
Building and Environment, Vol. 40, No. 1, 2005, pp. 73-81

A KNOWLEDGE-BASED SYSTEM FOR LIQUID RETAINING STRUCTURE
DESIGN WITH BLACKBOARD ARCHITECTURE

K.W. Chau

Department of Civil & Structural Engineering, Hong Kong Polytechnic University, Hunghom,
Kowloon, Hong Kong

Email: cekwchau@polyu.edu.hk, tel.: (852) 2766 6014, fax.: (852) 2334 6389

F. Albermani
Department of Civil Engineering, University of Queensland, QLD 4072, Australia

Abstract
Owing to the high degree of vulnerability of liquid retaining structures to corrosion problem,
there are stringent requirements in its design against cracking. In this paper, a prototype
knowledge-based system is developed and implemented for the design of liquid retaining
structures based on the blackboard architecture. A commercially available expert system shell
VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC
programming environment is employed. Hybrid knowledge representation approach with
production rules and procedural methods under object-oriented programming are used to
represent engineering heuristics and design knowledge of this domain. It is demonstrated that
the blackboard architecture is capable of integrating different knowledge together in an
effective manner. The system is tailored to give advice to users regarding preliminary design,
loading specification and optimized configuration selection of this type of structure. An
example application is given to illustrate the capabilities of the prototype system in
transferring knowledge on liquid retaining structure to novice engineers.

Introduction
By its very nature, the design of a building structure is a complicated process which
integrates both design knowledge and analytical skills. It is not easy to incorporate the
available empirical and heuristic knowledge into a numerical model for decision making. It is
even more difficult for liquid retaining structure design due to the high degree of
vulnerability of these specialized structures to corrosion problems. There are stringent
requirements against cracking and a considerable amount of heuristic inferences, design code
requirements, and expert experience are involved, in accordance to the particular
configuration, support conditions and loading requirements. However, up till the present,
algorithmic models are often used to simulate structural design processes, resulting in large
constraints in model uses as well as a large gap between model developers and practitioners.
Most algorithmic models are not user-friendly enough and lack sufficient support to novice
users and knowledge transfers in appropriate model application. Yet, there is a real necessity
to transfer this expertise knowledge to novice engineers.

Moreover, design can be considered an open-ended problem to select the optimal solution,
via minimization of either the total cost or weight of the entire structure. There are often
several alternatives that can satisfy all the specified constraints. In this point of view,
structural design can be represented by a cooperative constraint-satisfying process with
several knowledge sources. In order to address such an ill-structured problem, skillful as well
as iterative knowledge manipulation and learning process are entailed for selection of the
most appropriate design parameters and successful implementation of computer-aided design.

This is the Pre-Published Version.

mailto:cekwchau@polyu.edu.hk�

2

Symbolic programming is desirable in this design process, which becomes one of the domain
problems that are particularly suitable for the application of knowledge-based system
technology. Other advantages of the application are the substantial reduction of the design
duration and avoidance of any inadvertent human errors during the data transfer in different
processes.

During the past decade, many knowledge-based systems have been applied in different
domain problems (Chau, 1992; Chau, 2004a,b; Chau et al., 2002; Chau & Anson, 2002; Chau
& Chen, 2001; Chau & Cheung, 2004; Chau & Ng, 1996; Chau & Yang, 1994; Chau &
Zhang, 1995). There are also examples of knowledge-based system applications in structural
design: BERTH (Ranga Rao & Sundaravadivelu, 1999); and, LADOME (Lin & Albermani,
2001). This paper delineates a prototype knowledge-based system for analysis and design of
liquid retaining structures with blackboard architecture.

Architecture of prototype system
Figure 1 shows the flowchart that integrates the algorithmic programs and knowledge
management for liquid retaining structures using the blackboard architecture. A characteristic
of this type of architecture is the contribution from several knowledge sources at different
levels for problem solving in a single system (Engelmore and Morgan, 1988). It suits the
nature for design of engineering structure, which highly relies upon interaction between
diversified knowledge sources. Under this type of architecture, expertise in the form of
knowledge sources is often grouped into individual modules with various knowledge
representation methods including rules, frames, object-oriented techniques, etc. The common
data structure, termed the blackboard, undertakes the role to compile the data entries and to
link among various knowledge sources to attain information sharing. It functions as the
global system context and stores the existing state of the solution, comprising initial input
data, intermediate variables and final solution.

Since several commercially available expert system shells are available nowadays, the
determination of the knowledge representation scheme is largely based upon the nature of
domain problem as well as upon the capability of the programming tool. It should be noted
that each representation technique has both its own pros and cons. Whilst rule-based system
has the edge of highly comprehensiveness and popularity, it is not on its own capable of
addressing design task of formation or synthesis nature. Object-oriented technique is more
versatile because of its modularity, data abstraction and inheritance characteristics, yet is too
complicated to represent simple logic. Thus, a hybrid programming technique is employed
here in order to take advantages of the characteristics of each scheme. The hybrid application
development tool expert system shell, VISUAL RULE STUDIO (Rule Machine Corporation,
1998), integrates object-oriented techniques, relational database models, expert system
technology, traditional procedural programming and graphics in a windowing environment. It
works as an ActiveX Designer under the VISUAL BASIC programming environment.

Production rules and chaining inference
Rule type representation
The knowledge rules constitute the main core of the knowledge base in this prototype system.
Hence, whenever the production rule format is appropriate, they are used to represent
heuristics and deep design knowledge during both the preliminary synthesis and specification
stages. They have the advantage of accommodating the grouping of knowledge together, thus
facilitating program coding as well as updating. They are, however, not too appropriate to
represent lengthy procedural methods because of their inherent nature on limited

3

mathematical functions as well as relatively simple syntax. For legibility and
comprehensibility purposes, the rule syntax is usually represented in quite a natural English
language. Production rules are basically represented in a IF-THEN-ELSE format so that
knowledge can be easily added, deleted or revised by simply editing the rules in the
knowledge base, thus facilitating future extension. Whenever rules and conditions match one
another and certain conditions become true, the rules will be invoked and actions in
conclusion statements will be triggered. The newly triggered actions may alter the existing
state of contexts, thus invoking in turn new rule matching in a cycle-wise manner. It is
through a backward inference mechanism that testing and firing rules, very often in the form
of a linked chain, are accomplished. Currently, there are about 200 production rules in this
prototype system for the determination of various context values of design entities during
different design stages. The knowledge required for the determination of various geometrical
ratios, interpolation of moment and shear coefficients, selection of design parameters such as
shape factors in wind load determination, and different material properties are covered here.
Figure 2 shows an example of knowledge rule and inference procedure.

Chaining inference
A mixed-chaining inference mechanism is adopted in this prototype system. Whilst the
design steps are processed in a forward chaining way, the design decision and intermediate
results are derived in a backward chaining fashion. All the design steps can be seen explicitly
on the main screen display and there are no fixed agenda or monitor. The user is allowed to
opt for the preferred sequence of design processes, whose validity is checked by Process
Control knowledge modules. Upon being triggered by the user or situation, these modules act
opportunistically during the design process. As an example, during the detailed design stage,
the applicable design loads on the structure are dependent upon the type of liquid retaining
structure. If an underground liquid retaining structure is adopted, the system will prompt the
user to enter the soil properties whilst if the liquid retaining structure considered is above the
ground, it will prompt the user to input the wind load parameters.

Knowledge elicitation and representation
During the development of the system, design knowledge is gleaned from literature, human
expert as well as from the development process itself. In order to emulate the working
processes of a human expert, the domain knowledge is first transformed into a representation
form amenable to programming. The knowledge base is the core component of a knowledge-
based system. It comprises contemporary design knowledge originated from many sources:
case studies; commercial product catalogue; databases; derived knowledge in the system
development process; design code; design standard; engineering handbook; empirical data;
engineering reports; heuristic experience; and, journal literature. Its contents covers non-
exclusively different types of liquid retaining structures, code provisions as well as heuristic
practice about concrete cover, principal dimensions, effective span, minimum grade of
concrete, minimum grade of reinforcement, minimum percentage of reinforcement, placing
of additional reinforcement. In order to suit the individual nature of knowledge here, a
multitude of knowledge representation methods including algorithmic programs, databases,
objects, rules, procedural methods, are utilized.

Object-oriented representation
A major component in the knowledge base is the use of object to represent declarative
knowledge for both data and executable procedural code. Under the blackboard architecture,
the solution procedures in the design process are separated from the design parameters in the
blackboard. As shown in Figure 3, these objects can be categorized under two main groups:

4

the blackboard; and, knowledge modules. The paradigm is tailored so that the attribute values
of different objects can be saved and retrieved whenever they are entailed during the design
process. Each object in the blackboard incorporates some attributes, which are used to
express the physical structural components, the facts used in the design, or the pertinent
design entities entailed during the design solution process whilst the blackboard is partitioned
into a number of hierarchical levels, corresponding to different stages of the design process.
The types of attribute may be: compound; instance reference; interval; multi-compound;
numeric; simple; string; and, time. Facets, representing the fact about an attribute, are
employed to design the inference strategy for processing an attribute. A typical example of
facets is the search order, which facilitates the determination of the value of an attribute by
defining the method used by the backward-chaining inference engine.

As shown in Figure 3, Design Entities and Design Stage are two groups of objects in the
blackboard. Whilst Design Entities represent different types of entities, Design Stage is
unique in that it is used mainly by Process Control knowledge modules to determine the next
possible action during the design process, or to check whether or not it is possible to execute
the user-requested functions. In deriving the next design process, forward chaining inference
mechanism is triggered either by the system or the user. Each Design Stage indicator will be
assigned one of the preset values, once a specific design stage has been properly implemented.

Also shown in Figure 3, Process Control and Design Process are the two categories of
knowledge modules, which represent procedural expertise knowledge in solving design
problems. The significance of Process Control modules is on their representation of meta-
knowledge to monitor and control the nature and time of action for a particular design stage.
In other words, they define the problem-solving strategy in the execution and processing of
deep and heuristic design knowledge represented in the Design Process modules. The module
is mainly event-driven and is executed in a forward chaining inference manner. After having
validated whether or not to execute a specific user-interface task or a design step, they
determine whether or not to proceed or to prompt certain warning message. Amongst various
classes in Process Control knowledge modules, main Design Process monitors the design
stage of all key tasks during the design process. Other subtasks, which are arranged under
various design stages such as analysis and sizing, design summary, load determination,
preliminary design, etc., are mostly related to the user interface. At any design stage, the user
is allowed to change one’s mind in modifying some design parameters or even adopting an
entirely different configuration. Moreover, any updates to the parameters during any design
stage will be propagated automatically and synchronously to all its pertinent design entities
so that consistency of the system is maintained.

The objects in Design Process modules represent the major part of the knowledge, covering
various steps to furnish feasible configurations which can satisfy the design specifications
and to assess these alternative configurations for structural optimization under certain code
stipulations. In this knowledge module level, a mixed problem-solving strategy, containing
forward chaining and backward chaining inference mechanisms, is involved. When the
attribute value of these objects changes, the procedural method attached to it will be
processed. These methods have also the functions to call external algorithmic programs, to
access database files or even to test and then trigger rules. The semantic network representing
the relationships amongst different objects in Design Process modules is shown in Figure 4.

5

Procedural methods
A portion of the stipulated design procedures specified by British Standard BS8007 (British
Standards Institution, 1987) are represented by procedural methods containing preset
sequences of actions. Forward chaining is the main driving mechanism in this process when
there is a change of the attribute value of the object that may be triggered by the user via the
pertinent command button or through other rule chains. The functions of procedural methods
include executing mathematical function, assigning new values, rule testing and triggering,
database queries, triggering other methods, reading and writing external data files, and calling
external programs. In order to represent the design processes, procedural methods are
attached to attributes of objects in Design Process and Process Control knowledge modules,
but not to the objects in the blackboard. Figure 5 shows examples of procedural methods
attached to textbox TxtLiquidLevel in the screen of imposed load specification.

Algorithmic programs
In order to enhance its capability in numerical processing, VISUAL RULE STUDIO allows
for switching over to and from other algorithmic programs. With this external extension, it
can at the same time deal with both symbolic and algorithmic processing. Upon the
completion of execution of the external program, the previous session in the prototype system
is resumed and outputs resulted from numerical processing program can be retrieved for
further processing. In this system, several custom-built algorithmic programs, written in
VISUAL BASIC, are involved in the following design processes: code conformance
checking; numerical model generation; optimized member sizing; and, preliminary design.

The finite element analysis program for the analysis and sizing is much more complicated. It
is not cost-effective to custom-build an algorithmic program for this purpose. Hence an
external conventional finite element model, ABAQUS, is adopted to perform nonlinear
analysis (Hibbitt et al, 1998). A link to another package Structural Analysis Program (SAP)
has been unsuccessful because the outputs of the current version are only in graphical forms
but not retrievable in text files whilst its older version is DOS-based, which is incompatible
with the windows-based environment (Computers and Structures, Inc., 1991). In the
processes, unformatted ASCII text files are generated either by the knowledge base or the
algorithmic program. These files constitute the common base for effective communication
between the knowledge base and various algorithmic programs.

Database representation
A database format is an effective method to represent engineering knowledge for centralized
and independent storage of huge amount information. Here, engineering knowledge covering
structural properties of reinforced concrete sections, moment and shear coefficients for
various configurations in preliminary design, structural properties of proposed alternatives
and final member details in detailed design, are represented in a form of database table. The
MICROSOFT ACCESS format, which is highly portable and is compatible with other
popular database systems under the Window environment, is adopted here. Direct connection
to ACCESS databases is accommodated in the system via an interface module linking the
knowledge base and database files, without the installation the program itself. Various
attribute groups, including bar area, bar area percentage, bar size, bar spacing, concrete cover,
crack width, maximum span, service moment, slab thickness, total material cost, ultimate
moment, ultimate shear, etc. represent the database on the structural properties of reinforced
concrete sections.

Heuristics are employed to constrain the selection of some design parameters to practical

6

values. As typical examples, allowable reinforcement sizes are amongst 10, 12, 16, 20, 25, 32
and 40 mm, concrete cover can be 40, 50, 60 or 75 mm, the concrete slab thickness can only
be one of 200, 225, 250, 275, 300, 350,400, 450, 500, 600, 700, 800, 900, or 1000 mm, etc.
Some knowledge is static in that they are created during the system development and cannot
be changed by any design activities, unless when new information is obtained. Other category
of knowledge is dynamic in that they are generated during the execution of the system and
they are often stored outside the knowledge-base system shell. Typical examples of static and
dynamic knowledge are structural properties of reinforced concrete sections and structural
properties of proposed alternative, respectively.

Case Study
In order to demonstrate the application of the prototype system, a case study is made on a
typical liquid retaining structure. The spatial requirements of the structure are as follows:

Shape = circular
Volume = 100 m
Depth = 5 m

3

Location = underground
Exposure condition = very severe

The user is required to enter the values of the required parameters at the appropriate fields of
visual edit screens and menus under a Windows-based user interface. Figure 6 shows the
screen for structural specification in preliminary design by the user. The consistency and
accuracy of all input data are checked to be within the allowable range. The system will
prompt a warning message otherwise.

The system performs a preliminary synthesis and evaluates different alternatives using
heuristics in accordance to these geometric constraints, crack width requirement, span depth
ratio, and moment and shear coefficients of the configuration. 15 feasible proposed
configurations are then proposed and ranked on the basis of the material costs. An option
button is tailored for the user to select between recommendation made by the system or one’s
own choice. The default design parameters shown as follows are adopted here:

Concrete grade = 40
Reinforcement grade = high yield steel
Concrete cover = 40 mm
Aggregate type = granite or basalt
Temperature variation = 65 °C
Unit cost of concrete = $3000 per m3

Unit cost of reinforcement = $500 per tonne of reinforcement
 of concrete

Prior to detailed design and analysis, the relevant detailed design specification, as shown in
the following, is input for the selected alternative.

Support specification = fixed
Surcharge load = 10 kN/m
Level of liquid = 5 m

2

Level of water table = 4 m
Ground level above tank bottom = 5 m
Specific weight of soil = 20 kN/m2

7

Active soil pressure coefficient = 0.3
Load combination = default load combinations

(1.4DL + 1.4WL/ 1.4DL + 1.6LL/ 1.2DL + 1.2LL + 1.2WL)
Number of elements per surface = 100 (10x10)

After several iterations of design process including numerical model generation, structural
analysis, code conformance checking and member sizing, it is determined that a member
thickness of 225 mm with reinforcement diameter 16 mm at spacing 100 mm results in a
structure with minimum cost. Figure 7 shows the screen displaying the best member sizing
record of the recommended section.

Conclusions
A prototype knowledge-based system for design of liquid retaining structures is developed
and implemented with blackboard architecture employing hybrid knowledge representation
technique under object-oriented environment. In order to tailor the nature of knowledge
involved in the structural design process, various knowledge representation methods
including objects, procedural methods, production rules, databases as well as external
algorithmic programs, are employed. The blackboard architecture is demonstrated to be able
to integrate various structural design processes. The system undertakes the role of storage of
heuristic knowledge as well as medium of knowledge transfer from experts to novice
designers, thus reducing the workload of experts. In addition to the recommended solution,
the system furnishes a list of several feasible design alternatives in a priority order of total
material cost, which is of great assistance even if the user desires to adopt other alternative.
Other advantages are the consistency and efficiency of the design output solution.

References
British Standards Institution, 1987, BS 8007: Design of Concrete Structures for Retaining
Aqueous Liquids.
Chau, K.W., 1992, An expert system for the design of gravity-type vertical seawalls,
Engineering Applications of Artificial Intelligence, 5(4), 363-367.
Chau, K.W., 2004a, A prototype knowledge-based system on unsteady open channel flow in
water resources management, Water International, 29(1), 54-60.
Chau, K.W., 2004b, Knowledge-based system on water-resources management in coastal
waters, Journal of the Chartered Institution of Water and Environmental Management, 18(1),
25-28.
Chau, K.W. and Anson, M., 2002, A knowledge-based system for construction site level
facilities layout, Lecture Notes in Artificial Intelligence, 2358, 393-402.
Chau, K.W. and Chen, W., 2001, An example of expert system on numerical modelling
system in coastal processes, Advances in Engineering Software, 32(9), 695-703.
Chau, K.W., Cheng, Chuntian and Li, C.W., 2002, Knowledge management system on flow
and water quality modeling, Expert Systems with Applications, 22(4), 321-330.
Chau, K.W. and Cheung, C.S., 2004, Knowledge representation on design of storm drainage
system, Lecture Notes in Artificial Intelligence, 3029, 886-894.
Chau, K.W. and Ng, Vitus, 1996, A knowledge-based expert system for design of thrust blocks
for water pipelines in Hong Kong, Water Supply Research and Technology - Aqua, 45(2), 96-99.
Chau, K.W. and Yang, Wen-wu, 1994, Structuring and evaluation of VP-expert based
knowledge bases, Engineering Applications of Artificial Intelligence, 7(4), 447-454.
Chau, K.W. and Zhang, X.N., 1995, An expert system for flow routing in a river network,
Advances in Engineering Software, 22(3), 139-146.
Computers and Structures, Inc., 1991, Structural Analysis Programs SAP90, Volume 1-3.

8

Engelmore, R. and Morgan, T., 1988, Blackboard Systems, Addison_Wesley, Wokingham.
Hibbitt, Karlsson & Sorensen, Inc., 1998, ABAQUS User’s Manual, Version 5.8.
Lin, S. and Albermani, F., 2001, Lattice-dome design using A knowledge-based system
approach, Computer-aided Civil and Infrastructure Engineering, 16(4), 268-286.
Rule Machine Corporation, 1998, Visual Rule Studio Developer’s Guide.
Ranga Rao, A.V. and R. Sundaravadivelu. (1999). “A knowledge based expert system for
design of berthing structures”, Ocean Engineering, Vol. 26, No. 7, pp. 653-673.

9

Figure 1. Architecture of the blackboard knowledge-based system

Microsoft Windows Environment

Visual Basic Programming Environment

Knowledge Acquisition
and Debugging Module

Expert Base Shell
(Visual Rule Studio)

User Interfaces Explanation Module

Knowledge
Engineer

Human
domain
Experts

Knowledge
from
Literature

User

Input/
Output
ASCII
Data Files

Finite
Element
Structural
Analysis
Program

Microsoft
Access
Databases
(Moment
Coefficients,
Sectional
Properties,
Final
Member
Details)

Interfacing
Facility

Crack Width
Checking
Module

Knowledge Base Inference
Mechanism

Backward
Chaining

Forward
Chaining

Blackboard
(Global data) Knowledge

Sources

Design
Process

Process
Control

Design
Entities

Design
Stage

Procedural
Methods

Model Generation
Module

Requirements
of Code of
Practice

10

!RULE GROUP: design moment & shear OF BBPreliminaryParameters

RULE to find designServiceMoment : 1 of 7

IF shape OF BBConfigurationRequirement IS rectangular

AND momentMh OF BBPreliminaryParameters >= momentMv OF BBPreliminaryParameters

THEN designServiceMoment OF BBPreliminaryParameters := momentMh OF BBPreliminaryParameters

RULE to find designServiceMoment : 2 of 7

IF shape OF BBConfigurationRequirement IS rectangular

AND momentMh OF BBPreliminaryParameters < momentMv OF BBPreliminaryParameters

THEN designServiceMoment OF BBPreliminaryParameters := momentMv OF BBPreliminaryParameters

RULE to find designServiceMoment : 3 of 7

IF shape OF BBConfigurationRequirement IS circular

THEN designServiceMoment OF BBPreliminaryParameters := momentCoefficient OF

BBPreliminaryParameters*specificGravityOfLiquid OF BBConfigurationRequirement*height OF

BBConfigurationRequirement^3

RULE to find designUltimateMoment : 4 of 7

IF designServiceMoment OF BBPreliminaryParameters > 0

THEN designUltimateMoment OF BBPreliminaryParameters := 1.4*designServiceMoment OF

BBPreliminaryParameters

RULE to find designUltimateShear : 5 of 7

IF shape OF BBConfigurationRequirement IS rectangular

AND shearVh OF BBPreliminaryParameters >= shearVv OF BBPreliminaryParameters

THEN designUltimateShear OF BBPreliminaryParameters := 1.4*shearVh OF BBPreliminaryParameters

RULE to find designUltimateShear : 6 of 7

IF shape OF BBConfigurationRequirement IS rectangular

AND shearVh OF BBPreliminaryParameters < shearVv OF BBPreliminaryParameters

THEN designUltimateShear OF BBPreliminaryParameters := 1.4*shearVv OF BBPreliminaryParameters

RULE to find designServiceTension : 7 of 7

IF shape OF BBConfigurationRequirement IS circular

THEN designServiceTension OF BBPreliminaryParameters := tensionCoefficient OF

BBPreliminaryParameters*specificGravityOfLiquid OF BBConfigurationRequirement*height OF

BBConfigurationRequirement*diameter OF BBConfigurationRequirement/2

Figure 2. An example of knowledge rule and inference procedure

11

Figure 3. Various Classes in the knowledge base

Knowledge Modules Blackboard

Design Process

Analysis and Sizing
Crack Width Checking
Final Member Details
Imposed Load Specification
Load Combination Specification
Model Specification
Structural Specification
Alternative Evaluation
Sectional Properties Retrieval
Support Specification
Wind Load Specification

Process Control

Main Design Processes
Preliminary Design
Detailed Design
Design Summary
Miscellaneous

Design Entities

Preliminary Parameters
Sectional Properties
Configuration Requirements
Design Report Parameters
Proposed Alternatives
Imposed Load
Model Parameters
Liquid Retaining Structure
Load Combination
Support Condition
Wind Load

Design Stage

Design Stage

12

Figure 4. Semantic network representing key design process

Structural
specification

Design
specification
summary

Alternative
evaluation

Change to
default
parameters

Support
specification

Imposed load
specification

Wind load
specification

Load
combination

Analysis
and sizing

Model
specification

Final
member
details

Generated
output data
files

Design
report

Member
size record

Crack
width
checking

13

Private Sub TxtLiquidLevel_Change()
 CheckText TxtLiquidLevel, "Liquid level", "LIQUID LEVEL"
 If TxtLiquidLevel.Text = " " Then BBImposedLoad.liquidLevel = Null _
 Else BBImposedLoad.liquidLevel = Val(TxtLiquidLevel.Text)
 If Val(TxtLiquidLevel.Text) > BBConfigurationRequirement.Height Then
 MsgBox "Liquid level should be lower than or equal to height of tank. " & _
 "Please enter again.", vbOKOnly + vbCritical, "ERROR: LIQUID LEVEL!"
 TxtLiquidLevel.Text = " "
 CmdContinueToMain.Enabled = False
 End If
 UnspecifyImposedLoad
End Sub

Private Sub CheckText(TextName As TextBox, String1 As String, String2 As String)
 If TextName.Text = " " Or TextName.Text = "" Then
 CmdContinueToMain.Enabled = False
 ElseIf Not IsNumeric(TextName.Text) Then
 MsgBox "Please enter positive numeric " & String1 & " value.", _
 vbOKOnly + vbCritical, "ERROR: " & String2 & "!"
 TextName.Text = " "
 ElseIf Val(TextName.Text) < 0 Then
 MsgBox String1 & " is less than or equal to zero. Please enter again.", _
 vbOKOnly + vbCritical, "ERROR: " & String2 & "!"
 TextName.Text = " "
 Else
 EnableSearchButton
 End If
End Sub

Figure 5. Typical examples of procedural methods attached to textbox TxtLiquidLevel in the

screen of imposed load specification

14

Figure 6. Screen showing structural specification in preliminary design

15

Figure 7. Screen showing the best member sizing record

	Abstract
	Architecture of prototype system
	Production rules and chaining inference
	Rule type representation
	Chaining inference

	Knowledge elicitation and representation
	Object-oriented representation
	Procedural methods
	Algorithmic programs

	Case Study
	Conclusions
	References
	Design Stage
	Design Process

