1	Airborne transmission of exhaled pollutants during short-term		
2	events: quantitatively assessing inhalation monitor points		
3	Xiujie Li ^a , Cheuk Ming Mak ^{a*} , Zhengtao Ai ^{b, c} , Hai Ming Wong ^d		
4	a Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong		
5	Kong, China		
6	b Department of Civil Engineering, Hunan University, Changsha, China		
7	c National Center for International Research Collaboration in Building Safety and Environment, Hunan University		
8	Changsha, China		
9	d Faculty of Dentistry, The University of Hong Kong, Hong Kong, China		
10	*Corresponding author. Email address: cheuk-ming.mak@polyu.edu.hk		
11			
12	Abstract:		
13	The infection risk assessment associated with the contaminant inhalation can provide a		
14	scientific basis for formulating mitigation measures. Previous studies on the breathing		
15	zone are primarily based on the assumption of the steady formation and homogeneous		
16	property, while it might not be applicable for short-term events. Large-eddy simulation		
17	(LES) is employed in the present study, as well as two computational thermal manikins		
18	with detailed facial features and transient breathing conditions. Exposure risks in eight		
19	commonly used monitor points are compared in short-term events and under steady-		
20	state conditions. Three representative physical distances between room occupants are		
21	investigated, namely 0.35 m, 1.0 m, and 1.5 m. Based on the statistical difference in the		
22	contaminant distribution at a short physical distance, the breathing zone could be		
23	identified from the time-averaged concentration field. The results highlight that the		
24	previously defined breathing zone ignores unsteady airflow characteristics,		

significantly impacting the exposure risk estimation in short-term events. Owing to the substantial temporal variation of the contaminant in the identified breathing zone, the instant exposure risk analysis in short-term events should consider its turbulence intensity and concentration fluctuation characteristic. Overall, instead of using the identified breathing zone. Point_A, Point_B, and Point_C should be employed to evaluate infection risk in short-term events. The localized method with direct interference on the respiratory airflow should be recommended in short-term events.

32 Keywords: Airborne transmission; LES turbulence model; Short-term events;
33 Breathing zone; Exposure risk.

34

35 **1. Introduction**

36 The COVID-19 pandemic rising from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) has ravaged the world since 2020. According to the WHO 37 weekly report, as of April 3rd, 489 million and 6.1 million get infection and death, 38 39 respectively [1]. The economic development and the provision of medical measures have been severely affected [2]. Recently, much more attention has been attracted to 40 41 the human infection risk analysis associated with contaminant inhalation and the breathing zone [3-5]. The virus-laden aerosols and droplets generated during human 42 respiratory activities (like breathing, speaking, and coughing) could be the potential 43 transmission routes [6, 7]. The small particles could remain suspended in the air for 44 45 prolonged periods and may be inhaled into the susceptible human respiratory tract [8]. Several precautionary measures have been proposed to prevent and control cross-46

transmission, like keeping social distance, wearing surgical masks, and frequent hand 47 washing. To provide evidence for the social distancing, plenty of numerical [9-12] and 48 49 experimental studies [13-15] have been conducted to investigate the transmission of exhaled viruses. Liu et al. numerically evaluated the effect of social distances on the 50 51 cross-transmission risk and found the threshold distance of 1.0 - 1.5 m for short-range and long-range airborne routes [16]. During the COVID-19 crisis, the social distance 52 of 1.5 m has been widely adopted [17]. However, some studies pointed out that 53 environmental factors like humidity and ventilation could affect the transmission 54 55 distance [18-20]. Given that airborne transmission is relatively more complicated in mechanisms and mitigation measures, the understanding of the airborne transmission 56 routes of SARS-CoV-2 is far from sufficient. 57

58

Traditionally, the "breathing zone" is vaguely defined as the region near the human's 59 mouth and nose (the radius is around 15 cm) [21]. However, applying the detailed 60 61 breathing zone in practice seems difficult in the human exposure risk assessment due 62 to the strong airflow interaction in a multi-person interior environment. Besides, considering the uneven distribution of virus-laden particles in the breathing zone, 63 simply treating it as a whole zone may under-/over-estimate the contaminant inhaled 64 by the susceptible subjects. How to select appropriate monitor points in different 65 scenarios is still not well investigated, especially when the inhaled contaminant cannot 66 67 be measured. The employment of only one monitor point within the proposed breathing zone is still common. For example, Al Assaad D et al. [22] evaluated the contaminant 68

69	concentration in the breathing zone by sampling at 0.15 m below the mouth, as the
70	thermal plume could carry the contaminant to the breathing zone. Otmar Geiss [23]
71	measured the carbon dioxide (CO_2) concentration in the breathing zone when wearing
72	face masks, and the sampling point was just above the nose tip on the bridge of the nose.
73	Donghyun Rim et al. [24] recorded the inhaled virus concentration by the sampling
74	point in front of the mouth at a distance of 0.05 m. Kierat et al. [5] experimentally
75	evaluated the performance of the sampler locations and the sampling methods but only
76	focused on the scenario of one person. Whereas the airflow collision in a multi-person
77	interior environment could further affect the contaminant distribution. In addition,
78	many previous studies did not point out the unequivocal location of the sampling point
79	[25-27]. Recently, Kuga et al. [4] quantitatively studied the breathing zone based on the
80	assumption of its steady formation. However, in practice, the formation of the breathing
81	zone should be treated as unsteady, especially for short-term events [28]. Overall, the
82	aforementioned simplifications about the steady formation and homogenous property
83	in the breathing zone could lead to the discrepancy in human exposure risk assessment.
84	

With the development of computational resources, numerical simulations have been extensively employed to investigate pollutant transmission and airflow patterns. However, there still are some simplifications on the computational thermal manikins, like the complex geometry, transient breathing cycle, and body movement. Although it has been recognized that facial features can affect the flow field and the contaminant distribution [29-31], plenty of numerical simulations have been conducted without

considering the facial effect owing to the model complexity and extensive 91 computational resources [32, 33]. Anthony et al. [29] experimentally found that the 92 93 facial features could affect the flow field (20 mm) near the mannequin's face, but without considering the thermal plume. Also, Li et al. [30] numerically investigated the 94 95 breathing airflow velocity and proved that the facial features could result in the nonuniform velocity profiles at the nostril openings. More recently, Yan et al. [31] evaluated 96 the effect of the manikin simplification on the thermal plume and pointed out that the 97 surface smoothed model (without facial features) could induce considerable global 98 99 error on the contaminant transport. Besides, the simplified breathing cycle only with "steady inhalation" could not reproduce the real situation. It may overestimate the scope 100 of the breathing zone [34-36]. The aforementioned simplifications on the facial features 101 102 and the transient breathing cycle could considerably affect the contaminant distribution and further impact the simulation accuracy. As a result, future computational fluid 103 dynamic (CFD) simulations should consider the complex geometry of the human body 104 105 and the transient breathing cycle, including both inhalation and exhalation.

106

107 Numerous short-term exposure events have been reported in public spaces, especially 108 during the ongoing COVID-19 pandemic. The cross-transmission induced by the Delta 109 variant of SARS-CoV-2 is reported to occur in tens of seconds [37, 38]. The clustered 110 outbreaks highlight the importance of evaluating the instant exposure risks of 111 susceptible subjects. However, many previous studies are limited in the contaminant 112 transmission under steady-state conditions. The two-equation Reynolds-averaged

Navier-Stokes (RANs) turbulence models are extensively employed in different 113 scenarios, like hospital rooms [39, 40], vehicles [41], and even different building floors 114 [42, 43]. The short-term events in the present study refer to the building-up background 115 concentration, which indicates the infected subject has just entered the space. 116 117 Considering the turbulent nature of the human thermal plume and the breathing airflow, the fluctuation characteristics of the airflow could significantly affect the contaminant 118 distribution in the breathing zone. Besides, the characteristics of airborne transmission 119 120 in short-term events and under steady-state conditions are considerably distinctive [15]. 121 Ai et al. [28] experimentally found that the instant exposure risk in short-term events constantly varies over time. The instant exposure risk might not always increase with 122 time. Considering the low-resolution characteristics of the aforementioned 123 124 experimental study, it is necessary to explore the fluctuation of instant exposure risk in short-term events by the CFD analysis. Hence, the formation of the breathing zone and 125 126 instant exposure risk assessment associated with the contaminant inhalation should be 127 properly evaluated, especially for short-term events. Given that the Direct Numerical Simulation (DNS) requires significant computer resources, the Large Eddy Simulation 128 (LES) is more suitable for evaluating the instantaneous contaminant distribution in 129 turbulent airflow. 130

131

The objective of the present study is to analyze the breathing zone characteristics in short-term events and under steady-state conditions. The LES turbulence model is employed to predict the airborne transmission, and two computational thermal

manikins with detailed facial features and transient breathing conditions are considered. 135 The breathing zone would be identified from the time-averaged concentration field by 136 137 comparing the monitor points and inhalation. In addition, the predicted exposure risk in short-term events, steady-state conditions, and three representative distances would 138 139 then be investigated. The inhalation monitor points in the identified breathing zone would be compared under different conditions. The obtained results of the present study 140 could help to select the proper monitor points and develop mitigation measures for 141 142 short-term events.

143

144 **2. Methods**

145 **2.1 Model description**

146 As presented in Fig. 1, the computational domain is constructed to represent the office room with the dimension of 4.7 m length x 4.4 m width x 2.7 m height. Two 147 computational thermal manikins (CTMs) are placed in the central plane of the room 148 and kept with the face-to-face posture. The three representative physical distances of 149 0.35 m, 1.0 m, and 1.5 m between two CTMs are examined. The CTM A and B represent 150 the infected and susceptible subjects, respectively. The breathing model of the two 151 CTMs is assumed to be mouth exhalation and nose inhalation for the infected subject 152 and mouth inhalation and nose exhalation for the susceptible one. The breathing model 153 is synchronized in the simulation, and the aforementioned breathing combination is 154 considered the most prone to cross-infection [35]. The pulmonary ventilation rate is 155 defined as 6.0 L/min, with respiratory rates ten times/min [44]. The geometry of the 156

CTM presented in Fig. 2 indicates the average-size woman with detailed facial features. 157 Mixing ventilation is adopted in the office room, with the air supply and exhaust in the 158 159 middle and corner of the ceiling. Besides, the room is in 6 air changes per hour (ACH) and maintained at 24 °C to meet the thermal comfort of the human body. The domain 160 161 is large enough that the surrounding room walls will not impact the flow field near the 162 human body. The previous experimental studies focusing on short-term events were conducted in a full-scale test room with three ventilation types. Two breathing thermal 163 manikins were placed in the chamber with different standing positions and physical 164 165 distances. The tracer gas concentration was monitored by the instruments, including a Fast Concentration Meter and an INNOVA Multi-gas Sampler and Monitor, to evaluate 166 the transient exposure indexes. The experimental study examined the dynamic 167 168 characteristics of short-term events, and a detailed description of the apparatus and experimental procedures could be found in the previous article [28]. 169

171 Fig. 1 The computational domain representing two computational thermal manikins

(CTMs) in the office room with mixing ventilation.

Fig. 2 the CTM employed in this study with detailed facial features (units: cm) and
the monitor points in the breathing zone.

176

172

Owing to the difficulty of applying the detailed breathing zone to evaluate exposure risk in practice, eight widely-used monitor points are placed near the mouth and nose of CTMs (detailed location data in Table 1). The monitor points are selected based on previous studies [4, 5, 22, 23, 45]. In addition to comparing contaminant concentrations, the turbulence intensity and concentration fluctuation characteristics are also compared in short-term events and under steady-state conditions.

184Table 1 The location of the monitor points in the breathing zone of the susceptible

subject.

185

Location	Description
Point_A	At the center of the lips
Point_Az	At 0.15 m below the mouth [22]
Point_Ay	At 0.15 m ahead of the mouth (left limit of traditional breathing zone)
Point_B	At the left corner of the mouth [4]
Point_C	At the center between the chin and lower lip [5]
Point_D	At the center between the upper lip and nose [5]
Point_E	At the nose tip [23, 45]
Point_F	Close to the left eye (upper limit of traditional breathing zone)

187 2.2 Boundary condition

The ventilation supply diffuser is set as the velocity inlet (0.74 m/s), keeping the 188 temperature (23 °C). The ventilation exhaust is specified as a pressure outlet with zero-189 gauge pressure. The exhaust air temperature was set as 26 °C. The room wall is 190 adiabatic. The total heat power of each CTM is set as 80 W, where the proportion of 191 convective heat load is defined as 30%. Thus, a convective heat load of 24 W is 192 employed for the CTM, and the radiation is not considered in the present study. The 193 cross-sectional area of each nostril and mouth is 38.5 mm² and 158 mm², respectively 194 [46]. The angle of the jet's airflow from the nostrils is 45 degrees with the horizontal 195 plane and 30 degrees between the two jets [47]. The airflow direction from the mouth 196 is roughly horizontal. The breathing combination of the CTMs is assumed to be mouth 197 exhalation and nose inhalation for the infected subject and mouth inhalation and nose 198

199	exhalation for the susceptible one. Besides, the periodical sinusoidal breathing is
200	composed of 2.5 s inhalation, 2.5 s exhalation, and 1.0 s break [48, 49]. Given the
201	dynamic breathing boundary conditions of the CTMs, the User-defined function (UDF)
202	is employed to set the transient velocity profiles, with a constant outlet temperature of
203	34 °C. The function of the mouth and nose exhalation velocities against time is the sine
204	function, expressed as $V = 0.378 * sin (1.26t)$, $2.5 s < t < 5.0 s$, where V is the
205	volume flow rate, $L/s.t$ is time, s. The turbulence intensity of the exhaled airflow is
206	defined as 5%. The mass fraction of the N_2O in the infected subject's exhalation
207	airflow is assigned as 0.027, which is in line with that of CO_2 in the human exhalation
208	airflow [50].

210 Owing to the complex geometry of the human body and face, the unstructured grid with tetrahedral-shaped elements is employed. A refinement of 0.8 mm is adopted for the 211 mouth and nostrils to capture the airflow collision and contaminant distribution. The 212 maximum cell size of the face is limited to 10 times that of the mouth and nostrils [50], 213 and the maximum cell size of the body is maintained at four times the maximum cell 214 size of the face. The results present around 80,000 triangles on the CTMs' surface. To 215 provide better resolution of the airflow profiles in the boundary layer, five layers of the 216 prismatic cells are generated, and the dimensionless wall distance y+ is ensured to be 217 less than 1. 218

219

220 The 'PISO' algorithm is employed to solve the flow field, owing to its performance in

transient scenarios. The second-order upwind scheme discretizes all equations. The 221 transient formulation is resolved by the second-order implicit method. The performance 222 223 of different sub-grid scale models has been evaluated by Bazdidi-Tehrani et al. [51]. A slight difference (5%) between the wall-adapting local eddy-viscosity (WALE) model 224 225 and the standard Smagorinsky-Lilly model (SSLM) is found in predicting the time-226 averaged concentration field and concentration fluctuation. In addition, the SSLM has also been widely employed to study the flow pattern and contaminant transmission in 227 indoor and outdoor environments [52-54]. Therefore, airflow is simulated using the 228 229 LES turbulence model with the SSLM. Since the time step of 0.02 s for high-velocity coughing and talking has shared similar results as 0.001 s [55], the time step of 0.04 s 230 for transient respiration is employed in the present study. The employed time step could 231 232 ensure that the model captured the smallest chronological changes in the flow field without increasing computing costs. Since the present study focused on short-term 233 events under the building-up background concentration, the steady-state condition 234 235 refers to when the averaged airspeed and contaminant concentration in the ventilation exhaust reaches relatively stable [28]. Considering the large-eddy turnover time has 236 237 been employed as the convergence criteria [35], both the large-eddy turnover time and the stability of ventilation exhaust are combined to determine the solution convergence 238 in the present study. The solution convergence is treated to be satisfied when reaching 239 five eddy turnover times, and the residuals can reach 10^{-5} among cases in different 240 physical distances. The large-eddy turnover time is the characteristic timescale defined 241 as the largest scale of the computational domain (w) divided by the friction velocity 242

243 (v_0) [35]. In this study, the w = 4.7 m, and estimated v_0 could be obtained by 244 dividing the ventilation airflow rate by a half section of the domain.

245

246 2.3 Statistical method

To better understand the contaminant distribution in the breathing zone for short-term 247 events and steady-state conditions, the phase-averaged exposure index $\varepsilon_p(t)$ is 248 employed to reveal the concentration variations. The phase-averaged exposure index 249 $\varepsilon_p(t)$ is calculated from the arithmetic mean of concentration in the monitor points 250 251 during the inhalation phase. The exposure risk index has been extensively employed to indicate the relationship between ventilation and infection risk [56, 57]. Since the 252 aforementioned risk assessment model is limited to the steady-state condition, the 253 improved method proposed by Ai et al. [28] is adopted to evaluate the infection risk of 254 the susceptible subjects in short-term events (Eq. (1)). 255

256

$$\overline{\varepsilon_p(t)} = \frac{\overline{c_{in}(t)}}{\overline{c_{exhaust-steady}}}$$
(1)

where, $\overline{C_{in}(t)}$ refers to the arithmetic mean of concentration in the monitor points during the inhalation phase. $\overline{C_{exhaust-steady}}$ means the arithmetic mean of concentration in ventilation exhaust after a short-term exposure event has developed to the steady-state. The improved method could consider the high volatility characteristics of the inhaled contaminant.

262

Further analysis of the turbulence intensity (TI) and its concentration fluctuation characteristic could provide substantial insight into the breathing zone. The timeaveraged TI (Eq. (2)) and phase-averaged TI (Eq. (3)) are also employed to indicate the
fluctuation characteristics of velocities, as follows:

267
$$TI = u'_n / \overline{u_n}$$
(2)

(3)

268
$$TI_{phase} = u'_{in}/\overline{u_{in}}$$

where the u'_n refers to the standard deviation of the velocity in the monitor point n; $\overline{u_n}$ is the mean velocity. u'_{in} and $\overline{u_{in}}$ refer to the standard deviation and arithmetic mean of the velocity in the monitor points during the inhalation phase, respectively.

272

273 **3 Results and discussion**

274 **3.1 Validation study**

To verify the accuracy of the LES turbulence model, the velocity distribution around 275 276 the standing manikin is employed to make the comparison. The particle image velocimetry (PIV) experiment conducted by Licina et al. [58] aimed to investigate the 277 human convective boundary layer in a quiescent environment. Compared with a hot-278 279 wire anemometer, the PIV, without interfering with the flow field, has been widely used to visualize the flow and measure the instantaneous velocity [59]. The maximum mean 280 velocity distribution at each height was measured close to the surface of the standing 281 manikin. The vertical velocity profile in the fifteen monitor points recorded in the case 282 of the standing manikin is employed to validate the numerical simulation. In Fig. 3 (a), 283 the continuous velocity profile of 61 s- 65 s in the LES turbulence model is averaged. 284 In addition, the RNG $k - \varepsilon$ model is also employed by keeping the same settings as 285 the LES turbulence model. The velocity magnitude counter at 65 s is extracted to 286

provide the supplementary figure of the LES turbulence model (in Fig. 3 (b)). Several 287 local high-velocity regions are successfully captured in the CFD simulation, such as in 288 289 front of the face and chest. Besides, the lower velocity at the height of the chin is accurately depicted, which is attributed to the head behaving like a physical obstacle. 290 291 Four statistical metrics are selected to quantify the accuracy of the LES turbulence model [60], namely the correlation coefficient (R), the fraction bias (FB), the 292 normalized mean square error (*NMSE*), and the fraction of predictions within a factor 293 of two of observation (FAC2). In this study, the four statistical performance metrics 294 are all within the recommended criteria: R = 0.973 (> 0.8), |FB| = 0.0015 (<295 0.3), NMSE = 0.011 (< 4), FAC2 = 1 (> 0.5). In comparison with the LES 296 turbulence model, the unsteady RANS approach just models the turbulence and 297 298 resolves only unsteady mean flow structures [61]. Since the present study focuses on short-term events, the contaminant fluctuation depends not only on the turbulence 299 intensity near the facial region but could also be affected by the turbulent energy 300 distribution among the eddies of different sizes. Therefore, it is critical to employ the 301 LES turbulence model to resolve the eddies of the turbulence itself. 302

303

Fig.3 Vertical velocity profile around CTM versus PIV experiment: a) velocity
 distribution with height; b) velocity magnitude counter at the moment of 65 s.

306

307 3.2 Flow field and contaminant distribution

308 The velocity distribution and airflow interaction between room occupants are presented in Fig. 4, along with the time in different rows (61.5 s, 63.0 s, 64.5 s, and 66.0 s) for 309 three representative physical distances (0.35 m, 1.0 m, and 1.5 m). The absence of phase 310 311 difference between the two breathing models means 61.5 s representing that both room 312 occupants are in the inhalation phase. The 63.0 s and 64.5 s refer to the different moments of the exhalation process, and 66.0 s is the break between breaths. Similar to 313 the previous study [62], the exhalation airflow is relatively stable initially, with a 314 315 mushroom shape, as shown in the 63 s in the figure. As the exhalation airflow develops (in Fig. 4, the 64.5 s), it gradually becomes chaotic, and a vortex appears on top of the 316 airflow. In comparison with the other two distances, strong airflow interaction is 317 318 observed at the physical distance of 0.35 m. Although the thermal plume can prevent the penetration of contaminants, the high-momentum airflow exhaled from the infected 319 320 subject's mouth still directly reaches the facial region of the susceptible one. Minor differences in the velocity distribution are found between the physical distances of 1.0 321 m and 1.5 m. 322

323

Fig. 4 Velocity distribution in the central plane in the time interval from 60 s to 66 s (10th breathing cycle). The columns refer to the three representative physical distances, namely 0.35 m, 1.0 m, and 1.5 m. The time in different rows refers to the different moments of the breathing phases (Note: the left CTM refers to the infected subject).

Fig. 5 compares the dimensionless mean contaminant concentration (C^+) in the central 330 plane with three representative physical distances. Since airborne contaminants could 331 332 be transmitted with the airflow, mushroom distribution of the concentration is also observed in the initial stage of the exhalation. Under the dilution effect of the thermal 333 plume and ambient air, the exhaled contaminant gradually begins to diffuse over time. 334 Although the contaminant concentration can be further diluted by the nasal exhalation 335 of the susceptible subject, most of the contaminant still reaches the facial region of the 336 susceptible person at the physical distance of 0.35 m. The distinction between direct 337

and indirect airborne transmission could be determined by the existence of direct 338 contaminant inhalation. Generally, when the infected and the susceptible subjects are 339 340 in close physical proximity, the exhalation airflow from the infected subject can penetrate the thermal plume and directly enter the facial region of the susceptible one. 341 342 causing the direct contaminant inhalation [16]. Since the inhaled concentration of the susceptible subject at the large physical distance would share with the background 343 concentration, the direct and indirect airborne transmission could be identified in the 344 range from 1.0 to 1.5 m, which is also reported in previous studies [16, 63]. Considering 345 346 the impact of the airflow collision on the inhaled contaminant, applying the detailed breathing zone in practice is quite difficult to evaluate human exposure risk. Overall, 347 the present study employs eight monitor points near the mouth and nose of CTMs, and 348 349 the selection of the monitor points is based on previous studies. The contaminant concentration sampled by the monitor points is compared with the inhalation both in 350 short-term events and under steady-state conditions. 351

Fig. 5 Distribution of the contaminant concentration (C^+) in different breathing phases with three representative physical distances: 0.35 m, 1.0 m, and 1.5 m (Note: the left CTM refers to the infected subject).

352

357 **3.3 Exposure risk assessment**

The real-time exposure index over time for three physical distances has been presented in Fig. 6, indicating the transient concentration fluctuation. The data is obtained from Point_A since there is no significant difference between Point_A and the inhalation (detailed analysis in Fig. 7 and Fig. 8). The first five minutes of data (gray shadow region) will be discarded from the present study. The averaged (standard deviation) real-time exposure indexes at the physical distance of 0.35 m, 1.0 m, 1.5 m are 1.13 (0.89), 0.96 (0.34), 0.93 (0.30), respectively. The large fluctuation of the real-time exposure index could be attributed to the transient tidal breathing and the airflow interaction in the breathing zone. The fluctuation of the real-time exposure index could also affect the changes in the phase-averaged exposure index. The fluctuation intensity is observed to decrease with the increase of physical distances.

Fig.6 The evolution of real-time exposure index over time at Point_A (discarding thegray shadow region)

372

Based on concentration data sampled by the eight monitor points and the inhalation, Fig. 7 compares the differences in phase-averaged exposure indexes between various short-term events and steady-state conditions (30 min). The differences in exposure indexes are also observed at three representative physical distances. At the physical distance of 0.35 m (see Fig.7 (a)), the exposure indexes obtained at Point_A and the inhalation are lower than the exposure indexes monitored in the nose tip and upper face

(at Point_D, Point_E, and Point_F). The difference is statistically significant (p < 0.05). 379 Although there is no statistical difference between the exposure indexes at Point A, 380 381 Point Az, Point B, Point C, and the inhalation, further analysis of the turbulence intensity and its concentration fluctuation characteristic will be conducted in the next 382 section. Unlike the condition of 0.35 m, the phase-averaged exposure indexes at the 383 physical distances of 1.0 m and 1.5 m (see Fig. 7 (b) and (c)) are quite similar. Since 384 the airborne contaminant cannot penetrate the thermal plume of the susceptible subjects, 385 the concentration monitored in the eight points is basically related to the background 386 387 contaminant concentration. Overall, the breathing zone should be identified by comparing the phase-averaged exposure indexes between the monitor points and the 388 inhalation at the physical distance of 0.35 m (the statistical difference, p < 0.05). The 389 390 volume of the breathing zone is in line with the tidal volume (detailed analysis in Section 4). In addition, the phase-averaged exposure indexes obtained at three 391 representative physical distances are observed to maintain the increasing pattern over 392 393 time. Considering that the first five minutes of data have been discarded from the present study, the aforementioned phenomenon is inconsistent with the previous 394 experimental study [28]. It might be accounted for by the randomness and discreteness 395 characteristics of short-term exposure at the beginning of the event. Therefore, 396 separating the airborne transmission routes and developing the targeted mitigation 397 measures based on their characteristics is critical. 398

402 Fig. 7 The exposure indexes from the eight monitor points and the inhalation in various
403 short-term events and steady-state (30 min) conditions: a) 0.35 m; b) 1.0 m; c) 1.5 m.

405	To compare the phase-averaged exposure indexes between the monitor points and the
406	inhalation, Fig. 8 presents the relative magnitude of their difference at the physical
407	distance of 0.35 m and 1.0 m. The positive value means the exposure index obtained in
408	the monitor point is larger than the inhalation. In Fig. 8 (a), at the physical distance of
409	0.35 m, Point_Ay, Point_D, Point_E, and Point_F significantly over-estimate the
410	exposure index in comparison with other monitor points. The aforementioned points,
411	located at the nose tip and upper face region, are not recommended for practical
412	measurement. Since the phase-averaged exposure indexes at the distances of 1.0 m and
413	1.5 m (see_Fig. 7 (b) and (c)) are pretty similar, the comparison at the physical distance
414	of 1.0 m is presented in Fig.8 (b). Compared with the distance of 0.35 m, the magnitude
415	of the difference becomes smaller with the increased distance. The exhalation airflow
416	cannot penetrate the micro-environment of the susceptible subject. The little fluctuation
417	might be contributed to the instability of the thermal plume [64]. Overall, if the study
418	only focuses on the time-average concentration field, the contaminant concentration
419	sampled by the four monitor points (Point_A, Point_Az, Point_B, and Point_C) could
420	represent the inhaled concentration of the susceptible subjects. Considering that various
421	infection cases have been reported in short-term events and close physical proximity, it
422	is necessary to analyze the concentration fluctuation characteristics and turbulence
423	intensity of the breathing zone.

428 monitor points and the inhalation, where positive means that the value obtained in the 429 monitor points is larger than the inhalation.

431 **3.4 Turbulence intensity and concentration fluctuation characteristic**

Owing to the turbulent nature of the human thermal plume and breathing airflow, the
airflow fluctuation could spatially and temporally affect the contaminant distribution
no matter whether in short-term events or under steady-state conditions. Notably, short-

term events investigated in the study only refer to the building-up background 435 concentration [28]. Compared with previously focused on the steady-state and 436 437 completely mixing conditions, the formation of the breathing zone should be treated as unsteady in short-term events. Therefore, further analysis of the TI and its concentration 438 fluctuation could provide substantial insight into the breathing zone. The time-averaged 439 TI and phase-averaged TI are employed to indicate the velocity fluctuation 440 characteristics in the monitor points. When calculating the TI, the reference velocity 441 differs among the monitor points, generally in the range of 0.02-0.62 m/s. The largest 442 443 reference velocity in Point_A is about 0.62 m/s. So, the velocity data in different monitor points are extracted to calculate their turbulence intensity separately. 444

445

446 In Fig. 9, the time-averaged TI and phase-averaged TI of eight monitor points are compared in short-term events (duration of 10 min). Due to periodical breathing, the TI 447 of monitor points in the facial region only changes slightly over different periods. 448 Therefore, the averaged TI is employed to present the comparison. It is observed that 449 the time-averaged TI and phase-averaged TI of eight monitor points are quite distinctive 450 in the facial region. The TI at the nose tip and upper face (like Point_D, Point_E, and 451 Point F) are generally higher than those near the oral cavity. In Fig. 9 (a), the maximum 452 time-averaged TI even reaches 220% at Point_D (center between the upper lip and nose) 453 in the physical distance of 0.35 m, which could be accounted for by the combined effect 454 455 of facial features and intense exhalation airflow collision. As for the distance of 1.0 m and 1.5 m, the maximum time-averaged TI in the breathing zone is around 70%. The 456

maximum phase-averaged TI is also found at the Point_D (see Fig. 9 (b)). Nevertheless, 457 the phase-averaged TI is substantially lower than the time-averaged value because the 458 459 calculation only focuses on the inhalation phase. Given the dynamic breathing conditions, the phase-averaged TI is more suitable for comparison. The phase-averaged 460 461 TI within the breathing zone is found to be roughly around 40%, which is similar to Cermak et al. [65] - 40%, Xia et al. [66] - 35%. In order to quantify the statistical TI 462 difference between the monitor points, the non-parametric tests (Mann–Whitney U tests) 463 are employed. The statistical difference (p < 0.05) between the eight monitor points is 464 465 observed. Considering the non-homogeneous characteristics of monitor points in the breathing zone, the identified breathing zone by comparing the time-average 466 concentration field is unsuitable for short-term events. Instead of using the identified 467 468 breathing zone, further evaluating concentration fluctuation characteristics can provide evidence for the appropriate monitor points. 469

471

473 Fig. 9 Time-averaged TI and phase-averaged TI comparison of eight monitor points in
474 short-term events (10 min): a) time-averaged TI; b) phase-averaged TI.

In order to further compare the concentration fluctuation characteristics of the monitor 476 477 points in the breathing zone, the standard deviation of the phase-averaged exposure indexes is employed. The data shown in Fig. 10 are presented on a logarithmic scale. A 478 large difference in exposure index fluctuation is found between the physical distances 479 of 0.35 m and 1.0/1.5 m. The strong airflow interaction and turbulent nature of the 480 human thermal plume could account for the phenomenon, resulting in a large 481 contaminant fluctuation over time. The contaminant fluctuation depends not only on 482 the turbulence intensity in the breathing zone, but it could also be affected by the 483 turbulent energy distribution among the eddies of different sizes. The Point_Az is 484 especially unsuitable for the instant exposure risk analysis since it cannot reflect the 485 contaminant fluctuation characteristics in the facial region. Overall, the analysis of 486 instant exposure risk in short-term events should consider its turbulence intensity and 487

488 concentration fluctuation characteristic. Point_A, Point_B, and Point_C can be 489 employed as the appropriate monitor points to evaluate the instant infection risk in 490 short-term events. Due to the large temporal variation of the contaminant concentration 491 in the identified breathing zone, short-term airborne transmission events are quite 492 possible to occur within short physical distances. The development of targeted 493 mitigation measures is critical.

494

496 Fig. 10 Concentration fluctuation of eight monitor points in 10-min short-term events
497 (represented by exposure index).

498

499 **4 Discussion**

500 Depending on the background concentration and physical distances, airborne 501 transmission can be divided into two categories and four combinations, namely, a) 502 building-up background concentration: short and long physical distance; b) steady-state 503 background concentration: short and long physical distance. Notably, plenty of previous

studies focused on steady-state exposure, but few studied short-term exposure events 504 [67]. The present study is restricted to the scenarios with building-up one, where the 505 506 infected subject has just entered the space. When two subjects are in close proximity, such as in the consultation of physicians, short meetings, offices, canteens, etc., the 507 508 formation of the breathing zone should be treated as unsteady in short-term events. The widely employed monitor points in the facial region could not be representative to 509 indicate the inhaled concentration. With the increase in physical distance, the indoor 510 ventilation airflow could affect the cross-transmission risk. The distance of 1.0 m and 511 512 1.5 m, acting as the threshold distance for the direct and indirect airborne transmission [16], can also be employed to determine the formation characteristics of the breathing 513 zone. Overall, if the domain airflow is the respiratory airflow (less than 1.0 m in the 514 515 present study), the formation of the breathing zone should be treated as unsteady. In addition, the present study focuses on the scenarios of building-up background 516 concentration. Before reaching the steady-state, the infection events should be treated 517 as short-term events, and the unsteady nature of the breathing zone should be 518 considered. The steady-state condition in short-term events refers to when the averaged 519 airspeed and contaminant concentration in the ventilation exhaust reaches relatively 520 stable [28]. 521

522

523 Overall, if the study only focuses on the time-average concentration field, the breathing 524 zone could be treated as steadily formed. That is because the timescale of breathing is 525 much smaller than that of room ventilation. The performance of the eight widely

employed monitor points has been evaluated compared with the inhalation by the 526 phase-averaged exposure indexes (in Fig. 7 and Fig. 8). At the physical distance of 0.35 527 528 m, the Point Ay, Point D, Point E, and Point F significantly over-estimate the exposure indexes. The aforementioned points are not recommended in the practical 529 530 measurement. Previous studies treated the Point_E, at the nose tip, as the optimal location [23, 45]. However, the present study quantitatively observed a significant 531 difference compared with inhalation. Besides, Point_D, at the center between the upper 532 533 lip and nose, has been proved in ordinary performance due to facial features' effect on 534 contaminant distribution. The obtained results were in line with a recent experimental study [5]. The contaminant concentration sampled by the other four monitor points 535 (Point A, Point Az, Point B, and Point C) in the identified breathing zone could 536 537 represent the inhaled concentration of the susceptible subjects.

538

In comparison, if the study focuses on short-term events, the formation of the breathing 539 540 zone is not steady. The instant exposure risk assessment should consider the turbulence intensity and concentration fluctuation characteristics (in Fig. 9 and Fig. 10), especially 541 542 considering the randomness and discreteness characteristics of short-term events [68]. In addition, the Point Az is especially not suitable for the instant exposure risk analysis 543 since it cannot reflect the contaminant fluctuation characteristics in the facial region. 544 Therefore, the identified breathing zone proposed by comparing the time-average 545 546 concentration field is not applicable for short-term events, along with the over-and under-estimation. Instead of using the identified breathing zone, Point_A, Point_B, and 547

Point_C can be employed as the appropriate monitor points to evaluate the infection 548 risk in short-term events. Fig. 11 presents the identified breathing zone in mixing 549 550 ventilation under different conditions: steady-formation and unsteady-formation in short-term events. In Fig.11 (a), the volume of recommended sampling region is in line 551 552 with the tidal volume. If the study only focuses on the time-average concentration field, the contaminant monitored at the sampling points in the box is approximately in line 553 with the contaminant inhaled by the infected person. The suggested breathing zone is 554 similar to a recent study using the reversed time-traced virtual flow field and the scale 555 556 for ventilation efficiency 5 (SVE 5) [4]. The slight discrepancy in the breathing zone dimension could be accounted for by the difference in the breathing pattern and tidal 557 volume. For short-term events, the formation of the breathing zone could be treated as 558 559 unsteady. Instead of using the identified breathing zone, Point_A (located at the center of the lips), Point_B (located at the left corner of the mouth), and Point_C (located at 560 the center between the chin and lower lip) perform well in capturing the fluctuation 561 characteristics of short-term events [69, 70]. Considering the difficulty of performing 562 the measurement at the three aforementioned points, the air sampling tube attached to 563 the headset and even glasses have been designed for accurate measurement [5, 45]. 564

Fig. 11 Identified breathing zone in mixing ventilation under different conditions: (a)
steady-formation; (b) unsteady-formation in short-term events.

Owing to the instantaneous and tidal properties of the respiratory airflow, it gradually 569 becomes fully turbulent and further mixes with the ambient ventilation airflow with 570 571 development. The interaction between the respiratory, ventilation airflow, and the thermal plume rising from the heated human body significantly affect the turbulence 572 intensity and concentration fluctuation in the facial region of the susceptible subjects. 573 574 Although the known instant exposure risk may be caused by tidal breathing, to the best of our knowledge, there is no study to distinguish the difference between the 575 concentration distribution in the facial region and inhalation in short-term events. The 576 observed randomness and discreteness characteristics of the short-term events highlight 577 the necessity of developing the targeted precautionary measures. When two subjects are 578 in close physical proximity, increasing the room ventilation rate may have a moderate 579 or limited impact on short-term events [67, 68]. Although the room ventilation can help 580 dilute and reduce the background concentration, the background value in the present 581

study (building-up scenario) is relatively lower than that in the steady-state scenario.
Therefore, engineering control measures like the localized ventilation/exhaust system,
air purifiers, and physical barriers should be highly recommended [71, 72]. Maintaining
physical distancing and wearing surgical masks still act as the best protection against
the Delta and Omicron variants [73].

587

588

5 Limitation and future work

The general requirement of the LES is to determine the allowable cell size to resolve at 589 590 least 80% turbulent kinetic energy [74]. Owing to the difficulty of obtaining the complete energy spectrum, the Length Scale Resolution (LSR) has been adopted as a 591 metric to present the mesh resolution [75]. $LSR = \overline{\Delta}/l_{DI}$ where the l_{DI} is the lower 592 593 limit of the inertial sub-range. The average LSR in the present study is 6.21, slightly exceeding the upper limit value (5.0). Considering that the global quality of the 594 simulation cannot be estimated by the LSR metrics only, it should also be evaluated 595 596 from the match between the simulation and experiments [76]. The study is limited without considering the humidity of the exhaled airflow, while the exhaled airflow 597 humidity might impact the breathing zone at different humidity levels. Special 598 scenarios like dental surgery environment [77, 78] and gym [79] should be further 599 studied. The present study has validated the thermal plume around the human body. A 600 future experimental study should be conducted to monitor the exhaled contaminant 601 602 dispersion in other room points and thus act as supplementary validation data. 603 Additionally, the breathing pattern and the phase difference between two breathings

might also affect the scale of the breathing zone. Since human subjects can unconsciously change their breathing mode, breathing in the same mode is quite challenging. Thus, examining the identified breathing zone in different breathing combinations is necessary. Since the room occupants could move around, the breathing zone could be considerably impacted by the change of thermal plume. Therefore, further investigation into the breathing zone should be conducted.

610

611 6 Conclusions

The present study quantitatively assesses the eight commonly-used inhalation monitor points in the facial region by recording the contaminant distribution and fluctuation characteristics under steady-state conditions and short-term events. The results could help to select the proper monitor points under different conditions and further develop the targeted precautionary measures:

Based on the statistical difference in the contaminant distribution at the short
physical distance (0.35 m), the breathing zone could be identified from the timeaveraged concentration field.

2) The identified breathing zone proposed by comparing the time-average
concentration field is not applicable for short-term events. Point_E, at the nose tip,
is not the optimal location to represent the inhaled concentration. In comparison,
Point_A (located at the center of the lips), Point_B (located at the left corner of the
mouth), and Point_C (located at the center between the chin and lower lip) perform
much better in short-term events. Wearable devices for accurate measurement

626 should be developed.

3) Due to the substantial temporal variation of the contaminant in the identified
breathing zone, the analysis of instant exposure risk in short-term events should
consider its turbulence intensity and concentration fluctuation characteristic. The
localized method with direct interference on the respiratory airflow should be
recommended in short-term events.

632

633 Acknowledgments

This study was supported by the Ph.D. studentship funded by the Hong Kong Polytechnic University and partially supported by the National Natural Science Foundation of China (No. 51908203) and the Fundamental Research Funds for the Central Universities (No. 531118010378). The authors thank Miss Zenan Xian for her help in the pre-project work.

639

640 **Declaration of competing interest**

641 The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

643

644 **Reference**

1. COVID-19 645 WHO. Weekly Epidemiological Update. 2022; Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---5-646 647 april-2022. 648 2. Li, X., et al., Restoration of dental services after COVID-19: The fallow time determination 649 with laser light scattering. Sustainable Cities and Society, 2021. 74: p. 103134. 650 Xu, C., et al., Prediction and control of aerosol transmission of SARS-CoV-2 in ventilated 3.

651		context: from source to receptor. Sustainable cities and society, 2022. 76: p. 103416.
652	4.	Kuga, K., P. Wargocki, and K. Ito, Breathing zone and exhaled air re-inhalation rate under
653		transient conditions assessed with a computer-simulated person. Indoor air, 2022. 32(2): p.
654		e13003.
655	5.	Kierat, W., et al., Towards enabling accurate measurements of CO2 exposure indoors. Building
656		and Environment, 2022. 213: p. 108883.
657	6.	Liu, L., et al., Evaporation and dispersion of respiratory droplets from coughing. Indoor air,
658		2017. 27 (1): p. 179-190.
659	7.	Li, Y., et al., Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant.
660		Building and Environment, 2021. 196: p. 107788.
661	8.	Van Doremalen, N., et al., Aerosol and surface stability of SARS-CoV-2 as compared with SARS-
662		CoV-1. New England journal of medicine, 2020. 382(16): p. 1564-1567.
663	9.	Chen, W., et al., Extended short-range airborne transmission of respiratory infections. Journal
664		of hazardous materials, 2022. 422: p. 126837.
665	10.	Balachandar, S., et al., Host-to-host airborne transmission as a multiphase flow problem for
666		science-based social distance guidelines. International Journal of Multiphase Flow, 2020. 132:
667		p. 103439.
668	11.	Sarhan, A., P. Naser, and J. Naser, COVID-19 aerodynamic evaluation of social distancing in
669		indoor environments, a numerical study. Journal of Environmental Health Science and
670		Engineering, 2021. 19(2): p. 1969-1978.
671	12.	Issakhov, A., et al., A numerical assessment of social distancing of preventing airborne
672		transmission of COVID-19 during different breathing and coughing processes. Scientific
673		Reports, 2021. 11(1): p. 1-39.
674	13.	Cao, G., et al., Protected zone ventilation and reduced personal exposure to airborne cross-
675		infection. Indoor Air, 2015. 25(3): p. 307-319.
676	14.	Arumuru, V., J. Pasa, and S.S. Samantaray, Experimental visualization of sneezing and efficacy
677		of face masks and shields. Physics of Fluids, 2020. 32(11): p. 115129.
678	15.	Ai, Z., T. Huang, and A. Melikov, Airborne transmission of exhaled droplet nuclei between
679		occupants in a room with horizontal air distribution. Building and Environment, 2019. 163: p.
680		106328.
681	16.	Liu, L., et al., Short-range airborne transmission of expiratory droplets between two people.
682		Indoor air, 2017. 27 (2): p. 452-462.
683	17.	CDC. Centers for Disease Control and Prevention (CDC) About COVID-19. 2022; Available
684		from: <u>https://www.cdc.gov/</u> .
685	18.	Feng, Y., et al., Influence of wind and relative humidity on the social distancing effectiveness to
686		prevent COVID-19 airborne transmission: A numerical study. Journal of aerosol science, 2020.
687		147 : p. 105585.
688	19.	Sun, C. and Z. Zhai, The efficacy of social distance and ventilation effectiveness in preventing
689		COVID-19 transmission. Sustainable cities and society, 2020. 62: p. 102390.
690	20.	Setti, L., et al., Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter-personal
691		distance could not be enough. 2020, Multidisciplinary Digital Publishing Institute. p. 2932.
692	21.	Lidén, G. and J. Waher, Experimental investigation of the concept of a 'breathing zone' using a
693		mannequin exposed to a point source of inertial/sedimenting particles emitted with momentum.
694		Annals of occupational hygiene, 2010. 54(1): p. 100-116.

695	22.	Al Assaad, D., S. Yang, and D. Licina, Particle release and transport from human skin and
696		clothing: A CFD modeling methodology. Indoor air, 2021. 31(5): p. 1377-1390.
697	23.	Geiss, O., Effect of wearing face masks on the carbon dioxide concentration in the breathing
698		zone. Aerosol and Air Quality Research, 2021. 21(2): p. 200403.
699	24.	Rim, D. and A. Novoselac, Transport of particulate and gaseous pollutants in the vicinity of a
700		human body. Building and Environment, 2009. 44(9): p. 1840-1849.
701	25.	Yan, Y., et al., Evaluation of airborne disease infection risks in an airliner cabin using the
702		Lagrangian-based Wells-Riley approach. Building and Environment, 2017. 121: p. 79-92.
703	26.	You, R., et al., Evaluating the commercial airliner cabin environment with different air
704		distribution systems. Indoor Air, 2019. 29(5): p. 840-853.
705	27.	Gupta, J., C.H. Lin, and Q. Chen, Inhalation of expiratory droplets in aircraft cabins. Indoor
706		Air, 2011. 21 (4): p. 341-350.
707	28.	Ai, Z., K. Hashimoto, and A.K. Melikov, Airborne transmission between room occupants
708		during short-term events: Measurement and evaluation. Indoor air, 2019. 29(4): p. 563-576.
709	29.	Anthony, T.R., M.R. Flynn, and A. Eisner, Evaluation of facial features on particle inhalation.
710		Annals of Occupational Hygiene, 2005. 49(2): p. 179-193.
711	30.	Li, X., Y. Yan, and J. Tu, The simplification of computer simulated persons (CSPs) in CFD
712		models of occupied indoor spaces. Building and Environment, 2015. 93: p. 155-164.
713	31.	Yan, Y., et al., Evaluation of manikin simplification methods for CFD simulations in occupied
714		indoor environments. Energy and Buildings, 2016. 127: p. 611-626.
715	32.	Faleiros, D.E., et al., TU Delft COVID-app: A tool to democratize CFD simulations for SARS-
716		CoV-2 infection risk analysis. Science of the Total Environment, 2022: p. 154143.
717	33.	Naseri, A., O. Abouali, and G. Ahmadi, Effect of turbulent thermal plume on aspiration
718		efficiency of micro-particles. Building and Environment, 2017. 118: p. 159-172.
719	34.	Zhu, S., et al., Study on inhalation region by means of CFD analysis and experiment. Building
720		and Environment, 2005. 40 (10): p. 1329-1336.
721	35.	Villafruela, J., I. Olmedo, and J. San José, Influence of human breathing modes on airborne
722		cross infection risk. Building and Environment, 2016. 106: p. 340-351.
723	36.	Wu, J. and W. Weng, COVID-19 virus released from larvnx might cause a higher exposure dose
724		<i>in indoor environment.</i> Environmental Research, 2021. 199 : p. 111361.
725	37.	Times, K. Delta variant can infect a person within 15 seconds as Cambodia logs 75 total cases
726		of COVID-19 Delta infections. 2021: Available from:
727		https://www.khmertimeskh.com/50895595/delta-variant-can-infect-a-person-within-15-
728		seconds-as-cambodia-logs-75-cases-of-covid-19-delta-infections/.
729	38.	Kongnov, T. Delta can spread in 15 seconds 2021: Available from:
730	001	https://www.khmertimeskh.com/50902050/delta-can-spread-in-15-seconds
731	39	Bhattacharyya S et al. A novel CED analysis to minimize the spread of COVID-19 virus in
732	57.	hospital isolation room Chaos Solitons & Fractals 2020 139 : n 110294
733	40	Hang L et al. Potential airborne transmission between two isolation cubicles through a shared
734	40.	anteroom Building and Environment 2015 89: p. 264-278
735	41	Zhang Z et al. Disease transmission through expiratory generals on an urban hus Physics of
736	4 1.	Eluide 2021 33 (1): p. 015116
130 727	12	Ai Z C M Mak and I Nin Numerical investigation of wind induced airflow and intermit
101 720	42.	dimension characteristics in multistern posidential huildings. Indoor siz 2012, 22(5), z. 417
130		aispersion characteristics in multistory restaential buildings. Indoor air, 2013. 23(5): p. 41/-

739		429.
740	43.	Ai, Z. and C.M. Mak, A study of interunit dispersion around multistory buildings with single-
741		sided ventilation under different wind directions. Atmospheric Environment, 2014. 88: p. 1-13.
742	44.	Ai, Z., K. Hashimoto, and A.K. Melikov, Influence of pulmonary ventilation rate and breathing
743		cycle period on the risk of cross-infection. Indoor Air, 2019. 29(6): p. 993-1004.
744	45.	Pantelic, J., et al., Personal CO2 cloud: laboratory measurements of metabolic CO2 inhalation
745		zone concentration and dispersion in a typical office desk setting. Journal of exposure science
746		& environmental epidemiology, 2020. 30 (2): p. 328-337.
747	46.	Melikov, A., Breathing thermal manikins for indoor environment assessment: important
748		characteristics and requirements. European journal of applied physiology, 2004. 92(6): p. 710-
749		713.
750	47.	Xu, C., et al., Human exhalation characterization with the aid of schlieren imaging technique.
751		Building and environment, 2017. 112 : p. 190-199.
752	48.	Bolashikov, Z.D., M. Barova, and A.K. Melikov, Wearable personal exhaust ventilation:
753		Improved indoor air quality and reduced exposure to air exhaled from a sick doctor. Science
754		and Technology for the Built Environment, 2015. 21 (8): p. 1117-1125.
755	49.	Yang, J., et al., A time-based analysis of the personalized exhaust system for airborne infection
756		control in healthcare settings. Science and Technology for the Built Environment, 2015. 21(2):
757		р. 172-178.
758	50.	Villafruela, J., et al., CFD analysis of the human exhalation flow using different boundary
759		conditions and ventilation strategies. Building and Environment, 2013. 62: p. 191-200.
760	51.	Bazdidi-Tehrani, F., et al. Large eddy simulation of pollutant dispersion in a naturally cross-
761		ventilated model building: Comparison between sub-grid scale models. in Building Simulation.
762		2019. Springer.
763	52.	Dai, Y., et al., Evaluation of computational and physical parameters influencing CFD
764		simulations of pollutant dispersion in building arrays. Building and Environment, 2018. 137: p.
765		90-107.
766	53.	Ai, Z. and C.M. Mak, Large-eddy Simulation of flow and dispersion around an isolated building:
767		analysis of influencing factors. Computers & Fluids, 2015. 118: p. 89-100.
768	54.	Du, Y., et al., Efficient and high-resolution simulation of pollutant dispersion in complex urban
769		environments by island-based recurrence CFD. Environmental Modelling & Software, 2021.
770		145 : p. 105172.
771	55.	Deng, Z. and Q. Chen, What is suitable social distancing for people wearing face masks during
772		the COVID-19 pandemic? Indoor air, 2022. 32(1): p. e12935.
773	56.	Liu, W., et al., Exploring the potentials of personalized ventilation in mitigating airborne
774		infection risk for two closely ranged occupants with different risk assessment models. Energy
775		and Buildings, 2021. 253 : p. 111531.
776	57.	Melikov, A.K. and V. Dzhartov, Advanced air distribution for minimizing airborne cross-
777		infection in aircraft cabins. Hvac&R Research, 2013. 19(8): p. 926-933.
778	58.	Licina, D., et al., Experimental investigation of the human convective boundary layer in a
779		quiescent indoor environment. Building and Environment, 2014. 75: p. 79-91.
780	59.	Adrian, R.J. and J. Westerweel, <i>Particle image velocimetry</i> . 2011: Cambridge university press.
781	60.	Schatzmann, M., COST 732 model evaluation case studies: approach and results. 2010:
782		Meteorological Inst.

783 61. Arpino, F., et al., A Eulerian-Lagrangian approach for the non-isothermal and transient CFD 784 analysis of the aerosol airborne dispersion in a car cabin. Building and Environment, 2022. 785 **209**: p. 108648. 786 Jiang, N., et al., Experimental study on flow behavior of breathing activity produced by a 62. 787 thermal manikin. Building and Environment, 2017. 123: p. 200-210. 788 Liu, F., et al., Direct or indirect exposure of exhaled contaminants in stratified environments 63. 789 using an integral model of an expiratory jet. Indoor Air, 2019. 29(4): p. 591-603. 790 64. Zong, J., et al., A review of human thermal plume and its influence on the inhalation exposure 791 to particulate matter. Indoor and Built Environment, 2022: p. 1420326X221080358. 792 65. Cermak, R., et al. PIV measurements at the breathing zone with personalized ventilation. in Proceedings of the Eight International Conference Air Distribution in Rooms, Roomvent, 793 794 Copenhagen, Denmark. 2002. 795 66. Xia, Y., et al., Effects of turbulent air on human thermal sensations in a warm isothermal 796 environment. Indoor air, 2000. 10(4): p. 289-296. 797 Ai, Z.T. and A.K. Melikov, Airborne spread of expiratory droplet nuclei between the occupants 67. 798 of indoor environments: A review. Indoor air, 2018. 28(4): p. 500-524. 799 68. Li, X., et al. Airborne transmission during short-term events: Direct route over indirect route. 800 in Building Simulation. 2022. Springer. Bivolarova, M., et al., Effect of airflow interaction in the breathing zone on exposure to bio-801 69. 802 effluents. Building and Environment, 2017. 125: p. 216-226. 803 70. Melikov, A. and J. Kaczmarczyk, Measurement and prediction of indoor air quality using a 804 breathing thermal manikin. Indoor air, 2007. 17(1): p. 50-59. 805 71. Ye, J., Z. Ai, and C. Zhang, A new possible route of airborne transmission caused by the use of 806 a physical partition. Journal of Building Engineering, 2021. 44: p. 103420. 807 72. Xu, C., et al., Effects of personalized ventilation interventions on airborne infection risk and 808 transmission between occupants. Building and Environment, 2020. 180: p. 107008. Eikenberry, S.E., et al., To mask or not to mask: Modeling the potential for face mask use by the 809 73. 810 general public to curtail the COVID-19 pandemic. Infectious disease modelling, 2020. 5: p. 811 293-308. 812 74. Pope, S.B., Ten questions concerning the large-eddy simulation of turbulent flows. New journal 813 of Physics, 2004. 6(1): p. 35. 814 75. Brusiani, F., C. Forte, and G.M. Bianchi, Assessment of a numerical methodology for large eddy 815 simulation of ice wall bounded non-reactive flows. 2007, SAE Technical Paper. 816 76. Piscaglia, F., et al., Boundary conditions and sgs models for les of wall-bounded separated flows: 817 An application to engine-like geometries. Oil & Gas Science and Technology-Revue d'IFP 818 Energies nouvelles, 2014. 69(1): p. 11-27. 819 77. Li, X., et al., Evaluating flow-field and expelled droplets in the mockup dental clinic during the 820 COVID-19 pandemic. Physics of Fluids, 2021. 33(4): p. 047111. 821 Li, X., et al., How the high-volume evacuation alters the flow-field and particle removal 78. 822 characteristics in the mock-up dental clinic. Building and Environment, 2021. 205: p. 108225. 823 79. Blocken, B., et al., Ventilation and air cleaning to limit aerosol particle concentrations in a gym 824 during the COVID-19 pandemic. Building and Environment, 2021. 193: p. 107659. 825