
The following publication F. Du, S. Wu, C. Xu, Z. Yang and Z. Su, "Electromechanical 
Impedance Temperature Compensation and Bolt Loosening Monitoring Based on Modified 
Unet and Multitask Learning," in IEEE Sensors Journal, vol. 23, no. 5, pp. 4556-4567, 1 
March1, 2023 is available at https://dx.doi.org/10.1109/JSEN.2021.3132943. 

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. 

This is the Pre-Published Version.

https://dx.doi.org/10.1109/JSEN.2021.3132943


IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 1 

XXXX-XXXX © XXXX IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 

 
Abstract—Bolts are frequently subjected to 

loosening due to time varying external loads during 
service. The electromechanical impedance (EMI) 
technique based on piezoelectric ceramic wafers (PZT) 
is sensitive to the initial bolt preload looseness. 
However, the change in environmental temperature 
has a great effect on EMI monitoring. Deep 
convolutional neural network (CNN) is a promising 
technique for EMI monitoring. Nevertheless, it is 
difficult to train a deep CNN with limited training data 
to accurately identify damages under a wide range of 
temperature variations. To this end, this study 
proposes a multitask CNN for identifying bolts loosening. The network consists of a temperature compensation 
subnetwork to compensate for the temperature effect, and a lightweight damage identification subnetwork to identify 
bolt loosening states. The temperature compensation subnetwork is a modified Unet, and both the impedance and 
temperature are used as its input. The damage identification subnetwork is connected in series behind the temperature 
compensation subnetwork. A multiloss function is proposed in which a TV regularizer is used. Experimental results 
show that the validation accuracy of the multitask network is 97.71% when the network is trained by only about 30 
samples from each loosening state. Moreover, the generalization abilities of the proposed multitask model to 
unexpected temperatures and bolt torques are investigated. The model is interpreted by the integrated gradients 
method, and is also compared with single-task damage identification CNNs. It is proved that the multitask network 
trained by limited samples can achieve accurate damage identification in temperature varying environments. 
 

Index Terms—Electromechanical impedance, Deep convolutional neural networks, bolt loosening, Structural health 
Monitoring, Multitask learning. 
 

 
I.  Introduction 

ONITORING the health state of engineering structures, 
especially aerospace structures and civil engineering 

structures, is crucial to ensure their reliability and safety. For 
example, bolt connections in engineering structures usually 
bear large loads. However, bolts are frequently subjected to 
loosening due to time varying external loads during service. 
Bolts loosening may lead to the failure of the entire 
structure[1]. Structural Health Monitoring (SHM) technologies 
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are the process of acquiring and analyzing data from onboard 
sensors to evaluate the health of a structure[2]. In addition to 
preventing catastrophic failure, it also leads to a significant 
reduction in maintenance costs, enhancement of structural 
integrity as well as reduction of inadvertent downtime of plants 
[3]. 

The electromechanical impedance (EMI) technique based on 
piezoelectric ceramic wafers (PZT) is commonly used for 
structural health monitoring[4-6]. In this technique, 
piezoelectric sensors are pasted on the structure. Then 
mechanical impedance of the structure can be evaluated by 
measuring the electrical impedance of the PZT sensor. The 
change of impedance can be used to assess the damage to the 
structure. The EMI method is sensitive to the initial damage of 
the structure and is suitable for complex structures. In practical 
application, the root mean square deviation (RMSD) and 
correlation coefficient (CC) of the real part of impedances 
before and after damage are often used as the damage 
indexes[4, 5], since the real part of the impedance is sensitive to 
structural damage.  

In practice, the service temperature of engineering structure 
changes constantly, which leads to the changes of material 
characteristics of the piezoelectric sensor, the adhesive layer 
and the measured structure[7, 8]. In addition, the effect of 
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temperature is also closely related to the thickness of the 
adhesive layer and excitation frequency[8]. As a result, the 
frequency and amplitude of resonance peaks of the measured 
EMI change with temperature. Therefore, the temperature 
effect must be compensated. Sun et al [9] first proposed to use 
cross correlation to compensate for the horizontal shift caused 
by temperature variation. Park et al [7] presented a damage 
metric and compensated for the horizontal and vertical shifts by 
minimizing the value of the damage metric. Koo et al[10] 
proposed an effective frequency shift method (EFS) for 
compensating temperature effects. The EFS is defined as the 
horizontal frequency shift corresponding to the maximum 
cross-correlation with the reference impedance. Moreover, the 
EFS method was used for impedance-based structural health 
monitoring of 2024-T3 aluminum panels under varying 
temperatures[11]. Wandowski et al. [12] further proposed a 
method to compensate horizontal frequency shift using CC and 
vertical amplitude shift using RMSD. Recently, Rabelo et 
al.[13] proposed a temperature compensation technique based 
on a hybrid optimization method associated with different 
damage metrics. However, the frequency shifts that resulted 
from temperature variations are not constant over the entire 
frequency range but increased with the frequency[14]. 
Gianesini [15] further observed that the temperature 
dependences of the vertical shifts are quadratic.  Moreover, 
when the temperature and frequency ranges are extremely wide, 
the compensation results may lose efficiency since the 
frequency shifts follow a non-linear trend [16]. 

Machine learning methods are frequently used to achieve 
accurate identification of damage under temperature variations. 
Min[17] established a multilayer perceptron (MLP) for damage 
identification by EMI considering temperature effects. The 
multi-input of the MLP are CC values obtained from multiple 
frequency subranges compensated by EFS. Huynh et al[18] 
proposed a principal component analysis (PCA)-based 
algorithm to filter out temperature effects on EMI monitoring. 
A PCA-based temperature effect filtering model is established 
to filter out the temperature effects of the damage index matrix. 
Meanwhile, Huynh et al[19] developed a temperature 
compensation method based on radial basis function network 
(RBFN). In this method, the RBFN is trained with the 
impedance signals measured from the intact structure under 
various temperatures. Thereby, reference impedance signal at 
any temperature can be estimated by the RBFN to calculate the 
damage index. However, the RBFN is only applicable to the 
impedance signals from one specified damage state such as the 
healthy state. It can be concluded that the above traditional 
machine learning methods for damage identification still rely 
on damage indexes. Nevertheless, for bolt loosening 
monitoring, there are usually multiple damage states, and it is 
difficult to accurately distinguish the different states by damage 
indexes. 

Deep convolutional neural networks (CNN) have brought 
about breakthroughs in processing images, video, speech and 
audio, and have been used in many other domains, such as 
medical image recognition[20], bioelectric signal 
processing[21] and fault diagnosis[22]. At present, increasingly 
more research efforts have also been put into the SHM 
domain[23]. However, training data are usually limited in the 
SHM domain. Zhang et al. [23] proposed a lightweight one 

dimension (1D) CNN, namely SHMnet, for the identification of 
loosening bolts in a steel frame. Time-domain data from 
repeated impact hammer tests were used for training. 
Additionally, multi-task learning[24] is to learn multiple tasks 
together to improve the learning of a model for each task by 
using the knowledge contained in all or some of the other tasks. 
Considerable achievements on MTL have been made in several 
fields such as image processing[25], fault diagnosis[26] and 
SHM based on guided waves[27].  
Recently, CNNs have been applied in EMI-based damage 
monitoring. Choy[28] converted the 1D EMI signals to 
two-dimensional(2D) color images by repeat the 1D signals 
along the vertical direction of length. Then AlexNet and 
GoogLeNet were used to identify simulated damages. Almeida 
and Silva[29] established a 1D CNN and 2D CNN, both 
containing only one convolutional layer. For the 2D CNN, the 
signals were divided into segments and stacked to construct 2D 
images to be used as input. Nevertheless, the highest accuracy 
for identifying the four damage types of metal plates is 88.95%. 
The main reason for the relatively low accuracy is that the 
image features cannot be extracted well by only one 
convolutional layer. De Oliveira et al. [30] developed a 2D 
CNN with three convolutional layers to identify simulated 
structural damages. The impedance signal is split into several 
parts followed by computing the Euclidean distances among 
them to form an RGB image. The testing accuracy of the 2D 
CNN is 100%. Nevertheless, the above research works did not 
consider temperature variation. de Rezende et al[31] 
established a 5-layer 1D CNN containing one convolutional 
layer for the identification of simulated damage under three 
temperatures(0 °C, 10 °C and 20 °C). In fact, the temperature of 
the actual service environment usually varies continuously. It 
can be concluded that CNN is a promising technique for 
damage monitoring based on EMI. However, the effect of 
temperature variation on EMI has not been fully considered. In 
addition, there is usually a very limited amount of data 
available for training deep CNNs in EMI monitoring. 

To address the above research gaps, this paper proposes a 
multitask CNN for accurately identifying the loosening of bolts 
under a wide range of temperature variations with limited 
training data. A temperature compensation subnetwork based 
on a modified Unet is established to compensate for the 
temperature effect. Both impedance and temperature are used 
as the input. Subsequently, a lightweight damage identification 
subnetwork is established to identify various bolt loosening 
states, and its input is the compensated impedance which is the 
output of the temperature compensation subnetwork. For the 
training of this multitask CNN, a multiloss function is 
proposed, and the tradeoff parameters of the loss functions of 
the two subnetworks are dynamically adjusted. Moreover, the 
generalization abilities of the proposed multitask CNN to 
unexpected temperatures and bolt torques are investigated. The 
proposed multitask CNN is finally verified by comparing with 
single task CNNs. 

The content of this paper is arranged as follows. Section II 
introduces the theatrical backgrounds of EMI monitoring and 
CNN. Section III presents the multitask network and the 
multiloss function. The experimental process is shown in 
section IV. Section V presents the experimental results and 
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discussion. The study is concluded in section Ⅵ.  
II. THEORETICAL BACKGROUND 

A. Analytical Model for EMI Monitoring of Damage 
PZT wafers can convert electrical and mechanical energy to 

each other. When EMI is used for monitoring damage, a PZT 
wafer is usually bonded to the base structure, as shown in 
Figure 1a. The length, width and height of the wafer are la, ba 
and ta, respectively. In this case, the wafer is constrained by the 
base structure with structural stiffness kstr. This can be 
simplified to a model with 2kstr springs at each end of the PZT 
wafer [32], as shown in Figure 1b. 
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Fig. 1.  Base structure with PZT wafer attached (a) actual structure (b) 
simplified model[32] 
 

Based on structural vibration theory and theory of 
piezoelectricity, the electrical impedance of the PZT wafer in 
the simplified model can be expressed as[4, 24] 
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  (1) 

 
where C=εT 

33bala/ta is the capacitance of the PZT, k31 is the E/M 
coupling factor, kPZT is the stiffness of the PZT, γ=ω/ca is the 
wavenumber in the PZT wafer, εT 

33 is dielectric constant at zero 
stress, ω is angular frequency, ca is the sound speed. 

According to Eq. (1), structural resonances will be reflected 
in the electrical impedance frequency spectra. In addition, the 
structural stiffness kstr changes when the structure is damaged, 
which will directly lead to changes in the resonance peak of the 
impedance. Therefore, the damage can be monitored by the 
impedance of the PZT. However, Eq. (1) does not take into 
account the effect of temperature. In fact, temperature directly 
affects the material characteristics, and thus the electrical 
displacement and strain of the PZT. In this case, the measured 
impedance signal will shift in frequency (horizontal shift) and 
change in amplitude (vertical shift) with the change of 
temperature[12]. 

In practical application of EMI, the damage state of a 
structure is usually determined by comparing the real parts of 
the impedance signals before and after the damage. The 
impedance measured from the intact structure is often called 
reference impedance. The root mean square deviation (RMSD) 
and the correlation coefficient (CC) are commonly used as 
damage indexes[33, 34]. However, in the case of temperature 
variation, RMSD and CC without temperature compensation 
will lead to false alarms [35]. 

B. Convolutional Neural Networks and Multitask 
Learning 

Convolutional Neural Network (CNN) is a neural network 

that uses convolutional operations instead of general matrix 
multiplication. CNN can be used to process 1D sequence data 
or 2D image data. The convolutional layer is the core of the 
convolutional neural network. 
1) 1D CNN 

For 1D signals, a 1D convolution operation is used. In this 
case, the input feature of the convolution layer is a 2D tensor 

M DX ×∈ , where D is the number of channels and M is the 
length of the signal. The output feature is also a 2D tensor 

M PY ′×∈ , where P is the number of output channels and M' 
is the length of the output feature. The convolution kernel is a 
3D tensor U P DW × ×∈ , where U is the size of the kernel. The 
output feature YP of the convolution layer can be calculated by 

 
P P PY W X b= ⊗ +  (2) 

 
where ⊗  is the cross-correlation operation, bP is the bias. The 
final output feature is usually obtained by a nonlinear activation 
function, as shown in the following Eq. 
 

( )P PV f Y=  (3) 

 
where f(•) is the nonlinear activation function. Recently, 
rectified linear units, ReLU is commonly used[36]. 
Convolutional operations have the characteristics of sparse 
interactions and parameter sharing, which effectively reduce 
the number of network weights and the complexity of the 
network[37]. 

Pooling layer is usually connected to convolutional layer. 
The pooling function uses the overall statistical characteristics 
of adjacent outputs at a location to replace the output at that 
location. Max pooling and average pooling functions are 
commonly used. Pooling operation can reduce the spatial 
resolution of input features, making the network have 
translation invariance and scaling invariance to the input[38]. 
2) Multitask Learning 

Multitask Learning (MTL), a learning paradigm in machine 
learning, aims to jointly learn multiple related tasks so that the 
knowledge contained in a task can be leveraged by other tasks 
with the hope of improving the generalization performance of 
all the tasks [24]. In the context of Deep Learning, multitask 
learning is typically done with either hard or soft parameter 
sharing of hidden layers[39]. Hard parameter sharing is the 
most commonly used approach to MTL in neural networks[39]. 
It is generally applied by sharing the hidden layers between all 
tasks while keeping several task-specific output layers. Hard 
parameter sharing greatly reduces the risk of overfitting. 

The loss function in the MTL generally yield the following 
empirical risk minimization formulation[40] 

 

 ( )1 1, ,
min ,

sh T

T t t sh t
t

c
θ θ θ

θ θ
=∑


L  (4) 

 
where T is the number of tasks, θsh are the shared parameters 
between tasks and θt are task-specific parameters, 
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( ),t sh tθ θL  is the loss functions of task t, and ct is the static 

or dynamically computed weight of task t. 

III. FRAMEWORK OF THE PROPOSED METHOD 

A. Input features 
Both temperature and real part of impedance are used as 

input features. Each measured impedance signal is normalized 
using the Min-Max normalization method, as shown in the 
following equation. 

 

( )
( )( ) ( )( )( )

( )( )( ) ( )( )( )
Re min Re

max Re min Re

Z Z
Z

Z Z

ω ω
ω

ω ω

−
=

−
 (5) 

The temperature corresponding to each impedance signal is 
measured at the same time. In addition, the measured 
temperature is normalized by the following equation. 
 

( ) 10rq q q= −  (6) 

 
where q is the measured temperature, qr is the reference 
temperature which is a fixed value for all damage states. Since a 

wide temperature range of 16-70°C is considered, the 
difference between the above two values is divided by 10. The 
normalized temperature q  is repeated along the length to 
obtain a temperature vector Q  so that its dimension is the same 
as the impedance signal. In this way, both the ( )Z ω  and Q  are 
used as input features. 

B. Modified Unet-based temperature compensation 
subnetwork 

The impedance signal changes significantly with damage 
states. Hence, the variation of impedance signal with 
temperature varies greatly from one damage state to another. A 
modified 1D Unet is established to compensate for the change 
of impedance signal caused by temperature variation at various 
damage states. This network is named the temperature 
compensation subnetwork. The output of the subnetwork 
should be the same as the impedance measured at the reference 
temperature. The architecture of the subnetwork is shown in 
Fig. 2, and the numbers of output channels of every 
convolutional layer are also displayed in the figure. 
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Fig. 2.  The architecture of the temperature compensation subnetwork 

 
The Unet[41] is a typical full convolutional neural network. 

Since the training dataset in EMI monitoring is generally small, 
the specific structure of the subnetwork after the modification is 
as follows. 
(1) The contracting path contains three downsampling blocks. 
Each block consists of a maximum pooling layer and two 
convolutional layers, except that the third block contains four 
convolutional layers. Each convolutional layer is followed by a 
ReLU function. The number of output channels of the first 
convolutional layer of each block is twice the number of its 
input channels. The stride of the pooling layer is 2 for 
downsampling.  
(2) The expansive path consists of three upsampling blocks, 
each containing one transposed convolutional layer and two 
convolutional layers. Each convolutional layer is followed by a 
ReLU function. The stride of the transposed convolutional 
layer is 2, while the number of its output channels is half of its 
input channel number. 
(3) Three symmetric skip connections are used between the 
contracting and expansive paths. For the skip connections, 
residual learning formulation is adopted, i.e. each element of 

the corresponding Tensor is directly summed. This is different 
from reference[41]. This residual learning formulation reduces 
the number of channels in the following convolution layers, and 
we empirically find that this works better. 
(4) The subnetwork contains a total of 17 convolutional layers. 
All the convolutional layers are equal-width convolutions with 
a kernel size of 3, except for the final output layer which has a 
convolution kernel of 1. Since the Batch Normalization layer is 
ineffective when the Batch Size is small [42], there is no 
BatchNorm layer in the subnetwork. 

C. Multitask network for EMI damage identification 
A damage identification subnetwork is connected in series 

behind the temperature compensation subnetwork, as shown in 
Figure 3. The input of this identification subnetwork is the 
output of the temperature compensation subnetwork, and the 
number of input channels is 1. Since only the compensated 
impedance needs to be classified, a lightweight CNN is 
adopted. 
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Fig. 3.  The architecture of the damage identification multitask network 

 
The specific structure of this subnetwork is as follows. 

(1) The subnetwork consists of two convolutional layers, two 
maximum pooling layers and one linear layer. Each 
convolutional layer is followed by a ReLU function. The stride 
of the pooling layers is 2. 
(2) The convolutional kernel sizes of the two convolutional 
layers are 7 and 5, respectively. In addition, the strides of the 
convolutional layers are 2. 
(3) The dropout function is used before the linear layer to 
reduce the overfitting of the subnetwork. The softmax function 
is connected after the linear layer. 

In this way, a multitask network is constructed for 
temperature compensation and damage identification. The 
network has two outputs, i.e. compensated impedance and 
classification of the damage. 

D. Multiloss function 
For the temperature compensation subnetwork, its output is 

the compensated real part of the impedance. Therefore, the 
mean square error loss function is used for this subnetwork, 
which can be expressed as  

 

  ( ) ( )( )2

MSE E Z Zω ω = −  
L   (7) 

 

where  ( )Z ω  is the compensated real part of impedance and 
E(•) is the calculation of mean value. Total variation (TV) 
regularizer can be used to constrain the smoothness of the 
difference between the predicted values and ground truth [25]. 
For 1D signals, gradient calculation becomes derivative 
calculation, and this loss function is shown in the following Eq. 
 

 ( )
2

TV E σ ω
  ′=     

L  (8) 

 
where ( )  ( ) ( )Z Zσ ω ω ω= − . Hence, the loss function of the 
compensation subnetwork becomes the following Eq. 
 

1 MSE TV TVλ= +L L L  (9) 

 

where λTV is the tradeoff parameter of the TV regularizer. 
For the damage identification subnetwork, the cross-entropy 

loss function is used, as shown in the following equation. 


2 logTY Y= −L  (10) 

where Y is the ground truth of the distribution of labels and  is 
the prediction distribution. The multitask model is trained as a 
whole, rather than the two subnetworks being trained 
separately. Hence, the multiloss function for the multitask 
network is 

1 1 2 2λ λ= +L L L  (11) 

where λ1 and λ2 are the tradeoff parameters of the 1L  and 2L . 
The sum of λ1 and λ2 is 1. 

IV. EXPERIMENT VALIDATION 
In this section, impedance signals of a two-bolt lap plate are 

measured under different temperatures and preloads using a 
single PZT wafer. Training and validation datasets are built to 
train and validate the proposed multitask network. Since the 
datasets are very important for the universality of deep 
learning, the specimen and the related parameters in the 
experiment were carefully selected. 

A. Experimental rig and specimen 
The two-bolt lap plate is shown in Figure 4. In aerospace 

structures, 3mm thick aluminum plate and M6 bolt are widely 
used. The bolts are steel M6 bolts of strength class 8.8. Flat 
shims were used in each bolted joint. The size of each 
aluminum plate is 120mm×80mm×3mm. In the middle of two 
M6 bolts, the PZT wafer is glued on the outer surface of an 
aluminum plate. The PZT is P5-H, and its size is 
10mm×8mm×0.5mm. 

 

200

PZT

40

 
Fig. 4.  Schematic diagram of the two-bolt lap plate (unit: mm) 

 



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

An impedance analyzer of HIOKI IM3570 was used to 
measure the impedance of the PZT wafer. A digital torque 
wrench of STANLEY SD-030-22 was used to tighten the M6 
bolts to the predetermined torques. An electric thermostatic 
drier 202-00A was used to control the environmental 
temperature of the specimen. A four-wire thermistor PT100 
was used to precisely monitor the temperature inside the drier. 
The impedance data were measured after holding for 15 min at 
each temperature to ensure that the monitored environmental 
temperature is the same as that of the specimen. 

B. Experimental procedure 
A pre-sweep measurement of impedance was performed on 

the specimen using the HIOKI IM3570 to select the frequency 
range of the subsequent impedance measurement. At this time, 
the bolt torques were both 10Nm. The results show that the 
resonance peak amplitude of the real part of the impedance is 
relatively large within 40 kHz -50 kHz. Therefore, the 
frequency range of the subsequent impedance measurements 
was chosen to be 40 kHz - 46.3 kHz. In this case, there are 498 
data points for the real part of the impedance signal. 

A total of 9 bolt loosening states were measured and 382 
samples were acquired in the experiments. The bolt torques in 
each loosening state are listed in Table 1. And the bolt torque of 
8Nm was selected based on a Chinese National Standard[43]. 
The specimen was tightened three times for the 9 loosening 
states using the torque wrench. Bolt loosening state 9 is the 
healthy state. In the experiment, the temperature range of the 
samples is from 16°C to 70°C. The temperatures are not fixed 
values in every state except the reference temperature, and the 
temperature distribution of all samples is shown in Fig.5. In the 
temperature range of 25°C to 70°C, the number of samples is 
basically evenly distributed, while the number of samples 
below 25 °C is small. Note that the reference temperature is 
selected as 30℃. 

TABLE I 
THE LOOSENING STATES FOR THE IMPEDANCE EXPERIMENT 

Loosening state Torques of the two bolts 
1 1 Nm, 1 Nm 
2 1 Nm, 4 Nm 
3 1 Nm, 8 Nm 
4 4 Nm, 1 Nm 
5 4 Nm, 4 Nm 
6 4 Nm, 8 Nm 
7 8 Nm, 1 Nm 
8 8 Nm, 4 Nm 
9 8 Nm, 8 Nm 
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Fig. 5 The temperature distribution of all samples 

 
280 samples were randomly divided into the training set and 

102 samples into the validation set. This dataset is called the 

normal temperature dataset. In practical applications, 
unexpected extent of damage may occur in the monitored 
structure. The generalization ability of the developed multitask 
network to the temperature range of the training data was 
investigated. For this purpose, the impedance signals measured 
in the range of 25-60°C were taken as the training set, and the 
samples measured in the range of 16-25°C and 60-70°C were 
taken as the validation set. At this time, there are 271 samples in 
the training set and 111 samples in the validation set. This 
dataset is called the temperature generalization dataset. 

In addition, an additional experiment on the same specimen 
was carried out to investigated the generalization ability of the 
model to unexpected bolt torques. 4 additional bolt loosening 
states were measured which are listed in Table 2. 50 samples 
per loosening state were acquired and the temperature range is 
from 24°C to 60°C. This dataset is called the torque 
generalization dataset. A self-made EMI monitoring device 
based on an AD5933 chip was used in the experiment. The 
frequency range is from 40kHz to 45kHz. Loosening states 
10-13 can be seen as extensions of loosening states 1,3,7,9, 
respectively. 

TABLE II 
4 ADDITIONAL LOOSENING STATES 

Loosening state Torques of the two bolts 
10 0 Nm, 0 Nm 
11 0 Nm, 10 Nm 
12 10 Nm, 0 Nm 
13 10 Nm, 10 Nm 

 

C. Neural network training and hyperparameter 
selection 

The Adam optimization algorithm[44] was used for the 
training of the multitask network. Other hyperparameters for 
the network were listed in Table 3. The λ1 and λ2  values were 
dynamically adjusted in the training process. Since the damage 
identification is performed after temperature compensation, λ1 
is taken as 0.98 for the first 50 epochs, 0.96 for the 50th-100th 
epochs, and 0.92 for the final 100th-150th epochs. The 
multitask network was established and trained using the 
PyTorch platform. 

TABLE III 
HYPERPARAMETER VALUES 

Hyperparameter Value 
epoch 150 

batch size 6 
learning rate 6e-4 

λTV 0.02 
λ1 0.92-0.98 
λ2 0.08-0.02 

V. RESULTS AND DISCUSSION 
The results of the multitask network are shown in this 

section, and are compared with the results from the existing 
single task CNNs for SHM. The multitask network's 
generalization abilities to unexpected temperature and bolt 
torque were verified. Furthermore, the effect of frequency 
range was investigated. 
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A. Results of temperature compensation and damage 
identification 

When the multitask network is trained by the normal 
temperature dataset, the loss and accuracy of the validation 
dataset are shown in Fig.6. The results are also compared with 
those obtained using two other loss functions. The first is the 
weights of λ1 and λ2 in Eq. (11) do not change dynamically, and 
their values are fixed at 0.92 and 0.08, which is called static 
loss. The other is that 0TVλ = , so the MSEL  is used for the 
temperature compensation subnetwork. In this case, the 
weights λ1 and λ2 are still dynamically adjusted. The results are 
also shown in Fig. 6 and Table 4. Note that the results in the 
table are the means and standard deviations of the three training 
results. 
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 Fig. 6. A training process of the multitask network(a) Loss of the 
validation dataset (b)Accuracy of the validation dataset 

TABLE IV 
COMPARISON OF DIFFERENT LOSS FUNCTIONS 

Loss function Validation accuracy 
(Normal temperature dataset) 

0.02TVλ =  & Dynamic loss 97.71%±0.46% 

0.02TVλ =  & Static loss 96.73%±0.46% 

0TVλ =  & Dynamic loss 97.38%±0.46% 

 
The results in Table 4 show that the validation accuracy 

using the proposed multiloss function is a little higher than 
those obtained by the other loss functions. It can also be seen 
from Fig.6 that, the accuracy and loss change more drastically 
during the training process when 0TVλ = . 

The outputs of the temperature compensation subnetwork 
obtained by the three loss functions are compared with the 
corresponding impedance signals measured at the reference 
temperatures, as shown in Fig.7. The impedance signals shown 
are for loosening states 2, 4, 6, and 8. The input impedance 
signals in the four damages states are also shown in Fig.7, and 
the corresponding temperatures are 62.9℃, 44.0℃, 40.7℃, and 
62.3℃, respectively. Note that there is an obvious difference 
between the impedance curves of loosening states 2 and 4 at the 
reference temperature. The main reason is that loosening states 
2 and 4 are not exactly symmetrical. The input torque can be 
precisely controlled by a torque wrench, however, the 
torque-preload relationship is highly sensitive to friction that is 
affected by many factors[45]. Therefore, when these two bolts 
have the same torque, the preload is not exactly the same, 
resulting in different stiffness of the bolt joint. In addition, real 

engineering surfaces are rough. For bolt joints, different surface 
profiles will result in different contact pressure distributions 
and contact stiffness, even if the preloads are the same[46]. It 
can be concluded that when the two bolts have the same torque, 
their stiffness is not exactly the same. According to Eq. 1, the 
change in the stiffness of the base structure will lead to the 
change in the impedance curve. This is also true for loosening 
states 6 and 8. 
 

40 41 42 43 44 45 46

Frequency (kHz)

0

2

4

6

8

N
or

m
al

iz
ed

 im
pe

da
nc

e 
cu

rv
e

Input signal

Reference

λ
T V

=0.02 & Dynamic

λ
T V

=0.02 & Static

λ
T V

=0 & Dynamic

40 41 42 43 44 45 46

Frequency (kHz)

0

2

4

6

8

N
or

m
al

iz
ed

 im
pe

da
nc

e 
cu

rv
e

Input signal

Reference

λ
T V

=0.02 & Dynamic

λ
T V

=0.02 & Static

λ
T V

=0 & Dynamic

40 41 42 43 44 45 46

Frequency (kHz)

0

2

4

6

8

N
or

m
al

iz
ed

 im
pe

da
nc

e 
cu

rv
e

Input signal

Reference

λ
T V

=0.02 & Dynamic

λ
T V

=0.02 & Static

λ
T V

=0 & Dynamic

40 41 42 43 44 45 46

Frequency (kHz)

0

2

4

6

8

10

12

N
or

m
al

iz
ed

 im
pe

da
nc

e 
cu

rv
e

Input signal

Reference

λ
T V

=0.02 & Dynamic

λ
T V

=0.02 & Static

λ
T V

=0 & Dynamic

-1 -1

-1 -1

(a) (b)

(c) (d)

Fig. 7. Temperature compensation results under different bolt loosening 
states(a) Loosening state 2 at temperature 62.9℃ (b) Loosening state 4 
at temperature 44.0℃ (c) Loosening state 6 at temperature 40.7℃ (d) 

Loosening state 8 at temperature 62.3℃ 
 

As can be seen from the results in Fig.7, the input impedance 
for each loosening state differs significantly from its 
corresponding impedance curve at the reference temperature. 
As the temperature increases, the resonance peak of the 
impedance shifts toward the lower frequencies and changes 
slightly in amplitude. As the reference temperature is 30℃, the 
changes shown in Fig. 7a and d are greater than those in Fig. 7b 
and c. After temperature compensation, the outputs all agree 
well with the impedance curves at the reference temperatures. It 
can also be seen from Fig.7d that the results obtained from the 
proposed loss function are in the best agreement with the 
impedance signals at the reference temperatures. On the other 
hand, it can be seen that the impedance curves differ greatly 
between the four loosening states. 

To further interpret the proposed model, the Integrated 
Gradients method[47] is performed on the trained multitask 
model to attribute the model’s outputs to its input signals. The 
Integrated Gradients method is conducted by Captum [48] 
which is an extensible library for model interpretability built on 
PyTorch. The results are displayed in Figs. 8 and 9. 
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Fig. 8 Attribution for the damage classification (a) Loosening state 2 at 

temperature 62.9℃ (b) Loosening state 4 at temperature 44.0℃ (c) 
Loosening state 6 at temperature 40.7℃ (d) Loosening state 8 at 

temperature 62.3℃ 
 

Figure 8 shows the input attributions for the damage 
classification from the proposed multitask network. The input 
impedance signals in Fig.8 are the same as those in Figure 7. It 
can be seen the attribution values of several resonance peaks in 
an impedance signal are relatively large. Meanwhile, the 
attribution values of the rest of the signal are close to 0. It can 
be concluded that the damage classification by the multitask 
network is mainly based on the resonance peaks with large 
attribution values in the signal.  
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Fig. 9 Attribution for the compensated signal  (a) Loosening state 2 at 
temperature 62.9℃ (b) Loosening state 4 at temperature 44.0℃ (c) 
Loosening state 6 at temperature 40.7℃ (d) Loosening state 8 at 

temperature 62.3℃ 
 

Figure 9 shows the input attributions for the temperature 
compensation from the multitask network. The input 
impedance signals in Fig 9 are the same as those in Figure 7. In 
the Captum, only a single value in the output of a neural 

network can be selected to compute attributions. This single 
value is called the target point. The target points in the output 
signals are shown in Fig.9. All the target points are the 
maximum points of one resonance peak in the signals. The 
attributions for the target points to their input impedance 
signals are also shown in Fig.9. It can be seen that the 
attribution values of the resonance peaks before frequency and 
amplitude shifts are dominant. In addition, the attribution 
values of the rest points in the input signals are 0. It can be 
concluded that the target points can be attributed to the 
maximum points of the resonance peaks before frequency and 
amplitude shifts. The above results explain how the network 
compensates the impedance signals for temperature. 

B. The generalization ability of the multitask network 
The multitask network is also trained and validated using the 

temperature generalization dataset. At this time, the samples 
measured at 25-60°C are taken as the training set, and those 
measured at 16-25°C and 60-70°C are taken as the validation 
set. The changes of loss and accuracy during the training of the 
network are shown in Fig. 10. The means and standard 
deviations of the accuracies are also listed in Table 5. 
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Fig. 10.  A training process using the temperature generalization 
dataset(a) Validation Loss (b) Validation Accuracy 

TABLE V 
COMPARISON OF DIFFERENT LOSS FUNCTIONS USING THE TEMPERATURE 

GENERALIZATION DATASET  

Loss function Validation accuracy 
(Temperature generalization dataset) 

0.02TVλ =  & Dynamic loss 93.21%±1.57% 

0.02TVλ =  & Static loss 92.59%±2.00% 

0TVλ =  & Dynamic loss 91.66%±2.73% 

 
From Table 5, it can be seen that the validation accuracy is 

93.21% with the proposed loss function, which is higher than 
those obtained by the other loss functions. Meanwhile, the 
standard deviation of the accuracy using the proposed loss 
function is smaller than those obtained by the other loss 
functions. Compared with the results shown in Fig. 6, however, 
the accuracy and the convergence speed shown in Fig. 10 are 
reduced and the loss value of the validation set is increased. 
Moreover, both the loss function and accuracy fluctuate more 
widely during the training process. The results demonstrate that 
the network can be effectively used to identify different 
loosening states outside its training temperature range. Note 
that only about 30 training samples are required for each 
loosening state in the training progress. 
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The outputs of the trained temperature compensation 
subnetwork are compared with the corresponding impedance 
signals at the reference temperatures, as shown in Fig.11. The 
impedance curves shown are for loosening states 2, 4, 6, and 8. 
The input impedance signals in the four damages states are also 
shown in Fig.11, and the corresponding temperatures are 
62.9℃, 61.7℃, 61.7℃, and 60.2℃, respectively. 
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Fig. 11 Temperature compensation results for the temperature 

generalization dataset(a) Loosening state 2 at temperature 62.9℃ (b) 
Loosening state 4 at temperature 61.7℃ (c) Loosening state 6 at 
temperature 61.7℃ (d) Loosening state 8 at temperature 60.2℃ 

 
After temperature compensation, the outputs all agree with 

the corresponding impedance curves at the reference 
temperatures. It can also be seen from Fig. 11b that the results 
obtained from the proposed loss function are in the best 
agreement with the impedance signals at the reference 
temperatures. On the other hand, the deviations between the 
compensated impedance and reference impedance increase 
compared to the results shown in Fig. 7. 

For the torque validation dataset, a comparison of the 
impedance signals from loosening states 10-13 and loosening 
states 1,3,7,9 is shown in Fig.12. It can be seen that the 
impedance signals measured by the AD5933 chip have vertical 
shifts. On the other hand, the distributions of the resonance 
peaks between loosening states 1 and 10,9 and 13 are similar, 
respectively. When the proposed multitask was validated by the 
torque validation dataset, the loosening states 1,3,7,9 were used 
as labels for the dataset shown in Table 2, respectively. At this 
time, the classification accuracy of the proposed model is 
70.48%±4.48%. Note that the proposed CNN model was 
retrained using the training dataset with the frequency range of 
40-45 kHz. It can be concluded that the proposed model can 
identify unexpected extent of loosening. 
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Fig. 12 The real parts of measured impedances (a) Loosening states 1 
and 10 (b) Loosening states 3 and 11 (c) Loosening states 7 and 12 (d) 

Loosening states 9 and 13 
 

C. Comparison with single-task CNNs 
To verify the proposed multitask network, it was compared 

with the SHMnet[23] for bolt loosening detection and the 
5-layer 1D CNN[31] for EMI monitoring. The results are listed 
in Table 6. In addition, a multistage-training process using the 
temperature compensation subnetwork and damage 
identification subnetwork was performed to compare with the 
multitask learning. In this process, the two subnetworks were 
not jointly trained but were separately performed. The 
temperature compensation subnetwork was trained using loss 
function 1L  and the final output was stored and used as the 
input of the damage identification subnetwork. The damage 
identification subnetwork was then trained using 2L . And the 
two networks as a whole was called as multistate-training 
network, the results are also listed in Table 6. 

TABLE VI 
COMPARISON OF DIFFERENT NEURAL NETWORKS 

 
Validation accuracy 
(Normal temperature 

dataset) 

Validation accuracy 
(Temperature 
generalization 

dataset) 

Parameters 

Multitask 
network 97.71%±0.46% 93.21%±1.57% 1,005,674 

Multistate-tra
ining network 97.06%±0.0% 90.43%±1.75% 1,005,674 

SHMnet 91.18%±0.80% 64.56%±1.13% 13,168,068 

5-layer 1D 
CNN 88.23%±1.39% 49.85%±2.58% 286,009 

 
As can be seen from Table 6, the validation accuracy of the 

proposed multitask network is higher than that of the 
multistage-training network. The reason is that the multitask 
learning method improves identification accuracy. Table 6 also 
shows that the validation accuracy of the multitask network is 
higher than those of the SHMnet and the 5-layer 1D CNN. In 
particular, for the temperature generalization dataset, the 
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accuracy of the multitask network is about 30% higher than that 
of the SHMnet, and is  43% higher than that of the 5-layer 1D 
CNN. It is proved that the proposed model can be applied to 
datasets in which the temperatures are totally outside the range 
of the training dataset. Besides multitask learning, the main 
reason is that the change of impedance due to temperature 
variation can be effectively compensated by the temperature 
compensation subnetwork. This subnetwork is a full 
convolutional neural network of 17 convolutional layers, which 
has a strong feature extraction ability, and the measured 
temperatures were also utilized as input. After temperature 
compensation, bolt loosening states can be identified easily. It 
can be concluded that the proposed multitask network can 
achieve high accuracy with limited training data, and has good 
generalization ability in EMI damage identification.  

It is important to select a frequency range that is sensitive to 
bolt loosening [17]. The frequency range used for the above 
results is 40-46.3 kHz. To verify the influence of the frequency 
range, the impedance signals in the frequency range of 
40-44.3kHz , 40-48.1kHz and 43.8-50kHz are used for 
comparison. The data points for each signal are 348, 648 and 
498, respectively. For the input impedance signals shown in 
Figure 7, the above three frequency ranges are displayed in Fig. 
13. As can be seen from this figure, there are multiple 
resonance peaks in the frequency range of 40 kHz -50 kHz. In 
addition, the resonance peaks with larger amplitudes are mainly 
located in the 41.5-43.8 kHz frequency band. 
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Fig. 13 Frequency ranges of the input signals before normalization (a) 

Loosening state 2 at temperature 62.9℃ (b) Loosening state 4 at 
temperature 44.0℃ (c) Loosening state 6 at temperature 40.7℃ (d) 

Loosening state 8 at temperature 62.3℃ 
 

The results of the multitask network and the SHMnet trained 
using the above frequency ranges are listed in Table 7. 

TABLE VII 
THE EFFECT OF FREQUENCY RANGE 

 
Frequency 
range /kHz 

Validation accuracy 
(Normal temperature 

dataset) 

Validation accuracy 
(Temperature 
generalization 

dataset) 

Multitask 
network 40-48.1 97.38%±0.46% 93.83%±1.15% 

40-44.3 97.06%±0.0% 92.27%±2.19% 

43.8-50 97.47%±0.98% 91.34%±3.50% 

SHMnet 

40-48.1 93.79%±0.46% 68.47%±1.27% 

40-44.3 90.85%±1.22% 64.26%±5.22% 

43.8-50 93.46%±0.56% 68.47%±2.38% 

 
From Table 7, it can be seen that for the multitask network, 

the variations of accuracy are less than 1% when using the 
frequency ranges of 40-48.1kHz and 40-44.3kHz. For the 
SHMNet, however, the variations of accuracy are about 3%. It 
can be concluded that the proposed multitask network is 
insensitive to the variation of the signal length. It can also be 
seen that when using the frequency range of 43.8-50kHz, the 
validation accuracies are almost the same as those obtained 
from the other frequency ranges. It can be deduced that the 
effect of different frequency bands is not significant. 

VI. CONCLUSION 
In this study, we proposed a multitask CNN for EMI 

monitoring of bolt loosening under wide temperature variation. 
The network consists of a temperature compensation 
subnetwork and a damage identification subnetwork. A 
multiloss function is presented for the training of the multitask 
network.  

Experiments were conducted on a two-bolt lap plate with one 
PZT wafer attached to it. The results show that the validation 
accuracy of the multitask network is 97.71% when the network 
is trained by only about 30 samples from each loosening state. 
In addition, the change of impedance signal caused by 
temperature variation can be effectively compensated. 
Furthermore, the proposed multitask model was interpreted by 
the integrated gradients method. The results explained how the 
impedance signals are compensated and classified. 
Subsequently, a temperature generalization dataset is 
constructed, in which the temperature range of the training set 
is completely different from that of the verification set. In this 
case, the validation accuracy reached 93.21%. This indicates 
that the network can be applied well outside the temperature 
range of its training dataset. In addition, the generalization 
ability of the model to unexpected bolt torques was also 
investigated. It proved that the proposed model can identify 
unexpected extent of loosening. 

The proposed multitask network is compared with the 
SHMnet and the 5-layer 1D CNN which are single-task CNNs. 
The results show that the validation accuracy of the multitask 
network is higher than those of the single-task CNNs. In 
particular, when the temperature generalized dataset is used, 
the accuracy is improved by at least 30% over the single-task 
CNNs. Besides multitask learning, the main reason is that the 
change of impedance due to temperature variation can be 
effectively compensated by the temperature compensation 
subnetwork. It is proved that the proposed network trained by 
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limited samples can achieve accurate damage identification in 
temperature varying environments. 
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