
International Journal of Applied Earth Observations and Geoinformation 113 (2022) 103006

Available online 7 September 2022
1569-8432/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

From cropland to cropped field: A robust algorithm for national-scale 
mapping by fusing time series of Sentinel-1 and Sentinel-2 

Bingwen Qiu a,*, Duoduo Lin a, Chongcheng Chen a, Peng Yang b, Zhenghong Tang c, 
Zhenong Jin d, Zhiyan Ye a, Xiaolin Zhu e, Mingjie Duan e, Hongyu Huang a, Zhiyuan Zhao a, 
Weiming Xu a, Zuoqi Chen a 

a Key Laboratory of Spatial Data Mining &Information Sharing of Ministry of Education, Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350116, Fujian, 
China 
b Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs, Beijing, China 
c Community and Regional Planning Program, University of Nebraska-Lincoln, Lincoln 68558, NB, United States 
d Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul 55108, MN, United States 
e Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China   

A R T I C L E  I N F O   

Keywords: 
Cropped field 
Smallholder agriculture 
Sentinel-1 
Sentinel-2 
Cropland abandonment 
Comparative temporal variation 

A B S T R A C T   

Detailed and updated maps of actively cropped fields on a national scale are vital for global food security. 
Unfortunately, this information is not provided in existing land cover datasets, especially lacking in smallholder 
farmer systems. Mapping national-scale cropped fields remains challenging due to the spectral confusion with 
abandoned vegetated land, and their high heterogeneity over large areas. This study proposed a large-area 
mapping framework for automatically identifying actively cropped fields by fusing Vegetation-Soil-Pigment 
indices and Synthetic-aperture radar (SAR) time-series images (VSPS). Three temporal indicators were pro-
posed and highlighted cropped fields by consistently higher values due to cropping activities. The proposed VSPS 
algorithm was exploited for national-scale mapping in China without regional adjustments using Sentinel-2 and 
Sentinel-1 images. Agriculture in China illustrated great heterogeneity and has experienced tremendous changes 
such as non-grain orientation and cropland abandonment. Yet, little is known about the locations and extents of 
cropped fields cultivated with field crops on a national scale. Here, we produced the first national-scale 20 m 
updated map of cropped and fallow/abandoned land in China and found that 77 % of national cropland 
(151.23 million hectares) was actively cropped in 2020. We found that fallow/abandoned cropland in moun-
tainous and hilly regions were far more than we expected, which was significantly underestimated by the 
commonly applied VImax-based approach based on the MODIS images. The VSPS method illustrates robust 
generalization capabilities, which obtained an overall accuracy of 94 % based on 4,934 widely spread reference 
sites. The proposed mapping framework is capable of detecting cropped fields with a full consideration of a high 
diversity of cropping systems and complexity of fallow/abandoned cropland. The processing codes on Google 
Earth Engine were provided and hoped to stimulate operational agricultural mapping on cropped fields with 
finer resolution from the national to the global scale.   

1. Introduction 

Agriculture is expected to provide increasing food to feed the pro-
jected population growth by 2050 (Zabel et al., 2019). Spatially explicit 
information on cropland as well as the extent of actively cropped fields is 
critical to understanding its impacts on global food security (Waha et al., 
2020). Cropland distribution in the world has experienced tremendous 

changes in the past decades and will continue in many parts of the world 
(Qiu et al., 2020a; Olsen et al., 2021). Changes in cropland might 
introduce significant consequences on agricultural production and 
ecosystems (Zabel et al., 2019). Cropland abandonment is widely spread 
and knowledge of its distribution is extremely important for imple-
menting sustainable agricultural management (Tong et al., 2020). It is 
very important to provide an accurate map of actively cropped fields 
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across large spatial domains (Wallace et al., 2017). However, informa-
tion on fallow/abandoned land is currently lacking in existing related 
literature/datasets (Grogan et al., 2022). The defined cropland in 
existing land cover products did not provide data on cropping practices 
such as the basic information on cropped or fallow/abandoned areas 
(Weiss et al., 2020). Cropped fields are not equivalent to cropland, 
which may or may not be cultivated with crops during a given year 
(Siebert et al., 2010). Till now, updated national-scale data on the 
actively cropped area with the finer resolution are rare and limited in a 
few developed countries with intensive ground-truth data (Blick-
ensdörfer et al., 2022). 

Distinguishing actively cropped fields from fallow/abandoned land 
is pre-required and hard in agricultural remote sensing applications 
(Estel et al., 2015; Rufin et al., 2022). In the cropping intensity mapping 
community, deriving actively cropped fields was widely implemented 
based on the annual maximum Vegetation Indices (VI) values (Gray 
et al., 2014; Liu et al., 2021). It is generally assumed that cropped fields 
show higher VI than the fallow or abandoned cropland (Alcantara et al., 
2012). However, the VI temporal profiles in cropped or abandoned 
cropland show spatiotemporal heterogeneity corresponding to the di-
versity of local biophysical conditions, and land management (Qiu et al., 
2017b; Grădinaru et al., 2019). Mapping cropland abandonment was 
commonly carried out under the framework of Land Use and Cover 
Changes (LUCC) (Estel et al., 2015; Zhu et al., 2021). Most studies 
considered the coverages of barren/grass on former cropland as fallow/ 
abandoned cropland (Zhu et al., 2021). However, besides the herba-
ceous vegetation communities, there could be woody encroachment 
(shrubs and trees) following cropland abandonment (Yin et al., 2018). 
Till now, there are still no reported official statistics on abandoned 
croplands except for Japan (Li and Li, 2017). 

Agricultural mapping is far more complex than broad land cover 
classification (Gella et al., 2021). There are at least two major challenges 
in accurately deriving actively cropped fields from cropland on a na-
tional scale. The biggest challenge is the spectral similarity between 
cropland and grassland (Rose et al., 2021). Classification errors are 
notably introduced by the spectral similarity between crops and other 
herbaceous classes (Yin et al., 2018). The mapping accuracy of existing 
cropland products is relatively low due to its high landscape heteroge-
neity and spectral confusion with grasslands (Nabil et al., 2020). 
Another great challenge is the spatiotemporal heterogeneity of cropped 
or fallow/abandoned land across different regions (Blickensdörfer et al., 
2022). When cropland was left fallow or abandoned, it would be covered 
by bare land, grass, or woody plants (shrubs and trees) depending on the 
biophysical conditions and duration of abandonments (Wang et al., 
2016). Most previous studies characterized cropped or fallow/aban-
doned land by exploring the phenological patterns based on VI time 
series from MODIS or Landsat images (Estel et al., 2015; Grădinaru et al., 
2019). It is difficult to accurately map cropped fields merely by applying 
the commonly applied VI time series due to the following two kinds of 
misclassifications: one is the underestimation of cropped fields when the 
crop biomass is low (i. e. crops cultivated in less favorable biophysical 
conditions or poorly managed regions) (Rose et al., 2021); the other is 
the overestimation of cropped fields when the grass biomass in fallow/ 
abandoned cropland is high (Samasse et al., 2018). Automatic agricul-
tural mapping approaches with robust spatiotemporal generalization 
capabilities are urgently needed (Ge et al., 2021). 

The need for mapping cropland consistently over large spatial do-
mains without calibrations calls for automated knowledge-based ap-
proaches (Persello et al., 2019). Besides the commonly-applied VI-based 
approaches, recent studies found that the variations of Synthetic Aper-
ture Radar (SAR) data were efficient in capturing crop management 
activities such as planting and harvesting (Whelen and Siqueira, 2018; 
Huang et al., 2021). However, the confusion between grass and crops 
could not be solved merely by applying SAR data (Huang et al., 2021). 
Fusing optical and radar images improved classification accuracy in 
mapping different crop or vegetation types (Chakhar et al., 2021). The 

launch of Sentinel-1 (S1) and Sentinel-2 (S2) (5 days revisit, 10 or 20 m) 
provides great opportunities for agricultural monitoring at finer reso-
lutions (Holtgrave et al., 2020). Sentinel-2 MultiSpectral Instrument 
(MSI) data provide valuable information on leaf pigment, water content, 
and plant growth status with the unique red-edge bands (Orynbaikyzy 
et al., 2020). Agricultural land uses can be better characterized by 
combining vegetation, soil, water, and pigment indices (Qiu et al., 2015; 
Liu et al., 2020; Qiu et al., 2021). However, to our knowledge, there is a 
deficiency of automatic mapping algorithms for deriving national-scale 
cropped fields without regional adjustments by taking full advantage of 
S1 and S2. 

This study aimed to fill this gap by proposing a novel framework for 
robust mapping actively cropped fields in China using optical and radar 
time series images. China is dominant by smallholder agriculture and 
needs to feed the largest population in the world (Lowder et al., 2016). 
Yet much remains unknown about the traditional large agricultural 
country, such as the basic information on the total amount of cropped 
area as well as its spatial distributions at a finer resolution (i. e. 10 m or 
20 m). Accurately mapping cropped fields in China is extremely chal-
lenging due to the tremendous heterogeneity across different regions 
and spectral confusion among cropped and fallow/abandoned land 
(Fig. 1). This study will cope with these challenges and provide the first 
20-m cropped fields map and explore the spatial patterns of cropped 
ratio in China in 2020. Specifically, we address the following questions: 

1. How can we depict cropped fields with the full considerations of a 
high diversity of cropping systems and complexity of cropland aban-
donments by fusing S1 and S2? 

2. What is the cropped ratio in China and the possible discrepancies 
with the VImax based approaches? 

3. How does the cropped ratio vary across different regions and why? 

2. Study area and data sources 

2.1. Study area 

China covers a large range of altitudes and climatic regions. There 
are north–south contrasts in the climatic and topographic conditions. 
Southern China is characterized by mountainous and hilly cropland 
located in favorable climatic conditions (Fig. 1, Fig. S1). Northern China 
is depicted as a plain or plateau cropland located in Arid and semi-arid 
regions (Fig. 1). Agriculture in China illustrated great heterogeneity 
given its high diversity of climate, topography, and cropping systems 
(Qiu et al., 2017a). China has a complex cropping system and a high crop 
diversity (Qiu et al., 2018). Multiple cropping is widely implemented in 
China (Qiu et al., 2022). Agriculture in China has experienced tremen-
dous agricultural structural changes (i.e. non-grain orientation) and 
widespread cropland abandonment (Ma et al., 2020). Cropland aban-
donment has emerged as a prevalent phenomenon in China (Qiu et al., 
2020b). 

2.2. Remote sensing time-series datasets and other datasets 

2.2.1. Sentinel-1 SAR images and preprocessing 
This study applied both the SAR and optical time-series images. The 

SAR images used in this study are the Sentinel-1 (S1) data. We applied 
the Interferometric Wide Swath (IW) instrument mode with dual-band 
cross-polarization (VV). We utilized all available level-1 Ground 
Range Detected (GRD) products in China, which included 18417 
Sentinel-1 GRD images in 2020. This study developed the smoothed 12- 
days VV backscattering coefficients time series with Whittaker Smoother 
(WS) (lambda = 1, order = 2) (Eilers, 2003). 

2.2.2. Vegetation, soil, and pigment indices time series based on Sentinel-2 
MSI images 

All available Level-1C Sentinel-2A/B images were collected, and 
there were 176604 Sentinel-2 Multi-Spectral Instrument (MSI) images in 
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China in 2020. Spectral indices of vegetation, soil and pigment were 
computed to characterize cropped fields from multiple dimensions. 
These three spectral indices were the EVI2 (Jiang et al., 2008), Dry Bare- 
Soil Index (DBSI) (Rasul et al., 2018) and the Chlorophyll (Chl) Index red 
edge (CIre) (Gitelson et al., 2005). Larger values in EVI2, DBSI and Chl 
suggest higher vegetation density, more soil bareness or stronger chlo-
rophyll concentration. The smoothed 10-day composite time series of 
spectral indices were obtained through discarding the observations of 
cloud contaminations and smoothed with the Whittaker Smoother (WS) 
(lambda = 10, order = 2) (Eilers, 2003). 

2.2.3. Ground truth references datasets and other datasets 
Ground truth reference datasets are vital for algorithms validation in 

remote sensing application fields. A total of 7,052 ground-truth refer-
ence sites were gathered in major agricultural regions in China (Fig. 1). 
There were 5,548 cropped and 1,504 fallow/abandoned sites, respec-
tively (Table S1). Around 30 % of reference sites (2,118) were applied 
for determining the thresholds of the VSPS algorithm, and the remaining 
70 % (4,934 sites) were exploited for accuracy assessments. Detailed 
descriptions of collected reference sites were provided in Table S1. The 
cropland distribution data was derived from the GlobelLand30 datasets 
in 2020 (Fig. 1), which is the first 30 m resolution global land cover data 
set with good accuracy (Chen et al., 2015). The topography map (Cheng 
et al., 2011) was applied to explore the influences of landform types on 
cropped ratios (Fig. S1). 

3. Methodology 

This study developed a novel framework for mapping cropped fields 

by integrating Vegetation, Soil, and Pigment indices from Sentinel-2 and 
Sentinel-1 SAR time-series images (VSPS) (Fig. 2). Cropped fields are 
defined as the agricultural area under active cultivation with field crops 
(i.e. rice, maize, wheat and soybean) during a given year (Smith, 2019). 
Cropped fields are distinct from cropland, which may be fallow/aban-
doned for a specific year. The key procedures of the proposed framework 
included characterizing herbaceous and woody plants, and depicting 
cropped fields through developing three knowledge-based temporal 
indicators (the processing codes in provided in Table S2). The first in-
dicator was developed based on Sentinel-1 SAR images, which was 
proved to be efficient in separating herbaceous and woody plants in 
related studies (Huang et al., 2021). The latter two indicators were 
proposed based on Sentinel-2 MSI images, which further extract cropped 
fields from herbaceous plants. All the procedures were implemented in 
the Google Earth Engine (GEE) platform. Detailed descriptions were 
provided as follows. 

3.1. Characterizing herbaceous and woody plants based on the S1 time 
series 

3.1.1. Temporal profiles of VV backscatter from the crop, grass, and woody 
plants 

The temporal profiles of Sentinel-1A VV backscatter of different 
vegetation covers are provided based on selected ground truth reference 
sites (Fig. 3). The VV backscatter of woody plants fluctuates between 
− 11 bB and − 9 bB, which is more stable and higher than other vege-
tation covers. Crop sites are characterized by VV increasing as a 
consequence of crop growth in the vegetative period and VV decreasing 
during the end of the growing season, which is reported in related 

Fig. 1. Maps of (a) density of annual maximum of the two-band Enhanced Vegetation Index (EVI2), field photos and its corresponding EVI2 profiles from cropped 
fields and uncropped land; (b) reference sites and cropland area of 9 agricultural regions; (c) plain cropland fraction at provincial level & climatic regions. 
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studies (Chakhar et al., 2021). All cropped sites were highlighted by the 
greater dynamic ranges of backscatter than woody plants, which might 
also be observed in some herbaceous sites of grass (Fig. 3). 

3.1.2. Designing indicator based on the temporal variance of VV 
backscatter 

The first temporal indicator, the VV-based temporal Variance (VVV), 
was developed based on the radar VV time series from S1 datasets. The 
indicator of VVV was defined as: 

VVV =

∑N
t=1(VVt − VV)2

N − 1
(1) 

Where denoted the values of VV at temporal composite t, respec-
tively; VV indicated the mean values of the VV time series; N is 31 within 
one year given the temporal resolution of 12 days. 

3.2. Depicting cropped fields based on vegetation, soil, and pigment 
indices from the S2 time series 

3.2.1. Similarities and fundamental differences between cropped and 
uncropped fields 

Vegetation indices alone are not sufficient to fully characterize 

cropped fields. There exists tremendous heterogeneity in the VI tem-
poral profiles of cropped fields (i.e. the number and magnitudes of VI 
peaks) given the complexity of cropping patterns, biophysical condi-
tions, and local management activities (Fig. 4). The annual maximum VI 
values of the cropped and uncropped sites are mixed (Fig. 1). Fallow/ 
abandoned (uncropped) sites could be covered by sparse/dense grass or 
woody plants. Specifically, there are some sparse crops with unexpect-
edly low peak VI (i.e. EVI2 less than 0.35) as well as dense grass or 
woody plants with high peak VI (Fig. 4, Fig. S2). 

The incorporation of soil and pigment indices can improve the 
identification of cropped fields. For cropping sites, the soil index of DBSI 
often illustrates a rapid increase around the start and end of the crop 
growing season due to plowing and harvesting activities. However, 
paddy rice generally illustrates a less obvious surge due to the unique 
cultivation habit of flooding and transplanting (Fig. 4). Similar to 
cropped fields, dense grass and woody plant generally show high chlo-
rophyll (CIre) values (Fig. 4). 

Despite the similarities, there are some fundamental differences be-
tween the cropped and uncropped fields. The fallow/abandoned lands 
are not subject to any farming activities such as plowing, sowing, irri-
gation, fertilization, and harvesting. Vegetation covers in fallow/aban-
doned lands are generally not cleared for the whole year. Therefore, 

Fig. 2. The overall workflow of the proposed framework for mapping cropped fields. Notes: WS denoted Whittaker Smoother; VVV, VSD and VPD represented the 
VV-based temporal Variance, Vegetation-Soil Differenced temporal variation and the Vegetation-Pigment Differenced temporal variation, respectively. 
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fallow/abandoned lands are characterized by smooth temporal profiles 
of vegetation, soil, and chlorophyll indices. Farming activities in crop-
ped fields lead to irregular and abrupt changes in any of the Vegetation- 
Soil-Chl indices. For example, sparse crops illustrate larger temporal 
variations in the Chl index despite lower VI values (Fig. 4). 

3.2.2. Designing indicators by exploring comparative temporal variations in 
Vegetation-Soil-Chl indices 

Besides the VVV indicator from Sentinel-1 data, the cropped fields 
can be further characterized by exploring the comparative temporal 
variations in Vegetation-Soil-Chl indices using Sentinel-2 images 
(Fig. 5). Two temporal indicators were designed by coupling vegetation, 
soil, and pigment indices. One is the Vegetation-Soil Differenced tem-
poral variation (VSD), and the other is the Vegetation-Pigment Differ-
enced temporal variation (VPD). The VSD is proposed to highlight the 
rapid unsynchronous comparative changes in slopes of vegetation and 
soil indices among cropped fields, which is based on the first-order 
differenced time series between vegetation and soil indices. The VPD 
is developed to characterize the great unsynchronous comparative 
changes in the curvature of vegetation and pigment indices, which is 
based on the second-order differenced time series between vegetation 
and pigment indices. The functions of these two indicators were pro-
vided as follows. 

VSD =

∑N− 1
t=1

( ⃒
⃒
(
EVI2t+1 − DBSIt+1

)
− (EVI2t − DBSIt)

⃒
⃒ − MeanDED

)2

N − 1
(2)  

VPD =
∑N− 2

t=1

⃒
⃒
( (

EVI2t+2 − CIret+2) −
(
EVI2t+1 − CIret+1) ) −

( (
EVI2t+1

− CIret+1) − (EVI2t − CIret)
) ⃒
⃒ (3) 

where, DBSIt and CIret denoted the values of Enhanced Vegetation 
Index (EVI2) (Jiang et al., 2008), Dry Bare-Soil Index (DBSI) (Rasul 
et al., 2018), and Chlorophyll (Chl) Index red edge (CIre) (Gitelson et al., 
2005) at temporal composite t, respectively; MeanDED represented the 
mean value of the Differenced time series of EVI2 and DBSI (DED); N is 
36 within one year given the temporal resolution of 10 days. 

3.3. Automatic cropped fields mapping based on knowledge-based 
identification rules 

The first indicator (VVV) based on S1 can efficiently separate woody 
plants since woody plants generally show lower values in VVV compared 
to herbaceous plants. The latter two indicators based on S2 (VSD and 
VPD) further discriminate cropped fields from fallow/abandoned land. 
The cropped fields obtained greater values in at least either of these 
latter two indicators (VSD and VPD) (Fig. 6). For example, sparse crop 
often shows high values in VSD and VPD than other herbaceous plants 
(sparse or dense grass). Specifically, sites from multiple cropping or dry 
crops generally display greater values in VSD and VPD than single 
cropping, paddy fields and sparse crops (Fig. S2). In contrast, the fallow/ 
abandoned cropland consistently illustrate lower values in these latter 
two indicators based on S2 (VSD and VPD), despite possible high values 
in spectral indices of EVI2 or CIre (i.e. dense grass). Therefore, a simple 
decision rule could be exploited to highlight cropped fields using these 
three developed indicators. 

if (VVV > θ1) and ((VSD > θ2 ) or (VPD > θ3 )), Cropped

= 1; else Cropped = 0 (4) 

where,θ1,θ2 and θ3 are constant; VSD, VPD, and VVV represented the 
indicators designed based on vegetation & soil, vegetation & pigment, 
and VV backscatter time series, respectively. This algorithm was 
implemented to cropland pixels in China through a per-pixel strategy. 

3.4. Performance evaluations of the VSPS algorithm 

Accuracy assessment of agricultural remote sensing classification 
results can be conducted using the agricultural statistical data, reference 
data from field surveys, and interpreted from higher-resolution images. 
However, there was no officially reported data on the amounts of 
cropped fields in China. Cropped ratios can be calculated based on 
agricultural statistical data and exploited to evaluate the rationality of 
the remote sensing estimated results in single-cropping regions (only 
several provinces in northern China). Therefore, validation of the pro-
posed VSPS algorithm was conducted based on the reference sites 
described in section 2.2.3. The reference sites were applied to calculate 
the confusion matrix following the best practices method (Olofsson 

Fig. 3. Temporal profiles of the Sentinel-1 VV backscatter from different vegetation covers.  
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et al., 2014) to evaluate the cropped fields map estimated by the VSPS 
method. The user’s, producer’s, and overall accuracies, the kappa index, 
and F1 score are calculated to assess the mapping accuracy (Hripcsak 
and Rothschild, 2005). The performance evaluations of the VSPS algo-
rithm were further conducted through its comparisons with the 
commonly applied VImax-based method. The spatial patterns of cropped 
ratios at different agricultural regions/provinces were analyzed and 
their relationships with cropland fractions and landforms were 
investigated. 

4. Results 

4.1. Map of cropped and fallow land of China in 2020 

There are distinctive north–south trends in the distribution maps of 
these three designed temporal indicators (VVV, VSD, and VPD) (Fig. 6). 
These three designed indicators were efficient in characterizing cropped 

and fallow lands (Fig. 6). Cropped fields were distinguished by higher 
values in these three indicators (Fig. 6). Uncropped fields consistently 
illustrated lower values in these three indicators. Especially, grass 
illustrated the lowest values in the two indicators based on S2 MSI im-
ages (Fig. 6). These three proposed indicators could efficiently distin-
guish cropped fields from fallow/abandoned land, since cropped fields 
obtained higher values in these three indicators (Fig. 6 (d, e)). 

The first national map of cropped fields with a finer spatial resolution 
(20 m) in China in 2020 was achieved using the proposed VSPS algo-
rithm (Fig. 7). The thresholds in the decision rule were determined by 
the training samples described in section 2.2.3. The values ofθ1,θ2 and θ3 
were decided as 1, 0.001 and 0.8, respectively (Fig. 6). The thresholds 
were applied to the national scale without additional regional adjust-
ments. Around 151.23 million hectares of land are actively cropped in 
China in 2020, which is primarily distributed in the north portion of 
China (Fig. 8). Cropped fields accounted for less than four-fifths (77.07 
%) of croplands on a national scale. The cropped ratios showed obvious 

Fig. 4. Temporal profiles of EVI2, DBSI and CIre from (a) cropped fields and (b) fallow/abandoned lands. Notes: Site A: Paddy rice in Fujian province, 118◦29′49′′, 
25◦49′51′′; Site B: Maize in Heilongjiang province, 116◦43′31′′, 24◦45′23′′; Site C: Winter wheat-Soybean in Henan province, 115◦5′6′′, 34◦42′17′′; Site D: Sparse 
grass in Inner Mongolia province, 121◦38′15′′, 45◦11′56′′; Site E: Dense grass in Guangdong province, 110◦34′39′′, 21◦29′35′′; Site F: Woody plant in Hunan province, 
113◦37′19′′, 28◦7′50′′. Notes: DOY represents the day of the year. 
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spatial heterogeneity among different agricultural regions/provinces 
(Fig. 7, Fig. S3). The highest cropped ratio was examined in region A, 
followed by regions B, C, D, E, F, G, H, and I (Fig. S3). Specifically, the 
cropped ratio in Northeast China (region A) was roughly 100 % (97 %), 
in contrast to lower than 60 % (56.87 %) in South China (region I) 
(Fig. 7, Fig. S3). 

4.2. Accuracy assessment of the cropped fields map 

Accuracy assessments were conducted based on reference sites 
(Table 1). The overall accuracy was 94.04 % and the kappa index was 
0.8275. Among these 3,880 sites of cropped fields, 3,692 sites (95.15 %) 
were correctly labeled. Among 1,054 sites of uncropped fields, 948 sites 
(89.94 %) were accurately identified. The producer accuracy of un-
cropped fields significantly improved through the incorporation of two 
temporal indicators (VSD, VPD) based on Sentinel-2 MSI images 
(Table S3). The indicator of VVV cannot efficiently separate crops from 
grass. Around one-half of the grass sites were misclassified as cropped 
fields if only the indicator VVV was applied for mapping (Table S4). The 
proposed VSPS algorithm can efficiently label sparse crops and separate 
grass from cropped fields (Fig. 7, Fig. S3). 

4.3. Spatial pattern of estimated cropped ratios and comparisons with 
other approaches 

The cropped ratios illustrate latitudinal gradients, which declined 
from the north to the south (Fig. 8, Fig. S3). The whole country can be 
divided into three portions by two altitudinal lines (32 and 38◦) for 
simplification. The cropped ratio was 92 % in the north, dropped to 80 % 
in the middle, and 59 % in the south. At the provincial level, the cropped 
ratio declined from 98 % in Heilongjiang to 35 % in Xizang province 
(Fig. 8, Table S5). Cropped ratios estimated by the VSPS algorithm were 
highly associated with the types of landform, which declined from 84 % 
in plain to 63 % in the mountain (Fig. 8). At the provincial level, the 
percentage of plain cropland accounted for roughly-one-half of the 

variations in cropped ratios (Fig. 8). The cropped ratio was positively 
associated with cropland fraction at 1 km resolution and cropland per 
agricultural population (Fig. 8, Fig. S4). The cropped ratios consistently 
enhanced with the cropland fraction among different landforms, with 
more distinctive differences in plains (Fig. 8). 

The performance of the proposed VSPS algorithm was compared to 
the commonly applied VImax-based method. In the agricultural remote 
sensing research communities, the maximum VI-based strategy was 
generally applied to identify the crop growth cycles. Specifically, pixels 
with higher annual maximum of Normalized Difference Vegetation 
Index (NDVI) or EVI2 values (i.e. NDVImax > 0.5 or EVI2max > 0.35) 
were labeled as cropped areas (Gray et al., 2014). Compared to the 
proposed VSPS algorithm, the VImax-based method approaches ob-
tained much lower accuracy (overall accuracy less than 80 %) (Table 1). 
Additionally, there are tremendous discrepancies in estimated cropped 
ratios by the maximum VI-based strategy using different datasets: 
around 60 % based on Sentinel-2 MSI images in contrast to around 90 % 
based on MODIS images on a national scale (Fig. 8, Table S5). Obvious 
commission errors of the MVIM approach were confirmed from the 
ground truth reference sites, especially in southern mountainous and 
hilly regions (Fig. 7, Fig. S3). A majority of the uncropped sites (758 out 
of 1054 sites) were incorrectly identified as cropped sites (Table 1). 
There were distinctive omission errors for the MVIS approach (Fig. 7, 
Table 1), which were primarily introduced by sparse crops in northern 
China (Fig. 7, Fig. S3). The sparse crops are widely distributed in 
cropped fields with unfavorable climatic (i.e. arid or semi-arid regions) 
or soil conditions (Fig. S1). For example, the cropped ratio by MVIS in 
Inner Mongolia was only 55 %, which was roughly-one-half lower than 
that reported by the agricultural statistical data (97 %) (Table S6). It 
sounded unreasonable that cropped ratios were considerably higher or 
the highest (by MODIS images) in mountains when estimated by the 
maximum VI-based strategy (Fig. 8(c)). 

Fig. 5. Developing temporal indicators based on vegetation, pigment and soil indices: (a) VSD; (b) VPD. Notes: △f(EVI2-DBSI), △f(EVI2-CIre) represented the first- 
order differenced time series of EVI2-DBSI and EVI2-CIre, respectively. △(△f(EVI2-CIre)) denoted the second-order differenced time series of EVI2-CIre. The 
boxplots represented the statistical distributions of △f(EVI2-CIre) in the study year. 
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5. Discussion 

There is a deficiency of efficient algorithms for mapping actively 
cropped fields across large spatial domains, especially in smallholder 
agricultural systems on a national scale (Bégué et al., 2018). The 
commonly applied VImax-based approach is associated with un-
certainties or even serious classification errors in the following three 
aspects. The first kind of uncertainty is associated with the high spatial 
heterogeneity of croplands across large regions (Ashourloo et al., 2022). 
This kind of uncertainty is typically illustrated by omission errors in the 
case of sparse crops (Fig. S3) (Rose et al., 2021) and overestimation of 
cropped fields in fallow/abandoned land with favorable biophysical 
conditions (Grădinaru et al., 2019). For example, the VImax based 

approach based on MODIS images illustrated very high cropped ratios in 
southern China, even in mountainous cropland (Fig. 8). The second kind 
of uncertainty is related to the possible incomparability of calculated VI 
across different platforms. Especially, there are large discrepancies in 
cropped ratios when estimated by different datasets such as the Sentinel- 
2 and MODIS EVI2 images (Fig. 8). The third kind of uncertainty is 
linked with possible underestimation of cropped fields by VI time series 
with less valid observations. The the real heading stages of agricultural 
crops might be missed when estimated by VI data with lower temporal 
resolution or in regions with regular cloud contaminations (i.e. southern 
China) (Fig. 8, Fig. S4). 

Automatic mapping strategies using knowledge-based features/ 
indices illustrated the significance of simplifications and efficiency 

Fig. 6. Maps of (a) three temporal indicators (VVV, VSD, VPD), (b) the density map of VVV, (c) scatter plot between VSD and VPD and some snapshots in (d) Yizhang 
county of Hunan province and (e) Zhongmu county of Henan province. 
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(Waldner et al., 2015). The proposed features/indices highlight the 
target class such as cropland or crop types by their highest or lowest 
values (Ashourloo et al., 2020). Temporal features were generally 
developed based on the vegetation indices and visible bands (i. e. the red 

band) time series from MODIS or Landsat images (Massey et al., 2017). 
Recent studies found that the incorporation of other spectral indices 
such as the soil, water, and pigment indices enhanced the efficiency in 
agricultural remote sensing applications (Liu et al., 2020; Huang et al., 

Fig. 7. Comparisons between VSPS method and VImax-based method: (a) distribution maps, and (b, c) some snapshots showing the omission errors in northern China 
and commission errors in southern China estimated from the VImax-based method. Notes: The VImax-based method included MVIS and MVIM, which represented 
Maximum VI-based strategy (EVI2 > 0.35) based on Sentinel-2 MSI or MODIS images, respectively. Cropped fields in reference data in region III were visually 
interpreted based on Google Earth images. 
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2022). Parameters revealing temporal variations (i.e. maximum posi-
tive/negative slope, standard derivation, and coefficient of variation) 
have been proved to be capable of characterizing cropland and crop 
types (Waldner et al., 2015; Huang et al., 2021). 

The proposed VSPS algorithm achieved improved performances 
through developing knowledge-based temporal features based on 
comparative temporal variations of multiple indices (Table S3). Cropped 
fields experience cropping activities such as plowing, fertilization, irri-
gation, and harvesting (Estel et al., 2015), which will lead to irregular, 

frequent and unsynchronous changes among vegetation, soil, and 
pigment indices. These developed indicators (VSD, VPD) can charac-
terize cropped fields by quantifying the comparative changes among 
multiple spectral indices. The VSPS algorithm avoids commission errors 
by efficiently separating dense grass from cropped fields. And it also 
eliminates omission errors by correctly labelling sparse crop with lower 
VImax values, which is mainly distributed in North China and Northwest 
China (Fig. 7). The proposed VSPS algorithm achieved promising ac-
curacy even though more than one-half of reference sites were located in 

Fig. 8. Maps of (a) estimated cropped areas, (b) cropped ratio at province level, (c) cropped ratio among different landforms from three algorithms, (d) cropped ratio 
among different landforms together with cropland fraction at 1 km; (e) relationships between cropped ratios and plain cropland percentages at the provincial level. 
Notes: MVIS and MVIM represented Maximum VI-based strategy based on the Sentinel-2 MSI images or the MODIS images, respectively. The color of sub-figure (e) 
denoted the cropland per agricultural population (seen Fig. S4). 

Table 1 
Accuracy assessment based on ground truth reference sites.   

Total VSPS  MVIS  MVIM    

Cropped Others PA (%) F1/% Cropped Others PA (%) F1/% Cropped Others PA (%) F1/% 

Cropped 3880 3692 188  95.15  96.17 3183 697  82.04  86.55 3608 272  92.99  87.51 
Others 1054 106 948  89.94  86.58 292 762  72.30  60.64 758 296  28.08  36.50 
UA (%)  97.21 83.45   91.60 52.23   82.64 52.11   
OA (%)  94.04    79.33    79.12    
Kappa  0.8275    0.4766    0.2533    

Notes: PA, UA, and OA represented producer, user, and overall accuracy, respectively. MVIS and MVIM represented Maximum VI-based strategy (EVI2 > 0.35) based 
on Sentinel-2 MSI or MODIS images, respectively. 
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cloudy regions with less than 50 % valid observations (Table S1). 
Knowledge-based mapping strategies demonstrated the capabilities 

of consistent and accurate mapping across different regions (Planque 
et al., 2021). Knowledge-based temporal features have successfully been 
applied to build decision rules or train machine learning algorithms to 
support automated cropland mapping at a large scale (Xiong et al., 
2017). The increasing availability of Sentinel-2 MSI and Sentinel-1 SAR 
time series offers unprecedented opportunities for finer-resolution 
agricultural land mapping at large spatial domains (Planque et al., 
2021). Nevertheless, the potential of fusing SI and S2 in cropped fields 
mapping has not been fully explored yet (Weiss et al., 2020; Blick-
ensdörfer et al., 2022). Recent research efforts found that changing 
backscatter responses caused by cropping activities (i.e. planting and 
harvesting) could be captured by the temporal variations (Coefficient of 
Variation, CoV) of cross-polarized L-band SAR data from the ALOS 
PALSAR satellite (Whelen and Siqueira, 2018; Huang et al., 2021). 
However, merely relying on the temporal variations of SAR images 
performed badly for separating cropland from grassland/pasture (Rose 
et al., 2021). The proposed VSPS algorithm achieved robustness and 
satisfactory accuracy over large areas by fusing the freely accessible S1 
and S2 data. The VSPS method achieved superior performances in 
labelling sparse crops and excluding dense grass, which are major 
sources of errors in existing approaches that only apply vegetation 
indices or SAR images. It was successfully exploited for national-scale 
mapping of complex smallholder agricultures with no need for 
regional adjustments or additional reference training data for each 
subregion. Therefore, the proposed VSPS algorithm developed based on 
GEE is expected to be easily reproducible for global applications. 

Updated knowledge of the spatial distribution of actively cropped 
fields in China is very important to global food security. However, ac-
curate and updated information on actively cropped fields in small- 
holder agricultural systems with finer resolution is still scarce and not 
fully explored (Rufin et al., 2022). This study presented the first 20 m 
national-scale spatiotemporal explicit data of the cropped and fallow/ 
abandoned fields in China, enabled by S1, S2, and GEE engines. We 
found that over one-fifth of cropland was fallow or abandoned on a 
national scale and with a higher fallow/abandoned ratio in mountainous 
counties (Table S5). Results in this study were roughly consistent with a 
recent related study using a regression model based on socio-economic 
variables (Li et al., 2018). The estimated cropland abandonment by 
the VSPS algorithm was much greater than previous studies based on 
supervised classifiers (Zhu et al., 2021), which did not consider the 
conversion of cropland into woodland. Cropland abandonment in 
mountainous and hilly regions is far more than we expected, which are 
widely reported in recent studies (Shi et al., 2018). 

There are several uncertainties. First, the estimated cropped ratios/ 
areas are dependent on the accuracy of cropland datasets. Second, it is 
challenging to properly define and separate cropped and abandoned 
land in agricultural remote sensing communities (Alcantara et al., 
2012). Underestimation or overestimation of cropped fields might occur 
in permanent crops with fewer management activities or heavily-grazed 
fallow fields (Tong et al., 2020). Finally, the mapping accuracy is 
dependent on the data availability of time series images across different 
regions (Estel et al., 2015). Frequent cloud contaminations could result 
in classification errors of the estimated cropped fields (especially 
omission errors) (Fig. S4) (i. e. southwestern China). Data availability 
could be improved by fusing more optical images from different plat-
forms such as the Landsat, GaoFen and PlanetScope datasets (Rufin 
et al., 2022). Future work could be conducted to extend the mapping 
framework for automatically identifying cropped fields across multiple 
years with no reference to cropland datasets. 

6. Conclusions 

This study proposed a knowledge-based framework for mapping 
cropped fields with finer resolution at a national scale. Cropped fields 

consistently show large temporal variations caused by cropping activ-
ities. The main characteristics of actively cropped land were detected 
based on the temporal variations of backscatter coefficients and 
comparative temporal variations of vegetation, soil and pigment indices. 
The cropped fields consistently show high values in these three proposed 
knowledge-based temporal indicators. A simple decision rule was 
developed and applied to identify national-scale cropped fields in China 
without regional adjustments and additional training. Its capability of 
automatically mapping actively cropped fields in smallholder farms over 
large spatial domains was verified based on 4,934 widely spread refer-
ence sites. The proposed automated mapping strategy demonstrated 
superior performances over applying vegetation indices or SAR images 
solely. The VSPS method was particularly successful in accurately 
labelling sparse crops and efficiently separating dense grass from crop-
ped fields. We presented the first national-scale 20 m updated map of 
cropped fields in China and revealed that less than 80 % (77 %) of na-
tional cropland was cropped at the national scale. The estimated crop-
ped ratios declined from almost 100 % in some northern provinces to 
less than 50 % in some southern provinces, which were closely related to 
landforms, cropland factions, and cropland per agricultural population. 
The outcomes of this study can support the development of remote 
sensing mapping strategies for agricultural management activities at a 
national or even global scale. 
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Bégué, A., Arvor, D., Bellon, B., Betbeder, J., De Abelleyra, D., P. D. Ferraz, R., 
Lebourgeois, V., Lelong, C., Simões, M. and R. Verón, S., 2018. Remote Sensing and 
Cropping Practices: A Review. Remote Sensing. 10,99. 

Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., Hostert, P., 
2022. Mapping of crop types and crop sequences with combined time series of 
Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens Environ. 269, 
112831. 

B. Qiu et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.jag.2022.103006
https://doi.org/10.1016/j.jag.2022.103006
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0005
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0005
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0005
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0010
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0010
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0010
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0015
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0015
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0015
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0025
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0025
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0025
http://refhub.elsevier.com/S1569-8432(22)00194-7/h0025


International Journal of Applied Earth Observation and Geoinformation 113 (2022) 103006

12
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