi-
and weakly supervised methods are proposed to address the situation of limited supervisory sources, achieving competitive results
compared to full supervision schemes. However, given a fixed budget, the effective annotation of a few points is typically ignored,
which is referred to as weak-label initialization in this study. In practice, random selection is typically adopted by default. Because
weakly supervised methods largely rely on semantic information supplied by initial weak labels, this studies explores the influence
of different weak-label initialization strategies. In addition to random initialization, we propose a feature-constrained framework to
guide the selection of initial weak labels. A feature space of point clouds is first constructed by feature extraction and embedding.
Then, we develop a density-biased strategy to annotate points by locating highly dense clustered regions, as significant informa-
tion distinguishing semantic classes is often concentrated in such areas. Our method outperforms random initialization on ISPRS
Vaihingen 3D data when only using sparse weak labels, achieving an overall accuracy of 78.06% using 1‰ of labels. However, only
a minor increase is observed on the LASDU dataset. Additionally, the results show that initialization with category-wise uniformly
distributed weak labels is more effective when incorporated using a weakly supervised method.

1. INTRODUCTION

Airborne laser scanning (ALS) data depict the 3D structures of
large-scale out-door scenes, which are used in a variety of re-
mote sensing applications. To comprehensively interpret ALS
data, an indispensable solution is to acquire category informa-
tion, which is referred to as semantic segmentation or classific-
ation. Recently, an increasing number of deep learning meth-
ods have been developed for point-cloud semantic segmentation
tasks, achieving state-of-the-art results (Thomas et al., 2019; Hu
et al., 2020). However, most of these rely on a large number of
precise annotations, which are typically associated with heavy
workloads. In point-cloud labeling, the occlusions caused by
the scan pattern of ALS systems and discrete data structure of
point clouds in 3D space further increase the difficulty of visual
interpretation. Additionally, with advances in light detection
and ranging (LiDAR) technology, massive point clouds can be
easily acquired from diverse platforms. Thus, finely annotating
newly acquired point-cloud data is impractical.

To reduce labeling and alleviate data hungry issues, an intuit-
ive solution is to annotate a small part of the entire data. Semi-
and weakly supervised methods are proposed to address situ-
ations in which the number of labels is low. By exploiting
extra information other than the original labels, these meth-
ods achieve competitive results compared with full supervision
schemes. Several studies have recently emerged in point-cloud
semantic segmentation (Xu and Lee, 2020; Hu et al., 2021).
An important finding from these studies is that a huge redund-
ancy exists in annotation information of fully labeled data. For
example, only a minor accuracy degradation is observed by
∗ Corresponding author.

comparing classification results using 10% of sparsely distrib-
uted labels with that using full labels. This means annotating
every point is unnecessary during labeling work, also indicat-
ing the importance of weakly supervised learning. Although
these methods achieve competitive results using limited labels,
the issue of weak-label initialization is often ignored. In some
studies, active learning was applied to guide the selection of
weak labels (Polewski et al., 2016; Lin et al., 2020). However,
the interaction process adds to the workload. To choose weak
labels directly before classification, a commonly used strategy
is to randomly select a fixed number/ratio of data to assign la-
bels. However, the randomness of weak labels leads to unstable
classification results. Additionally, because of the extremely
imbalanced category distribution of ALS data, sampled points
may be unclassified under a fairly sparse weak label configur-
ation. Another common strategy is to evenly sample points for
each class, which ensures sufficient samples across categories.
Both strategies initialize weak labels using a random generator,
which lacks guidance in selecting representative labels.

This study explores an effective weak-label initialization
strategy. The feature space of the point cloud was construc-
ted to guide weak-label selection. Because supervisory sources
are absent in unlabeled points, handcrafted features are extrac-
ted to form a point-cloud description. Subsequently, a manifold
learning approach is incorporated to eliminate feature correla-
tion and construct a more effective feature space. A density-
biased selection strategy is proposed to sample more points in
the highly dense region in the feature space, where data are of-
ten considered to contain useful information. We use a clus-
tering algorithm in advance and sample points in each cluster
to avoid overly concentrated samples. After acquiring weak la-
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bels, classifiers were adopted to evaluate the effectiveness of
the different weak-label initialization strategies. Moreover, we
conducted experiments using a weakly supervised method for
analysis.

2. RELATED WORK

2.1 Point cloud feature description

The feature description depicts discriminative information for
each point. Local descriptors, such as FPFH (Rusu et al.,
2009) and SHOT (Tombari et al., 2010) were successfully used
in applications, such as registration and object classification.
However, the results are unsatisfactory when adopting local
descriptors in semantic segmentation tasks, as contextual in-
formation is essential for achieving accurate results. By con-
trast, geometric features, which represent 3D surface character-
istics of each point, are popular in point cloud classification.
A comprehensive study (Weinmann et al., 2015) was proposed
to summarize a set of point-cloud geometric features. Self-
supervised learning (SSL) has recently become a popular re-
search topic in computer vision. By creating self-supervisory
sources, such as data augmentation (Huang et al., 2021) and
data completion (Wang et al., 2021), discriminative informa-
tion is extracted for each sample using the trained model. Non-
etheless, this remains a challenge when incorporating SSL into
complex ALS data. Thus, this study uses handcrafted features.

Feature embedding is often proposed for effectively combin-
ing extracted features. It corresponds to dimension reduction,
which projects the original features onto a lower-dimensional
space. A classical method is principal component analysis
(PCA), which produces new uncorrelated variables that suc-
cessively maximize the variance. However, the fine struc-
ture cannot be well preserved using this linear transformation.
In contrast, manifold learning can preserve the local struc-
ture after feature projection. t-SNE (van der Maaten and Hin-
ton, 2008) and uniform manifold approximation and projection
(UMAP)(McInnes et al., 2018) are two representative mani-
fold learning methods. In point-cloud processing, Huang et
al. (2020) classified ALS data using multi-scale local feature
extraction with manifold embedding.

2.2 Weakly supervised learning

Weakly supervised point-cloud semantic segmentation has
gradually attracted the attention of researchers. Under limited
labels, studies have exploited potential information in unlabeled
data. Xu and Lee (2020) proposed several strategies, including
a siamese, inexact supervision, and smooth branch. An approx-
imate result of fully supervised learning was obtained using
10% of the labels. However, the weak labels used were spatial
aggregations of the downsampled full-scene labels, signifying
a high labeling workload. Liu et al. (2021) constructed a super-
voxel of point clouds to create pseudo-labels and applied an it-
erative training mode to improve the classification results under
weak supervision. In Hu et al. (2021), a semantic query network
was proposed to share sparse weak-label information in the spa-
tial domain by interpolating features from neighboring points.
Wang and Yao (2021b) proposed a pseudo-label-assisted ap-
proach for point-cloud semantic segmentation using limited an-
notations. This was enhanced in Wang and Yao (2021a), in
which a plug-and-play weakly supervised framework was in-
troduced, comprising entropy regularization, an ensemble pre-
diction constraint, and online pseudo-labeling. Because of the

flexibility and competitive results achieved using only 1‰ of
labels, it was used in this study to explore the effectiveness of
weak-label initialization strategies.

3. METHODOLOGY

This study explores the effective weak labels that represent the
most discriminative information. Given that the input points
P ∈ RN×D comprise N points with D dimensional features,
the M(M≪N) points are assigned labels. Several weak-label
initialization strategies were compared in this study. Random
selection was the most practical method. Points were selectable
either directly from the entire dataset or evenly from each cat-
egory. A density-biased selection based on the feature space is
proposed to provide effective information for weak-label initial-
ization. The handcrafted features of a single point are extrac-
ted and projected onto the feature space using manifold learn-
ing. The points were then divided into clusters, and weak la-
bels were sampled from each cluster. Subsequently, the weakly
supervised method was integrated to evaluate the classification
results using different weak-label initialization strategies.

3.1 Random initialization of weak labels

An intuitive strategy for initializing weak labels is to randomly
select a certain number of points for annotation. In this study,
we analyze two random initialization strategies, directly select
points from the entire data set, and assign labels to the same
number of points for each category. From a practical perspect-
ive, the former strategy is more effective because certain points
to be labeled can be determined in advance using a random
function. In contrast, to maintain an even category distribu-
tion, the operators must select points during the labeling pro-
cess. However, the category-based strategy ensures an adequate
number of points for each class under a fixed abundance, which
avoids producing imbalanced weak labels. In the case of an
equal total number of labeled points, the workload of the two
strategies is almost the same.

3.2 Feature constrained weak-label initialization

Uncertainty in the random initialization strategy leads to diverse
weak-label sets, which produce unrobust classification results.
Thus, developing a targeted approach is essential for selecting
more representative weak labels to achieve a higher accuracy
using the same number of labels. Fig. 1 illustrates the frame-
work of the proposed strategy. This study proposes unsuper-
vised feature embedding to explore the relationships between
points, guiding label initialization. Several handcrafted fea-
tures are used to extract point-cloud discriminative information.
We then incorporated manifold learning to analyze the correla-
tions between the features and construct a point-cloud feature
space. Because significant information often corresponds to
highly dense regions in this space, a density-biased selection
strategy is proposed for the selection of initial weak labels.

3.2.1 Unsupervised feature extraction Feature description
plays a crucial role in point-cloud processing by supplying dis-
criminative information for a variety of applications. Coordin-
ate information is commonly used to explore point-cloud char-
acteristics, and a set of geometric features is developed to con-
struct point-cloud descriptors. Additionally, inherent physical
attributes are directly combined with the geometric features.

This study focused on extracting single-point features, and
a local neighborhood region was constructed for each point.
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Figure 1. Framework of the feature-constrained weak-label initialization. Handcrafted features were developed to extract point-wise
discriminative information. Subsequently, a manifold learning method was proposed to combine extracted features by projecting onto
a more informative feature space. To ensure that the entire feature space was cross-sampled, the data were divided into clusters based

on which weak labels are acquired using a density-biased selection strategy.

Eigenvalue-based features were used to represent the surface
structure of a local region. Given a local neighbor set Pl ∈
Rk×3 of point pi, the corresponding derived normalized eigen-
values eλ with λ ∈ {1, 2, 3} are calculated from the 3D cov-
ariance matrix of coordinates {X,Y, Z}. Subsequently, several
3D properties were acquired from the formulas of ei. We used
the following properties: omnivariance Oi, eigenentropy Ei,
anisotropy Ai, linearity Li, planarity Pi, scattering Si, sum of
eigenvalues Σi, and local curvature LCi.

Height-based features are essential in ALS point-cloud feature
description. For each point pi, a local cylinder area is construc-
ted to explore the height features. In this area, the height differ-
ences between pi and the highest point, pi and the lowest point,
and the highest point and lowest point is extracted and denoted
as Zmax−i, Zi−min, and Zmax−min, respectively. Multiscale
neighborhoods are used to supply sufficient height information
in complex outdoor scenes.

Apart from the two types of geometric features, the density Di

and verticality Vi are combined. Density refers to the number of
points within a local area, whereas the verticality relates to the
normal vector of the z−axis, denoted as Nz . Additionally, the
inherent physical attributes, such as reflectance Ri and color
Ci, of the point cloud are integrated with the above features.
Table 1 summarizes a combination of feature descriptions.

3.2.2 Manifold embedding Although the extracted features
represent the characteristics of each point from different as-
pects, the correlations between features should be further ana-
lyzed. To reduce the redundancy of extracted features, pars-
ing handcrafted features and projecting them onto a new set
of descriptors is essential. Manifold learning, which can
preserve local structure better than linear techniques such as
PCA, is commonly used in feature embedding. Recently,
UMAP(McInnes et al., 2018) was developed as a novel non-
linear dimensionality reduction method. Local manifold ap-

Table 1. Feature description of a point cloud

Sort Features Definition

Eigenvalue

Omnivariance Oi = 3
√
e1 · e2 · e3

Eigenentropy Ei = −
∑3

i=1 ei · ln ei

Anisotropy Ai = (e1 − e3)/e1

Linearity Li = (e1 − e2)/e1

Planarity Pi = (e2 − e3)/e1

Scattering Si = e3/e1

Sum Σi = e1 + e2 + e3

Local curvature LCi = e3/(e1 + e2 + e3)

Height Height difference
∆Hmax−i = Zmax − Zi

∆Hi−min = Zmax − Zi

∆Hmax−min = Zmax − Zmin

Other
geometrics

Density Di

Verticality Vi = 1−Nz

Physical
attributes

Reflectance Ri

Color Ci

proximations and local fuzzy simplicial set representations
were used to construct topological representations of high-
dimensional data in the UMAP. Given a set of data x ∈ RN×d

with d dimensional features, UMAP projects x onto a new fea-
ture space y ∈ RN×d′(d′<d), which can maintain the local
structure and, arguably, preserve more of the global structure.
UMAP first builds a local fuzzy simplicial set fs− set[x] from
the original feature sets x, which is based on k-nearest neigh-
bors. Subsequently, it constructs the relevant weighted graph A
and corresponding degree matrix D, and a spectral embedding
y is initialized from the sorted eigenvectors of the Laplacian
matrix L of A and D, denoted as

L = D1/2(D − A)D1/2 (1)
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Figure 2. Schematic of the weakly supervised strategy for ALS point-cloud semantic segmentation. Apart from the incomplete
supervision of labeled points, three modules are proposed: entropy regularization, contrastive constraint, and soft pseudo-labeling.

UMAP optimizes y with respect to fs − set[x] cross entropy
using stochastic gradient descent, and the optimized embedding
y is the projected results. The target dimension was set to 10.

3.2.3 Density-biased selection We used information from
the constructed feature space to initialize weak labels. In the
feature space, points in the highly dense region are near the
cluster center, which represents the most discriminative inform-
ation. Thus, we sampled more points in this area to maintain
the original density distribution. Specifically, the density is
calculated using the number of neighbors in the radius search,
and a weighted random selection is proposed. Note that dir-
ectly choosing M highest-density points is ineffective, as those
points are close, which means they represent similar informa-
tion. Owing to the imbalanced label distribution in ALS data,
a considerable discrepancy exists between the density values
in different high-density areas. Thus, a clustering method was
proposed, in which the points are proportionally sampled from
each cluster. The Gaussian mixture model (GMM) (Reynolds,
2009) was integrated to divide the points into clusters. GMM
uses the mixture of Gaussians:

p(x|λ) =
K∑
i

αigi(x|λi) (2)

where λ is the set of parameters {α, p}, and
∑K

i αi = 1 and
each gi is a Gaussian density function parameterized by αi.
Then, given a set of data x, the objective is to find λ such that
p(x|λ) is a maximum. The number of clusters was empirically
set to be the same as that of dataset category. Subsequently, for
each cluster C, weighted random sampling was proposed, and
the weight of each point was its density in the feature space.
We sampled M · (|C| /N) points to assign weak labels for each
C. Thus, the selected points contained useful information from
each cluster, and the subset maintained a similar density distri-
bution to that of the full set.

3.3 Weakly supervised learning

After acquiring weak labels, supervised classifiers evaluated the
performance. We first analyzed the classification results using
only weak labels. A classical machine learning method, ran-
dom forest (RF) (Breiman, 2001), and a deep-learning network,
KPConv (Thomas et al., 2019), were used as classifiers. For
the RF, only labeled data were used for training. For KPConv,
the entire data was fed to the training model, but the loss was
is simply calculated from the labeled points. Owing to the im-
balanced weak-label distribution, weighted cross-entropy was
used to calculate the loss, which is defined as

L = − 1

m

m∑
i

wi

K∑
c

yc
i log p

c
i (3)

where m is the number of labeled points in a training step. pci
is the predicted probability of point pi and yc

i represents the
cth value of the one-hot vector of the label li. wi relates to
the category of pi. Given li = c, wi is calculated as wi =

1
Nc/M+0.02

. Nc is the number of category c in weak labels.

We conducted experiments further using a weakly supervised
method. This study adopted our previous study (Wang and Yao,
2021a), which integrates deep-learning networks. Fig. 2 illus-
trates the workflow. Under weak supervision, potential inform-
ation in the unlabeled data was exploited to enhance the clas-
sification result. Entropy regularization (ER) was adopted to
minimize class overlap and generate predictions with high con-
fidence. Moreover, an ensemble prediction constraint (EPC)
was developed to enhance the robustness of the trained model
by comparing the prediction at the current training step to the
ensemble value. In addition, the proposed method developed an
online soft pseudo-labeling (OSPL) strategy to further improve
the performance of the model. KPConv was the backbone net-
work in our weakly supervised method.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2022-151-2022 | © Author(s) 2022. CC BY 4.0 License.

 
154



(a) (b) (c)

Figure 3. Comparison of class distribution of weak-label initialization.

4. EXPERIMENT AND RESULTS

4.1 Dataset

Experiments were conducted on the ISPRS Vaihingen 3D data
(ISPRS) (Cramer, 2010; Rottensteiner et al., 2012) and large-
scale ALS data for semantic labeling in dense urban areas
(LASDU) (Ye et al., 2020; Li et al., 2013).

ISPRS dataset The dataset contains ALS data, and aerial im-
ages were obtained from the Stuttgart region of Germany. The
dataset was divided into two parts: training and testing. The
dataset included 9 categories. As multiple scan data were con-
tained in the dataset, we set the subsampling grid size to d =
0.4 m to remove redundant points in overlapping ALS strips
and maintain an even point density. The classification result of
the deleted points is based on the nearest neighbor point during
testing. The format of the used features is {X, Y, Z, Intensity,
IR, R, G}.

LASDU dataset The study area is a valley along the Heihe
River in northwest China, which covers an urban area of ap-
proximately 1 km². The area was divided into four connected
sections, two of which were used as the training set, and the
remaining two as the test set. Five categories were predefined
in the dataset. Considering the even distribution and relatively
low density of point clouds in the LASDU dataset, raw data
were directly used for training and testing. The format of the
used features is {X, Y, Z, Intensity}.

4.2 Implementation

In feature extraction, a spherical neighborhood was used to cal-
culate eigenvalue-based features, and the radius was set to 2
m. For height-based features, we used three-scale cylindrical
neighborhoods to explore height variation, and radii of 2, 4,
and 6 m.

For the experiments using RF the classifier, we used 500 de-
cision trees to acquire robust results using limited weak labels.
For the experiments using KPConv, we sliced blocks with a
radius of 20 m. The model was implemented in the PyTorch
framework and trained on a GeForce GTX 1080Ti 11 GB GPU.

4.3 Evaluation metrics

The overall accuracy (OA) and F1 score were used to evaluate
the performance of our method. OA is the percentage of pre-
dictions correctly classified, and the F1 score is the harmonic

mean of the precision and recall, presented as:

precision =
tp

tp+ fp
,

recall =
tp

tp+ fn
,

F1 = 2× precision× recall

precision+ recall
,

(4)

where tp, fp, and fn are the true positives, false positives, and
false negatives, respectively.

4.4 Results of ISPRS dataset

We analyzed the classification result using 1‰ of labels, corres-
ponding to 330 points. Fig. 3 illustrates the category distribu-
tion of the weak-label initialization strategies. Compared to full
random selection (FRS), our density-biased method (DBS) pro-
duces imbalanced weak labels. In contrast, class random selec-
tion (CRS) was used to produce samples with a uniform distri-
bution of categories. Classification tasks were then conducted
using produced weak labels. We first evaluated the effective-
ness using only weak labels for training. A weakly supervised
method was then incorporated for further comparison.

4.4.1 RF classification result Table 2 presents the compar-
ison of the classification results. DBS achieved highest OA:
72.21%. Additionally, compared to FRS, DBS performed bet-
ter in OA and Avg. F1. Although CRS achieved the highest
Avg. F1 score, its OA value was considerably lower than that
of the other two. This is because the number of weak labels of
the dominant categories in CRS is much smaller, affecting the
accuracy of these classes. Typically, the accuracy of dominant
categories has a significant impact on the OA.

Table 2. RF classification results

Strategy OA Avg. F1
DBS 72.21±0.80 45.63±2.58
FRS 71.71±0.67 44.42±2.09
CRS 63.10±1.97 46.40±1.38

Full supervision 79.27 60.09

4.4.2 KPConv classification result Compared with the RF
classifier, KPConv achieved much better results for every
strategy, as presented in Table 3. Evidently, the DBS acquired
both the highest OA and Avg. F1. For Avg. F1, the DBS
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(a) (b)

(c) (d)

Figure 4. Illustration of classification map of the ISPRS dataset. (a), (b), (c), and (d) represent the DBS, FRS, CRS, and ground truth,
respectively.

achieved a 3% increase. In contrast, the CRS is far less effect-
ive. Comparing the two classifiers, that the DBS performs better
when using only weak labels. Moreover, given the same abund-
ance, samples with uniform distribution of categories achieve
unsatisfactory results.

Table 3. KPConv classification results

Strategy OA Avg. F1
DBS 78.06±1.17 56.39±1.82
FRS 77.74±0.75 53.77±3.19
CRS 70.55±1.29 52.58±0.96

Full supervision 83.97 72.27

4.4.3 Weakly supervised classification result The object-
ive of the weak-label initialization strategy is to provide more
effective information and boost the performance of weakly su-
pervised methods under the same abundance. Thus, evaluating
the classification results is important when incorporating these
methods. Table 4 presents the comparison. Using weakly su-
pervised learning, the OA increased to a similar number for all
strategies. However, a significant difference was present in the
Avg. F1 score. While the CRS achieved a competitive res-
ult, 68%, degradation was observed in the other two strategies.
Power lines, cars, and fences were severely misclassified into
three categories. From Fig. 3, the number of weak labels in
these categories is extremely small. As weakly supervised
methods largely rely on initial weak labels, limited supervis-
ory sources can cause confirmation bias, which can hinder per-
formance. Fig. 4 presents the classification maps. For dominant
categories, such as impervious surfaces and roofs, all strategies
performed well. However, some categories were completely

misclassified in the DBS and FRS. In (a), no point is inferred
as a power line, while almost all points classified as car in (b)
were misclassified as low vegetation. In contrast, a satisfactory
result was achieved for all categories in (c).

4.5 Results of LASDU dataset

The classification results using 1‰ of labels were evaluated,
corresponding to 1694 points. Similar to the experimental eval-
uation of the ISPRS dataset, we compared the performance us-
ing FRS, DBS, and CRS.

4.5.1 RF classification result Table 5 presents a compar-
ison of the classification results. DBS achieved the highest OA:
80.61%. Similar to the result from the ISPRS dataset, CRS
achieved the highest Avg. F1 score and lowest OA. The results
show that in unbalanced ALS data, evenly distributed weak la-
bels lead to considerable performance degradation on OA when
using only weak labels.

4.5.2 KPConv classification result Table 6 lists the classi-
fication results for KPConv. Compared with the FRS, improve-
ment was not evident in the DBS. As the number of weak labels
increases in the LASDU dataset, the uncertainty caused by ran-
dom selection decreases, leading to the ineffectiveness of our
density-biased strategy. CRS underperforms in both evaluation
metrics.

4.5.3 Weakly supervised classification result Table 7
presents the comparison. From the table, the results are to
similar to those from the ISPRS dataset. Although the three
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Table 4. Comparison of full and weak supervision schemes on the ISPRS dataset

Method F1 Score Avg. F1 OAPower Low veg. Imp. Surf. Car Fence Roof Facade Shrub Tree
DBS 3.46 77.19 89.59 33.19 5.69 94.75 59.03 14.39 81.25 50.74±3.50 81.90±0.49
FRS 27.10 80.23 90.39 0.21 0.04 95.04 56.26 30.22 80.92 51.16±1.79 82.54±0.16
CRS 74.67 79.07 89.27 78.49 15.43 93.80 61.52 40.74 79.96 68.10±0.76 81.66±0.98

Full supervision 76.25 81.99 91.36 79.57 34.77 94.55 61.77 47.90 82.28 72.27 83.97

(a) (b)

(c) (d)

Figure 5. Illustration of classification map on the LASDU dataset. (a), (b), (c), and (d) represent the DBS, FRS, CRS, and ground
truth, respectively.

Table 5. RF classification results

Strategy OA Avg. F1
DBS 80.61±0.29 62.94±1.07
FRS 80.23±0.32 64.29±1.02
CRS 75.69±0.99 66.09±0.86

Full supervision 82.51 70.17

strategies achieved nearly identical results on OA, CRS signi-
ficantly surpasses the other two on Avg. F1. In addition, per-
formance degradation was observed for the Avg. F1 of both
DBS and FRS. Fig. 5 presents the classification maps. The main
classification gap between CRS and the other two lies in the res-
ulting artifacts, and a large number of points that belong to this
category are misclassified into other classes.

Table 6. KPConv classification results

Strategy OA Avg. F1
DBS 85.77±0.30 74.03±0.61
FRS 85.97±0.18 74.26±0.44
CRS 80.66±0.43 72.37±0.41

Full supervision 88.93 79.12

5. CONCLUSION

This study explores a weak-label initialization strategy for
the semantic segmentation of ALS data. Apart from applying
random selection on the whole set or evenly selecting for each
category, a density-biased strategy was proposed that increases
the probability of being selected in the highly dense region
of the feature space. Although our method achieves better
results using only limited weak labels, evenly distributed weak
labels demonstrated more applicability when incorporated with
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Table 7. Comparison of full and weak supervision schemes on
the LASDU dataset

Method F1 Score Avg. F1 OAArtifacts Building Ground Low veg. Tree
DBS 15.10 95.29 89.80 67.65 87.33 71.04±1.06 86.75±0.24
FRS 22.36 95.60 90.54 68.96 86.50 72.79±1.27 87.20±0.09
CRS 42.43 95.12 90.95 72.73 87.62 77.76±0.56 87.52±0.21
Full

supervision 46.89 96.25 92.25 73.35 86.87 79.12 88.93

a weakly supervised method. Thus, the feature information
of point clouds will be further explored in future works to
improve weak label initialization and achieve robust and
accurate classification results.
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