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Abstract 

As the spot natural gas price in Asia decoupled from the oil price, increasing researchers 
argued that the oil-indexed pricing mechanism cannot reflect the market fundamentals 
of Asian liquefied natural gas (LNG). This study investigates if the Japan-Korea-
Marker (JKM) price is a feasible pricing benchmark to replace the oil price. For this 
purpose, we propose an equilibrium pricing model for the LNG long-term contract 
(LTC) in Asia. Our model incorporates the risk-averse importer and exporter who 
optimize their risk-profit tradeoffs by deciding their LTC-spot trade portfolios. Using 
the model, we compare the pricing efficiency and the risk-profit tradeoff of an 
importer/exporter under different benchmarks (oil price versus JKM price). The results 
show that the JKM price is more efficient as an LTC pricing benchmark than the oil 
price. The JKM pricing benchmark is favored for both exporters and importers when 
they are low risk-aversion. In addition, we compare the performance of the JKM 
benchmark based on the CIF price term (i.e., the importer pays for freight charges) with 
that based on the FOB price term (i.e., the exporter pays for freight charges). We find 
that the freight liability has little effect on the pricing efficiency of the JKM benchmark. 
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1. Introduction 

The global natural gas market is regarded as a composite of three relatively independent 
regional markets (North America, Europe, and Asia), each with significant price 
differentials. In the Asian market, the gas price over the last ten years has generally 
been higher than that in Europe and North America, a phenomenon often called the 
“Asian premium” (as shown in Figure 1).  

 
Figure 1. Natural gas prices in Asia, Europe and North America from 2008 to 2019 
(unit: US$/MMBtu). Source: British Petroleum (BP) Company, 2020. 

The high price of LNG in the Asian market has once been attributed to the market 
fundamentals of Asian natural gas, namely, supply, demand, and transportation cost 
(Neumann and Hirschhausen, 2015). As Vivoda (2014) explained, the major gas-
consuming countries in Asia are highly dependent on liquified natural gas (LNG) 
imports from distant gas sources. In 2019, Asia was the largest gas-importing region: it 
accounted for 39.3% of the global gas trade, of which 86.26% was in the form of LNG 
(BP, 2020). The high importing demand with the expensive transportation cost (freight 
rate of LNG is traditionally higher than transmission fee of the pipeline) eventually 
results in high gas prices. 

However, recent studies have found that the oil pricing mechanism that dominates 
in the Asian LNG trade, rather than the market fundamentals, is the determinant of high 
LNG prices in Asia (Zhang et al., 2018a; Shi and Shen, 2021; Li et al., 2020). Therefore, 
doubts about the rationality of the oil-indexed pricing mechanism are growing in the 
Asian LNG market. Essentially, the oil-indexed pricing mechanism is founded on the 
assumption that the oil and natural gas are substitute fuels. Some argue these two fuels 
are not perfect substitutes and have different driving factors of market fundamentals 
(Zhang et al., 2018b). It implies that the oil-indexed pricing mechanism is inefficient to 



reflect the supply and demand of the Asian LNG market. Stern (2014) noted that some 
exogenous shocks, e.g., the shale gas revolution, Fukushima nuclear accident, had a 
profound impact on the gas supply and demand, while this impact was not reflected in 
the oil-indexed gas price. In practice, price decoupling between the oil price and the 
LNG spot price in the Asian LNG market makes it more conceivable that the oil-
indexed pricing mechanism is inefficient (Zhang and Ji, 2018). In particular, the 
COVID-19 crisis exacerbated gas oversupply by dampening gas demand. This led to 
the record-low LNG spot price, which intensified Asian LNG price decoupling (Ason, 
2020). This phenomenon suggests that LNG market fundamentals are less correlated 
with oil prices and thus that oil-indexed pricing has become untenable (Stern and 
Imsirovic, 2020).  

Given this, creating an Asian LNG spot trading hub has been proposed as a 
solution for efficiently pricing LNG (Shi and Variam, 2017). As other gas trading hubs 
(e.g., the Henry hub for the United States) determine the price of natural gas based on 
gas-to-gas competition within a market, it is possible that the hub price can be an 
efficient benchmark for reflecting LNG demand and supply in pricing long-term 
contracts (LTCs), futures, and other derivatives (Zhang et al., 2018a). As there currently 
exists no LNG trading hubs in Asia, it is more practical for Asian gas importers to find 
an existing benchmark to improve the pricing efficiency. Recently, the Japan-Korea 
Marker (JKM) price published by Platts is gaining attraction, with the rapid expansion 
of the LNG spot trade in Asia (Stern and Imsirovic, 2020). 

This paper, therefore, aims to investigate whether using the JKM price as the 
pricing benchmark is a feasible solution to improve the LNG pricing efficiency in Asia. 
In order to answer this question, two basic conditions need to be evaluated. First, we 
must ascertain whether the JKM price performs better than the oil price in reflecting 
LNG supply and demand in Asia. Second, we must determine whether both gas 
importers and exporters are willing to accept the new benchmark. Furthermore, we have 
to address the concerns of industry veterans regarding the low transparency of the JKM 
benchmark (due to its daily, inquiry-based price formation). The inquiry only provides 
a final price to gas importers, and the opacity of the trade cost thus leaves exporters 
room for hidden margins (Palti-Guzman, 2018). In comparison to the current JKM cost-
insurance-and-freight (CIF) price, the free-on-board (FOB) price transfers the 
transportation costs from exporters to importers, thereby increasing transparency. 
Inspired by this, we will also explore whether the JKM FOB performs better than the 
JKM CIF as an LNG pricing benchmark. 

Some empirical studies have illustrated that the JKM price is more efficient than 
the oil price in serving as a benchmark for LNG pricing (e.g., Alim et al., 2018). These 
studies, however, fail to evaluate the reactions of importers and exporters, as empirical 



methods are unable to look into the black box of market mechanisms. In order to fill 
this gap, we build an equilibrium model for LTC pricing in the Asian LNG market. This 
model is built upon a mean-variance expected utility framework. This framework is 
commonly used in equilibrium analysis of the electric power market (Bessembinder 
and Lemmon, 2002; Gersema and Wozabal, 2017). In order to apply it in the LNG 
market, we modify the model by considering following two characteristics of the Asian 
LNG market. First, natural gas is a storable commodity, while electricity is not. For 
electricity, it is impossible to buy a certain amount of electricity in one period and then 
hold it for the next-period sale. In our model, therefore, we add a non-negative 
inventory constraint so as to retain the possibility that the importer conducts 
intertemporal arbitrage in the LNG spot market. Second, based on the fact that Asian 
LNG trades at the CIF price, our model considers freight fluctuations. This modification 
allows us to explore the feasibility of using the JKM FOB benchmark, via analysis of 
the impact of freight rate transfers between importers and exporters on natural gas 
pricing.  

Based on the proposed equilibrium model, we can investigate and compare the 
pricing efficiency of possible benchmarks (i.e., oil prices, the JKM CIF price, and the 
JKM FOB price) via the LTC’s risk sharing function. The risk sharing of an LTC is 
reflected in its take-or-pay (TOP) clause. This clause stipulates that the importer bears 
the LNG volume risk and the exporter takes the price risk (Abada et al., 2017). This 
risk sharing by means of the TOP clause is effective, if the pricing benchmark of an 
LTC is efficient in reflecting the supply and demand for natural gas within a market. 
Additionally, the model allows us to estimate the risk-profit tradeoff of importers and 
exporters, based on their LTC-spot trade portfolio. By comparing the risk-profit tradeoff 
under different benchmarks, we can directly judge the benchmark that a given importer 
or exporter would be likely to accept.  

Based on historical data, we forecast the future dynamics of candidate 
benchmarks which are input into the model. The results of numerical study show that 
the JKM CIF/FOB price is more efficient than the oil price as a pricing benchmark of 
LNG LTC. This is due to the fact that the JKM pricing benchmark can help importers 
to create more effective hedging positions in their LTCs. This benchmark is favored for 
exporters and importers if both of them are low risk-averse. In addition, the JKM 
pricing benchmark can effectively prevent the transfer of price risk from an LNG 
exporter to the importer in the high-risk-aversion case.  

The rest of this paper is organized as follows: Section 2 reviews the existing 
literature on the topic, and summarizes the contributions of this study. Section 3 
describes the equilibrium pricing model constructed for the Asian LNG market. Section 
4 simulates the random inputs of the equilibrium model based on real data. Section 5 



compares the model results of different pricing benchmarks. Section 6 presents the 
conclusions of this paper. 

 

2. Literature review 

With the growth of spot trading and gas-oil price decoupling in Asia, the so-called 
“Asian premium” is attracting attention from studies on Asian LNG prices. Recently, 
researchers have explored the origins of this phenomenon. Zhang et al. (2018a) 
compared the price determinants of gas markets in the US, Germany, and Japan. Shi 
and Shen (2021) followed Zhang et al. (2018a), and put their focus on the 
macroeconomic uncertainties surrounding the gas market. Using a vector 
autoregressive (VAR) model, these two studies indicated that the oil-indexed pricing 
mechanism was accountable for the “Asian premium.” Another group of literature on 
the origins of the “Asian premium” investigated price bubbles within regional natural 
gas markets. Zhang et al. (2018b) adopted a generalized sup augmented Dickey-Fuller 
test to explore gas price bubbles in the US, Europe, and Japan. Taking the same 
approach, Li et al. (2020) further identified the periodicity of gas price bubbles in these 
three markets. Both studies concluded that the price differential in the Asian LNG 
market was a spillover effect from the oil market. The aforementioned studies also 
proposed policies to address the pricing inefficiency, such as building an LNG trading 
hub (Zhang et al., 2018a; 2018b), and using the JKM price as the pricing benchmark 
(Alim et al., 2018). The effectiveness and feasibility of these policies, however, have 
not yet been evaluated.  

An evaluation of these policies directed toward the Asian premium is an 
investigation of whether to retain the oil-indexed pricing mechanism for the natural gas 
trade. Numerous studies have provided empirical evidence on this point by exploring 
the relationship between the gas spot price and the oil price. Early studies focused on 
cointegration analysis of these two prices. Brown and Yücel (2008), and Hartley et al., 
(2008) concluded that the oil-indexed gas price was reliable, as they found the long-
term equilibrium between the two prices. Doubts about the reliability of this conclusion 
emerged, however, with the finding that the cointegration of these prices was volatile 
over time (Erdős, 2012; Ramberg and Parsons, 2012). In order to capture the time-
varying characteristics of prices, Brigida (2014) and Asche et al. (2017) applied regime-
switching models to investigate the US and UK gas markets, respectively. Both of them 
verified that price cointegration existed, but with instability. Geng et al. (2016) applied 
the same approach in order to explore the impact of the shale gas revolution on natural 
gas prices. They found that the shale gas revolution intensified the gas-oil price 
decoupling within the US market.  



With the advent of novel empirical approaches and the availability of sophisticated 
databases, some literature began to incorporate more of the complexities related to the 
dynamic and nonlinear features of the gas-oil nexus. Batten et al. (2017) employed 
time- and frequency-domain causality tests so as to analyze the time-varying spillover 
effect between the gas spot price and the oil price. They concluded that the two prices 
in the US have been almost independent after the 2008 financial crisis. Zhang and Ji 
(2018) applied a long-memory approach, and showed strong evidence of price 
decoupling in the US; meanwhile, the gas-oil price nexus still held in Europe and Asia. 
Wang et al. (2019) applied a dynamic model averaging (DMA) approach in order to 
explore the driving factors of gas prices in the US market. The results suggested that 
the effect of supply and demand was more significant than that of the oil price on the 
gas spot price. Lovcha and Perez-Laborda (2020) also analyzed the oil-gas price 
volatility spillover via the framework of dynamic frequency connectedness. They found 
that the magnitude of the spillover effect varied over time, but that the volatilities of the 
two prices were not decoupled. Ftiti et al. (2020) examined the dynamic gas-oil 
relationship via both linear and nonlinear machine learning models. They found that the 
gas-oil relationship more closely resembled a nonlinear one, which depended on the 
existence of extreme price movements in the tested time scales. It is clear that these 
empirical studies did not arrive at a consensus on the gas-oil price relationship, due to 
the differences in methodologies, markets analyzed, and data sample periods. More 
importantly, these studies cannot explicitly showcase the impact of either retaining or 
abandoning this pricing mechanism on participants in the natural gas trade.   

The equilibrium model proposed in this study is built upon the decision-making 
of market participants, which allows us to excavate the mechanism that underlies the 
effects of the proposed policies. There are many deterministic and stochastic 
equilibrium models for natural gas market (e.g., Zhuang and Gabriel, 2008; Egging et 
al., 2010; Guo and Hawkes, 2018). These models have been successfully applied to 
evaluate the implications of various policies, including market entrance (Feijoo et al., 
2016), energy structure transition (Holz et al., 2016), and pricing schemes (Shi and 
Variam, 2017). For instance, Egging et al. (2017) proposed an equilibrium model that 
considered risk-averse agents within the European gas market. This model was applied 
to analyze the effects of uncertain shale gas exploration on the investment choices of 
gas suppliers. The results suggested that the high risk-averse disposition of suppliers 
leads to lower investment, thereby causing gas prices to rise. Abada et al. (2017) 
presented an equilibrium model that endogenized the long-term contract behavior of 
risk-averse gas producers and midstreamers. This study is a typical example of using 
an equilibrium model to analyze the gas pricing mechanism. Using the model, they 
showed that the oil-indexed LTC is still attractive in the European gas market, as it 
provides financial security for European producers (who bear expensive investment 



costs). There exist few studies, however, that apply the equilibrium model to studying 
risk management and risk aversion (which also affect the gas trade), and none of the 
existing studies focus on the Asian market.  

The contribution of this paper is thus threefold. First, through building an 
equilibrium pricing model that accounts for risk aversion, we provide a new perspective 
for analyzing the pricing mechanism in the Asian LNG market. We examine not only 
the efficiency of different pricing benchmarks, but also their effects on the risk-profit 
tradeoff calculations of market participants. This is a crucial consideration for 
implementing a pricing mechanism. Second, we enrich the equilibrium model and its 
incorporation of risk aversion by considering the particular characteristics of the LNG 
market. We compare the FOB-based pricing with CIF-based pricing in order to explore 
the effects of freight rate transfers on improving the performance of pricing benchmarks. 
Third, we find that using the JKM price as the pricing benchmark can improve the 
pricing efficiency for LTCs. This finding has important practical significance for the 
selection of pricing benchmarks in the Asian LNG market. 

 

3. Model 
In this section, we construct an LTC equilibrium pricing model. In particular, Section 
3.1 provides the assumptions and nomenclature of the model. We define the agent’s 
profits in Section 3.2. In Section 3.3, we display the optimization problems for both 
exporters and importers, and the market clearing conditions.     

3.1 Model assumptions and nomenclature 
In this study, we assume that all participants in the LNG trade are homogenous, and 
that they can be represented by two representative agents, namely exporter and importer. 
We focus on a bilateral transaction between an exporter and an importer. The exporter 
sells LNG to the importer, either via LTC or spot market. The importer purchases LNG 
so as to meet the consumption within a market, or to resell it in a spot market. The 
importer cannot directly resell the gas in LTC, due to the restriction of destination clause 
(Shi and Variam, 2016). Competition within the market is assumed to be perfect, which 
implies that the importer and the exporter alike are both price takers. In addition, we 
assume that both the exporter and the importer have the same expectations of prices, as 
the market information (e.g., futures prices of oil and LNG) is consistent for each of 
them.   

In general, a standard LTC of LNG has a 20-year contract period, which is too long 
a period for us to make a persuasive forecast of LNG market trends. Alternatively, we 
divide the whole LTC period into several trading periods (e.g., one year) and focus our 
study on one of those periods. The rationality of this setting is supported by examples 



of LTC price renegotiation in reality, for example, the renegotiation between India and 
Australia in 2017. Through the renegotiation, Australia reduced the LTC price for India 
from 14.5% of the Japanese crude import price to 13.9% of the Brent oil price1. Due to 
the change in the LTC price, the contract before and after the renegotiation can be 
regarded as separated trading periods.   

As an example, Figure 2 showcases the dynamics of the first trading period after 
entering into an LTC. At initial time 0 , an LTC for LNG is concluded between the 
exporter and importer. In addition to total trade volume and the pricing benchmark 
throughout the whole contracting period, the LTC specifies the delivery volume in each 
trading period, and the base price in the first trading period. In the trading period 
between time 0  and 𝑇𝑇 , the LNG is delivered in batches at specified delivery times 
(1, 2, … ,𝑇𝑇). The interval of two adjacent times constitutes one delivery period of LNG. 
For example, the interval between time 0  and time 1  is the first delivery period, 
marking the commencement of the contract. At each delivery time 𝑡𝑡, the corresponding 
batch of LTC delivery is completed, and the spot trade of both the exporter and the 
importer finishes clearing. For the purpose of simplification, we assume that the 
delivery volume of LTC is equal at every delivery time. At the ending time 𝑇𝑇, with the 
completion of the last batch of LTC delivery, the contract settlement for the first trading 
period is finished. After finishing the first-period trade of LTC, the contract parties will 
review the contract in order to determine the base price for the next trading period. The 
contract will continue by following the above process, but with a new base price. Each 
trading period is also accompanied by market uncertainty, we assume that the market 
uncertainty only comes from the volatility of the LNG spot price, the price benchmark, 
and spot freight rates.  

 

Figure 2. Dynamics of a trading period under an LNG long-term contract 

 

1 Detailed information was reported by LiveMint in 2017, and available at 
https://www.livemint.com/Money/MpJAxVSQwMExq5KmfpYGJL/The-gains-from-the-Gorgon-LNG-contract-
renegotiation.html 



We define the mathematical notations of the model, as follows: 

Indices 
ℎ Superscript denoting agent, ℎ ∈ 𝐻𝐻 = {𝑠𝑠, 𝑏𝑏} , where 𝑠𝑠  denotes the LNG 

exporter, and 𝑏𝑏 denotes the LNG importer.  
𝑡𝑡 Subscript denoting the discrete time in a trading period (e.g., one year), 𝑡𝑡 ∈

{0, … ,𝑇𝑇}. When 𝑡𝑡 = 0, it indicates the initial time of the trading period. When 
𝑡𝑡 ∈ {1, … ,𝑇𝑇}, it indicates a delivery time within the trading period.   

𝐿𝐿𝑇𝑇𝐿𝐿 Superscript denoting Long-term contract (for both LNG trade and shipping).  
𝑆𝑆𝑆𝑆𝑆𝑆 Superscript denoting spot market (for both LNG trade and shipping). 
𝑂𝑂𝑂𝑂𝐿𝐿 Superscript denoting oil market. 
𝐿𝐿𝑆𝑆𝑆𝑆 Superscript denoting gas consumption market. 
Variables 
𝑞𝑞 Trade volume of LNG 
𝑝𝑝 Price of LNG or oil  
𝑓𝑓 Freight rate of LNG 
𝜋𝜋 Profit of agent 
𝑤𝑤 Revenue of agent 
𝜙𝜙 Cost of agent 

Parameters 
𝛾𝛾ℎ Attitude of the agent towards risks, if 𝛾𝛾ℎ = 0, the agent is risk neutral; if 𝛾𝛾ℎ >

0, the agent is risk averse. 
𝜅𝜅 Binary parameter indicating whether exporter or importer pays for freight 

rate. 
𝛿𝛿 Binary parameter indicating the pricing benchmark.  
𝑑𝑑 LNG consumption demand.  
𝑄𝑄 LNG production/regasification capacity of agent. 

In this study, we clarify that a tilde on a variable 𝑥𝑥� indicates that the variable is 
random, while a bar on a variable �̅�𝑥 indicates that the variable is exogenous, and acting 
as a parameter. Additionally, variables in the model are nonnegative unless otherwise 
stated. 

3.2 Definition of agent profits 
For an exporter, its total profit is obtained from LNG sales, via both spot market and 
LTC.  

𝜋𝜋� 𝑠𝑠 =  𝜋𝜋�𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜋𝜋�𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 , (1) 

where 𝜋𝜋� 𝑠𝑠 is the total profit of the exporter, and 𝜋𝜋�𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 and 𝜋𝜋�𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 are the profits from 
LTCs and spot trades, respectively. The spot profit of an exporter is defined as follows: 



𝜋𝜋�𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆�𝑞𝑞𝑡𝑡
𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆

𝐿𝐿

𝑡𝑡=1

, (2) 

where 𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  and 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  are the spot CIF price of LNG, and the spot freight rate at 
delivery time 𝑡𝑡 , respectively; 𝑞𝑞𝑡𝑡

𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆  indicates the LNG spot sales at 𝑡𝑡 . We only 
consider the freight rate in formulating the exporter’s profit. The reason for this is that 
the trading period set in this model is a relatively short term (one year). Other costs 
(namely, production costs) in that period can be regarded as constant, and thus have no 
effect on the market risks that the exporter takes.  

The key to defining the LTC profit of an exporter is the LTC pricing function. We 
formulate the LTC price as the sum of the base price and the variation of the pricing 
benchmark, which is shown in following equation:  

𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑝𝑝0𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛿𝛿(𝑝𝑝�𝐿𝐿𝑂𝑂𝑂𝑂𝐿𝐿 − �̅�𝑝0𝑂𝑂𝑂𝑂𝐿𝐿)
+ (1 − 𝛿𝛿)��𝑝𝑝�𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆 − 𝜅𝜅𝑓𝑓𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆� − ��̅�𝑝0𝑆𝑆𝑆𝑆𝑆𝑆 − 𝜅𝜅𝑓𝑓0̅𝑆𝑆𝑆𝑆𝑆𝑆��, 

(3) 

where 𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 is the settlement price of the LTC, �̅�𝑝0𝑂𝑂𝑂𝑂𝐿𝐿 is the LTC base price negotiated at 
time 0, �̅�𝑝0𝑂𝑂𝑂𝑂𝐿𝐿  and 𝑝𝑝�𝐿𝐿𝑂𝑂𝑂𝑂𝐿𝐿  denote the oil price at initial time 0  and ending time 𝑇𝑇 , 
respectively. All prices at the beginning of the trading period (𝑡𝑡 = 0) can be observed 
by both the importer and the exporter, thereby rendering them exogenous. As our 
assumption on LTC execution only allows the LTC to be settled at the end of the trading 
period (𝑡𝑡 = 𝑇𝑇), the benchmark variation is the price difference between time 0 and time 
𝑇𝑇. When the binary parameter 𝛿𝛿 equals 1, the LTC is benchmarked according to the oil 
price. Otherwise, it is benchmarked by the LNG spot price. For the case of the LNG 
spot pricing benchmark, we further split our price analysis into CIF-indexed and FOB-
indexed benchmarks via binary parameter 𝜅𝜅. When 𝜅𝜅 equals 0, the LNG spot pricing 
benchmark is the CIF. Otherwise, it is an FOB-based benchmark.  

We describe the LTC profit of a given exporter as follows: 

𝜋𝜋�𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 = �𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 − 𝜅𝜅𝑓𝑓̅𝐿𝐿𝐿𝐿𝐿𝐿�𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 , (4) 

where 𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 denotes the LNG volume that the exporter sells through the LTC during 
the trading period. We assume that the LTC binds a long-term chartering contract (LCC) 
with LNG tankers. Our rationale is that the long-term chartering contract can provide a 
stable fleet capacity so as to ensure that the LTC volume can be delivered during a given 
trading period. In order to simplify it, we assume the long-term freight rate 𝑓𝑓̅𝐿𝐿𝐿𝐿𝐿𝐿 is fixed. 
The parameter 𝜅𝜅 in equation (4) is consistent with that in equation (3). The implication 
of this is that, if the pricing benchmark is CIF/FOB, 𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 is a CIF/FOB price. It should 
be noted that 𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 is a CIF price (𝜅𝜅 = 1) when the oil-indexed benchmark (𝛿𝛿 = 1) is 
adopted.  



An importer purchases LNG from the exporter, both through LTCs and spot market 
trades. A given importer’s purchasing cost is described as equation (5): 

𝜙𝜙�𝑏𝑏 = �𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 + (1 − 𝜅𝜅)𝑓𝑓̅𝐿𝐿𝐿𝐿𝐿𝐿�𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 + �𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+

𝐿𝐿

𝑡𝑡=1

, (5) 

where 𝜙𝜙�𝑏𝑏 is the total purchasing cost of the importer within the trading period, 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 
is the LNG volume that the importer purchases via LTC, and 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ denotes the spot 
LNG volume that the importer purchases at delivery time 𝑡𝑡. (1 − 𝜅𝜅) in equation (5) 
ensures that the type of 𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 (CIF or FOB) is consistent with that in equation (4). The 
importer can either sell the purchased LNG in the gas consumption market, or resell it 
in a spot market. The revenue that the importer obtains can be described as follows: 

𝑤𝑤�𝑏𝑏 = �̅�𝑝𝐿𝐿𝑆𝑆𝑆𝑆 �𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 + �𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+

𝐿𝐿

𝑡𝑡=1

−�𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−

𝐿𝐿

𝑡𝑡=1

� + �𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−

𝐿𝐿

𝑡𝑡=1

, (6) 

where 𝑤𝑤�𝑏𝑏 is the total revenue of the importer, and �̅�𝑝𝐿𝐿𝑆𝑆𝑆𝑆 indicates the gas price in the 
consumption market. We assume that this price is fixed during the trading period. 
𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− is the LNG volume that the importer resells in a spot market. According to 

equations (5) and (6), we can define the importer’s profit as: 

𝜋𝜋�𝑏𝑏 = 𝑤𝑤�𝑏𝑏 − 𝜙𝜙�𝑏𝑏 −�𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−

𝐿𝐿

𝑡𝑡=1

, (7) 

where 𝜋𝜋�𝑏𝑏 is the total profit of the importer, 𝜋𝜋�𝑏𝑏 is not solely the revenue after subtracting 
the purchasing cost: as the spot market in Asia is still dominated by bilateral physical 
trade, transportation costs are inevitable (Abada et al., 2017). Therefore, freight charges 
for reselling LNG (i.e., the last portion of equation (7)) also need to be deducted in 
order to determine total profit.     

3.3 Market equilibrium model 

As we mentioned in Section 1, our model is based on the mean-variance expected utility 
framework. The expected utility function is displayed as follows: 

𝔼𝔼[𝑈𝑈(𝜋𝜋�ℎ)] = 𝔼𝔼(𝜋𝜋�ℎ) −
𝛾𝛾ℎ

2
𝑉𝑉𝑉𝑉𝑉𝑉(𝜋𝜋�ℎ),   ∀ℎ ∈ 𝐻𝐻 = {𝑠𝑠, 𝑏𝑏}, (8) 

The expected utility 𝔼𝔼[𝑈𝑈(𝜋𝜋�ℎ)]  of an agent ℎ  is linearly correlated with its expected 
profit, and the profit-related risk is measured by the variance of profit. 𝛾𝛾ℎ denotes the 
willingness of each agent to accept risks. In this study, we assume that both the importer 
and the exporter are risk-averse, so 𝛾𝛾ℎ  is a positive parameter. Through utility 
maximization, each of the two agents can achieve a balance between their profits and 



the corresponding risks. The equilibrium model, therefore, is assembled by integrating 
the utility maximization problems of each agent, together with the market clearing 
conditions in both LTC and spot trade transactions.   

The utility maximization of the importer is shown as: 

max
𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿,𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+,𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− 

𝔼𝔼[𝑈𝑈(𝜋𝜋�𝑏𝑏)] (9) 

Subject to 

𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇) + 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ ≤ 𝑄𝑄𝑏𝑏   �𝜆𝜆𝑡𝑡𝑏𝑏�,   ∀𝑡𝑡 ∈ {1,2, … ,𝑇𝑇}, (9.a) 

𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇) + 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− + (𝑜𝑜𝑉𝑉𝑑𝑑(𝑡𝑡) − 1)
𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇)

+ ��𝑞𝑞𝑡𝑡′
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝑞𝑞𝑡𝑡′

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− − 𝑑𝑑𝑡𝑡′�
𝑡𝑡′<𝑡𝑡

− 𝑑𝑑𝑡𝑡

≥ 0   �𝜇𝜇𝑡𝑡𝑏𝑏�,   ∀𝑡𝑡, 𝑡𝑡′  ∈ {1,2, … ,𝑇𝑇 − 1}, 

(9.b) 

𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 + ��𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−�
𝐿𝐿

𝑡𝑡=1

−�𝑑𝑑𝑡𝑡

𝐿𝐿

𝑡𝑡=1

= 0   (𝜌𝜌𝑏𝑏), (9.c) 

where 𝑄𝑄𝑏𝑏 represents the importer’s regasification capacity, which is constant at each 
delivery time 𝑡𝑡 . 𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇)  denotes the ordinal number of 𝑇𝑇  in the sequential set 

{1,2, … ,𝑇𝑇} .  𝑞𝑞
𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿

𝑜𝑜𝑜𝑜𝑜𝑜(𝐿𝐿)  represents the LTC LNG delivered at each 𝑡𝑡 . 𝑑𝑑𝑡𝑡  indicates the 

demand of gas consumption at 𝑡𝑡. 𝜆𝜆𝑡𝑡𝑏𝑏, 𝜇𝜇𝑡𝑡𝑏𝑏 and 𝜌𝜌𝑏𝑏 are the shadow prices of corresponding 
constraints. As the importer is a price taker, 𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆, 𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 (contained in 𝜋𝜋�𝑏𝑏— 
see Section 3.2) can be regarded as given. The decision variables in this optimization 
problem are 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+  and 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− . Constraint (9.a) expresses that the total 

import volume of LNG should be restricted by the importer’s regasification capacity. 

In constraint (9.b), the term 𝑞𝑞
𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿

𝑜𝑜𝑜𝑜𝑜𝑜(𝐿𝐿) + 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− indicates the net procurement 

volume of importer at 𝑡𝑡 . (𝑜𝑜𝑉𝑉𝑑𝑑(𝑡𝑡) − 1) 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿

𝑜𝑜𝑜𝑜𝑜𝑜(𝐿𝐿) + ∑ �𝑞𝑞𝑡𝑡′
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝑞𝑞𝑡𝑡′

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− − 𝑑𝑑𝑡𝑡′�𝑡𝑡′<𝑡𝑡  

indicates the LNG inventory up to 𝑡𝑡. Constraint (9.b) ensures that, at each delivery time 
𝑡𝑡 before settlement of the LTC, the sum of net procurement and inventory should at 
least satisfy gas consumption. Constraint (9.c) is the special case of Constraint (9.b), 
when 𝑡𝑡 equals 𝑇𝑇. Constraint (9.c) is stricter, however, so as to ensure market clearing 
within the gas consumption market. This constraint implies that the total net LNG 
procurement of the importer should be equal to consumption during the trading period. 

    The utility maximization of the exporter is given as:  



max
𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿

𝔼𝔼[𝑈𝑈(𝜋𝜋� 𝑠𝑠)] (10) 

Subject to 

𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 + �𝑞𝑞𝑡𝑡
𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆

𝐿𝐿

𝑡𝑡=1

≤ 𝑄𝑄𝑠𝑠  (𝜆𝜆𝑠𝑠), (10.a) 

where 𝑄𝑄𝑠𝑠 is the exporter’s production capacity during the trading period, and 𝜆𝜆𝑠𝑠 is the 
shadow price of constraint (10.a). As the exporter is also a price taker, 𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 
(contained in 𝜋𝜋� 𝑠𝑠 ) are treated as given. In this study, we assume that 𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  is an 
equilibrium price, which implies that the spot volume sold by the exporter (𝑞𝑞𝑡𝑡

𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆) is 
dependent on the demand of the importer. Therefore, the decision variable in this 
optimization problem is only the LTC volume sold by the exporter (𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿). Due to 
oversupply in the LNG market (Sesini et al., 2020), we assume that the exporter can 
satisfy the demand of the importer at each delivery time 𝑡𝑡. Hence, we do not impose 
the restriction on the LNG exports during each delivery period. Constraint (10.a) only 
ensures that the total LNG exports in the trading period are not greater than 𝑄𝑄𝑠𝑠.  

We introduce the market clearing conditions as follows: 

𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 , (11) 

which represents the equilibrium in LTC trade between a given importer and exporter.  
Additionally, 

𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ = 𝑞𝑞𝑡𝑡

𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆, (12) 

which indicates equilibrium in the spot market between the importer and the exporter. 
In order to solve this model, we transport it into a mixed complementarity problem 
(MCP), via the KKT conditions and market clearing conditions. A detailed description 
of the transformed MCP is given in Appendix A. 

 

4. Simulation of stochastic inputs 
Three random variables act as the stochastic inputs in the proposed equilibrium model: 
a) the oil price 𝑝𝑝�𝑡𝑡𝑂𝑂𝑂𝑂𝐿𝐿; b) the LNG spot price (CIF) 𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆; and c) the spot freight rate 
𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆. In this section, we apply historical data in order to simulate the movements of 
these three prices over a trading period from November, 2020 to December, 2021. In 
Section 4.1, we present the econometric approach for the simulation. In Section 4.2, we 
show the simulated results. 

4.1 Simulation procedure of stochastic inputs 
The purpose of simulating the aforementioned random prices is to determine the 



expectation 𝔼𝔼(𝜋𝜋�ℎ)  and variance 𝑉𝑉𝑉𝑉𝑉𝑉(𝜋𝜋�ℎ)  of each agent’s profits in the equilibrium 
model. This requires that our approach not only forecast short-term price trends 
accurately, but also capture their distribution characteristics. To this end, we apply an 
approach that combines a mean-reversion model and kernel regression model.  

We assume that three prices satisfy the mean reversion process. This model can 
be described as the following differential equation:  

𝑑𝑑𝑧𝑧𝑡𝑡 = 𝜇𝜇(𝑚𝑚𝑡𝑡 − 𝑧𝑧𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 ,   𝑡𝑡 = 1,2, … ,𝑇𝑇 (13) 

where 𝑧𝑧𝑡𝑡 is the logarithm of a price 𝑝𝑝𝑡𝑡. 𝜇𝜇 and 𝜎𝜎 are positive parameters reflecting the 
speed and volatility of mean reversion, respectively. 𝑚𝑚𝑡𝑡 is the time-dependent mean of 
𝑧𝑧𝑡𝑡. 𝑊𝑊𝑡𝑡 represents a Wiener process. By following Gersema and Wozabal (2018), we 
apply a locally constant kernel regression to estimate 𝑚𝑚𝑡𝑡. The regression function is 
given as: 

𝑚𝑚𝑡𝑡 = 𝐸𝐸[𝑧𝑧|𝐹𝐹(𝑡𝑡)] =
∑ 𝐾𝐾ℎ[𝐹𝐹(𝑡𝑡) − 𝐹𝐹(𝜏𝜏)]𝑧𝑧𝜏𝜏𝐿𝐿
𝜏𝜏=1

∑ 𝐾𝐾ℎ[𝐹𝐹(𝑡𝑡) − 𝐹𝐹(𝜏𝜏)]𝐿𝐿
𝜏𝜏=1

, 𝑡𝑡, 𝜏𝜏 ∈ [0,1,2, … ,𝑇𝑇] (14) 

where 𝐾𝐾ℎ(·)  is a Gaussian kernel with ℎ  bandwidth, 𝐹𝐹(𝑡𝑡)  denotes the time 
transformation, representing the periodic characteristic of prices, such as seasonality. If 
there is no clear periodicity in the price series, 𝐹𝐹(𝑡𝑡) can directly equal 𝑜𝑜𝑉𝑉𝑑𝑑(𝑡𝑡 + 1)2. In 
order to estimate the parameters 𝜇𝜇 and 𝜎𝜎, we refer to the approach of Tseng and Barz 
(2002), who constructed a mean reversion process for a stationary series by removing 
the periodicity and trends from the price series.  

First, we remove the periodicity of 𝑧𝑧𝑡𝑡 , and obtain the logarithm price without 
periodicity, �̇�𝑧𝑡𝑡 . We define the periodicity as monthly. This periodicity can be 
represented as the difference between the average logarithm price of the month, and the 
average logarithm price over the sample period. For example, given a sample period 
from 2010 to 2019, the mean of all January logarithm prices minus the average 
logarithm price over 10 years is equal to the periodicity of January. 

Second, we construct the stationary price series �̈�𝑧𝑡𝑡 by detrending �̇�𝑧𝑡𝑡. We define the 
trend of �̇�𝑧𝑡𝑡  as being yearly. The trend is represented by the difference between the 
annual mean of �̇�𝑧𝑡𝑡 and the mean of �̇�𝑧𝑡𝑡 over the sample period.  

Last, we display the mean reversion process for the modified price series �̈�𝑧𝑡𝑡 as 
follows: 

𝑑𝑑�̈�𝑧𝑡𝑡 = 𝜇𝜇(𝑚𝑚 − �̈�𝑧𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 ,   𝑡𝑡 = 1,2, … ,𝑇𝑇 (15) 

2 𝑜𝑜𝑉𝑉𝑑𝑑(𝑡𝑡 + 1) indicates the ordinal number of 𝑡𝑡 in the ordered set {0,1,2, … ,𝑇𝑇}. 



where 𝑚𝑚 is the mean of �̈�𝑧𝑡𝑡. Note that 𝑚𝑚 is time invariant, since the price series �̈�𝑧𝑡𝑡 is 
stationary. For the purposes of parameter estimation, we transform equation (15) into 
the following, discrete-time form:  

�̈�𝑧𝑡𝑡 − �̈�𝑧𝑡𝑡−1 = [1 − exp(−𝜇𝜇)](𝑚𝑚− �̈�𝑧𝑡𝑡−1) + 𝜖𝜖𝑡𝑡 ,   𝑡𝑡 = 1,2, … ,𝑇𝑇 (16) 

where the residual 𝜖𝜖𝑡𝑡 should be subject to 𝑁𝑁(0,𝜎𝜎𝜖𝜖2). Based on equation (16), we fit 
time series �̈�𝑧𝑡𝑡, using the maximum likelihood approach. The corresponding maximum 
likelihood estimators are shown as: 

𝑚𝑚 =
1

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇)
��̈�𝑧𝑡𝑡

𝐿𝐿

𝑡𝑡=0

−
1

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇)
�̈�𝑧0 − exp(−𝜇𝜇) �̈�𝑧𝑡𝑡

1 − exp(−𝜇𝜇)  

≈
1

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇) + 1
��̈�𝑧𝑡𝑡

𝐿𝐿

𝑡𝑡=0

,   𝑓𝑓𝑜𝑜𝑉𝑉 �̈�𝑧0, �̈�𝑧𝐿𝐿 ≈ 𝑚𝑚, 

(17) 

𝜇𝜇 = − ln �
∑ (�̈�𝑧𝑡𝑡 − 𝑚𝑚)(�̈�𝑧𝑡𝑡−1 − 𝑚𝑚)𝐿𝐿
𝑡𝑡=1

∑ (�̈�𝑧𝑡𝑡−1 − 𝑚𝑚)2𝐿𝐿
𝑡𝑡=1

�, (18) 

𝜎𝜎𝜖𝜖2 =
1

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇)
�[(�̈�𝑧𝑡𝑡 − 𝑚𝑚) − exp(−𝜇𝜇) · (�̈�𝑧𝑡𝑡−1 − 𝑚𝑚)]2
𝐿𝐿

𝑡𝑡=1

, (19) 

𝜎𝜎2 =
2𝜇𝜇𝜎𝜎𝜖𝜖2

1 − exp(−2𝜇𝜇). (20) 

Note that, in equation (17) and (19), 𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇) indicates the ordinal number of 𝑇𝑇 in 
the ordered set. 

After estimating parameters 𝜇𝜇 and 𝜎𝜎, we substitute them into the time-varying 
process. The original logarithm price 𝑧𝑧𝑡𝑡 can then be simulated as: 

𝑧𝑧𝑡𝑡 = [1 − exp(−�̂�𝜇)]𝑚𝑚𝑡𝑡−1 + exp(−�̂�𝜇) 𝑧𝑧𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 ,   𝑡𝑡 = 1,2, … ,𝑇𝑇 (21) 

where the residual 𝜀𝜀𝑡𝑡  should be subject to 𝑁𝑁(0,𝜎𝜎�2) , �̂�𝜇  and 𝜎𝜎�  denote the estimated 
results of the parameters via the maximum likelihood approach. As we have determined 
the distribution characteristics of 𝜀𝜀𝑡𝑡, we apply the Monto Carlo approach in order to 
generate scenarios of 𝑝𝑝𝑡𝑡. The corresponding steps are shown as:    

• First, we generate 𝑂𝑂 (𝑂𝑂 = 5000) scenarios for each 𝜀𝜀𝑡𝑡. The scenarios of 𝜀𝜀𝑡𝑡 can 
be aggregated as a vector 𝜺𝜺𝒕𝒕 = [𝜀𝜀1𝑡𝑡 , 𝜀𝜀2𝑡𝑡 , … , 𝜀𝜀𝑖𝑖𝑡𝑡 , … , 𝜀𝜀𝑂𝑂𝑡𝑡]𝐿𝐿.  

• Second, the price movement 𝒛𝒛𝒊𝒊 = [𝑧𝑧𝑖𝑖1, 𝑧𝑧𝑖𝑖2, … , 𝑧𝑧𝑖𝑖𝑡𝑡 , … , 𝑧𝑧𝑖𝑖𝐿𝐿]𝐿𝐿 in each scenario 𝑖𝑖 
can be simulated using equation (21), via substituting 𝜀𝜀𝑡𝑡 with 𝜀𝜀𝑖𝑖𝑡𝑡.  

• Third, repeat the second step for all scenarios. Scenarios of each 𝑧𝑧𝑡𝑡 should be 



the vector 𝒛𝒛𝒕𝒕 = [𝑧𝑧1𝑡𝑡 , 𝑧𝑧2𝑡𝑡 , … , 𝑧𝑧𝑖𝑖𝑡𝑡 , … , 𝑧𝑧𝑂𝑂𝑡𝑡]𝐿𝐿 . Scenarios of 𝑝𝑝𝑡𝑡  are defined as the 
vector 𝒑𝒑𝒕𝒕, where 𝒑𝒑𝒕𝒕 = exp(𝒛𝒛𝒕𝒕).   

Within the scenario vector 𝒑𝒑𝒕𝒕, we can further estimate expectations and covariance 
matrices over the three random prices, which act as the stochastic inputs of the 
equilibrium model.  

4.2 Simulated results  
In this section, we present the simulated results for each of the stochastic inputs into the 
equilibrium model, that is, the oil price, the LNG spot price, and the spot freight rate. 

The oil price in the equilibrium model represents one choice for an LTC pricing 
benchmark. In this study, we adopt the Japan Crude Cocktail (JCC) price, which is a 
commonly used oil-indexed benchmark for LNG LTCs in Asia. The monthly data on 
JCC prices are published by the Ministry of Economy, Trade and Industry (METI) of 
Japan. The in-sample period ranges from January 2000 to October 2020. The out-of-
sample period ranges from November 2020 to October 2021. The in-sample, real JCC 
price is shown as the blue line in Figure 3 (a). Since it does not have obvious periodicity, 
we apply 𝑜𝑜𝑉𝑉𝑑𝑑(𝑡𝑡 + 1) as the time transformation 𝐹𝐹(𝑡𝑡) for kernel regression. In order to 
provide a basis for the out-of-sample forecast, we use the observed JCC futures prices 
on October 29, 2020 to profile the trend of mean reversion from November 2020 to 
October, 2021. This analysis is shown as a black line in Figure 3 (a). By incorporating 
the in-sample, real JCC price, we form a 2000-2021 time series that acts as the input of 
kernel regression, so as to keep the continuity of estimation. The estimation result of 
the time-dependent mean from the kernel regression is shown in Figure 3 (a) as a red 
line. The estimated parameters �̂�𝜇 and 𝜎𝜎� for the JCC price are 0.390 and 0.094 (see Table 
1). We use 𝑅𝑅2  and Mean Absolute Percentage Error (MAPE) to examine the fit 
performance of the previously described approach to in-sample data. As shown in Table 
1, the 𝑅𝑅2 and MAPE in the JCC price simulation are 0.974 and 0.025, respectively. This 
indicates that the estimated result is a good fit for the real data in the in-sample period. 
Then, we forecast the JCC price over the out-of-sample period. Figure 4 (a) displays 
the forecast result over a 95% confidence level.  

The JKM price is an alternative choice for replacing the oil-indexed benchmark. 
The weekly data is sourced from Thomson Reuters Eikon. The in-sample period ranges 
from July 31, 2014 to October 29, 2020. The out-of-sample period ranges from 
November 5, 2020 to October 30, 2021. In Figure 3 (b), the blue line shows the real 
JKM price during the in-sample period. Similar to the JCC price, the JKM price doesn’t 
show obvious periodicity. We therefore set the time transformation 𝐹𝐹(𝑡𝑡) as 𝑜𝑜𝑉𝑉𝑑𝑑(𝑡𝑡 + 1) 
for kernel regression. The black line shows the JKM futures prices on October 29, 2020. 
The JKM futures prices make up a continuous time series together with the real JKM 



price for the time-dependent mean estimation. The red line in Figure 3 (b) represents 
the estimated, time-dependent mean of the JKM price from kernel regression. The 
estimated parameters �̂�𝜇 and 𝜎𝜎� for the JKM price mean-reversion process are 0.390 and 
0.094. 𝑅𝑅2 and MAPE are 0.976 and 0.031, respectively, showing that the estimated 
JKM price during the in-sample period is well fitted to the real data. Then, we forecast 
the JKM price over the out-of-sample period. Figure 4 (b) displays the forecast result 
over a 95% confidence level.   

The spot freight rate is the trade cost item we are most concerned with in the model. 
In this paper, we use the spot freight rate from Baltic LNG Route 1 (BLNG1) as an 
example.3 The in-sample weekly data between January 5, 2018 and October 29, 2020 
is sourced from the Shipping Intelligence Network. The out-of-sample period ranges 
from November 5, 2020 to October 30, 2021. In Figure 3 (c), the blue line shows the 
real spot freight rate during the in-sample period. Unlike the JCC and JKM prices, the 
spot freight rate has obvious periodicity. Briefly, the spot freight rate maintains an 
upward trend from April to October. The freight rate displays a downward trend from 
October to April of the following year. The periodicity of the spot freight rate leads to 
a different time transformation 𝐹𝐹(𝑡𝑡), shown as: 

𝐹𝐹(𝑡𝑡) = sin�𝜋𝜋 +
𝑜𝑜𝑉𝑉𝑑𝑑(𝑡𝑡 + 1)

26
𝜋𝜋� + 𝑜𝑜𝑉𝑉𝑑𝑑(𝑡𝑡 + 1), (22) 

where sin �𝜋𝜋 + 𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡+1)
26

𝜋𝜋� indicates the stationary periodicity in the long run. The 

black line shows the BLNG1 futures prices observed in the Thomson Reuters Eikon on 
October 29, 2020. These prices act as the trend for the mean reversion in the out-of-
sample period. The real prices and the related futures prices together construct the time 
series for the time-dependent mean of sport freight rate. The estimated time-dependent 
mean is shown as the red line in Figure 3 (c). The estimated parameters �̂�𝜇 and 𝜎𝜎� for the 
spot freight rate mean-reversion process are 0.259 and 0.211. 𝑅𝑅2 and MAPE are 0.943 
and 0.011, respectively, showing that the estimated spot freight rate during the in-
sample period is well fitted with the real data. Figure 4 (b) displays the out-of-sample 
forecast result over a 95% confidence level.    

Table 1. In-sample fit of estimated prices compared to real data. 

 �̂�𝜇  𝜎𝜎�  R-squared MAPE 
JCC 0.390 0.094 0.974 0.025 
JKM 0.095 0.080 0.976 0.031 
Spot freight rate 0.259 0.211 0.943 0.011 

3 Baltic LNG route 1 (BLNG1) refers to the route between Gladstone (Australia) and Tokyo (Japan). 



 
Fig. 3. Estimated results of time-dependent mean (𝑚𝑚𝑡𝑡). 

Note: Panels (a), (b), and (c) show the time-dependent mean of the JCC price, the JKM price and the 
spot freight rate, respectively. The x-axis indicates the whole estimation period, while the y-axis indicates 
the price. The Red line represents the time-dependent mean. The Blue line represents the real price during 
the in-sample period. The Black line represents the price of futures, which will mature during the out-of-
sample period. The unit of both the JCC and the JKM price is $/MMBtu. The unit of spot freight rate is 
thousand $/day. 

Figure 4. Forecast prices during out-of-sample period (unit: $/MMBtu). 
Note: Panels (a), (b), and (c) show the forecast results of the JCC price, the JKM price, and the spot 
freight rate, respectively.4 The x-axis indicates the out-of-sample period, and the y-axis indicates the 
price ($/MMBtu).    

4 We unify the unit of the spot freight rate with the unit of other prices as $/MMBtu. The unit of original data on 
the spot freight rate is thousand $/day. As reported by Baltic Exchange, the voyage cycle of the BLNG 1 route is 
around 26 days (including port waiting time). A standard LNG tanker on this route can carry approximately 160 
thousand cubic meters (5.853 million MMBtu) of LNG. Thus, one thousand $/day can be equally converted to 
26
5853

 $/MMBtu. All of the information on the BLNG 1 route is available at 
https://www.balticexchange.com/en/data-services/routes.html 



5. Results 
Based on the price forecast results in Section 4, we conduct a case study in this section 
in order to evaluate the efficiency of the three different benchmarks for LTC pricing, 
and the risk-profit tradeoffs for the importer and the exporter. The case study we have 
chosen is a trade between a Japanese importer and an Australian exporter. They sign an 
LTC on October 29, 2020. The first settlement of the LTC will be conducted on October 
30, 2021. According to the terms of the LTC, gas will be delivered in equal volumes on 
a weekly basis. In order to account for the seasonality of LNG consumption, we assume 
that the peak season consists of two periods: a) the period from the 1st week up to the 
12th week after October 29, 2020; b) the period from the 40th week to the 52nd week. 
The slack season begins from the 13th week to 39th week after October 29, 2020. 

The detailed information related to the parameters of the equilibrium model is 
shown in Table 2. As for the risk aversion parameter 𝛾𝛾ℎ, we estimate that its order of 
magnitude is 10−2. The exporter’s risk aversion parameter 𝛾𝛾𝑠𝑠 is three times that of the 
importer’s, denoted by 𝛾𝛾𝑏𝑏. A detailed discussion of the risk aversion parameter is shown 
in Appendix B. In the following study, we will treat 𝛾𝛾ℎ as a range between 10−3.5 to 
100.5, based on its order of magnitude. With this range, a risk aversion-based sensitivity 
analysis will be conducted in order to understand the effect of various risk aversion 
levels. 

Table 2. Value of parameters in the model 

Parameters Value 
∑ 𝑑𝑑𝑡𝑡𝐿𝐿
𝑡𝑡=1   150 million MMBtu5 

�̅�𝑝𝐿𝐿𝑆𝑆𝑆𝑆  9 $/MMBtu 
𝑄𝑄𝑠𝑠  300 million MMBtu 
𝑄𝑄𝑏𝑏  7.212 million MMBtu per week6 
𝑑𝑑𝑡𝑡 in the peak season 4 million MMBtu per week 
𝑑𝑑𝑡𝑡 in the slack season 1.852 million MMBtu per week 

5.1 Trade volume and LTC based price 
We first analyze how LTC and spot trade volumes change with a given agent’s risk 
aversion. Figure 5 (a), (b), and (c) present the impact of risk aversion on the LTC and 
spot trade volumes. Generally, the results suggest that the change trend of LTC and spot 
trade volumes under the oil price benchmark are consistent with those observed under 

5 We assume that this importer is a small gas retailer. In 2020, Japanese LNG imports were 3.67 billion MMbtu 
(UN Comrade, 2020). This retailer only takes up 4% of the shares in the Japanese consumption market.   

6 As reported by the U.S. Energy Information Administration, the annual regasification capacity of Japan in 2020 
was 10 billion MMbtu, which is 2.7 times the level of Japanese LNG imports. Here we set 2.5 times the importer’s 
domestic supply (150 million MMbtu) as its annual regasification capacity. Equivalently, the weekly regasification 
capacity is 7.212 million MMbtu. 



the JKM price benchmark. LTC dominates the trade between importer and exporter 
when risk aversion is relatively low. The importer resells the LNG as much as possible 
within the spot market while meeting the demand of the consumer market. With an 
increase in risk aversion, the proportion of spot trade volume begins to increase, and 
eventually dominates the LNG trade. At the same time, the importer’s resale in the spot 
market keeps declining.  

The difference in trade volumes among different benchmarks is that the oil-
indexed LTC volume is less sensitive to the agents’ levels of risk aversion. As shown in 
Figure 5 (a), when the risk aversion increases from -3 to -2.5, the oil-indexed LTC 
volume remains 300 million MMBtu, but the JKM-indexed LTC declines to 260 million 
MMBtu. When the risk aversion ranges from -1.75 to 0.5, the JKM-indexed LTC is 
absent, but the oil-indexed LTC remains. In addition, the low sensitivity of the oil-
indexed LTC to risk aversion leads to low spot trade volume. From Figure 5 (b) and (c), 
we can find that the spot trade volume between the importer and the exporter (as well 
as the importer’s spot resale) under the oil price benchmark is less than the volume 
traded under the JKM price benchmark. This indicates that using the JKM price as the 
LTC pricing benchmark can promote the LNG spot trade. 

Figure 5 (d) shows the relationships between the base price of the LTC and the risk 
aversion. We can observe that the base price of the LTC is significantly different among 
the three benchmarks. The base price of the oil-indexed LTC turns out to be very high 
when risk aversion is larger than -0.5. With a risk aversion of 0.5, it reaches the highest 
value of 55 $/MMBtu. The base price of the JKM-indexed LTC remains stable, however, 
with a slight decline from 7.11 (6.3) $/MMbtu to 6.5 (5.9) $/MMbtu in the CIF (FOB) 
case.  

The results of the LTC’s base price provide an intuitive judgment, that is, the JKM 
price is more efficient as an LTC pricing benchmark compared to the oil price. The 
reason is that the JKM-indexed LTC performs better in risk-sharing. For an ideal LTC 
with the perfect risk-sharing, the TOP clause should fully impose the price risk on the 
exporter. This implies that the base price should be a risk-neutral price expectation, 
which is essentially a reflection of the total supply and demand in the market. In terms 
of the assumption that both the importer and the exporter are price takers, any change 
in risk aversion should not affect the price expectation. Apparently, the base price of 
the JKM-indexed LTC is more in line with the criteria of a stable risk-neutral 
expectation.  



 
Figure 5. LNG trade volumes and base price of LTC under different levels of risk 
aversion. 

Note: Panel (a) shows the LTC volumes. Panel (b) shows the spot LNG sales from the exporter to the 
importer. Panel (c) shows the spot resales of the importer. Panel (d) shows the base price of the LTC. The 
x-axis indicates the risk aversion parameter 𝛾𝛾ℎ, which is denoted as log 𝛾𝛾ℎ. Given a certain 𝛾𝛾ℎ, the risk 
aversion parameter of importer 𝛾𝛾𝑏𝑏 is equal to 𝛾𝛾ℎ, and that of exporter 𝛾𝛾𝑠𝑠 is 3𝛾𝛾ℎ. The unit of the y-axis 
in panels (a), (b), and (c) is million MMBtu. The unit of y-axis in panel (d) is $/MMBtu.    

5.2 Hedging position and hedging effectiveness 
We next discuss the hedging function of LTCs priced under different benchmarks. 
While analyzing the LTC base price, we find that TOP clauses under any benchmark 
cannot perfectly share the risks between counterparties. This can be evidenced by the 
fact that the base price still changes with risk aversion, even when using the JKM as 
the benchmark. This result is consistent with reality, as no price benchmark can 
perfectly reflect supply and demand in the market. This also means that the exporter 
does not completely bear the price risk. Specifically, the base price contains the risk 
compensation for the exporter, resulting in a part of the price risk being transferred to 
the importer. Hence, the role of the LTC as a hedging instrument becomes critical to the 
importer. Suppose that an importer resells an amount of LNG while purchasing an LTC. 
These two opposite transactions will form a hedging instrument so as to offset the 
transferred price risk from the exporter, thereby ensuring that the risk-sharing function 
of the LTC remains in place. Therefore, it is of practical significance to discuss 
benchmark efficiency from the perspective of an LTC’s hedging function.  

According to the KKT conditions of the importer’s optimization problem in the 
equilibrium model, we can get the following expression with regard to LTC purchasing 
volume of a given importer (𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿):  

𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 = �̅�𝑝𝐿𝐿𝑆𝑆𝑆𝑆−𝐸𝐸�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿+(1−𝜅𝜅)�̅�𝑓𝐿𝐿𝐿𝐿𝐿𝐿�−∑ 𝜆𝜆𝑡𝑡
𝑏𝑏𝐿𝐿

𝑡𝑡=1 −𝜌𝜌𝑏𝑏+∑ 𝜇𝜇𝑡𝑡
𝑏𝑏𝐿𝐿−1

𝑡𝑡=1
𝛾𝛾𝑏𝑏·𝑉𝑉𝑉𝑉𝑜𝑜�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�

+ (23) 



∑ −𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝�𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆�+𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝�𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆−�̃�𝑓𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆�

𝑉𝑉𝑉𝑉𝑜𝑜�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�
𝐿𝐿
𝑡𝑡=1 , 𝑖𝑖𝑓𝑓 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 > 0.  

On the right-hand side of equation (23), the first term indicates the speculative position 

of the LTC, and the second term represents the hedging position. 𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�
𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝�𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆�
𝑉𝑉𝑉𝑉𝑜𝑜�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�

 and 

𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝�𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆−�̃�𝑓𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆�
𝑉𝑉𝑉𝑉𝑜𝑜�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�

 are the best hedging ratios for importer to hedge its spot resales 

(𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−) and spot purchase from the exporter (𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+), respectively. It should be 
noted that an LTC is different from futures or forward contracts. The unidirectionality 
of an LTC (only the exporter sells the LTC to the importer) determines that the importer 
can never hold a short position. This implies that the hedging of an LTC against spot 
trades is not complete for the importer. Equation (23) shows us that the necessary 
condition to form hedging between the LTC and a spot trade is that both LTC volume 
and the hedging position are positive. This can be further split into two conditions: a) 
when the LTC pricing benchmark is negatively correlated with the spot price, the 
hedging position against 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ should be larger than that against 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−; b) when 

the benchmark is positively correlated with the spot price, the hedging position against 
𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ should be smaller than that against 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−. Based on the price forecast results 
in Section 4, 𝐿𝐿𝑜𝑜𝐶𝐶(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆)  and 𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆�  are negative in most 
cases under the oil price benchmark, and are positive under the JKM price benchmark 
(see Appendix C). In order to construct a hedge between the LTC and the spot trade, the 
importer should ensure that condition a) is met while using the oil price benchmark, or 
that condition b) is met while using the JKM price benchmark. We have displayed the 
importer’s hedging positions in an LTC and the corresponding hedging effectiveness in 
Figure 6 (a) and (b), respectively.  

Figure 6 (a) describes the relationship between the importer’s hedging position 
and the agents’ risk aversion. We can observe that the oil-indexed LTC offers a hedging 
position under a high level of risk aversion (from -1.75 to 0.5), and that the JKM-
indexed LTC offers a hedging position under a low level of risk aversion (from -3.75 
to -1.75). This result verifies the incomplete hedging instrument that the LTC is.  

More importantly, for a spot trade of the same scale, the oil-indexed LTC provides 
fewer hedging positions than the JKM-indexed one. For example, when the risk 
aversion parameter is 0.5, the importer’s net spot trade volume is 142.7 million MMBtu 
(a positive value indicates a purchase) under the oil price benchmark. When the risk 
aversion parameter is -3, the importer’s net spot trade volume is -142.9 million MMBtu 
(a negative value indicates a sale) under the JKM FOB benchmark. Although the 
importer has the same spot trade scale in each of the two cases, the oil-indexed LTC 
provides 1.3 million MMBtu, while the JKM FOB provides 62.2 million MMBtu as the 



hedging position. The reason for this result is that the best hedge ratios under the oil 
price benchmark are much smaller than those under the JKM FOB benchmark. As the 
variance of LTC price 𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿) between two benchmarks is close (i.e., 0.99 for an 
oil-indexed LTC, and 1.07 for the JKM FOB-indexed one), the smaller absolute value 
of covariance 𝐿𝐿𝑜𝑜𝐶𝐶(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆)  and 𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆�  under the oil price 
benchmark (see Appendix C) leads to a smaller optimal hedge ratio. The difference in 
the covariance further indicates that there is a lack of correlation between the oil price 
and the spot LNG price.  

Figure 6 (b) shows the relationship between hedging effectiveness (HE) of an LTC 
and risk aversion. The HE is defined as the reduction of spot trade risk though the 
introduction of hedging positions (Cotter and Hanly, 2012): 

𝐻𝐻𝐸𝐸 = −𝑆𝑆𝑆𝑆(𝑠𝑠𝑝𝑝𝑜𝑜𝑡𝑡 𝑜𝑜𝑟𝑟𝑡𝑡𝑟𝑟𝑜𝑜𝑟𝑟+𝑜𝑜𝑟𝑟𝑡𝑡𝑟𝑟𝑜𝑜𝑟𝑟 𝑓𝑓𝑜𝑜𝑜𝑜𝑓𝑓 𝐻𝐻𝑟𝑟𝑜𝑜𝐻𝐻𝑟𝑟 𝑝𝑝𝑜𝑜𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑟𝑟)−𝑆𝑆𝑆𝑆(𝑠𝑠𝑝𝑝𝑜𝑜𝑡𝑡 𝑜𝑜𝑟𝑟𝑡𝑡𝑟𝑟𝑜𝑜𝑟𝑟)
𝑆𝑆𝑆𝑆(𝑠𝑠𝑝𝑝𝑜𝑜𝑡𝑡 𝑜𝑜𝑟𝑟𝑡𝑡𝑟𝑟𝑜𝑜𝑟𝑟)   (24) 

Under a low level of risk aversion (from -3.5 to -1.75), the JKM-indexed LTC can 
construct an effective hedging portfolio with spot trades for the importer. The maximum 
HE (64%) is reached at a risk aversion level of -2.25. As risk aversion is larger than -
2.25, the HE of the JKM-indexed LTC decreases. This can be explained by the decrease 
in both LTC volume and in the importer’s spot resale. This result implies that the 
demand for risk hedging is reduced as the importer significantly increases spot 
purchases from the exporter in order to satisfy domestic consumption. As risk aversion 
increase from -1.75, the HE declines to zero, as no LTC exists under the JKM 
benchmark. As for the oil price benchmark, the HE of the LTC is almost zero. This 
result indicates that the oil-indexed LTC is ineffective in providing hedging for the 
importer. These results confirm that JKM price is more efficient than the oil price as 
the benchmark for LTC pricing, as the JKM-indexed LTC can be an effective hedging 
instrument for the importer. 

 
Figure 6. Importer’s hedging position on an LTC and hedging effectiveness.  



Note: Panel (a) describes the hedging position, and panel (b) describes the effectiveness of the hedging 
position. The x-axis indicates the risk aversion parameter 𝛾𝛾ℎ, which is denoted as log 𝛾𝛾ℎ. Given a certain 
𝛾𝛾ℎ, the risk aversion parameter of importer 𝛾𝛾𝑏𝑏 is equal to 𝛾𝛾ℎ, and that of exporter 𝛾𝛾𝑠𝑠 is 3𝛾𝛾ℎ. The unit of 
the y-axis in panel (a) is million MMBtu.  

5.3 Tradeoff between profits and risks 
The previous two sections describe the JKM price as an efficient benchmark for LTCs. 
In this section, we will explore whether this benchmark is feasible. The adoption of this 
pricing measure relies on whether the benchmark can improve profit and lower the 
corresponding risks of the importer and exporter. In this study, we apply the coefficient 
of variance (CV) to represent the tradeoffs for the importer and the exporter between 
expected profit and profit-related risk. A smaller CV implies a better risk-profit tradeoff 
for both the importer and the exporter.  

Figure 7 (a) and (b) show the change in CV of the importer and the exporter 
respectively. In the risk aversion range between -3.5 and -1.75 (low risk aversion), the 
CV of an importer under the JKM benchmark is always less than that under the oil price 
benchmark. For the exporter, the JKM benchmark also preforms better than the oil price 
benchmark in most cases. This indicates that the JKM benchmark is beneficial to both 
the importer and the exporter under conditions of low risk aversion. This is because, on 
the one hand, the JKM benchmark contributes to a higher LTC base price—which helps 
the exporter to transfer more price risk onto the importer. On the other hand, the JKM 
benchmark provides an effective hedging mechanism for the importer to offset the 
transferred price risk.   

In the risk aversion range between -1.75 and -0.5 (moderate risk aversion), the oil 
price performs better than the JKM price as a benchmark of LTC pricing, since the CV 
of the importer and the exporter under the oil price benchmark is less than under the 
JKM benchmark. The reason for this is that the JKM-indexed LTC cannot provide 
effective hedging, although the LTC volume exists. This result implies that the JKM-
indexed LTC is similar to the oil-indexed one, and should be viewed as an option within 
an LNG trade portfolio for risk diversification. It is known that less correlated assets 
among a portfolio perform better in risk diversification. Therefore, the oil price is the 
better choice for LTC pricing in this case.  

In the risk aversion range between -0.5 and 0.5 (high risk-aversion), the CV of the 
importer under the JKM benchmark is significantly smaller than that under the oil price 
benchmark. The oil price benchmark, however, is more favorable for the exporter. The 
reason for this is that the JKM-indexed LTC is zero, while that a few amounts of oil-
indexed LTC still exist. It implies that oil-indexed LTC is available to transfer exporter’s 
price risks while JKM-indexed one is not. With this high risk-averse attitude, the 
exporter needs to transfer more price risks, thereby driving a drastic increase in the base 



price of the oil-indexed LTC. As the oil-indexed LTC cannot provide an effective 
hedging option for the importer, the LTC that the importer purchased becomes an 
expensive sunk cost, which leads to profit losses for the importer. 

Overall, these results show that the choice of an LTC pricing benchmark depends 
on the risk aversion of both the importer and the exporter. The JKM benchmark can 
benefit both the importer and the exporter under low levels of risk aversion. The oil 
price benchmark can be more suitable for both parties under conditions of moderate 
risk aversion (-1.75 ~ -0.5), due to its better risk diversification. Notably, the oil price 
benchmark is significantly inefficient to price the LTC in the high risk-aversion case (-
0.5 ~ 0.5). Due to the decoupling of oil prices and the LNG spot price, the risk-sharing 
function of the oil-indexed LTC fails, and instead becomes a tool for the exporters to 
transfer price risk. The high risk-aversion of the exporter results in a high base price of 
the LTC, under which, the importer bears expensive gas-importing costs. For the 
importer, the essence of building an efficient pricing benchmark is to prevent the 
transfer of price risk. From this perspective, using the JKM price as the LTC pricing 
benchmark is helpful. 

In addition, we find that there is no obvious difference in LNG trade volumes, base 
prices, or hedging effectiveness of LTCs when using either the JKM CIF price or using 
the JKM FOB price as the benchmark. The freight liability transferred from the exporter 
to the importer has little effect on the pricing efficiency. Consequently, we can conclude 
that the freight rate is not a determining factor in influencing price transparency.  

 
Figure 7. Coefficient of variance (CV) of expected profit under different levels of risk 
aversion. 
Note: Panel (a) describes the CV of a given importer’s expected profit, and panel (b) describes the CV 
of the exporter’s expected profit. The x-axis indicates the risk aversion parameter 𝛾𝛾ℎ, which is denoted 
as log 𝛾𝛾ℎ . Given a certain 𝛾𝛾ℎ , the risk aversion parameter of importer 𝛾𝛾𝑏𝑏  is equal to 𝛾𝛾ℎ , and that of 
exporter 𝛾𝛾𝑠𝑠 is 3𝛾𝛾ℎ.  



6. Conclusion 

In this paper, we have established an LTC pricing equilibrium model that considers the 
risk aversion of an Asian LNG importer and an exporter, as well as price uncertainties. 
As an extension of the mean-variance utility framework, we highlight that a) natural 
gas is storable; and, b) the Asian LNG is traded at the CIF price. Based on the mean-
reversion model and the kernel regression model, we forecast uncertain prices and 
capture their distributional characteristics. Finally, we simulate the corresponding 
stochastic inputs (that is, price expectation and covariance matrices) of the equilibrium 
model via the Monte Carlo method.  

Using the equilibrium model, we conduct a risk aversion-related sensitivity 
analysis and make a comparison between the oil price and the JKM price in order to 
analyze their performance as a benchmark for pricing the LTC of Asian LNG. Our 
results are consistent with the conclusion from studies on oil-gas price nexus that the 
JKM price is suitable for serving as the pricing benchmark for LTC contracts in Asia. 
On top of this, we further find the JKM-indexed LTC can prevent the price risk transfer 
from an exporter to an importer. This demonstrates that introducing the JKM 
benchmark can benefit the Asian LNG importer. More importantly, we reveal that the 
risk attitudes of importer and exporter together determine the type of pricing benchmark, 
namely, JKM price and oil price. Therefore, a single pricing benchmark will limit the 
opportunities for them to find the consensus in pricing benchmark selection. The 
coexistence of JKM benchmark and oil indexation can benefit the Asian LNG trade.  

Along with the increasing data availability in the future, this study can be extended 
in following two directions. The first direction is to consider LNG transactions 
involving multiple importers and exporters. The consideration for this line of study is 
that the assumption of agents in the gas market as price takers should be relaxed, since 
the unequal distribution of gas resources determines that some LNG exporters naturally 
have market powers. The second direction refers to the impact of freight rate on the 
LNG trade. In this study, we find that there is little effect on the trade, while the freight 
liability is transferred from the exporter to the importer. The possible reason for this 
result could be the exogenous freight rate in the model. This implies that the freight 
liability transfer is simplified as a trade cost transfer between the exporter and the 
importer. The influence from LNG carriers is neglected. Incorporating carriers’ 
decisions into the model may bring different findings for us. 
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Appendices 

Appendix A: Mixed complementarity problem of the equilibrium model 
We present the mixed complementarity problem (MCP) of the proposed equilibrium 
model into in this Appendix. The MCP consists of KKT conditions of 
importer/exporter’s optimization problem and the market clearing conditions. 

The importer’s KKT conditions are: 
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+ 𝛾𝛾𝑏𝑏𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝐶𝐶(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆) + 𝜆𝜆𝑡𝑡𝑏𝑏 − 𝜇𝜇𝑡𝑡𝑏𝑏 − � 𝜇𝜇𝑡𝑡′
𝑏𝑏

𝐿𝐿−1

𝑡𝑡′>𝑡𝑡

+ 𝜌𝜌𝑏𝑏 ≥ 0 

(A2) 



∀ 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−,   0 ≤ 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−

⊥ �̅�𝑝𝐿𝐿𝑆𝑆𝑆𝑆 − 𝐸𝐸�𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆�

+ 𝛾𝛾𝑏𝑏�𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆�

− 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆��

+
𝛾𝛾𝑏𝑏

2 �� 𝑞𝑞𝑡𝑡′
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝�𝑡𝑡′

𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡′
𝑆𝑆𝑆𝑆𝑆𝑆�

𝑡𝑡′≠𝑡𝑡

− � 𝑞𝑞𝑡𝑡′
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝�𝑡𝑡′

𝑆𝑆𝑆𝑆𝑆𝑆�
𝑡𝑡′≠𝑡𝑡

�

− 𝛾𝛾𝑏𝑏𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆� + 𝜇𝜇𝑡𝑡𝑏𝑏 + �𝜇𝜇𝑡𝑡′
𝑏𝑏

𝐿𝐿−1

𝑡𝑡′>𝑡𝑡

− 𝜌𝜌𝑏𝑏

≥ 0   ∀𝑡𝑡, 𝑡𝑡′  ∈ {1,2, … ,𝑇𝑇 − 1} 

(A3) 

∀ 𝜆𝜆𝑡𝑡𝑏𝑏,   0 ≤ 𝜆𝜆𝑡𝑡𝑏𝑏 ⊥ 𝑄𝑄𝑏𝑏 −
𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇) − 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ ≥ 0   ∀𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} (A4) 

∀ 𝜇𝜇𝑡𝑡𝑏𝑏,   0 ≤ 𝜇𝜇𝑡𝑡𝑏𝑏 ⊥
𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇) + 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− + (𝑜𝑜𝑉𝑉𝑑𝑑(𝑡𝑡) − 1)
𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿

𝑜𝑜𝑉𝑉𝑑𝑑(𝑇𝑇)

+ ��𝑞𝑞𝑡𝑡′
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝑞𝑞𝑡𝑡′

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− − 𝑑𝑑𝑡𝑡′�
𝑡𝑡′<𝑡𝑡

− 𝑑𝑑𝑡𝑡 ≥ 0 
(A5) 

∀ 𝜌𝜌𝑏𝑏,   𝑓𝑓𝑉𝑉𝑓𝑓𝑓𝑓 𝜌𝜌𝑏𝑏 ⊥ 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 + ��𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−�
𝐿𝐿

𝑡𝑡=1

−�𝑑𝑑𝑡𝑡

𝐿𝐿

𝑡𝑡=1

= 0 (A6) 

The exporter’s KKT conditions are: 

∀ 𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 ,   0 ≤ 𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿

⊥ −𝐸𝐸(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿) + 𝜅𝜅𝑓𝑓̅𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛾𝛾𝑠𝑠𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿)

+ 𝛾𝛾𝑠𝑠�𝑞𝑞𝑡𝑡
𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆�

𝐿𝐿

𝑡𝑡=1

+ 𝜆𝜆𝑠𝑠 ≥ 0 
(A7) 

∀ 𝜆𝜆𝑠𝑠,   0 ≤ 𝜆𝜆𝑠𝑠 ⊥ 𝑄𝑄𝑠𝑠 − 𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 −�𝑞𝑞𝑡𝑡
𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆

𝐿𝐿

𝑡𝑡=1

≥ 0 (A8) 

𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑝𝑝0𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛿𝛿(𝑝𝑝�𝐿𝐿𝑂𝑂𝑂𝑂𝐿𝐿 − �̅�𝑝0𝑂𝑂𝑂𝑂𝐿𝐿)
+ (1 − 𝛿𝛿)��𝑝𝑝�𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆 − 𝜅𝜅𝑓𝑓𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆� − ��̅�𝑝0𝑆𝑆𝑆𝑆𝑆𝑆 − 𝜅𝜅𝑓𝑓0̅𝑆𝑆𝑆𝑆𝑆𝑆�� 

(A9) 

The market clearing conditions are: 

∀ 𝑝𝑝0𝐿𝐿𝐿𝐿𝐿𝐿 ,   𝑓𝑓𝑉𝑉𝑓𝑓𝑓𝑓 𝑝𝑝0𝐿𝐿𝐿𝐿𝐿𝐿 ⊥ 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 = 0 (A10) 



∀  𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+,   𝑓𝑓𝑉𝑉𝑓𝑓𝑓𝑓 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ ⊥  𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ − 𝑞𝑞𝑡𝑡

𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 = 0 (A11) 

Appendix B: Estimation of importer/exporter’s risk aversion parameter 
According to Eq. (A1) and Eq. (A7) in Appendix A, we can derive the formulars to 
calculate the risk aversion parameter of importer (𝛾𝛾𝑏𝑏) and that of exporter (𝛾𝛾𝑠𝑠), which 
are as follows: 

𝛾𝛾𝑏𝑏 =

�̅�𝑝𝐿𝐿𝑆𝑆𝑆𝑆−𝐸𝐸�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�−(1−𝜅𝜅)�̅�𝑓𝐿𝐿𝐿𝐿𝐿𝐿−∑
𝜆𝜆𝑡𝑡
𝑏𝑏

𝑜𝑜𝑜𝑜𝑜𝑜(𝐿𝐿)
𝐿𝐿
𝑡𝑡=1 +∑

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)𝜇𝜇𝑡𝑡
𝑏𝑏

𝑜𝑜𝑜𝑜𝑜𝑜(𝐿𝐿)
𝐿𝐿−1
𝑡𝑡=1 −𝜌𝜌𝑏𝑏

𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑜𝑜�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�+∑ 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝�𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆�𝐿𝐿
𝑡𝑡=1 −∑ 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆−𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝�𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆−�̃�𝑓𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆�𝐿𝐿
𝑡𝑡=1

,  
(B1) 

𝛾𝛾𝑠𝑠 = 𝐸𝐸�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�−𝜅𝜅𝑓𝑓̅𝐿𝐿𝐿𝐿𝐿𝐿−𝜆𝜆𝑠𝑠

𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑜𝑜�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�+∑ 𝑞𝑞𝑡𝑡
𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝�𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆−�̃�𝑓𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆�𝐿𝐿

𝑡𝑡=1
,  (B2) 

where 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 should be positive to ensure that the two equalities hold. Based 
on the market clearing conditions, 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 equals to 𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿, and 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+ equals to 𝑞𝑞𝑡𝑡
𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆. 

Since 𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿, 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿, 𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+, and 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− in the future are not observable, we cannot 
estimate an accurate value of 𝛾𝛾𝑏𝑏 and 𝛾𝛾𝑠𝑠 based on the Eq. (B1) and Eq. (B2). However, 
we can estimate the order of magnitude for 𝛾𝛾𝑏𝑏 and 𝛾𝛾𝑠𝑠 according to the actual situation 
in the current LNG market.  

We assume that the LTC will go on with the oil-indexed pricing. On the basis of 
LTC-spot trade volume ratio reported by GIIGNL Annual Report 20207, we assume 
that the LTC volume possesses 70% and spot trade volume possesses 30% in the LNG 
transaction between the importer and the exporter. The importer does not resell LNG in 
the spot market. With this assumption, we can determine that 𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿 (𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿) equals to 
105 million MMBtu, ∑ 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+𝐿𝐿
𝑡𝑡=1   (∑ 𝑞𝑞𝑡𝑡

𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿
𝑡𝑡=1  ) equals to 45 million MMBtu, and 

𝑞𝑞𝑡𝑡
𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆− equals to 0.  

As the oil price is less correlated with the LNG spot price (see Appendix C), we 
can ignore the term of ∑ 𝑞𝑞𝑡𝑡

𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆+𝐿𝐿𝑜𝑜𝐶𝐶(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆)𝐿𝐿
𝑡𝑡=1   in Eq. (B1) and the term of 

∑ 𝑞𝑞𝑡𝑡
𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆�𝐿𝐿

𝑡𝑡=1  in Eq. (B2). Without considering the constraints 
we set the model, 𝛾𝛾𝑏𝑏 and 𝛾𝛾𝑠𝑠 can be approximately estimated by following formulars: 

𝛾𝛾𝑏𝑏 ≈ �̅�𝑝𝐿𝐿𝑆𝑆𝑆𝑆−𝐸𝐸�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�
𝑞𝑞𝑏𝑏,𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑜𝑜�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�

,  (B3) 

𝛾𝛾𝑠𝑠 ≈ 𝐸𝐸�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�−�̅�𝑓𝐿𝐿𝐿𝐿𝐿𝐿

𝑞𝑞𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝑉𝑉𝑜𝑜�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿�
.  (B4) 

7 GIIGNL Annual Report 2020 is available at https://giignl.org/system/files/publication/giignl_-
_2020_annual_report_-_04082020.pdf/ 



We use the average LTC price during November, 2020 to replace 𝐸𝐸(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿). This price 
was published by METI of Japan and equals to 6.8 $/MMBtu. �̅�𝑝𝐿𝐿𝑆𝑆𝑆𝑆 , 𝑓𝑓̅𝐿𝐿𝐿𝐿𝐿𝐿  and 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿) refers to the value we present in Section 5. Through Eq. (B3) and Eq. (B4), 
we can calculate that 𝛾𝛾𝑠𝑠 equals to 0.021 and 𝛾𝛾𝑠𝑠 equals to 0.061. The estimation results 
show: a) the order of magnitude for risk aversion parameter is around 10−2; b) 𝛾𝛾𝑠𝑠 is 
around 3 times of 𝛾𝛾𝑏𝑏. 

Appendix C: Covariances between LTC and spot LNG prices under different 
benchmark 
𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} Oil benchmark JKM benchmark (CIF) JKM benchmark (FOB) 

𝑇𝑇 = 52 𝐿𝐿𝑜𝑜𝐶𝐶1 𝐿𝐿𝑜𝑜𝐶𝐶2 𝐿𝐿𝑜𝑜𝐶𝐶1 𝐿𝐿𝑜𝑜𝐶𝐶2 𝐿𝐿𝑜𝑜𝐶𝐶1 𝐿𝐿𝑜𝑜𝐶𝐶2 
1 -0.0027 0.0065 0.0078 0.0086 0.0079 0.0089 
2 -0.0100 -0.0095 0.0215 0.0235 0.0210 0.0231 
3 -0.0102 -0.0144 0.0292 0.0324 0.0297 0.0331 
4 -0.0062 -0.0108 0.0271 0.0316 0.0277 0.0325 
5 -0.0074 -0.0065 0.0207 0.0227 0.0198 0.0221 
6 -0.0131 -0.0171 0.0265 0.0256 0.0249 0.0243 
7 -0.0115 -0.0153 0.0224 0.0216 0.0207 0.0201 
8 -0.0094 -0.0146 0.0221 0.0206 0.0203 0.0190 
9 -0.0077 -0.0073 0.0256 0.0234 0.0236 0.0214 

10 -0.0168 -0.0161 0.0270 0.0248 0.0254 0.0231 
11 -0.0155 -0.0134 0.0313 0.0306 0.0301 0.0292 
12 -0.0209 -0.0195 0.0235 0.0234 0.0215 0.0212 
13 -0.0293 -0.0256 0.0310 0.0308 0.0287 0.0284 
14 -0.0140 -0.0131 0.0267 0.0273 0.0238 0.0243 
15 -0.0145 -0.0173 0.0296 0.0299 0.0258 0.0260 
16 -0.0182 -0.0194 0.0458 0.0463 0.0419 0.0423 
17 -0.0325 -0.0396 0.0413 0.0421 0.0388 0.0393 
18 -0.0338 -0.0397 0.0533 0.0532 0.0524 0.0523 
19 -0.0537 -0.0551 0.0611 0.0613 0.0602 0.0605 
20 -0.0524 -0.0540 0.0720 0.0720 0.0728 0.0726 
21 -0.0516 -0.0550 0.0676 0.0674 0.0680 0.0678 
22 -0.0517 -0.0557 0.0798 0.0791 0.0796 0.0789 
23 -0.0272 -0.0306 0.0812 0.0805 0.0821 0.0814 
24 -0.0292 -0.0303 0.0943 0.0942 0.0959 0.0958 
25 -0.0230 -0.0222 0.0922 0.0928 0.0935 0.0940 
26 -0.0283 -0.0278 0.1053 0.1053 0.1065 0.1065 
27 -0.0316 -0.0324 0.1006 0.1006 0.1014 0.1013 
28 -0.0217 -0.0205 0.1085 0.1096 0.1093 0.1104 
29 -0.0176 -0.0216 0.1277 0.1287 0.1275 0.1285 
30 -0.0044 -0.0072 0.1381 0.1391 0.1376 0.1387 
31 -0.0062 -0.0039 0.1612 0.1625 0.1618 0.1631 
32 -0.0070 -0.0067 0.1669 0.1676 0.1682 0.1691 
33 0.0024 0.0027 0.1747 0.1754 0.1748 0.1756 



34 -0.0009 -0.0032 0.1935 0.1936 0.1942 0.1943 
35 0.0022 0.0018 0.2177 0.2175 0.2191 0.2190 
36 0.0096 0.0115 0.2262 0.2262 0.2275 0.2277 
37 0.0045 0.0073 0.2426 0.2425 0.2437 0.2436 
38 0.0099 0.0138 0.2502 0.2487 0.2523 0.2509 
39 0.0133 0.0169 0.2764 0.2747 0.2779 0.2763 
40 0.0104 0.0131 0.2998 0.2979 0.3004 0.2987 
41 -0.0031 0.0034 0.3310 0.3288 0.3314 0.3295 
42 -0.0016 -0.0004 0.3728 0.3710 0.3729 0.3715 
43 -0.0006 -0.0008 0.4076 0.4069 0.4078 0.4076 
44 0.0103 0.0072 0.4585 0.4582 0.4590 0.4594 
45 0.0148 0.0137 0.5101 0.5094 0.5106 0.5108 
46 0.0034 -0.0017 0.5564 0.5554 0.5559 0.5561 
47 0.0080 0.0049 0.6152 0.6140 0.6141 0.6145 
48 -0.0007 -0.0013 0.6842 0.6828 0.6832 0.6841 
49 -0.0098 -0.0072 0.7713 0.7695 0.7708 0.7722 
50 -0.0093 -0.0122 0.8557 0.8546 0.8559 0.8591 
51 -0.0055 -0.0024 0.9490 0.9489 0.9488 0.9546 
52 -0.0150 -0.0100 1.0583 1.0586 1.0586 1.0671 

Note: 𝐿𝐿𝑜𝑜𝐶𝐶1 = 𝐿𝐿𝑜𝑜𝐶𝐶(𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆); 𝐿𝐿𝑜𝑜𝐶𝐶2 = 𝐿𝐿𝑜𝑜𝐶𝐶�𝑝𝑝�𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑝𝑝�𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑓𝑓𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆�. 
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