
Building and Environment, Vol. 40, No. 1, 2005, pp. 73-81 
 

A KNOWLEDGE-BASED SYSTEM FOR LIQUID RETAINING STRUCTURE 
DESIGN WITH BLACKBOARD ARCHITECTURE  

 
K.W. Chau 

Department of Civil & Structural Engineering, Hong Kong Polytechnic University, Hunghom, 
Kowloon, Hong Kong  

Email: cekwchau@polyu.edu.hk, tel.: (852) 2766 6014, fax.: (852) 2334 6389 
 

F. Albermani 
Department of Civil Engineering, University of Queensland, QLD 4072, Australia 

 
Abstract 
Owing to the high degree of vulnerability of liquid retaining structures to corrosion problem, 
there are stringent requirements in its design against cracking. In this paper, a prototype 
knowledge-based system is developed and implemented for the design of liquid retaining 
structures based on the blackboard architecture. A commercially available expert system shell 
VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC 
programming environment is employed. Hybrid knowledge representation approach with 
production rules and procedural methods under object-oriented programming are used to 
represent engineering heuristics and design knowledge of this domain. It is demonstrated that 
the blackboard architecture is capable of integrating different knowledge together in an 
effective manner. The system is tailored to give advice to users regarding preliminary design, 
loading specification and optimized configuration selection of this type of structure. An 
example application is given to illustrate the capabilities of the prototype system in 
transferring knowledge on liquid retaining structure to novice engineers. 
 
Introduction 
By its very nature, the design of a building structure is a complicated process which 
integrates both design knowledge and analytical skills. It is not easy to incorporate the 
available empirical and heuristic knowledge into a numerical model for decision making. It is 
even more difficult for liquid retaining structure design due to the high degree of 
vulnerability of these specialized structures to corrosion problems. There are stringent 
requirements against cracking and a considerable amount of heuristic inferences, design code 
requirements, and expert experience are involved, in accordance to the particular 
configuration, support conditions and loading requirements. However, up till the present, 
algorithmic models are often used to simulate structural design processes, resulting in large 
constraints in model uses as well as a large gap between model developers and practitioners. 
Most algorithmic models are not user-friendly enough and lack sufficient support to novice 
users and knowledge transfers in appropriate model application. Yet, there is a real necessity 
to transfer this expertise knowledge to novice engineers. 
 
Moreover, design can be considered an open-ended problem to select the optimal solution, 
via minimization of either the total cost or weight of the entire structure. There are often 
several alternatives that can satisfy all the specified constraints. In this point of view, 
structural design can be represented by a cooperative constraint-satisfying process with 
several knowledge sources. In order to address such an ill-structured problem, skillful as well 
as iterative knowledge manipulation and learning process are entailed for selection of the 
most appropriate design parameters and successful implementation of computer-aided design. 
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Symbolic programming is desirable in this design process, which becomes one of the domain 
problems that are particularly suitable for the application of knowledge-based system 
technology. Other advantages of the application are the substantial reduction of the design 
duration and avoidance of any inadvertent human errors during the data transfer in different 
processes. 
 
During the past decade, many knowledge-based systems have been applied in different 
domain problems (Chau, 1992; Chau, 2004a,b; Chau et al., 2002; Chau & Anson, 2002; Chau 
& Chen, 2001; Chau & Cheung, 2004; Chau & Ng, 1996; Chau & Yang, 1994; Chau & 
Zhang, 1995). There are also examples of knowledge-based system applications in structural 
design: BERTH (Ranga Rao & Sundaravadivelu, 1999); and, LADOME (Lin & Albermani, 
2001). This paper delineates a prototype knowledge-based system for analysis and design of 
liquid retaining structures with blackboard architecture.  
 
Architecture of prototype system 
Figure 1 shows the flowchart that integrates the algorithmic programs and knowledge 
management for liquid retaining structures using the blackboard architecture. A characteristic 
of this type of architecture is the contribution from several knowledge sources at different 
levels for problem solving in a single system (Engelmore and Morgan, 1988). It suits the 
nature for design of engineering structure, which highly relies upon interaction between 
diversified knowledge sources. Under this type of architecture, expertise in the form of 
knowledge sources is often grouped into individual modules with various knowledge 
representation methods including rules, frames, object-oriented techniques, etc. The common 
data structure, termed the blackboard, undertakes the role to compile the data entries and to 
link among various knowledge sources to attain information sharing. It functions as the 
global system context and stores the existing state of the solution, comprising initial input 
data, intermediate variables and final solution.  
 
Since several commercially available expert system shells are available nowadays, the 
determination of the knowledge representation scheme is largely based upon the nature of 
domain problem as well as upon the capability of the programming tool. It should be noted 
that each representation technique has both its own pros and cons. Whilst rule-based system 
has the edge of highly comprehensiveness and popularity, it is not on its own capable of 
addressing design task of formation or synthesis nature. Object-oriented technique is more 
versatile because of its modularity, data abstraction and inheritance characteristics, yet is too 
complicated to represent simple logic. Thus, a hybrid programming technique is employed 
here in order to take advantages of the characteristics of each scheme. The hybrid application 
development tool expert system shell, VISUAL RULE STUDIO (Rule Machine Corporation, 
1998), integrates object-oriented techniques, relational database models, expert system 
technology, traditional procedural programming and graphics in a windowing environment. It 
works as an ActiveX Designer under the VISUAL BASIC programming environment.  
 
Production rules and chaining inference 
Rule type representation 
The knowledge rules constitute the main core of the knowledge base in this prototype system. 
Hence, whenever the production rule format is appropriate, they are used to represent 
heuristics and deep design knowledge during both the preliminary synthesis and specification 
stages. They have the advantage of accommodating the grouping of knowledge together, thus 
facilitating program coding as well as updating. They are, however, not too appropriate to 
represent lengthy procedural methods because of their inherent nature on limited 
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mathematical functions as well as relatively simple syntax. For legibility and 
comprehensibility purposes, the rule syntax is usually represented in quite a natural English 
language. Production rules are basically represented in a IF-THEN-ELSE format so that 
knowledge can be easily added, deleted or revised by simply editing the rules in the 
knowledge base, thus facilitating future extension. Whenever rules and conditions match one 
another and certain conditions become true, the rules will be invoked and actions in 
conclusion statements will be triggered. The newly triggered actions may alter the existing 
state of contexts, thus invoking in turn new rule matching in a cycle-wise manner. It is 
through a backward inference mechanism that testing and firing rules, very often in the form 
of a linked chain, are accomplished. Currently, there are about 200 production rules in this 
prototype system for the determination of various context values of design entities during 
different design stages. The knowledge required for the determination of various geometrical 
ratios, interpolation of moment and shear coefficients, selection of design parameters such as 
shape factors in wind load determination, and different material properties are covered here. 
Figure 2 shows an example of knowledge rule and inference procedure. 
 
Chaining inference 
A mixed-chaining inference mechanism is adopted in this prototype system. Whilst the 
design steps are processed in a forward chaining way, the design decision and intermediate 
results are derived in a backward chaining fashion. All the design steps can be seen explicitly 
on the main screen display and there are no fixed agenda or monitor. The user is allowed to 
opt for the preferred sequence of design processes, whose validity is checked by Process 
Control knowledge modules. Upon being triggered by the user or situation, these modules act 
opportunistically during the design process. As an example, during the detailed design stage, 
the applicable design loads on the structure are dependent upon the type of liquid retaining 
structure. If an underground liquid retaining structure is adopted, the system will prompt the 
user to enter the soil properties whilst if the liquid retaining structure considered is above the 
ground, it will prompt the user to input the wind load parameters. 
 
Knowledge elicitation and representation 
During the development of the system, design knowledge is gleaned from literature, human 
expert as well as from the development process itself. In order to emulate the working 
processes of a human expert, the domain knowledge is first transformed into a representation 
form amenable to programming. The knowledge base is the core component of a knowledge-
based system. It comprises contemporary design knowledge originated from many sources: 
case studies; commercial product catalogue; databases; derived knowledge in the system 
development process; design code; design standard; engineering handbook; empirical data; 
engineering reports; heuristic experience; and, journal literature. Its contents covers non-
exclusively different types of liquid retaining structures, code provisions as well as heuristic 
practice about concrete cover, principal dimensions, effective span, minimum grade of 
concrete, minimum grade of reinforcement, minimum percentage of reinforcement, placing 
of additional reinforcement. In order to suit the individual nature of knowledge here, a 
multitude of knowledge representation methods including algorithmic programs, databases, 
objects, rules, procedural methods, are utilized. 
 
Object-oriented representation 
A major component in the knowledge base is the use of object to represent declarative 
knowledge for both data and executable procedural code. Under the blackboard architecture, 
the solution procedures in the design process are separated from the design parameters in the 
blackboard. As shown in Figure 3, these objects can be categorized under two main groups: 
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the blackboard; and, knowledge modules. The paradigm is tailored so that the attribute values 
of different objects can be saved and retrieved whenever they are entailed during the design 
process. Each object in the blackboard incorporates some attributes, which are used to 
express the physical structural components, the facts used in the design, or the pertinent 
design entities entailed during the design solution process whilst the blackboard is partitioned 
into a number of hierarchical levels, corresponding to different stages of the design process. 
The types of attribute may be: compound; instance reference; interval; multi-compound; 
numeric; simple; string; and, time. Facets, representing the fact about an attribute, are 
employed to design the inference strategy for processing an attribute. A typical example of 
facets is the search order, which facilitates the determination of the value of an attribute by 
defining the method used by the backward-chaining inference engine.  
 
As shown in Figure 3, Design Entities and Design Stage are two groups of objects in the 
blackboard. Whilst Design Entities represent different types of entities, Design Stage is 
unique in that it is used mainly by Process Control knowledge modules to determine the next 
possible action during the design process, or to check whether or not it is possible to execute 
the user-requested functions. In deriving the next design process, forward chaining inference 
mechanism is triggered either by the system or the user. Each Design Stage indicator will be 
assigned one of the preset values, once a specific design stage has been properly implemented.  
 
Also shown in Figure 3, Process Control and Design Process are the two categories of 
knowledge modules, which represent procedural expertise knowledge in solving design 
problems. The significance of Process Control modules is on their representation of meta-
knowledge to monitor and control the nature and time of action for a particular design stage. 
In other words, they define the problem-solving strategy in the execution and processing of 
deep and heuristic design knowledge represented in the Design Process modules. The module 
is mainly event-driven and is executed in a forward chaining inference manner. After having 
validated whether or not to execute a specific user-interface task or a design step, they 
determine whether or not to proceed or to prompt certain warning message. Amongst various 
classes in Process Control knowledge modules, main Design Process monitors the design 
stage of all key tasks during the design process. Other subtasks, which are arranged under 
various design stages such as analysis and sizing, design summary, load determination, 
preliminary design, etc., are mostly related to the user interface. At any design stage, the user 
is allowed to change one’s mind in modifying some design parameters or even adopting an 
entirely different configuration. Moreover, any updates to the parameters during any design 
stage will be propagated automatically and synchronously to all its pertinent design entities 
so that consistency of the system is maintained.  
 
The objects in Design Process modules represent the major part of the knowledge, covering 
various steps to furnish feasible configurations which can satisfy the design specifications 
and to assess these alternative configurations for structural optimization under certain code 
stipulations. In this knowledge module level, a mixed problem-solving strategy, containing 
forward chaining and backward chaining inference mechanisms, is involved. When the 
attribute value of these objects changes, the procedural method attached to it will be 
processed. These methods have also the functions to call external algorithmic programs, to 
access database files or even to test and then trigger rules. The semantic network representing 
the relationships amongst different objects in Design Process modules is shown in Figure 4.  
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Procedural methods 
A portion of the stipulated design procedures specified by British Standard BS8007 (British 
Standards Institution, 1987) are represented by procedural methods containing preset 
sequences of actions. Forward chaining is the main driving mechanism in this process when 
there is a change of the attribute value of the object that may be triggered by the user via the 
pertinent command button or through other rule chains. The functions of procedural methods 
include executing mathematical function, assigning new values, rule testing and triggering, 
database queries, triggering other methods, reading and writing external data files, and calling 
external programs. In order to represent the design processes, procedural methods are 
attached to attributes of objects in Design Process and Process Control knowledge modules, 
but not to the objects in the blackboard. Figure 5 shows examples of procedural methods 
attached to textbox TxtLiquidLevel in the screen of imposed load specification. 
 
Algorithmic programs 
In order to enhance its capability in numerical processing, VISUAL RULE STUDIO allows 
for switching over to and from other algorithmic programs. With this external extension, it 
can at the same time deal with both symbolic and algorithmic processing. Upon the 
completion of execution of the external program, the previous session in the prototype system 
is resumed and outputs resulted from numerical processing program can be retrieved for 
further processing. In this system, several custom-built algorithmic programs, written in 
VISUAL BASIC, are involved in the following design processes: code conformance 
checking; numerical model generation; optimized member sizing; and, preliminary design. 
 
The finite element analysis program for the analysis and sizing is much more complicated. It 
is not cost-effective to custom-build an algorithmic program for this purpose. Hence an 
external conventional finite element model, ABAQUS, is adopted to perform nonlinear 
analysis (Hibbitt et al, 1998). A link to another package Structural Analysis Program (SAP) 
has been unsuccessful because the outputs of the current version are only in graphical forms 
but not retrievable in text files whilst its older version is DOS-based, which is incompatible 
with the windows-based environment (Computers and Structures, Inc., 1991). In the 
processes, unformatted ASCII text files are generated either by the knowledge base or the 
algorithmic program. These files constitute the common base for effective communication 
between the knowledge base and various algorithmic programs.  
 
Database representation 
A database format is an effective method to represent engineering knowledge for centralized 
and independent storage of huge amount information. Here, engineering knowledge covering 
structural properties of reinforced concrete sections, moment and shear coefficients for 
various configurations in preliminary design, structural properties of proposed alternatives 
and final member details in detailed design, are represented in a form of database table. The 
MICROSOFT ACCESS format, which is highly portable and is compatible with other 
popular database systems under the Window environment, is adopted here. Direct connection 
to ACCESS databases is accommodated in the system via an interface module linking the 
knowledge base and database files, without the installation the program itself. Various 
attribute groups, including bar area, bar area percentage, bar size, bar spacing, concrete cover, 
crack width, maximum span, service moment, slab thickness, total material cost, ultimate 
moment, ultimate shear, etc. represent the database on the structural properties of reinforced 
concrete sections.  
 
Heuristics are employed to constrain the selection of some design parameters to practical 
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values. As typical examples, allowable reinforcement sizes are amongst 10, 12, 16, 20, 25, 32 
and 40 mm, concrete cover can be 40, 50, 60 or 75 mm, the concrete slab thickness can only 
be one of 200, 225, 250, 275, 300, 350,400, 450, 500, 600, 700, 800, 900, or 1000 mm, etc. 
Some knowledge is static in that they are created during the system development and cannot 
be changed by any design activities, unless when new information is obtained. Other category 
of knowledge is dynamic in that they are generated during the execution of the system and 
they are often stored outside the knowledge-base system shell. Typical examples of static and 
dynamic knowledge are structural properties of reinforced concrete sections and structural 
properties of proposed alternative, respectively. 
 
Case Study 
In order to demonstrate the application of the prototype system, a case study is made on a 
typical liquid retaining structure. The spatial requirements of the structure are as follows: 
 

Shape = circular 
Volume = 100 m
Depth = 5 m 
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Location = underground 
Exposure condition = very severe 

 
The user is required to enter the values of the required parameters at the appropriate fields of 
visual edit screens and menus under a Windows-based user interface. Figure 6 shows the 
screen for structural specification in preliminary design by the user. The consistency and 
accuracy of all input data are checked to be within the allowable range. The system will 
prompt a warning message otherwise.  
 
The system performs a preliminary synthesis and evaluates different alternatives using 
heuristics in accordance to these geometric constraints, crack width requirement, span depth 
ratio, and moment and shear coefficients of the configuration. 15 feasible proposed 
configurations are then proposed and ranked on the basis of the material costs. An option 
button is tailored for the user to select between recommendation made by the system or one’s 
own choice. The default design parameters shown as follows are adopted here: 
 

Concrete grade = 40 
Reinforcement grade = high yield steel 
Concrete cover = 40 mm 
Aggregate type = granite or basalt 
Temperature variation = 65 °C 
Unit cost of concrete = $3000 per m3

Unit cost of reinforcement = $500 per tonne of reinforcement 
 of concrete 

 
Prior to detailed design and analysis, the relevant detailed design specification, as shown in 
the following, is input for the selected alternative.  
 

Support specification = fixed 
Surcharge load = 10 kN/m
Level of liquid = 5 m 
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Level of water table = 4 m 
Ground level above tank bottom = 5 m 
Specific weight of soil = 20 kN/m2 
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Active soil pressure coefficient = 0.3 
Load combination = default load combinations  

(1.4DL + 1.4WL/ 1.4DL + 1.6LL/ 1.2DL + 1.2LL + 1.2WL) 
Number of elements per surface = 100 (10x10) 

 
After several iterations of design process including numerical model generation, structural 
analysis, code conformance checking and member sizing, it is determined that a member 
thickness of 225 mm with reinforcement diameter 16 mm at spacing 100 mm results in a 
structure with minimum cost. Figure 7 shows the screen displaying the best member sizing 
record of the recommended section.  
 
Conclusions 
A prototype knowledge-based system for design of liquid retaining structures is developed 
and implemented with blackboard architecture employing hybrid knowledge representation 
technique under object-oriented environment. In order to tailor the nature of knowledge 
involved in the structural design process, various knowledge representation methods 
including objects, procedural methods, production rules, databases as well as external 
algorithmic programs, are employed. The blackboard architecture is demonstrated to be able 
to integrate various structural design processes. The system undertakes the role of storage of 
heuristic knowledge as well as medium of knowledge transfer from experts to novice 
designers, thus reducing the workload of experts. In addition to the recommended solution, 
the system furnishes a list of several feasible design alternatives in a priority order of total 
material cost, which is of great assistance even if the user desires to adopt other alternative. 
Other advantages are the consistency and efficiency of the design output solution.  
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Figure 1. Architecture of the blackboard knowledge-based system 
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!RULE GROUP: design moment & shear OF BBPreliminaryParameters 

  

RULE to find designServiceMoment : 1 of 7 

IF shape OF BBConfigurationRequirement IS rectangular  

AND momentMh OF BBPreliminaryParameters >= momentMv OF BBPreliminaryParameters 

THEN designServiceMoment OF BBPreliminaryParameters := momentMh OF BBPreliminaryParameters 

 

RULE to find designServiceMoment : 2 of 7 

IF shape OF BBConfigurationRequirement IS rectangular  

AND momentMh OF BBPreliminaryParameters < momentMv OF BBPreliminaryParameters 

THEN designServiceMoment OF BBPreliminaryParameters := momentMv OF BBPreliminaryParameters 

  

RULE to find designServiceMoment : 3 of 7 

IF shape OF BBConfigurationRequirement IS circular  

THEN designServiceMoment OF BBPreliminaryParameters := momentCoefficient OF 

BBPreliminaryParameters*specificGravityOfLiquid OF BBConfigurationRequirement*height OF 

BBConfigurationRequirement^3 

 

RULE to find designUltimateMoment : 4 of 7 

IF designServiceMoment OF BBPreliminaryParameters > 0 

THEN designUltimateMoment OF BBPreliminaryParameters := 1.4*designServiceMoment OF 

BBPreliminaryParameters 

 

RULE to find designUltimateShear : 5 of 7 

IF shape OF BBConfigurationRequirement IS rectangular  

AND shearVh OF BBPreliminaryParameters >= shearVv OF BBPreliminaryParameters 

THEN designUltimateShear OF BBPreliminaryParameters := 1.4*shearVh OF BBPreliminaryParameters 

 

RULE to find designUltimateShear : 6 of 7 

IF shape OF BBConfigurationRequirement IS rectangular  

AND shearVh OF BBPreliminaryParameters < shearVv OF BBPreliminaryParameters 

THEN designUltimateShear OF BBPreliminaryParameters := 1.4*shearVv OF BBPreliminaryParameters 

  

RULE to find designServiceTension : 7 of 7 

IF shape OF BBConfigurationRequirement IS circular  

THEN designServiceTension OF BBPreliminaryParameters := tensionCoefficient OF 

BBPreliminaryParameters*specificGravityOfLiquid OF BBConfigurationRequirement*height OF 

BBConfigurationRequirement*diameter OF BBConfigurationRequirement/2 

 

Figure 2. An example of knowledge rule and inference procedure 
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Figure 3. Various Classes in the knowledge base 
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Figure 4. Semantic network representing key design process 
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Private Sub TxtLiquidLevel_Change() 
    CheckText TxtLiquidLevel, "Liquid level", "LIQUID LEVEL" 
    If TxtLiquidLevel.Text = " " Then BBImposedLoad.liquidLevel = Null _ 
        Else BBImposedLoad.liquidLevel = Val(TxtLiquidLevel.Text) 
    If Val(TxtLiquidLevel.Text) > BBConfigurationRequirement.Height Then 
        MsgBox "Liquid level should be lower than or equal to height of tank. " & _ 
            "Please enter again.", vbOKOnly + vbCritical, "ERROR: LIQUID LEVEL!" 
        TxtLiquidLevel.Text = " " 
        CmdContinueToMain.Enabled = False 
    End If 
    UnspecifyImposedLoad 
End Sub 
 
Private Sub CheckText(TextName As TextBox, String1 As String, String2 As String) 
    If TextName.Text = " " Or TextName.Text = "" Then 
        CmdContinueToMain.Enabled = False 
    ElseIf Not IsNumeric(TextName.Text) Then 
        MsgBox "Please enter positive numeric " & String1 & " value.", _ 
            vbOKOnly + vbCritical, "ERROR: " & String2 & "!" 
        TextName.Text = " " 
    ElseIf Val(TextName.Text) < 0 Then 
        MsgBox String1 & " is less than or equal to zero. Please enter again.", _ 
            vbOKOnly + vbCritical, "ERROR: " & String2 & "!" 
        TextName.Text = " " 
    Else 
        EnableSearchButton 
    End If 
End Sub 
 
 

Figure 5. Typical examples of procedural methods attached to textbox TxtLiquidLevel in the 

screen of imposed load specification  
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Figure 6. Screen showing structural specification in preliminary design 
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Figure 7. Screen showing the best member sizing record 
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