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Abstract 28 

PlanetScope CubeSats data with a 3-meter resolution, frequent revisits, and global coverage have 29 

provided an unprecedented opportunity to advance land surface monitoring over the recent years. 30 

Similar to other optical satellites, cloud-induced data missing in PlanetScope satellites 31 

substantially hinders its use for broad applications. However, effective gap-filling in PlanetScope 32 

image time series remains challenging and is subject to whether it can 1) consistently generate 33 

high accuracy results regardless of different gap sizes, especially for heterogeneous landscapes, 34 

and 2) effectively recover the missing pixels associated with rapid land cover changes. To address 35 

these challenges, we proposed an object and class based gap-filling (‘OCBGF’) method. Two 36 

major novelties of OCBGF include 1) adopting an object-based segmentation method in 37 

conjunction with an unsupervised classification method to help characterize the landscape 38 

heterogeneity and facilitate the search of neighboring valid pixels for gap-filling, improving its 39 

applicability regardless of the gap size; 2) employing a scenario-specific gap-filling approach that 40 

enables effective gap-filling of areas with rapid land cover change. We tested OCBGF at four sites 41 

representative of different land cover types (plantation, cropland, urban, and forest). For each site, 42 

we evaluated the performance of OCBGF on both simulated and real cloud-contaminated scenarios, 43 

and compared our results with three state-of-the-art methods, namely Neighborhood Similar Pixel 44 

Interpolator (NSPI), AutoRegression to Remove Clouds (ARRC), and Spectral-Angle-Mapper 45 

Based Spatio-Temporal Similarity (SAMSTS). Our results show that across all four sites, OCBGF 46 

consistently obtains the highest accuracy in gap-filling when applied to scenarios with various gap 47 

sizes (RMSE=0.0065, 0.0090, 0.0092, and 0.0113 for OCBGF, SAMSTS, ARRC, and NSPI, 48 

respectively) and with/without rapid land cover changes (RMSE=0.0082, 0.0112, 0.0119, and 49 

0.0120 for OCBGF, SAMSTS, ARRC, and NSPI, respectively). These results demonstrate the 50 

effectiveness of OCBGF for gap-filling PlanetScope image time series, with potential to be 51 

extended to other satellites.  52 

Keywords: Gap-filling, CubeSats, image reconstruction, cloud removal, object-based 53 

segmentation 54 

  55 
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1. Introduction 56 

Recent advances in Earth observation satellites with increasing spatial and temporal resolutions 57 

have created unprecedented opportunities for monitoring rapid and fine-scale changes on the 58 

Earth’s surface. One typical example of these advances is the PlanetScope constellation that is 59 

made of 180+ micro satellites (CubeSats) (Planet, 2021). These CubeSats altogether provide a 60 

daily-to-weekly global coverage at a 3-meter spatial resolution with four spectral bands (i.e. red, 61 

green, blue, and near-infrared (NIR)) (Roy et al., 2021; Wang et al., 2020). As a result of these 62 

specifications, PlanetScope satellites have been increasingly suggested as a powerful and new 63 

means to improve fine-scale Earth’s surface monitoring. Similar to other optical satellite 64 

observations, PlanetScope data are subject to cloud/cloud shadow contamination. According to the 65 

global statistics (Ju and Roy, 2008; Norris et al., 2016), around one-third of the global land surface 66 

is covered by clouds within a year, resulting in large quantities of missing data that hinder the 67 

wider applications of optical satellite measurements including PlanetScope (Roy et al., 2021). 68 

Therefore, accurate and effective gap-filling is important to advance the use of PlanetScope data 69 

for monitoring those rapid changes in land surface statuses and processes, such as fine-scale land 70 

use development, agricultural expansion, natural disasters and associated impact assessments 71 

(Feng et al., 2022; Halls and Magolan, 2019; Wang et al., 2019; Zeng et al., 2018, 2021), 72 

forecasting seasonal crop growth (Kimm et al., 2020; Sadeh et al., 2021), quantifying fine-scale 73 

plant phenology (Chen et al., 2019; Wang et al., 2020; Wu et al., 2021), and characterizing surface 74 

carbon and water fluxes (Dechant et al., 2022; Kong et al., 2022; McCabe et al., 2017).  75 

To gap-fill missing data due to cloud/cloud shadow contamination in satellite images, many 76 

methods have been developed. These methods can be grouped into four categories according to 77 

the auxiliary information used, including fusion-, spatial-, temporal-, and spatiotemporal- based 78 

methods (Cao et al., 2020; Shen et al., 2015). Fusion-based methods have been used for gap-filling 79 

based on the integration of multisource images from other optical satellites (Luo et al., 2018; Roy 80 

et al., 2008) or synthetic aperture radar (SAR) images (Huang et al., 2015; Li et al., 2020b). 81 

However, these methods suffer from inconsistencies in spatial resolution and radiometric 82 

characteristics among different data types (Cao et al., 2020). Spatial-based methods rely on the 83 

assumption that adjacent pixels tend to be more similar due to spatial autocorrelation, and often 84 

use the neighboring clear pixels to fill gaps via various approaches such as spatial interpolation 85 
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methods (Pringle et al., 2009; Zhang et al., 2007) and inpainting methods (Lorenzi et al., 2011; 86 

Maalouf et al., 2009). These methods have been demonstrated to be effective for filling data gaps 87 

associated with small cloud regions or gaps due to instrument errors such as Landsat Scan Line 88 

Corrector (SLC)-off images, but uncertainty massively increases with the size of data gaps (Shen 89 

et al., 2015). Temporal-based methods rely on the assumption that there are no obvious land cover 90 

changes over a short period of time, and missing pixels in the cloudy image (‘target image’) can 91 

be substituted or modeled with the pixels from cloud-free images acquired on adjacent dates 92 

(‘reference images’) after a relative normalization process. These methods include temporal 93 

filtering, temporal replacement, and machine learning based methods (Li et al., 2020a; Lin et al., 94 

2013; Yan and Roy, 2020; Zeng et al., 2013). Nevertheless, these methods are sensitive to the 95 

selection of the reference images and generate large uncertainty in heterogeneous landscapes as 96 

they usually assume that spectrally similar pixels come from the same class and have the same 97 

temporal changing patterns without accounting for the intra-class temporal variability (Chen et al., 98 

2011; Shen et al., 2015). The fourth type is spatiotemporal-based methods that integrate both 99 

spatial and temporal information for gap-filling (Zhang et al., 2018; Zhu et al., 2012a). For 100 

example, a neighborhood similar pixel interpolator (NSPI) method that combines both temporal 101 

predictions from the cloud-free reference image and spatial predictions from pixels outside the 102 

data gaps of the target image has been proposed to gap-fill the SLC-off data missing in individual 103 

Landsat images (Zhu et al., 2012a), which was further modified to gap-fill the cloud/cloud shadow-104 

induced data missing in a time series of Landsat images (Zhu et al., 2018). However, it is criticized 105 

for the sensitivity to reference images used (Cao et al., 2020). To reduce the dependence on specific 106 

reference images, Cao et al. (2020) developed an autoregression method to remove clouds (ARRC) 107 

for Landsat data that explicitly uses the autoregression of Landsat image time series of the adjacent 108 

clear pixels to gap-fill those missing pixels.    109 

Among the four categories of gap-filling methods described above, spatiotemporal-based methods 110 

are more commonly used since they generally obtain satisfactory results (Cao et al., 2020; Shen et 111 

al., 2015). For example, recently developed NSPI and ARRC have been tested across multiple 112 

sites across the globe with demonstrated high performance in gap-filling (Cao et al., 2020; Zhu et 113 

al., 2018). However, most of these methods are tested on medium to coarse spatial resolution 114 

satellite data (e.g. Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat, and 115 
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Sentinel-2) (Griffiths et al., 2019; Liu et al., 2017; Shen et al., 2015), and have rarely been explored 116 

in high spatial resolution satellite data, such as PlanetScope with a 3-m spatial resolution. 117 

Therefore, their applicability to the high-resolution PlanetScope remains unknown and may be 118 

constrained by the following two factors.  119 

The first one is associated with the gap size concern. For the spatial component in spatiotemporal-120 

based methods, the accuracy and efficiency have been demonstrated to decrease significantly with 121 

increasing data gap size (or the number of pixels with missing values). Meanwhile, the temporal-122 

based component in the spatiotemporal-based methods relies on the spectrally similar pixels in the 123 

neighborhood of data missing pixels to model the temporal changing pattern between the target 124 

and reference images, and the search for the spectrally similar pixels for each data missing pixel 125 

is time-consuming, especially for the large data gaps. Moreover, due to a much higher spatial 126 

resolution of PlanetScope images than traditional satellite data, two novel issues could also 127 

emerge. One is even for the same cloud/shadow size (in terms of m2), there would be more pixels 128 

with data missing in PlanetScope images than others. Second, due to the spatial heterogeneity of 129 

land cover in nature, there could be multiple objects within the same class or multiple classes 130 

within the same object in high-resolution PlanetScope images (e.g. Fig. S1). In other words, 131 

concerns about the spatial heterogeneity issue can be more serious in PlanetScope images than in 132 

traditional satellite data, especially for those big-size data gaps. Thus, methodological 133 

improvements are needed to address the above issues that are particularly important to high-134 

resolution PlanetScope data. Object-based segmentation methods have been increasingly used to 135 

automatically segment spectrally and spatially similar pixels into independent objects in satellite 136 

images (Hossain and Chen, 2019; Myint et al., 2011), and have been recently implemented in gap-137 

filling (Case and Vitti, 2021; Maxwell et al., 2007; Wu et al., 2018; Yan and Roy, 2018) and up to 138 

spatiotemporal fusion methods (Guan et al., 2017; Huang and Zhang, 2014; Luo et al., 2018; Xi et 139 

al., 2019). For example, a Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS) 140 

method (Yan and Roy, 2018) that segmented image time series into a segmentation map has been 141 

demonstrated effective for gap-filling large gaps in Landsat image time series. Such object-based 142 

segmentation methods may be able to address the above concern by reducing the sensitivity on 143 

gap size while improving the efficiency for filling large gaps in very high-resolution satellite 144 
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images (Case and Vitti, 2021), but the relevant workflow has not yet been tested on PlanetScope 145 

images.  146 

In addition to the gap size concern, the appropriate selection of reference images is vital to achieve 147 

successful and accurate gap-filling, but could result in large uncertainties when rapid land cover 148 

changes occur. Gap-filling methods often use either single or multiple reference images. The 149 

single-reference-image methods require a clear reference image that is acquired at a close date to 150 

the target image for gap-filling (Zhu et al., 2012b). Although PlanetScope has a daily-to-weekly 151 

temporal coverage, this data requirement remains limited in tropical or subtropical areas due to 152 

continuous cloud contamination, especially during high rainfall wet seasons (Roy et. al., 2021; 153 

Wang et al., 2020). To address this issue, the multiple-reference-image methods select multiple 154 

reference images that are cloud-free and have the highest similarity with the target image for each 155 

cloud patch instead of the whole image (Lin et al., 2014). Some studies have demonstrated that 156 

multiple-reference-image methods have better performance than single-reference-image methods 157 

(Chen et al., 2017; Lin et al., 2013), but it remains difficult to obtain cloud-free reference images 158 

for large cloud patches, as the similarities between the reference and target images for all objects 159 

even within a cloud patch can vary considerably (Cao et al., 2020), particularly for the 160 

heterogeneous landscapes that appear more often in the high-resolution PlanetScope image (as Fig. 161 

S1). For this, here we test whether adaptively selecting either single or two reference images on 162 

an object-class basis rather than at the cloud patch level can help improve gap-filling performance 163 

by reducing the uncertainties associated with both spatial heterogeneity and diverse (with/without 164 

rapid) land cover change scenarios.   165 

The goal of this study thus aims to develop an accurate and robust gap-filling method to 166 

automatically reconstruct missing data in PlanetScope image time series. Given the challenges in 167 

gap-filling PlanetScope satellites, we highlighted two major novelties of this work as follows. 168 

First, we employed an object-based segmentation method in conjunction with an unsupervised 169 

classification method to effectively reconstruct the missing information regardless of image gap 170 

size (corresponding to the number of image pixels contaminated by clouds/cloud shadows). 171 

Second, for each object-class (i.e. a group of pixels of the same object and the same class), we 172 

adopted an adaptive method to automatically select one or two reference images from the image 173 

time series for gap-filling, and assigned the best guess of the temporal change scenarios 174 
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(with/without rapid land cover change) based on their temporal changing patterns. We named this 175 

method the object and class based gap-filling (OCBGF) method. With this new method, we hope 176 

to effectively gap-fill missing pixels in PlanetScope image time series and enhance the data 177 

availability and continuity for fine-scale land surface monitoring. As a proof-of-concept, we 178 

selected the four sites with different land cover types covering a variety of climate zones on the 179 

global land surface, and compared OCBGF with three state-of-the-art methods, NSPI, ARRC, and 180 

SAMSTS. 181 

2. Study sites and materials182 

2.1 Study sites 183 

To test the OCBGF method, we selected four sites that are representative of different land cover 184 

types and climate zones across the global land surface (Fig. 1). These include 1) a managed forest 185 

landscape from a Eucalyptus plantation site in South Brazil (henceforth ‘Euc-plantation’), 2) a 186 

cropland landscape from Iowa in the United States (henceforth ‘Iowa-cropland’), 3) a metropolitan 187 

urban area from Beijing city in China (henceforth ‘Beijing-urban’), and 4) a moist forest landscape 188 

from the Barro Colorado Island in Panama (henceforth ‘BCI-forest’). Details regarding the 189 

location, climate, seasons, and spatial extent of these four sites are shown in Table 1. 190 

We selected these study sites for two reasons. First, these four sites represent different land cover 191 

types and climate zones with various levels of landscape heterogeneity and span a large range of 192 

annual precipitation from 492-2052 mm per year (Table 1). For example, the Beijing-urban site 193 

contains a large number of built-ups, such as buildings, highways, airport, as well as vegetated 194 

areas in north-eastern suburbs; the Iowa-cropland site is typical heterogeneous cropland with 195 

various crops types, such as corn, soybeans, and oats; the BCI-forest site includes a moist forest 196 

mixed with deciduous and evergreen broadleaf species, roads, buildings, and bare soils in 197 

surrounding areas of the Barro Colorado Island; and the Euc-plantation site has mixed land cover 198 

types, including commercial Eucalyptus, forest patches, buildings, roads, and bare soils. In 199 

addition, among these sites, the BCI-forest site has a tropical climate with the most serious cloud 200 

contamination resulting in continuous data missing in a year, especially during the wet season with 201 

monthly rainfall higher than 100 mm. 202 
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Second, there is modest to strong temporal variability in surface reflectance at these sites. For most 203 

gap-filling methods, large temporal variations in surface reflectance caused by plant phenology 204 

and abrupt land cover change could cause uncertainties (Cao et al., 2020). The Beijing-urban site 205 

has experienced substantial urbanization in recent years, converting vegetated surfaces into 206 

buildings (Cao et al., 2020). The Iowa-cropland site has a significant crop rotation between corn 207 

and soybean and vegetation phenology changes, such as seeding, growing, and harvesting (Cao et 208 

al., 2020). The BCI-forest site exhibits modest to large seasonal reflectance variability with 209 

significant amounts of leaf shedding and leaf exchange during the high-light dry season (Detto et 210 

al., 2018; Park et al., 2019). The Euc-plantation site experiences strong seasonal reflectance 211 

changes caused by harvesting, and land cover changes caused by deforestation and reforestation 212 

(Lopez-Poma et al., 2020; Qin et al., 2019).     213 

For more details about the ecological, hydrological, and topographic characteristics of these four 214 

sites, refer to previous studies (Campoe et al., 2012; Leigh, 1999; Liu et al., 2018; Qi et al., 2011).  215 

2.2 Materials  216 

The four-band, 3-m resolution PlanetScope data from Planet Labs PBC. (San Francisco, CA, USA) 217 

were used in this study. We accessed the data from https://www.planet.com/ through a research 218 

and education license with Planet Labs PBC. We downloaded the PlanetScope data for all four 219 

sites that span the whole annual cycle covering a wide range of percent data missing for each site 220 

(Fig. 1c). The level 3B surface reflectance product of PlanetScope was used, which has been 221 

orthorectified and pre-processed (including geometric, radiometric, and atmospheric corrections) 222 

(Planet, 2021). To retain as much good data as possible, we assessed all available data that met the 223 

following criteria: 1) "standard" quality level (that refers to an image meeting a variety of quality 224 

standards; Planet, 2021), 2) rectification with ground control points, 3) solar zenith angle < 80° 225 

and view zenith angle < 5°, 4) snow cover<5%, 5) cloud cover<80%, 6) thin cloud cover<5%. 226 

Consequently, across the four sites throughout the entire annual cycle of 2018, a total of 271 days 227 

of PlanetScope land surface reflectance images were accessed (Table 1). Each of these images is 228 

from the sensor type of PS2 (denoting Dove Classic) and has a spatial extent of 20km×20km 229 

(6667×6667 pixels). Notably, since the BCI-forest site has some water surfaces occupied by lakes 230 

and rivers, prior to testing our method, we masked out these elements in the corresponding 231 
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PlanetScope images using the same masking method as Wang et al. (2021). This was conducted 232 

to minimize the gap-filling uncertainty associated with large spectral variability with the water 233 

surfaces across both space and time (Qiu et al., 2019; Zhu et al., 2015; Zhu and Woodcock, 2012) 234 

and misclassification error encountered in cloud and shadow detection on water surfaces (Zhu and 235 

Helmer, 2018).  236 

3. Methods 237 

We applied the OCBGF method for gap-filling PlanetScope time-series images using one target 238 

image (ܫ௧଴, where 0ݐ is the acquisition date of the target image) in this time series as an example. 239 

The same procedure also applies to any other images in the time series that need to be gap-filled. 240 

The time-series images can be fully or partly cloud-free (e.g. percent data missing ranging from 0-241 

100%; Fig. 1c), and OCBGF automatically selects those image pixels in the time series with valid 242 

values at or nearby the locations of gaps to gap-fill ܫ௧଴. Particularly, we assumed that pixels with 243 

both high spectral similarity and spatial continuity tend to have similar temporal changing patterns 244 

(Chen et al., 2011; Zhu et al., 2012b). Based on this assumption, we first developed a model to 245 

capture the temporal changing patterns using spectrally and spatially similar pixels outside the 246 

gaps, and then applied this model to gap-fill the missing pixels in ܫ௧଴. There are four tasks in 247 

OCBGF for gap-filling (Fig. 2). First, we conducted pixel-level quality control for each image in 248 

the time series to minimize potential cloud and cloud shadow impacts. Second, before gap-filling, 249 

we integrated a cloud-free time series (ܫ௧௦) covering around a one-month time period with the 250 

minimum data missing nearby each ܫ௧଴, then segmented and classified ܫ௧௦ into independent objects 251 

of different classes. Third, for each object-class (i.e. a group of pixels of the same object and the 252 

same class) with missing pixels in ܫ௧଴ , we performed gap-filling with two scenarios: single-253 

reference-image (no rapid land cover change) and two-reference-images (rapid land cover change) 254 

scenarios. Finally, we conducted post-image-processing with a guided filtering approach to further 255 

reduce random noises in the gap-filled images while retaining detailed information. 256 

3.1 Pixel-level quality control (Task 1)  257 

Before gap-filling, strict pixel-level quality control is essential (Chen et al., 2004). For this, we 258 

adopted a two-step approach. First, we applied a recently developed automatic cloud/cloud shadow 259 

detection method, STI-ACSS (Wang et al, 2021), for initial and automatic screening of cloud/cloud 260 
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shadow across the entire image time series. The STI-ACSS method was used because it has been 261 

demonstrated to be more effective in cloud/cloud shadow screening in PlanetScope images 262 

compared with the default PlanetScope quality control layers and other state-of-the-art cloud/cloud 263 

shadow methods (Wang et al., 2021). Second, since no cloud/cloud shadow detection algorithm is 264 

perfect, to minimize the uncertainty associated with the residual effects in STI-ACSS, we applied 265 

additional pixel-level quality control to automatically mask out any remaining cloud/cloud shadow 266 

pixels with two sub-steps: (1) to minimize the potential effects associated with thin clouds/cloud 267 

shadows surrounding the detected clouds/cloud shadows, we used morphological dilation with a 268 

structure element on each cloud and cloud shadow mask to label the border areas of clouds/cloud 269 

shadows (Soille, 1999; Soille and Pesaresi, 2002). The structure element is a disk-shaped matrix 270 

(Zheng, 1995) with a user-specified size (5×5 pixels in this study); and (2) to best filter remaining 271 

cloud/cloud shadow pixels that have larger temporal variability in their spectral reflectance than 272 

clear-sky pixels (Wang et al., 2021), we examined their band-specific pixel values with a user-273 

specified threshold pair (e.g. 1 and 99 percentiles) across the entire image time series and masked 274 

out the pixels with values either greater than the upper bound (e.g. 99 percentile) or smaller than 275 

the lower bound (e.g. 1 percentile). More details regarding the three parameters used in this task, 276 

i.e., the size of the structure element, and a pair of percentile thresholds for additional data quality 277 

control, the way to determine their values, and the values of recommendation are summarized in 278 

Table S1. 279 

3.2 Object segmentation and classification (Task 2) 280 

Because the natural landscape is often mixed with multiple objects within the same class or 281 

multiple classes belonging to the same object like the example shown in Fig. S1, the conventional 282 

approaches that either rely on any given moving window or are based on the object-based image 283 

segmentation are not sufficiently accurate to address this issue. Thus, here we developed a new 284 

method relying on the concept of object-class, and also compared this new method with the 285 

conventional approaches that relied on either object or class alone. The new object-class method 286 

integrated an object-based segmentation method with an unsupervised classification method for 287 

automatic identifications of pixels, by which it helps to group those spectrally and spatially similar 288 

pixels into the same object and the same class. 289 
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Specifically, we first used an object-based image analysis (OBIA) method as implemented by 290 

Watkins and Van Niekerk (2019a, 2019b) to segment all pixels in a composited cloud-free time 291 

series ( ௧௦ܫ ) into individual objects with irregular sizes based on their spectral and spatial 292 

characteristics. This OBIA method was adopted because of its high accuracy in detecting object 293 

boundaries as well as its capability to operate without any prior knowledge (Watkins and Van 294 

Niekerk, 2019a). This method includes the following four steps, through which we generated a 295 

segmentation map (ܵ௧௦) for ܫ௧௦: 296 

(Step 1) We generated a composited cloud-free time series ܫ௧௦ for automatic image segmentation. 297 

For this, the 10 temporally-adjacent images (i.e. 5 images before/after ܫ௧଴) were automatically 298 

selected from the whole image time series, with which we further derived ܫ௧௦ by identifying the 299 

clearest images with minimum missing pixels from each 5-image group (Fig. S2). Each 5-images 300 

before and after ܫ௧଴ were selected because this roughly represents a short temporal period of one 301 

month in PlanetScope images (Roy et al., 2021). The two selected clearest images (ܫ௧௦; n=2, with 302 

one before ܫ௧଴ and one after ܫ௧଴) were subsequently used for image automatic segmentation as 303 

described in steps 2-4. It is noted that i) when there are more than one clearest images within each 304 

5-image group, the image with the least temporal distance to ܫ௧଴ is selected; and ii) these two 305 

clearest images both need to cover the full area of ܫ௧଴; otherwise, we would use the clearest image 306 

across the entire time series. It is also important to note that the approach used here is empirical 307 

and usable for PlanetScope satellites of high temporal resolution, but might need some fine-tuning 308 

when applying to other satellites of different temporal resolutions. 309 

(Step 2) We employed an image high-pass filtering approach with a 4-neighborhood Laplacian 310 

filter (Gonzalez and Woods, 2006; Solomon and Breckon, 2010) for each image in ܫ௧௦, through 311 

which we could include more spatial details to facilitate the subsequent image segmentation.  312 

(Step 3) We applied a commonly-used Canny edge-detection operator (Canny, 1986) on each 313 

sharpened image in ܫ௧௦  and aggregated the edge layers with a union operation to generate one 314 

composite edge layer for image segmentation.  315 

(Step 4) We employed a widely-used region-based segmentation approach, watershed 316 

segmentation (Li et al., 2010), on the above-derived edge layer for deriving ܵ௧௦  (Fig. 2). This 317 

approach divides regions of local minima (catchment basins) into individual objects based on 318 
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edges with high gradient magnitudes (Salman, 2006). This watershed segmentation approach used 319 

8-connected connectivity to specify the directions of adjacent pixels in the neighborhood of a given 320 

pixel. 321 

After deriving individual objects using the above image segmentation method, we employed a 322 

commonly-used unsupervised classifier, k-means (Lloyd, 1982), on ܫ௧௦ . The k-means classifier 323 

automatically classifies all valid pixels of ܫ௧௦ into K classes based on their spectral similarity, and 324 

generates a classification map ܥ௧௦  (Fig. 2). The classifier minimized the sum of the squared 325 

Euclidean distance of spectral reflectance between each pixel and the class centroid to estimate 326 

classification results.  There is only one parameter, K (the number of classes), in this unsupervised 327 

classification. To determine K, we specified a range of K values (5-10 in our study) and then 328 

followed the Calinski-Harabasz clustering evaluation criterion (Calinski and Harabasz, 1974) to 329 

automatically determine the optimal K within this range. A further sensitivity analysis based on 330 

the setting of different K ranges (Fig. S3) confirms that the K range set for this study is valid. It is 331 

worthy to note that the setting of K range can vary with the level of landscape heterogeneity, thus 332 

we included this recommendation in Table S1 for the readers’ reference. 333 

With the ܵ௧௦ and ܥ௧௦ derived above, we finally identified the object and class type for each pixel, 334 

and grouped the pixels belonging to the same object and the same class as a representative gap-335 

filling unit of ‘object-class’.   336 

3.3 Gap-filling with two scenarios (Task 3) 337 

Since rapid land cover change could also introduce uncertainty into gap-filling, we first 338 

differentiated the two land cover change scenarios (with or without rapid land cover change) and 339 

then adopted scenario-specific gap-filling procedures. These two steps were conducted on an 340 

object-class basis as follows. 341 

3.3.1 Differentiations of two land cover change scenarios 342 

For each given object-class with missing pixels in ܫ௧଴, we divided them into the following two 343 

cases: (1) only part of the pixels were missing, and (2) all pixels were missing.  344 
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For case 1, we first searched each target object-class throughout the full image time series, and 345 

then identified the reference images that had valid pixels for gap-filling. For each object-class, 346 

based on their temporal distances to ܫ௧଴, we further determined the reference images with the 347 

closest temporal distance before ܫ௧଴ (noted as ܫ௧଴ିଵ) and after ܫ௧଴ (noted as ܫ௧଴ାଵ) as well as the 348 

image with the closest absolute temporal distance to ܫ௧଴ (denoted as ܫ௧௡, which could be either 349 ܫ௧଴ିଵ or ܫ௧଴ାଵ; Fig. 2). For case 2, we turned to the neighboring object-class that had valid pixels 350 

in ܫ௧଴, belonged to the same class, and was spatially closest to the target object-class, and repeated 351 

the same process as case 1, through which we identified the corresponding reference images of 352 ܫ௧଴ିଵ ௧଴ାଵܫ , , and ܫ௧௡. Since the reference image(s) were selected on an object-class basis, our 353 

approach can thus optimize the temporal distance between reference image(s) and the target image, 354 

consequently reducing the gap-filling uncertainty associated with the landscape heterogeneity and 355 

rapid land cover changes over time.  356 

With the identified ܫ௧௡ , we then calculated the correlation coefficient for each spectral band 357 

between all the valid pixels of ܫ௧଴ and ܫ௧௡ that either belongs to the target object-class (for case 1) 358 

or the nearest adjacent object-class (for case 2). We further calculated the average correlation 359 

coefficient across all four spectral bands (ݎ௛ഥ ) and assigned the land cover change scenarios by 360 

comparing ݎ௛ഥ  with an empirically determined threshold (்ݎ ) as Eq. 1.  361 

൜ݎ௛ഥ ≥ ݎ் , no rapid land cover change scenario ݎ௛ഥ < ݎ் , rapid land cover change scenario                             (1) 362 

To assess how the threshold value (்ݎ ) would affect our results, we varied ்ݎ  from 0.65 to 0.95 363 

with an interval of 0.05. Additionally, to assess how our method would perform in these two 364 

independent scenarios in Eq. 1, we also separately tested these two scenarios. The sensitivity 365 

analysis across four sites (Figs. S4 and S5) demonstrated that using a fixed threshold of 0.80 across 366 

all sites obtains the highest averaged accuracies, and is also quite comparable with the site-specific 367 

optimized threshold with a very narrow range of 0.75~0.80 across all four sites. Details regarding 368 

how to determine ்ݎ  as well as the recommended value of ்ݎ  for use are summarized in Table S1. 369 

3.3.2 Scenario-specific gap-filling 370 

Scenario 1 – Single-reference-image 371 
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For each object (h)-class (k), under the no rapid land cover change scenario, we used only one 372 

image ܫ௧௡ for gap-filling. This single-image referencing method relies on a linear regression model 373 

between ܫ௧଴ and ܫ௧௡: 374 ܫ௧଴,௕,௜ = ௛௞,௕ߙ × ௧௡,௕,௜ܫ + ௛௞,௕ߚ +  ௛௞,௕                                                      (2) 375ߝ

where ܫ௧଴,௕,௜ and ܫ௧௡,௕,௜ are spectral reflectance values of the valid pixel i in band b for ܫ௧଴ and ܫ௧௡, 376 

respectively, and ߙ௛௞,௕ and ߚ௛௞,௕ are coefficients of this linear model for band b, and ߝ௛௞,௕ is the 377 

residual error. The band-specific coefficients can be solved by linearly regressing the spectral 378 

reflectance values of all the valid pixels between ܫ௧଴ and ܫ௧௡. 379 

Before gap-filling, we further assessed the type of any given object-class into the following two 380 

categories: 1) if only part of the pixels within the target object-class were missing, we labelled 381 

them as category 1, by which we applied Eq. 2 to the remaining valid pixels of the same object-382 

class to first derive the linear regression model, and then applied this model to gap-fill the missing 383 

ones using Eq. 3; and 2) if all the pixels within the target object-class were missing, we labelled 384 

them as category 2, by which we applied Eq. 2 to those valid pixels of the same class available 385 

from the nearest adjacent object to derive the linear model, and then applied the derived model to 386 

gap-fill those missing ones using Eq. 4 below. 387 

௧଴,௕,ఫ෣ܫ  = ௛௞,௕ߙ × ௧௡,௕,௝ܫ +  ௛௞,௕                                                     (3) 388ߚ

Where ܫ௧଴,௕,ఫ෣  is the predicted reflectance value of missing pixel j in band b for ܫ௧଴, ܫ௧௡,௕,௝ is the 389 

spectral reflectance value of valid pixel j in band b for ܫ௧௡ , and ߙ௛௞,௕ and ߚ௛௞,௕  are estimated 390 

coefficients using Eq. 2 for the category 1. 391 

௧଴,௕,ఫ෣ܫ  = ௖௞,௕ߙ × ௧௡,௕,௝ܫ +  ௖௞,௕                                                    (4) 392ߚ

Where ܫ௧଴,௕,ఫ෣  is the predicted reflectance value of missing pixel j in band b for ܫ௧଴, ܫ௧௡,௕,௝ is the 393 

spectral reflectance value of valid pixel j in band b for ܫ௧௡ , and ߙ௖௞,௕  and ߚ௖௞,௕  are estimated 394 

coefficients using Eq. 2 for the category 2, which represents the closest object (c) to the target 395 

object (h) with valid pixels in both ܫ௧଴ and ܫ௧௡ for class (k). 396 

Scenario 2 – Two-reference-images 397 
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For each object (h)-class(k), under the rapid land cover change scenario, we used the two images 398 

(one before ܫ௧଴, ܫ௧଴ିଵ, and one after ܫ௧଴,  ௧଴ାଵ) for gap-filling. This two-image referencing method 399ܫ

relies on a linear regression model between ܫ௧଴ and the two reference images (Eqs. 5). The key 400 

assumption of this method is that the use of a pair of reference images would be more efficient to 401 

capture the rapid land cover change compared with the use of a single reference image for gap 402 

filling, especially when the target image is different from either reference image (i.e. ݎ௛ഥ<்ݎ ௧଴,௕,௜ܫ 403 .( − ௧଴ାଵ,௕,௜ܫ = ௧଴ିଵ,௕,௜ܫ)௛௞,௕′ߙ − (௧଴ାଵ,௕,௜ܫ + ௛௞,௕ߚ +  ௛௞,௕                              (5) 404ߝ

where ܫ௧଴,௕,௜ , ܫ௧଴ିଵ,௕,௜, and ܫ௧଴ାଵ,௕,௜ are spectral reflectance values of valid pixel i in band b for ܫ௧଴, 405 ܫ௧଴ିଵ and ܫ௧଴ାଵ, respectively, and ߙᇱ௛௞,௕ and ߚ௛௞,௕ are coefficients of this linear model in band b, 406 

and ߝ௛௞,௕ is the residual error. The band-specific coefficients can be solved by linearly regressing 407 

the spectral reflectance values of all the valid pixels between ܫ௧଴ − ௧଴ିଵܫ ௧଴ାଵ andܫ −  ௧଴ାଵ. 408ܫ

Similar to scenario 1, before gap-filling, we further assessed the type of any given object-class into 409 

the following two categories: 1) if only part of the pixels within the target object-class were missing, 410 

we labelled them as category 3, by which we applied Eq. 5 to the remaining valid pixels of the 411 

same object-class to first derive the linear regression model, and then applied this model to gap-412 

fill those missing ones using Eq. 6 below; and 2) if all the pixels within the target object-class were 413 

missing, we labelled them as category 4, by which we applied Eq. 5 to those valid pixels of the 414 

same class available from the nearest adjacent object to derive the linear model, and then applied 415 

the derived model to gap-fill those missing ones using Eq. 7 below. 416 

௧଴,௕,ఫ෣ܫ  = ௛௞,௕′ߙ × ൫ܫ௧଴ିଵ,௕,௝ − ௧଴ାଵ,௕,௝൯ܫ + ௧଴ାଵ,௕,௝ܫ +  ௛௞,௕                           (6) 417ߚ

Where ܫ௧଴,௕,ఫ෣  is the predicted reflectance value of missing pixel j in band b for ܫ௧଴ , 418 ൫ܫ௧଴ିଵ,௕,௝ −  ௧଴ାଵ,௕,௝൯ is the spectral reflectance difference of valid pixel j in band b between the 419ܫ

two reference images, and ߙ௛௞,௕ and ߚ௛௞,௕ are estimated coefficients using Eq. 5 for the category 420 

3. 421 

௧଴,௕,ఫ෣ܫ  = ௖௞,௕′ߙ × ൫ܫ௧଴ିଵ,௕,௝ − ௧଴ାଵ,௕,௝൯ܫ + ௧଴ାଵ,௕,௝ܫ +  ௖௞,௕                            (7) 422ߚ
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Where ܫ௧଴,௕,ఫ෣  is the predicted reflectance value of missing pixel j in band b for ܫ௧଴ , 423 ൫ܫ௧଴ିଵ,௕,௝ −  ௧଴ାଵ,௕,௝൯ is the spectral reflectance difference of valid pixel j in band b between the 424ܫ

two reference images, and ߙ′௖௞,௕ and ߚ௖௞,௕ are estimated coefficients using Eq. 5 for the category 425 

4, which represents the closest object (c) to the target object (h) with valid pixels for class (k) in 426 ܫ௧଴.  427 

3.4 Post-image-processing (Task 4) 428 

To further reduce random noises (e.g. salt-and-pepper noises; Fig. S6b) while retaining high-429 

resolution details in the gap-filling results derived above, we conducted post-image-processing for 430 

the target image using a commonly-used edge-preserving filter, the guided filter (He et al., 2013; 431 

Fig. S6c), with a demonstrated improvement in the gap-filling results (Fig. S7). The guided filter 432 

computes the filtering output by a linear transformation of a guidance image, but does not suffer 433 

from the gradient reversal artefacts (He et al., 2013; Li et al., 2017). Specifically, a cloud-free 434 

image or gap-filled image with the maximum number of valid pixels across the full image time 435 

series is selected as the guidance image for the subsequent guided filter on the target image.  436 

3.5 Evaluation 437 

To evaluate the performance of our method, we performed three tests. The first two tests were 438 

based on simulation experiments, and the third test used real cloud contaminated images. 439 

Throughout all these three tests, we also cross-compared our OCBGF model performance with the 440 

other three state-of-the-art methods, i.e. NSPI (Zhu et al., 2012a), ARRC (Cao et al., 2020), and 441 

SAMSTS (Yan and Roy, 2018).  442 

In test 1, we evaluated the effects of gap size on the gap-filling results by randomly selecting a 443 

fully or near-fully clear-sky image from each study site and artificially creating seven gaps ranging 444 

from 104 to 106 pixels (105 to 107 m2) on each image (Table 2). Since the percent data missing of 445 

the above test remains small (e.g. within 20%), to further evaluate the boundary beyond which 446 

level of percent data missing would largely affect the gap-filling results among different methods, 447 

we used the Euc-plantation and Iowa-cropland sites as examples, and artificially created six circle 448 

gaps sharing the same center (as the image center) but having a radius range from 500 to 3000 449 
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pixels with an increment of 500 pixels. These six gaps corresponded to the percent data missing 450 

of 2%, 7%, 16%, 28%, 44%, and 64%, respectively, on the selected images.  451 

In test 2, we evaluated the effects of rapid land cover change on the gap-filling results by selecting 452 

24 fully or near-fully clear-sky images (10 from Euc-plantation, 7 from Iowa-cropland, 4 from 453 

Beijing-urban, and 3 from BCI-forest sites). These images were selected based on the fact that 454 

there were obvious land cover changes between the temporally adjacent images and the images 455 

covered different seasons of the year 2018. With these images, we then purposely masked out the 456 

areas that experienced land cover changes over time.  457 

In both test 1 and 2, we used the original clear images as benchmark. The model performance was 458 

assessed on a spectral band basis, using the following three metrics, i.e., the root mean square error 459 

(RMSE), the correlation coefficient (CC), and the structure similarity index (SSIM) (Wang et al., 460 

2004). We used these three metrics in combination, as each of them reflects different aspects of 461 

model performance assessments, with RMSE assessing the spectral band differences between the 462 

predicted and reference images, CC reflecting the degree of correlation and similarity between the 463 

predicted and reference images, and SSIM quantifying the structural similarities between the 464 

predicted and reference images.  465 

In test 3, we randomly selected one cloud contaminated image from each study site, and visually 466 

assessed the structural continuity and color consistency by comparing the gap-filled areas with 467 

those clear areas spatially/temporally adjacent to the gaps. For cross-method comparisons, we used 468 

the default parameters of NSPI, ARRC, and SAMSTS, following Zhu et al. (2012a), Cao et al. 469 

(2020), and Yan and Roy (2018), respectively. 470 

4. Results 471 

4.1 Cross-method comparison for different simulated gap sizes 472 

To assess the effects of gap size on the gap-filled results for all four methods (NSPI, ARRC, 473 

SAMSTS, and OCBGF), we conducted accuracy assessments on seven deliberately created gaps 474 

of different size categories using the original clear images as benchmark. Across all four sites, we 475 

found that OCBGF yielded the highest accuracy with the smallest variation across seven gap size 476 
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categories (RMSE=0.0065 (mean) ± 0.0027 (standard deviation), CC=0.95±0.06, and SSIM= 477 

0.94±0.06; Fig. 3 and Table 3). By contrast, the NSPI method generated the lowest model 478 

accuracies with the largest variations across different gap size categories (RMSE=0.0113 (mean) 479 

± 0.0058 (standard deviation), CC=0.87±0.15, and SSIM= 0.86±0.16; Fig. 3 and Table 3). Among 480 

these four sites, OCBGF obtained much higher accuracies compared to the other three methods, 481 

consistently across all gap size categories in Euc-plantation and BCI-forest (Fig. 3); OCBGF 482 

achieves a comparable accuracy in Iowa-cropland and Beijing-urban as ARRC, and in Iowa-483 

cropland as SAMSTS, all of which are higher than NSPI (Fig. 3). Moreover, within each site and 484 

across all three accuracy metrics, we observed that OCBGF yields more stable model accuracies 485 

across all seven gap size categories than the other three models (Fig. 3). Especially in Euc-486 

plantation, Beijing-urban, and BCI-forest, the three accuracy metrics of OCBGF tend to stabilize 487 

with gap size while NSPI and SAMSTS display larger accuracy fluctuations across gap sizes, with 488 

large near-linear reductions in model accuracies with gaps size in Beijing-urban and BCI-forest. 489 

The stability in model accuracies of ARRC with gap size is comparable with OCBGF in Euc-490 

plantation, Iowa-cropland, and Beijing-urban, but shows much larger fluctuations with a near-491 

linear reduction in model accuracies with gaps size in BCI-forest. These results altogether 492 

demonstrate that OCBGF is the most accurate method showing the least sensitivity to the gap size 493 

among all comparative methods, followed by SAMSTS, ARRC, and NSPI (Table 3). 494 

Among the three accuracy metrics across all four methods, we observed a much lower CC and 495 

SSIM at the BCI-forest site relative to the other three sites (Fig. 4). This is likely associated with 496 

the low data availability at this site with a high-rainfall environment (Fig. 1c and Table 1). 497 

Meanwhile, we observed that all the four methods maintain comparable CC and SSIM in the other 498 

three lower-rainfall sites (i.e. Euc-plantation, Iowa-cropland, and Beijing-urban; Table 1), and the 499 

accuracy reduction of CC and SSIM from these drier sites to the high-rainfall BCI-forest site is 500 

much smaller in OCBGF than the other three methods, demonstrating that OCBGF could be more 501 

robust than the other three methods in gap-filling, especially in the high rainfall environment.  502 

To further aid the visual interpretation of these cross-method comparisons, we next presented the 503 

gap-filling results (Fig. S8) and associated magnified correspondences (Fig. 5) for each of the four 504 

sites. Across all three methods, we observed that the gap-filling results are overall very comparable 505 

in the smaller gap size categories from 1 to 5 (Fig. S8), but tend to diverge in the remaining two 506 
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bigger gap size categories (Figs. S8 and 5), with the OCBGF results being the closest to original 507 

images in larger gaps. Also in Fig. 5, NSPI displays some blocking artifacts (Figs. 5a, b, and d) in 508 

the interior areas of Euc-plantation, Iowa-cropland, and BCI-forest, while generating some strip 509 

artifacts (Figs. 5c and e) in the heterogeneous areas of Beijing-urban and BCI-forest. ARRC 510 

exhibits obvious salt-and-pepper noises (Figs. 5f-h) in heterogeneous areas mixed with different 511 

land covers across all four sites. SAMSTS also presents some blocking artifacts (Fig. 5i), 512 

accompanied by moderate errors in gap-filling land surface areas of high reflectance values (Figs. 513 

5j and k). In contrast, OCBGF achieves a more satisfying performance across all these large gaps, 514 

despite small portions of fine details missing as compared to the original images (Fig. 5). 515 

Collectively, both quantitative and visual cross-method comparisons show that OCBGF is more 516 

accurate and stable across all land cover types and gap size categories than the other three methods.  517 

Finally, to evaluate whether a large percent of data missing (e.g. >30%) would affect the gap-518 

filling results among different methods, we conducted accuracy assessments on the six artificial 519 

circle gaps covering the percent data missing ranging from 2%, 7%, 16%, 28%, 44%, and 64% 520 

(Fig. 6a). Our results show that OCBGF consistently yields the best and most stable model 521 

performance across the full range of percent data missing (Figs. 6b and c), in contrast with the 522 

other three models that display much weaker and more variable model accuracies across different 523 

percent data missing. For example, when the percent data missing is relatively low (2% and 7%), 524 

ARRC and SAMSTS obtain higher accuracies across all three accuracy metrics. With a further 525 

increase in percent data missing (16% and 28%), SAMSTS and NSPI obtain higher accuracies in 526 

CC and SSIM, while NSPI generates lower accuracy in RMSE. When the percent data missing is 527 

much higher (44% and 64%), NSPI generates higher accuracies in CC and SSIM but a lower 528 

accuracy in RMSE. Our proposed method of OCBGF performs best consistently and most stable 529 

across all the three accuracy metrics, with only a very minor accuracy reduction with an increasing 530 

percent data missing.  531 

4.2 Cross-method comparison for rapid land cover changes  532 

To examine the effects of rapid land cover changes on the gap-filled results for all four methods, 533 

we turned to the simulation approach, and conducted accuracy assessments on 24 representative 534 

images using original clear images as benchmarks. Across all sites and seasons, we found that 535 
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OCBGF outperforms the other three methods (Fig. 7), with the highest accuracies and least 536 

accuracy variations (RMSE = 0.0082 (mean) ± 0.0023 (standard deviation), CC = 0.95±0.031, and 537 

SSIM = 0.94±0.035; Table 4), followed by SAMSTS and ARRC that performs slightly better than 538 

NSPI but with much larger variations (Table 4). Among these four sites and seasons, we also 539 

observed that OCBGF obtains the consistently highest accuracies and lowest variations across all 540 

four sites (Fig. 8). While for ARRC, SAMSTS, and NSPI, we found that these three methods have 541 

mixed successes, with ARRC obtaining the lowest accuracies in the BCI-forest site, NSPI 542 

obtaining the lowest accuracies in most cases of the Iowa-cropland site, and SAMSTS obtaining 543 

the lowest accuracies in Beijing-urban site.  544 

To visually interpret these cross-method comparisons further, we presented the two magnified 545 

regions with rapid land cover changes for each site using their original clear images as benchmarks 546 

(Fig. 9). Specifically, there are two types of rapid changes being selected: 1) gradual color 547 

transformation (e.g. Figs. 9b, h, and i) and 2) abrupt color transformations (e.g. Figs. 9a, c, d, e, f, 548 

and g). To put the gap-filling results in the time-series context, we displayed the two images (before 549 

and after) temporally adjacent to each target image. Across the cases showing a gradual color 550 

transformation (Figs. 9b, h, and i), our results show that the gap-filling results from OCBGF are 551 

closer to the benchmarks than the other three methods, in which NSPI yields some blurred colors, 552 

ARRC gives some salt-and-pepper noises, while SAMSTS exhibits some obvious errors around 553 

the heterogeneous areas with complex land covers. Moreover, we also examined the cases with 554 

abrupt color transformations across the image time series (Figs. 9a, c, d, e, and f). Across these 555 

cases, we found that OCBGF is consistently more efficient in capturing the rapid land cover 556 

changes with well-constructed spatial details compared with the other three methods. However, 557 

we also found that there remains a small portion (Fig. 9g) of areas in Beijing-urban being 558 

inaccurately reconstructed by all four methods. Compared with OCBGF, NSPI, ARRC, and 559 

SAMSTS are found to have even larger portions of areas being inaccurately reconstructed, 560 

especially for those heterogeneous areas that often come with obvious errors/noises. These results 561 

altogether demonstrate that OCBGF performs the best in gap-filling those areas with rapid land 562 

cover changes among all four methods examined here.  563 

4.3 Cross-method comparison in the real-world practices 564 
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To assess the performance of these methods in real-world scenarios, we selected one representative 565 

image mixed with cloud contaminations for each of the four sites. Our results show that OCBGF 566 

achieves the best model performance with the least sensitivity to clouds/cloud shadows in general 567 

(Fig. 10). Particularly, the magnified gap-filling results (highlighted in orange squares; Fig. 10) 568 

show that OCBGF obtains the highest consistency with the temporally most adjacent images while 569 

displaying the best spatial continuity near gap boundaries relative to the other three methods. In 570 

contrast, NSPI exhibits blurred colors, especially in large gaps, ARRC exhibits obvious noises and 571 

errors in heterogeneous areas, and SAMSTS displays imprecise boundaries, especially at the 572 

intersections among different land cover types. These results again demonstrate that OCBGF 573 

generates the best gap-filling results, with potential to best recover the signal for those areas with 574 

big data gaps and rapid land cover changes.  575 

5. Discussion 576 

Over recent years, PlanetScope data has been increasingly used for monitoring rapid and fine-scale 577 

land surface dynamics that can scale up to create impacts on understanding global environmental 578 

change and ecosystem responses (Forzieri et al., 2021; Heinrich et al., 2021; Taubert et al., 2018; 579 

Zeng et al., 2018). However, a critical challenge remains with the lack of an effective and accurate 580 

method for gap-filling missing data caused by cloud and cloud shadow contaminations. For 581 

example, as shown in a 50-ha plot at the Panamanian BCI-forest site (Fig. S9), the original 582 

PlanetScope time-series images are not able to accurately quantify leaf phenology at the patch 583 

scale of a 12 m×12 m area when they are seriously contaminated by clouds/cloud shadows, while 584 

the gap-filled time-series images could help recover the considerable within-site fine-scale 585 

phenology variability, suggesting the necessity of gap-filling. To address this challenge, we 586 

developed an object and class based gap-filling method, OCBGF, and evaluated the effectiveness 587 

of this method across four sites spanning a large variety in land cover types (i.e. plantation, 588 

cropland, urban, and forest; Fig. 1b), spatial heterogeneity (e.g. homogenous and heterogeneous 589 

landscapes; Fig. 1b), annual precipitation (e.g. 492-2052 mm per year; Table 1), and percent data 590 

missing (e.g. ranging from 0% to 100%; Fig. 1c).  When comparing our OCBGF method with the 591 

other three state-of-the-art methods (NSPI, ARRC, and SAMSTS) on both simulation tests and 592 

real-world cloud-contaminated cases (Figs. 3-10, Tables 3 and 4), our results consistently show 593 
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that OCBGF is the most accurate and stable gap-filling method for recovering cloud/cloud shadow-594 

induced data gaps in PlanetScope time-series images.   595 

The effectiveness of OCBGF relies on the following two strengths. First, to minimize the 596 

uncertainty associated with large data gaps and landscape heterogeneity, OCBGF adopts an object-597 

based segmentation method in conjunction with a classification method to leverage valid pixels 598 

outside the gaps for gap-filling. It is widely known that large data gaps (corresponding to a large 599 

pixel number contaminated by clouds/cloud shadows) often result in insufficient valid pixels with 600 

spectral similarity and spatial continuity, making the gap-filling difficult with large uncertainty, 601 

especially for those interior pixels of large gaps (Shen et al., 2015; Yan and Roy, 2018). Meanwhile, 602 

in high spatial resolution PlanetScope images, the landscape heterogeneity can be an increasingly 603 

important issue, as there are often mixed classes within an object and mixed objects within a class 604 

(e.g. Fig. S1), making the conventional gap-filling methods relying on either moving window or 605 

object-based segmentation approaches challenging to resolve this issue. To address these issues, 606 

similar to previous approaches of NSPI (Zhu et al., 2018) and ARRC (Cao et al., 2020), we also 607 

employed an unsupervised classification method to classify the composited cloud-free time series 608 

into different classes based on their spectral similarity. Different from those previous approaches 609 

relying on a moving window to identify the valid pixels of the same class to gap-fill each target 610 

pixel (Cao et al., 2020; Zhu et al., 2018), we integrated an object-based segmentation method with 611 

an unsupervised classification method to identify the object and class type of pixels, by which we 612 

searched valid pixels belonging to the same object-class or the nearest object-class to help gap-fill 613 

each target object-class with missing pixels. This object-class integrated approach facilitates the 614 

search for spectrally and spatially similar pixels, producing results with higher accuracies when 615 

gap-filling missing pixels in general, and particularly when gaps are large (Figs. 3, 4, and 6). An 616 

additional analysis (Fig. S10), showing that our object-class approach can generate more stable 617 

and accurate gap-filling results compared with the other two approaches respectively relying on 618 

object and class alone, further suggests that it can be a more accurate way to characterize the 619 

landscape heterogeneity in the real world. Although SAMSTS applied a similar integration 620 

framework—segment-and-clustering to gap-fill large gaps in Landsat images (Yan and Roy, 2018), 621 

it is different from our method in two aspects: 1) SAMSTS used a region-growing image 622 

segmentation method based on spectral similarity, while our method adopted an object-based 623 

segmentation method based on both spectral characteristics and spatial texture; 2) SAMSTS 624 
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performed the classification task on derived segmented objects while our classification was 625 

performed on a pixel level, which makes our method more accurate as there were often more than 626 

one land cover types within a segmented object. Our cross-model comparisons (Figs. 4, 6, and 8) 627 

also demonstrate that our method is superior to SAMSTS for gap-filling PlanetScope image time 628 

series across all sites, seasons, data gap sizes, and land cover change scenarios. This study thus 629 

represents a new attempt at using the object-class integration approach to effectively recover big 630 

data gaps in high spatial-resolution satellite images. 631 

Second, to minimize the gap-filling uncertainty associated with rapid land cover changes, OCBGF 632 

adopts a scenario-specific gap-filling approach. With a 3-m spatial resolution, PlanetScope is able 633 

to detect finer-scale changes, including rapid changes in land cover and land use types, than 634 

traditional satellites (Cheng et al., 2020; Rao et al., 2021; Rasanen and Virtanen, 2019). However, 635 

these fine-scale rapid changes also present a challenge due to the difficulty of identifying valid 636 

pixels in heterogeneous landscapes suitable for gap-filling. To address this challenge, the selection 637 

of the closest and clearest reference images has been increasingly recognized as an essential step 638 

to gap-fill areas with rapid land cover changes (Cao et al., 2020). However, two issues remain in 639 

the existing methods that rely on either single-reference-image or multiple-reference-image. First, 640 

existing gap-filling methods often require one or more cloud-free reference images for the whole 641 

image or cloud patch acquired close to the target image to aid gap-filling (Chen et al., 2011; Zhu 642 

et al., 2012a), resulting in an extended temporal distance to the target image and consequently 643 

introducing more uncertainty during gap-filling. Second, some of these methods commonly select 644 

the reference images based on their spectral similarities with the target image on the scale of a 645 

whole image or cloud patch, without considering the potential diverse land cover types underneath 646 

the target cloud patch (Chen et al., 2017; Lin et al., 2013). To address these two issues, we also 647 

turned to the reference image(s) but focused on the scale of each object-class, through which the 648 

diversity in temporal changing patterns associated with different object-classes, even within the 649 

same cloud patch, is accounted for. Meanwhile, our approach also minimized the temporal distance 650 

between the reference image(s) and the target image, as the reference image(s) were now selected 651 

at the object-class scale, which is much smaller than the scale of a whole image or cloud patch and 652 

facilitates the search of the temporally nearest reference image(s). Additionally, to account for 653 

rapid land cover changes, we adopted an extra step to first use a fixed threshold (Figs. S4 and S5) 654 

to determine the scenarios with/without rapid cover changes for each target object-class, and then 655 
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adopted the scenario-specific gap-filling procedure, through which we aimed to further minimize 656 

the gap-filling uncertainty associated with rapid land cover changes. Such a scenario-specific 657 

approach integrating two different scenarios also generates consistently higher accuracies across 658 

all four sites than independent scenarios (Fig. S4), demonstrating the effectiveness of including 659 

this approach in OCBGF for gap-filling. As landscape heterogeneity is a common feature for high 660 

spatial resolution satellite imagery and is becoming more common with increasing anthropogenic 661 

activities, our successful implementation of OCBGF with higher accuracies than NSPI, ARRC, 662 

and SAMSTS (Figs. 7 and 8) highlights the potential to extend this approach to other high spatial-663 

resolution satellite images in the future.  664 

Our study also identifies three important next steps that need to be considered for future advances. 665 

First, we observed that there remained some errors in OCBGF for gap-filling areas experiencing 666 

rapid fine-scale changes with varying degrees of inconsistency in temporal changing patterns when 667 

compared with valid pixels of the same or the nearest object-class (Fig. 9g). This is likely because 668 

OCBGF gap-filled each target object-class with missing pixels by assuming that valid pixels of 669 

the same or the nearest object-class tend to have similar temporal changing patterns to the missing 670 

pixels, which would not work if the temporal changing patterns are inconsistent (Fig. 9g). A 671 

potential way of solving this issue is by using deep learning based approaches, as several recent 672 

studies have shown that they are effective at recognizing subtle patterns and characterizing 673 

nonlinear relationships between the missing and valid pixels in time-series imagery (Li et al., 2019; 674 

Zhang et al., 2020; Zi et al., 2021). Second, although OCBGF has demonstrated a higher accuracy 675 

than the other three methods at the high-rainfall BCI-forest site (Figs. 4 and 8), it may encounter 676 

challenges with extremely low availability of valid observations, such as in certain 677 

tropical/subtropical areas which are subjected to persistent cloud cover at the month-to-year scale 678 

(Wang et al., 2020, 2021). To investigate such impacts, we examined the sensitivity of OCBGF 679 

on the frequency of low percent valid data (e.g. < 10%) and the time interval of clear-sky 680 

observations, respectively. Our results in Fig. S11 demonstrated that the model accuracy is stable 681 

when the low percent valid data frequency is not more than 30% and then decreases afterward.  682 

Meanwhile, we also observed that OCBGF yields stable model accuracies when the average time 683 

interval of clear-sky observations is not more than 19 days and accuracy decreased linearly 684 

afterward (Fig. S12). This high sensitivity to the frequency of valid observations is likely because 685 

OCBGF relies on time-series images temporally adjacent to the target image for gap-filling, and 686 



25 
 

low valid data availability might lead to insufficient or no valid pixels to build models to capture 687 

temporal changing patterns. We thus recommend using as many as available time-series images as 688 

input to increase the valid-observation frequency. As for certain tropical/subtropical areas with 689 

extremely low valid data availability, we recommend fusing optical PlanetScope with synthetic 690 

aperture radar (SAR) data (Huang et al., 2015; Li et al., 2020b; Meraner et al., 2020; Pipia et al., 691 

2019) that are unaffected by cloud interference, which could be an important next step in the future. 692 

Third, although all the data used in this study came from the PS2 sensor type, there are more and 693 

more sensor types available in PlanetScope constellation, and the inconsistent radiometric 694 

calibration across sensor types could also introduce uncertainties into the gap-filling results. To 695 

investigate such impacts, we used the data in the year 2020 from the Iowa-cropland site that are 696 

mixed with three different sensor types (PS2, PS2.SD, and PSB.SD) as an example, and addressed 697 

the cross-sensor radiometric inconsistency issue using a cross-calibration approach developed 698 

specifically for the PlanetScope constellation (Wang et al., 2020). Using the gap-filling results 699 

from the calibrated PlanetScope as benchmarks, our results (Fig. S13) show that the raw and 700 

calibrated gap-filled results are almost identical. These suggest that cross-sensor radiometric 701 

inconsistency may only cause very minor differences in the gap-filling results, but a more 702 

comprehensive assessment is still needed.       703 

6. Conclusions 704 

Here, we developed a new object and class based gap-filling (OCBGF) method for automatic gap-705 

filling of missing pixels in PlanetScope time-series images. This method integrates object 706 

segmentation and classification for automatic identification of those spectrally and spatially similar 707 

pixels, and uses a scenario-specific gap-filling procedure to recover missing pixels for each target 708 

object-class in the image time series. The accuracy of OCBGF was evaluated at four contrasting 709 

study sites spanning large gradients in land cover types (plantation, cropland, urban, and forest; all 710 

excluding water bodies), spatial heterogeneity, annual precipitation, and percent data missing. 711 

Relative to three other state-of-the-art gap-filling methods, NSPI, ARRC, and SAMSTS, OCBGF 712 

obtained the highest accuracy regardless of simulation tests covering various gap sizes and rapid 713 

land cover changes, and also achieved better performances for gap-filling cloud/cloud shadow-714 

induced data gaps in real-world practices. With these assessments, our results suggest that OCBGF 715 

is an accurate and robust approach for gap-filling PlanetScope time-series images, and has 716 
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potential to be extended to other high spatial resolution satellites, e.g. Gaofen-1, Skysat, and 717 

SPOT-7 (Gaofen-1, 2020; SkySat, 2020; SPOT-7, 2020), in the future attempts.  718 
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1

Figure 1. Study sites. (a) locations (the yellow stars), (b) false color composites (RGB=NIR-Red-Green) 1
of PlanetScope images, and (c) percent data missing of PlanetScope time-series images of the four testing 2
sites (i.e. S1-S4; spatial extent: 20km×20km, temporal coverage: January-December, 2018), including 3
Euc-plantation, Iowa-cropland, Beijing-urban, and Barro Colorado Island (BCI)-forest. The map in panel 4
(a) is adapted from National Geographic, ESRI. The percent data missing in panel (c) is derived from5
STI-ACSS method (Wang et al., 2021).6

7



2

Figure 2. Flowchart of the four key tasks of the object and class based gap-filling (OCBGF) method. Task8
1: pixel-level quality control; Task 2: object segmentation and classification; Task 3: gap-filling with two 9
scenarios: single-reference-image and two-reference-images scenarios; Task 4: post-image-processing.10

11
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13
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Figure 3. Cross-method comparison of gap-filled results across seven gap size categories (Table 2) at four 14
sites using original images as benchmarks. The results of cross-method comparison include four-band 15
average values of three indices: the root mean square error (RMSE), the correlation coefficient (CC), and 16
the structure similarity index (SSIM) across all four sites. The four methods examined here include17
Neighborhood Similar Pixel Interpolator (NSPI), AutoRegression to Remove Clouds (ARRC), Spectral-18
Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS), and OCBGF.19

20
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Figure 4. Cross-method comparison of all seven gap size categories across four sites using original images 21 
as benchmarks. Three metrics were used for the cross-method comparison, including RMSE, CC, and SSIM. 22 
The four methods examined here include NSPI, ARRC, SAMSTS, and OCBGF. 23 

 24 
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Figure 5. Assessing the effect of different gap sizes (Table 2) on the gap-filled results derived from NSPI, 25
ARRC, SAMSTS, and OCBGF methods using original images as benchmarks. False color composites26
(RGB=NIR-Red-Green) of selected PlanetScope images and corresponding magnified areas (yellow 27
squares in the first column) of gap-filling results using NSPI, ARRC, SAMSTS, and OCBGF are shown 28
below. Blue circles highlight blocking (a, b, and d) and strip artifacts (c and e) in gap-filled results of NSPI, 29
magenta circles highlight salt-and-pepper noises in gap-filled results of ARRC, and yellow circles highlight 30
blocking artifacts (i) and errors (j and k) in gap-filled results of SAMSTS.31

32
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Figure 6. Cross-method comparison of gap-filled results across six gap percentage categories (a) at the 33
Euc-plantation and Iowa-cropland sites using original images (the same as Fig. 5) as benchmarks. These 34
categories have a circle shape with a radius (R) ranging from 500 to 3000 (pixels) with an interval of 500 35
(pixels), resulting in a percent data missing of 2%, 7%, 16%, 28%, 44%, and 64%, respectively. The results 36
of cross-method comparison include category-specific accuracy (b) and average accuracy of all six 37
categories (c) across the two sites. Three metrics were used for the cross-method comparison, including 38
RMSE, CC, and SSIM. The four methods examined here include NSPI, ARRC, SAMSTS, and OCBGF 39
methods.40

41
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Figure 7. Cross-method comparison of gap-filled results across areas with land cover changes in different 43
seasons at four sites using original images as benchmarks. The results of cross-method comparison include 44
four-band average values of three indices: RMSE, CC, and SSIM across all four sites. The four methods 45
examined here include NSPI, ARRC, SAMSTS, and OCBGF.46

47
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Figure 8. Cross-method comparison of all areas with land cover changes across four sites using original 48 
images as benchmarks. Three metrics were used for the cross-method comparison, including RMSE, CC, 49 
and SSIM. The four methods examined here include NSPI, ARRC, SAMSTS, and OCBGF.  50 
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Figure 9. Assessing the effect of various land cover changes on the gap-filled results derived from NSPI, 52
ARRC, SAMSTS, and OCBGF methods using original images as benchmarks. Eight representative land 53
cover types from selected images of the four sites were used. False color composites (RGB=NIR-Red-54
Green) of selected PlanetScope images (including the date before the target date, the target date (the red 55
frame), and the date after the target date in the first, second, and third column, respectively) and 56
corresponding gap-filling results on the target date (red frame) using NSPI, ARRC, SAMSTS, and OCBGF57
are shown. Yellow circles highlight the areas experiencing various land cover change scenarios, with (i.e. 58
b, h, and i) and without rapid land cover change (i.e. a, c, d, e, f, and g) over time.59

60
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Figure 10. Assessing the performance of gap-filling methods on four real cloud-contaminated images61
(target image, the second column) at all four sites. Four methods, NSPI, ARRC, SAMSTS, and OCBGF, 62
are examined here. A (nearly) cloud-free image (the first column) close in time to the target image is used 63
as the reference. The cloud masks of target images (the third column) are derived from STI-ACSS method 64
(Wang et al., 2021). 65

66
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Table 1. Detailed information of the four testing sites, i.e. Euc-plantation, Iowa-cropland, Beijing-urban, 68 
and BCI-forest sites, including the location, precipitation, dry season period (< 100 mm of monthly 69 
precipitation), spatial coverage, temporal coverage, and the number of accessed PlanetScope images. The 70 
precipitation data is assessed from the Tropical Rainfall Measuring Mission (TRMM) data from 2000 to 71 
2019. 72 

 73 

Site Location Precipitation 
(mm yr-1) 

Dry 
season 
period 

Spatial 
coverage 

(km2) 

Temporal 
coverage 

Number of 
accessed 

PlanetScope 
images 

Euc-
plantation 

22°58’S, 
48°44’W 1488 Apr-Sep 

20×20 Jan-Dec, 
2018 

129 

Iowa-
cropland 

42°20’N, 
92°57’W 1043 NA 52 

Beijing-
urban 

40°01’N, 
116°29’E 492 NA 39 

BCI-forest 9°06’N, 
79°50’W 2052 Jan- Apr 51 

  74 
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Table 2. The number of pixels within each of the seven gap size categories over the four study sites. 75 

Gap size category Euc-plantation Iowa-cropland Beijing-urban BCI-forest 

#1 12,798 43,563 37,565 47,504 

#2 27,131 72,346 85,952 78,936 

#3 57,988 140,179 169,222 158,086 

#4 114,959 181,624 307,798 214,020 

#5 251,583 286,482 537,434 381,917 

#6 544,319 443,563 815,649 744,642 

#7 938,344 937,216 1,101,519 918,274 

 76 
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Table 3. Accuracy assessments (mean and standard deviation) across all seven gap size categories and all 78 
four sites using original images as benchmarks. RMSE, CC, and SSIM are used to evaluate the accuracy of 79 
gap-filling results respectively derived from NSPI, ARRC, SAMSTS, and OCBGF. 80 

Method 
NSPI ARRC SAMSTS OCBGF 

Mean SD Mean SD Mean SD Mean SD 

RMSE 0.0113 0.0058 0.0092 0.0056 0.0090 0.0041 0.0065 0.0027 

CC 0.87 0.15 0.89 0.13 0.90 0.11 0.95 0.06 

SSIM 0.86 0.16 0.89 0.14 0.89 0.11 0.94 0.06 

 81 

 82 
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Table 4. Accuracy assessments (mean and standard deviation) across all the areas with land cover changes 84 
and all four sites using original images as benchmarks. RMSE, CC, and SSIM are used to evaluate the 85 
accuracy of gap-filling results respectively derived from NSPI, ARRC, SAMSTS, and OCBGF. 86 

Method 
NSPI ARRC SAMSTS OCBGF 

Mean SD Mean SD Mean SD Mean SD 

RMSE 0.0120 0.0035 0.0119 0.0034 0.112 0.0040 0.0082 0.0023 

CC 0.89 0.055 0.88 0.094 0.90 0.087 0.95 0.031 

SSIM 0.89 0.055 0.88  0.098 0.90 0.094 0.94 0.035 

 87 

 88 

  89 



15

Figure S1. Example demonstration of the spatial heterogeneity of land cover in nature, including the 90
original image (November 27, 2018 at the Iowa-cropland site), segmentation map, and classification map. 91
The red squares highlight the situation of multiple objects within the same class and the magenta squares 92
highlight multiple classes within the same object.93
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Figure S2. Example demonstration of how the composited cloud-free time series is generated for the 95
automatic object segmentation and classification, which represents Step 1 of Task 2 as shown in Fig. 2.96
is automatically determined by searching the clearest images (n=2) from each 5-image group before/after97
the target image .98

99

100
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Figure S3 Sensitivity analysis for determining the optimal range of the class number (K) using the Iowa-101 
cropland site as an example. Specifically, the five different K ranges were set, including 1-5, 3-8, 5-10, 7-102 
12, and 10-15. We used seven testing images acquired on the same dates as Fig. 7 and masked out areas 103 
using the simulated mask with a percent data missing of 64% as shown in Fig. 6a. 104 

 105 
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Figure S4. Sensitivity analysis for determining the optimal threshold value that helps best separate the two106
gap-filling scenarios as shown in Task 3 of Fig. 2. Specifically, the threshold value was set to vary from 107
0.65 to 0.95, and accuracies were assessed respectively on a site basis (color lines) and across all sites (grey 108
color line). And the two independent scenarios (i.e. S1 and S2 shown in shading areas) were also separately 109
tested. Three metrics for accuracy assessments include RMSE, CC, and SSIM. The data used for this test 110
is the same as the data shown in Fig. 7 in the main text. 111

112
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Figure S5. Comparison of gap-filled results across all sites using a fixed (i.e. 0.8) and site-specific 113 
optimal threshold value. The overall accuracy is very comparable across three metrics, including RMSE 114 
(0.0082 vs. 0.0081), CC (0.94 vs. 0.95), and SSIM (0.94 vs. 0.94). 115 
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Figure S6. Example demonstrating the effectiveness of the post-image-processing (Task 4; Fig. 2). The 117
original image (a) and the gap-filled results derived before (b) and after applying the guided filter (c) on 118
November 14, 2018 at the Iowa-cropland site are shown in the upper panel. The corresponding magnified 119
areas in the red squares of the upper panel are shown in the lower panel.120

121
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Figure S7. Results assessing the accuracy of gap-filled results derived before and after applying the guided 123 
filter, using the Iowa-cropland site as an example. All seven testing images covering areas with land cover 124 
changes and across different seasons in 2018 were used here. 125 
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Figure S8. Assessing the effect of different gap sizes (Table 2) on the gap-filled results derived from 127
NSPI, ARRC, SAMSTS, and OCBGF methods using original images as benchmarks. False color 128
composites (RGB=NIR-Red-Green) of selected PlanetScope images and corresponding gap-filling results 129
using NSPI, ARRC, SAMSTS, and OCBGF are shown below. Yellow squares are magnified areas shown 130
in Fig. 5 in the main text.131

132
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Figure S9. An example demonstration of whether gap-filled PlanetScope time series could boost the patch133
scale (12m×12m) leaf phenology monitoring in a 50-ha plot of a moist forest landscape at the BCI-forest 134
site. (a) True color composites (RGB=Red-Green-Blue) of drone time-series images (n=8; Araujo et al., 135
2021), (b) false color composites (RGB=NIR-Red-Green) of original PlanetScope (PS) time-series images136
(n=51) with masked clouds/cloud shadows (black areas), and (c) gap-filled PS time-series images using 137
OCBGF. Yellow squares are three representative patches that are affected by serious cloud contaminations. 138
(d) Seasonal variability in patch-scale leaf abundance (gray) derived from the BCI drone images (Park et 139
al. 2019), and enhanced vegetation index (EVI) derived respectively from original (pink) and gap-filled 140
(blue) PS. (e) The histogram and probability distribution function (PDF) of the correlation coefficients (CCs) 141
between the drone-derived leaf abundance seasonality and the two versions of EVI seasonality derived 142
respectively from original and gap-filled PS time-series images, across all patches. The considerably higher 143
average CCs value of gap-filled PS suggests that gap-filled PS could better track leaf phenology at this site 144
compared with drone image time series.145

146
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Figure S10. Effectiveness assessments on the three approaches (i.e. object alone, class alone, object-class) 148 
for gap-filling at Euc-plantation and Iowa-cropland sites, with three accuracy metrics of RMSE, CC, and 149 
SSIM.   150 
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Figure S11. Sensitivity analysis on examining the effect of the frequency of low percent valid data (LPVD; 152 
with percent valid data less than 10%) on the gap-filled results, using the Euc-plantation site as an example. 153 
The image acquired on September 10, 2018 (the same as the first image in Fig. 5) was selected as the target 154 
image for gap-filling, and nine temporally-adjacent images (i.e. five before and four after) were selected 155 
from the whole image time series. The sensitivity analysis was performed in the six cases with the frequency 156 
of LPVD ranging from 0% to 50% with an interval of 10%. 157 
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Figure S12. Sensitivity analysis on examining the effect of clear-sky observation frequency on the OCBGF 159 
gap-filled results, using the Iowa-cropland site as an example. A total of 35 clear-sky images in 2018 were 160 
identified, and the middle (acquired on July 02, 2018) of this time series was selected for gap-filling. The 161 
sensitivity analysis was performed in the following 7 cases, which respectively selected once every N 162 
images throughout the entire image time series, where N=1, 2, 3, 4, 6, 8, and 16, resulting in an average 163 
time interval of 10, 19, 27, 36, 54, 73, and 146 days, respectively. Our results show that the gap-filled 164 
accuracies remain high when the average time interval is less than 19 days, but rapidly decrease afterward 165 
with a reduction in clear-sky observation frequency.  166 
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