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Everywhere: A Framework for Ubiquitous Indoor 

Localization 
Ahmed Mansour, Junhua Ye, Yaxin Li, Huan Luo, Jingxian Wang, Duojie Weng, and Wu Chen 

Abstract— Smartphones have become an integral part of daily 

human life and enable almost unlimited coverage of human 

mobility. Thus, collecting pervasive crowdsourced signatures is 

feasible. Autonomous localization of such signatures promotes the 

development of a self-deployable and ubiquitous Indoor 

Positioning System (IPS). However, previous IPSs-based 

crowdsourcing have not considered leveraging such data for 

developing ubiquitous IPSs. They have relied on methods for data 

selection and sources for localization adjustment that could work 

against realizing a ubiquitous system. In contrast, this study 

introduces a framework “Everywhere” that leverages 

crowdsourced data to develop a ubiquitous IPS and addresses 

existing challenges while developing such systems. Particularly, 

inertial data selection criteria are proposed to autonomously 

generate traces with better localization. Moreover, pervasive 

GNSS data are leveraged to adjust trace localization, while 

simultaneously introducing a deploying location (inside elevators) 

of one anchor node. The node surveys all the floors while reducing 

the localization error, especially for the buildings surrounded by 

GNSS-denied areas. Additionally, cumulative data densification is 

leveraged to realize pervasive resources within the building, 

thereby boosting trace adjustment and extending database spatial 

coverage. Furthermore, a better selection of neighboring 

fingerprints is proposed to enhance online fingerprinting. Such a 

framework can promote a ubiquitous IPS development for 

buildings regardless of whether they are surrounded by open sky 

or GNSS-denied areas. 

Index Terms—Crowdsourcing, fingerprinting, indoor 

localization, Internet of Things (IoT), Location-Based Service 

(LBS), and ubiquitous localization. 

I. INTRODUCTION

HE rapid development of smart life and embedded 

sensors in Internet of Things (IoT) devices has led to a 

significant demand for location-based services (LBSs). 

Consequently, ubiquitous localization has become the primary 

objective of localization technologies [1] to meet the future 

needs of LBS in next-generation smart cities [2]. Moreover, 

with the advancement of IoT, ubiquitous localization becomes 

crucial for both consumers and service providers to obtain 

reliable localization information anytime and everywhere [3]. 
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Global navigation satellite systems (GNSS) can provide 

accurate LBS in open-sky areas [1]. However,  the performance 

of GNSS deteriorates indoors because of signal blockage and 

attenuation. In contrast to outdoor localization, relying on one 

technology to provide a reliable solution for different indoor 

LBS remains unfeasible [3]. 

Over the past two decades, several technologies were 

proposed to realize efficient indoor positioning systems (IPSs) 

[4]. These technologies can be broadly divided into two main 

categories: infrastructure-free and infrastructure-based 

technologies. In the former category, the system localizes a user 

without using building resources [3], such as inertial sensors 

and GNSS. In contrast, the latter category of systems exploits 

building resources, such as floor plans and wireless signals. 

Wireless-based technologies can be further divided into two 

subgroups:1) pervasive signals, such as WiFi-based received 

signal strength (RSS) and magnetic field (MF), and 2) signals-

based auxiliary resources, such as Bluetooth low energy (BLE), 

ultra-wide band, and infrared signals. Generally, system-based 

auxiliary technologies can achieve more accurate performance; 

however, the low cost and high scalability of infrastructure-free 

and opportunistic signals are considerably beneficial in the 

development of ubiquitous systems [4]. 

Based on off-the-shelf inertial sensors, pedestrian dead 

reckoning (PDR) can provide reliable short-term localization 

and support the development of self-deployable IPS by bridging 

the wireless localization outages [5]. Smartphone richness with 

multiple sensors enables the measurement of pervasive signals 

(e.g., WiFi-based RSS and MF) and their utilization to update 

the PDR solution [6]. Leveraging these measurements using 

fingerprinting-based positioning methods provides an accurate 

solution compared to multitrilateration methods because the 

former mitigates multipath effects [6]. However, manual 

training and updating of offline fingerprinting databases are 

time-consuming and labor-intensive, and limit the scalability of 

such ubiquitous technologies [7]. Thus, the autonomous 

generation of these databases can help to leverage pervasive 

technologies in developing self-deployable systems.  

W. Chen and Y. Li are with Shenzhen Research Institute, The Hong Kong 

Polytechnic University, Shenzhen 518057, China and Department of Land 

Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong 
Kong. 

J. Ye is with College of Environment and Resources, Zhejiang A&F

University, Hangzhou 311300, China. 
Copyright (c) 2022 IEEE. Personal use of this material is permitted. 

However, permission to use this material for any other purposes must be 

obtained from the IEEE by sending a request to pubs-permissions@ieee.org 

T 

This is the Pre-Published Version.

© 2022IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

The following publication Mansour, Ahmed; Ye, Junhua; Li, Yaxin; Luo, Huan; Wang, Jingxian; Weng, Duojie; Chen, Wu(2023). Everywhere: A 
Framework for Ubiquitous Indoor Localization. IEEE Internet of Things Journal, 10(6), 5095-5113 is available at https://doi.org/10.1109/
JIOT.2022.3222003.

mailto:ahmed.m.mostafa@connect.polyu.hk


2 

Crowdsourcing, which is the process of harnessing the 

power of thousands of users to perform a specific task, has been 

studied to eliminate human-supervised approaches. Human 

supervision for databases can be eliminated by leveraging 

regular users, instead of experts, to produce offline databases 

[4]. In an ideal situation, the absolute locations of the indoor 

signatures can be estimated consecutively using PDR and the 

accurate outdoors GNSS locations (i.e., which can act as anchor 

nodes (AN)) when a user moves from outdoors to indoors or 

vice versa. However, in scenarios where GNSS-denied areas 

surround a building (e.g., in deep urban canyons), obtaining 

accurate outdoor GNSS data to act as outer (i.e., outside the 

building) ANs is unfeasible [8]. Moreover, collecting data using 

freely moving users can result in unqualified inertial data, 

which hinders the creation of traces with better localization [9]. 

However, despite using qualified inertial data, PDR problems 

such as accumulated heading drift and sensor bias reduce its 

reliability. In particular, PDR cannot be expected to reliably 

estimate the positions of the extracted fingerprints on its own 

without calibration sources [10].  

Autonomous localization of pervasive signatures promotes 

the development of self-deployable and ubiquitous IPS. 

However, previous crowdsourcing studies have not paid 

attention to the overarching aim of leveraging this data. Their 

methods potentially hinder the ubiquity of their systems owing 

to several limitations. Firstly, the data selection criteria used to 

autonomously generate traces with improved localization were 

insufficient. Although a few studies [10, 11] have introduced 

factors to assess the data quality depending on the availability 

of auxiliary resources, a majority of the studies considered that 

all collected data were qualified to contribute, which could 

deteriorate the quality of the generated databases. Secondly, the 

sources utilized for trace localization adjustment could 

potentially hinder the realization of a ubiquitous system. To be 

precise, certain studies [12-14] considered imperative 

participation from active and experienced users. Several 

systems [7, 14, 15] assumed that floor plans are always 

available to correct collected traces. Other systems [10, 11, 16] 

densely equipped each floor with auxiliary internal (i.e., within 

the floor area) ANs, instead of leveraging pervasive resources. 

A few systems [17] relied only on accurate GNSS data; 

however, such systems could be exposed to a high margin of 

localization error, especially for buildings surrounded by 

GNSS-denied areas [8]. Thirdly, to estimate online positioning-

based fingerprinting, most existing matching methods utilize 

the similarities between offline and online signatures to the best 

neighboring reference points (RPs) [6]. However, these 

signatures are highly susceptible to mismatches owing to the 

characteristics of the signals and indoor environments, even 

when the offline signatures are statically trained by experts [4]. 

Such mismatches can be aggravated when utilizing 

crowdsourced signatures collected by different smartphones 

from freely moving users.  

Our proposed framework is aimed at developing a low-cost, 

self-deployable, and ubiquitous IPS that can be used for 

buildings surrounded by either GNSS-denied or open-sky areas. 

The proposed framework relies on multisensory integration and 

comprises both online and offline engines ( Fig. 1). The online 

engine comprises an integrated solution-based extended 

Kalman filter (EKF) to fuse fingerprinting and PDR solutions. 

The offline engine comprises a scheme for autonomous 

generation of the requirements of the fingerprinting solution 

(i.e., radio and magnetic maps). The proposed offline engine 

easily converts regular users into efficient producers of these 

requirements. Furthermore, the engine operates without 

dependency on resources that could limit the system’s ubiquity, 

such as floor plans, waiting for the participation of active and 

experienced users, or the cumbersome deployment of BLE ANs 

at each floor in the building. 

Fig. 1. Everywhere architecture. 

As aforementioned, IPSs are largely ubiquity-limited by 

offline fingerprinting requirements, thereby the majority of our 

study contributions serve the offline engine. Compared to the 

existing crowdsourced-IPSs, our study makes the following 

contributions: we introduced selection criteria to qualify inertial 

data. These criteria depend mainly on the characteristics of the 

collected data and do not rely on factors that require the 

deployment of internal auxiliary ANs or floor plans (i.e., as 

suggested in previous studies), thereby maintaining the 

system’s ubiquity. In addition, the large errors expected while 

depending on GNSS ANs to localize crowdsourced signatures 

in buildings surrounded by GNSS-denied areas or multistory 

buildings are mitigated by proposing leveraging the elevators 

as a source of detecting or deploying AN. The proposed 

location provides a trade-off solution that maintains a high 

localization accuracy at all floors with low deployment cost and 

effort. Precisely, AN can be detected at all floors with cost 

minimized by a factor of N:1, where N is the number of floors. 

ANs such as BLE beacons can be effortlessly deployed in 

existing building elevators or incorporated into elevators as a 

pre-installed component, similar to security cameras. 

Furthermore, we proposed leveraging the data accumulation 

over time to autonomously derive the identifiers, locations, and 

propagation information of fixed WiFi APs to act as internal 

ANs and eliminate the need to deploy auxiliary ANs at each 
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floor. Inferences from these pervasive ANs help align the traces 

collected entirely within the floor area, thereby improving trace 

localization, and extending the spatial coverage of the generated 

databases. In the online phase, the generated radio and magnetic 

maps were utilized to estimate fingerprinting solution. Before 

fusing fingerprinting and PDR solutions, we proposed 

leveraging the reliable relative PDR displacement and gyro 

heading change to boost the selection of the best nearest 

neighboring RPs while walking in straight portions. Detecting 

these portions between successive ANs was also leveraged to 

calibrate step length, control gyro heading drift, and filter PDR 

outliers.  

The remainder of this paper is organized as follows. Section 

II reviews related works. Sections III, IV, and V discuss the 

proposed methods for track generation, autonomous offline 

database establishment, and online positioning. The 

experiments, results, and evaluations are presented in Section 

VI, followed by the conclusion and future scope in Section VII.  

II. RELATED WORK  

A. Offline Databases Based on Crowdsourced Data 

The reliance on pervasive resources to achieve a ubiquitous 

IPSs makes addressing the challenges of crowdsourcing 

systems more difficult. This section sheds light on how related 

studies have addressed crowdsourcing challenges. TABLE I 

summarizes the differences among recent studies developed 

using infrastructure-free, opportunistic signals, floor plans, and 

BLE beacons, as well as the strengths and limitations of these 

studies regarding the development of a ubiquitous system. 

1) Selecting Qualified Inertial Data 

Massive errors are expected in databases generated from data 

collected by different smartphone models with different sensor 

capabilities from freely moving users with different walking 

behaviors, body profiles, and walking speeds [9]. Users may 

also use different poses when carrying their smartphones, such 

as horizontal holding, calling, or swinging; the devices could 

also be in pockets or bags during the daily activities of the users. 

The flexible portability of handheld devices is another source 

of error, especially when estimating attitude angles [18]. 

Accordingly, to develop a self-deployable system, qualified 

data must be autonomously selected to generate traces with 

better localization. From the perspective of big data, even a 

modest quantity of qualified data is sufficient to create qualified 

databases [9]. Therefore, only trustworthy data must be used to 

maintain database quality.  

Importantly, the quality of inertial data can be ensured only 

by generating traces with geometric shapes similar to the ones 

that are actually occurred by users. The combination of all such 

traces guarantees improved localization performance and 

consistent signatures. Several crowdsourced studies [9, 12, 15, 

17, 19] considered all collected data in database generation and 

directly adjusted the collected traces depending on the auxiliary 

sources; however, these auxiliary sources may not be available 

while developing a ubiquitous system. However, from the 

perspective of big data [10], considering traces with unqualified 

data can degrade the quality of the generated databases 

regardless of the adjustment source used.  

Zhang, et al. [10] proposed an early quantitative framework 

to evaluate the quality of crowdsourced inertial data without 

user intervention. They introduced factors such as the collection 

time, gyro errors, and smartphone motion mode, and weighted 

the contribution of each factor to estimate a quality score for 

each collected trace. They assigned the highest weight to the 

collection duration factor to avoid the accumulated heading 

drift of long tracks and the errors arising from more collection. 

Yu, et al. [11] proposed a similar approach with factors such as 

the trace lengths and the similarity between the generated and 

adjusted traces. However, their similarity factor assessed the 

adjustment method instead of the inertial data quality; thus, 

unqualified traces could contribute to the generation and affect 

the overall database quality. 

Notably, in [10, 11], dense auxiliary internal ANs were 

deployed to augment the chances of finding short tracks 

between ANs. Although tracks with short lengths/durations 

were found to be trustworthy, their inertial data quality may be 

insufficient for accurate localization performance. 

Additionally, in the absence of dense auxiliary internal ANs 

(i.e., ubiquitous systems), long traces are expected between 

outer ANs, especially for large-scale buildings. Thus, reliance 

on short traces that depend on auxiliary internal ANs could 

hinder the development of a ubiquitous system. In the initial 

stages of databases generation, checking the quality of the 

traces collected between outer ANs and considering those 

entirely collected with qualified data regardless of their lengths, 

could eliminate the need for deploying auxiliary internal ANs. 

Moreover, the densification of such traces over time could help 

infer pervasive adjustment resources (e.g., fixed WiFi ANs). 

Such internal resources could contribute to adjusting the traces 

collected entirely within the floor in the following database 

generation stages, extending the spatial coverage, and 

enhancing the quality of the initially generated databases.  

2) Adjusting the Traces Localization 

In related literature, three sources are commonly used to 

adjust the localization of the collected traces. The data 

collectors are the first source. In several studies, researchers 

provided data collectors with specific instructions, turning 

autonomous generation into a semi-supervised creation. Lohan, 

et al. [13] asked data collectors to provide feedback regarding 

their estimated positions. Databases created by Lohan, et al. 

[13] were also utilized in [12]. Santos, et al. [14] instructed 

users to walk along specific paths. However, such methods 

require the participation of active and experienced users, which 

cannot be guaranteed in real-world scenarios, thereby limiting 

the ubiquity of such systems. The floor plans of buildings are 

the second source. Several studies have assumed that floor 

plans are always available and can be used to correct the 

collected traces. For example, Rai, et al. [7] developed a Zee 

system that utilized floor plans to resolve RP position 

ambiguity. Gu, et al. [15] leveraged floor plans to create a 

landmark graph. Santos, et al. [14] estimated the locations of 

RPs using floor plans and geomagnetic similarities between 
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straight traces. However, the unavailability of such plans due to 

several reasons (e.g., privacy concerns and missing data) could 

limit the ubiquity of such systems. Finally, anchor nodes are the 

third source. Two sources of ANs are utilized to correct the 

PDR traces: accurate GNSS data and BLE beacons. 

With respect to the first AN source, Yu, et al. [19] used the  

gate locations to initialize the PDR traces. They distinguished 

the gates by observing the significant change in the GNSS 

signals when moving indoors from outside and manually 

collected the WiFi access points (APs) data at each entrance. 

The SoiCP system developed by Li, et al. [17] leveraged 

building gates and their WiFi signatures as features to adjust 

noisy crowdsourcing traces. Using only GNSS as ANs may be 

reasonable for buildings surrounded by open-sky areas; 

however, in urban canyons, the building entrances in GNSS-

denied areas are susceptible to a large error margin [20]. 

Additionally, in complex buildings (i.e., with large-scale areas 

and multiple levels), the heading drift of long paths can be 

aggravated until users reach the gates, thereby affecting 

localization accuracy of the extracted signatures. Consequently, 

recent crowdsourced-IPSs have installed auxiliary ANs at 

known locations within building floors to overcome the 

aforementioned limitations. In contrast, BLE beacons possess 

several advantages, such as compatibility with different IoT 

devices, low cost, and low coverage range (i.e., precise 

localization). Therefore, most crowdsourced IPSs select them 

to deploy internal ANs. Zhang, et al. [10] distributed ten BLE 

internal ANs inside a shopping mall floor. Similarly, Yu, et al. 

[11] distributed six beacons on two floors to correct PDR traces 

and achieve 3D positioning. Kotrotsios and Orphanoudakis [21] 

deployed an AN every 6 m2 to achieve meter-level accuracy. 

Yu, et al. [16] deployed BLE beacons at intervals of 7.0 m to 

replace pervasive WiFi signatures using BLE RSS signatures. 

However, a close analysis of these studies reveals that the 

beacons were densely deployed at each building level without 

considering the overall cost and deployment efforts, thereby 

limiting the ubiquity of the systems.  

 

TABLE I 

COMPARISON AMONG RECENT INDOOR LOCALIZATION SYSTEMS BASED ON CROWDSOURCING  

Study 

Infrastruct

ure-Free 
Infrastructure-Based Fingerprinting 

Remarks regarding developing a self-deployable 

system 

G
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S
S
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ti
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n

so
rs

 

P
er

v
as

iv
e 

S
ig

n
al

s BLE ANs 

Density and 

distribution 

F
lo

o
r 

p
la

n
s Offline Online  

Autonomous 
Matching 

method 

[14] ✗ ✓ 
WiFi✓ 

MF✓ 
No need Need 

Semi-

supervised 
Particle Filter 

Strengths: the use of pervasive signals and trace adjusting-

based geomagnetic similarities.  
Limitations: depended on floor maps and instructing users. 

LG-Loc 

[15] ✓ ✓ 
WiFi✓ 

Light✓ 
No need Need ✓ 

Graph 

matching  

Strengths: exploiting natural landmarks and GNSS data.  
Limitations: the dependency on floor plans. 

[12] ✓ ✓ WiFi✓ No need 
No 

need 

Semi-

supervised 
Clustering 

Strengths: using pervasive signals.  
Limitations: the dependency on the users’ feedback to correct 

the traces ad considering the entire collected data can 

contribute (no criteria for qualified data selection). 

[19] ✓ ✓ WiFi✓ No need 
No 

need 

Semi-

supervised 

Probabilistic 

(Gaussian 

distribution) 

Strengths: the use of accurate GNSS data as ANs. 

Limitations: Manual distinguishing the gates and significant 

localization errors for the buildings surrounded by GNSS-
denied areas. 

SoiCP 
[17] 

✓ ✓ WiFi✓ No need 
No 

need ✓ 
Deterministic-

based KWNN 

Strengths: using accurate GNSS data as ANs and proposing 

three layers of trace matching.  
Limitations: buildings surrounded by GNSS-denied areas are 

prone to significant localization errors. 

3D-CSWS 

[11] ✗ ✓ WiFi✓ 
High 

6 units per 2 

floors 

No 

need ✓ 
Deterministic-

based KWNN 

Strengths: introducing factors for selecting the qualified data. 
Limitations: use BLE ANs inside each floor, which is costly 

and labor-intensive, especially for multi-story buildings. 

[9] ✓ ✓ 
WiFi✓ 

MF✓ 

Stated but not 

clarified 

No 

need ✓ 
Probabilistic 

(Gaussian 

distribution) 

Strengths: Introducing fingerprinting accuracy indicators. 
Limitations:  considering the entire collected data (no criteria 

for qualified data selection). 

[10] ✓ ✓ WiFi✓ 
High 

10 units per 

floor 

No 

need ✓ 
Deterministic-

based KNN 

Strengths: establishing criteria for selecting inertial data.  
Limitations: the use of dense BLE ANs inside each floor is 

costly and labor-intensive. 

Our 

proposed 
system 

✓ ✓ 
WiFi✓ 

MF✓ 

Low & serve 

the whole 

floors 

No 

need ✓ 

KWNN based-

enhanced RPs 

selection 

criteria 

Strengths: exploiting GNSS data, using one AN location to 
survey the entire floors, reducing the localization error for the 

building surrounded by GNSS-denied areas, inferring fixed 
WiFi APs to act as internal ANs,  selecting qualified inertial 

data autonomously, and enhancing online fingerprinting.  

Limitations: the proposed post-data processes are crucial to 
improving localization accuracy; however, the data collection 

process is also important to ensure the applicability and 

widespread of such crowdsourced methods. User-friendly 
data collection strategies and privacy guarantees are required 

to ensure widespread adoption. 
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B. Online Position Estimation Based on Fingerprinting 

Numerous matching algorithms have been proposed for 

online localization based on fingerprinting. Bahl and 

Padmanabhan [22] developed the first RSS-based system 

(RADAR) using a deterministic method. Youssef and Agrawala 

[23] proposed a Horus system using a K-nearest neighbors-

based probabilistic method. Machine learning methods such as 

random forest [24] and neural networks [25] have also been 

proposed to improve fingerprinting performance. Compared 

with previous point-to-point matching approaches, Li, et al. 

[26] introduced profile matching-based dynamic time warping 

to extend the observation dimensionality. Such studies have 

utilized the similarity between online and offline signatures to 

select the best K-neighboring RPs. However, even with manual 

training approaches, these signatures are highly susceptible to 

variations and mismatches, owing to the characteristics of the 

signals and indoor environments. Such discrepancies could 

worsen when crowdsourced databases created by different 

smartphones and freely moving users are used. Consequently, 

augmented selection criteria for the best K-neighboring RPs 

should be considered to reduce mismatches and improve online 

fingerprinting, particularly for crowdsource-based databases. 

III. WALKING TRACK GENERATION BASED ON PDR 

This section briefly illustrates the PDR components employed 

to generate walking tracks from the crowdsourced data, 

establish the fusion model in EKF, and participate in selecting 

the best neighboring RPs in the online fingerprinting stage. 

Four components were considered in the PDR mechanism 

including step detection, step length estimation, heading 

determination, and outlier filtering after detecting straight 

portions and turns. 

Regarding step detection, the triggered steps were detected by 

capturing the peak and valley of the vertical acceleration 

relative to the surface of the Earth. Notably, these extremes can 

be formed during pedestrian walk regardless of the device pose 

[27]. The gravity effect was first subtracted to determine the 

linear acceleration. A low-pass filter was then applied to reduce 

the noise effect. The procedures of the proposed detection 

method comprised three conditions to robustly determine the 

peak and valley points of each step including:1) the extreme of 

each part should exceed a certain threshold (e.g., 0.65 m/s2). 

This threshold enables excluding simple hand trembling from 

counting as a step; 2) since the gait cycle typically lasts between 

0.2-1.6 s depending on the walking speed, the step duration 

should last a certain interval (e.g., 100 ms); and 3) a valley and 

vice versa preceded each peak. Moreover, owing to acceleration 

jitter, false peaks/valleys could occur in a short time interval 

with acceleration above the predefined threshold. A short time 

window was applied to filter out these false extremes. The 

length of each triggered step was then estimated using the a 

non-linear empirical approach proposed in [28]. This approach 

assumes that the step length is correlated with the total vertical 

acceleration change of the step. The length 𝑠𝑙𝑘 of the 𝑘𝑡ℎ step 

was estimated based on the following expression: 

 𝑠𝑙𝑘 = 𝑚 √𝑎𝑝𝑒𝑎𝑘,𝑘
𝑛𝑐𝑠 − 𝑎𝑣𝑎𝑙𝑙𝑒𝑦,𝑘

𝑛𝑐𝑠4
 ,    0.6 ≤ 𝑠𝑙𝑘 ≤ 0.9 (1) 

where 𝑎𝑝𝑒𝑎𝑘,𝑘
𝑛𝑐𝑠  and 𝑎𝑣𝑎𝑙𝑙𝑒𝑦,𝑘

𝑛𝑐𝑠  are the filtered acceleration of the 

step peak and valley, respectively. 𝑚 is a parameter related to 

the profile of the pedestrian. Herein, 𝑚 is initialized equal to 

0.55. Then a calibrated step length was obtained when a user 

walked in a straight line between two ANs. The calibrated step 

length updated the EKF model (refer to Section V.B). 

A weighted fusion algorithm [29] was used to leverage the 

high reliability of short-term gyro relative heading and the 

trustworthy absolute compass heading at the quasi-static 

magnetic field (QSMF) periods. The contribution of each 

source was controlled based on two factors: 1) the correlation 

between the two sources, and 2) the availability of QSMF 

periods. Among the magnetic, gyro integral, and previous step 

headings, the best candidates were selected to contribute part of 

their weights. Furthermore, a heading calibration based on 

detecting two successive ANs while walking in a straight line 

was used to calibrate the estimated heading and update the EKF 

(refer to Section V.B).  

Once a step is triggered, a PDR mechanism can estimate its 

length and heading, then the coordinates of the current step can 

be computed based on the position of the previous step. When 

a pedestrian walks in a straight line, there should be no 

significant change in the heading of the adjacent steps unless an 

actual turn occurs. However, unexpected device shaking can 

cause substantial variation in the estimated position. To curb 

that, we incorporated a turn detection method and outlier 

filtering mechanism into the PDR approach. The following 

procedures were conducted to detect the turns and straight 

portions, and filter the outliers. The change in gyro heading was 

firstly smoothed. Subsequently, a sliding window was applied, 

and  the maximum difference of the smoothed change within 

this window (∆ℎ𝑚𝑎𝑥) was recursively monitored. ∆ℎ𝑚𝑎𝑥  was 

used to detect the turn intervals and events, and decide whether 

a triggered step was a part of a turning or straight walking 

intervals. A real-time turn detection algorithm was developed 

using a decision tree based on lower  and higher thresholds for 

∆ℎ𝑚𝑎𝑥 , (i.e., 𝜆𝑙  and 𝜆ℎ, respectively). 𝜆𝑙  was employed as the 

allowable margin of heading change during walking in a 

straight line. A test was implemented by walking in a straight 

corridor several times to determine the range of 𝜆𝑙 . 𝜆ℎ  was 

employed as the minimum total heading change required to 

consider a rotation as a turn.  

Intuitively,  ∆ℎ𝑚𝑎𝑥 should be almost zero during walking in a 

straight line; thus, while it did not exceed 𝜆𝑙, we considered the 

user walked in a straight line (see Fig. 2) and attributed the 

variation of ∆ℎ𝑚𝑎𝑥 to the device shaking. The PDR locations of 

the triggered steps during this period were supposed to lie on a 

straight line; thus, the RANSAC method [30] was used to 

estimate the linear model parameters (𝑎, 𝑏, 𝑐). Subsequently, we 

calculated the perpendicular distance (n) (i.e., from the estimated 

PDR location (𝑥𝑘 , 𝑦𝑘) of step 𝑘 to the RANSAC linear model) 

as follows: 
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 𝑛 = |
𝑎𝑥𝑘+𝑏𝑦𝑘+𝑐

√𝑎2+𝑏2
| (2) 

If 𝑛 was lower than a predefined threshold (e.g., 1.5 m), the 

estimated step position was added to the line points, and the 

RANSAC algorithm was iterated to re-estimate the line 

parameters. Otherwise, the estimated PDR position of this step 

was adjusted as follows: 

[
𝑥̀𝑘

𝑦̀𝑘
] = [

𝑥𝑘 −
𝑎

𝑎2+𝑏2 (𝑎𝑥𝑘 + 𝑏𝑦𝑘 + 𝑐)
−𝑎

𝑏
𝑥̀𝑘 −

𝑐

𝑏

] (3) 

In contrast, when ∆ℎ𝑚𝑎𝑥 exceeded 𝜆𝑙, a sign of turning was 

triggered, yet the algorithm still did not consider it as a turn until 

observing the subsequent values of ∆ℎ𝑚𝑎𝑥. If it then declined, 

the algorithm did not trigger turn, but initialized a new linear 

model because a slight change in the walking heading occurred. 

But, if ∆ℎ𝑚𝑎𝑥  continued raising and exceeded 𝜆ℎ, a turn was 

triggered, and a new linear model was also initialized. 

 
Fig. 2. Maximum difference of the gyroscope’s heading change 

within a sliding window. 

IV. OFFLINE FINGERPRINTING DATABASES GENERATION 

This section illustrates the proposed scheme for generating 

offline radio and magnetic maps without human supervision, as 

presented in Fig. 3. We first introduced our rationale to find 

decisive criteria for selecting the qualified traces that provide 

improved localization performance without prior 

environmental knowledge. Then, we proceeded with the 

processing steps to generate offline databases. 

A. Inertial Data Selection  

1) Rationale  

When relying on pervasive resources to achieve a ubiquitous 

system, the characteristics of the collected data must be 

considered to evaluate and select trustworthy ones. With respect 

to inertial data selection, the principal concept behind the 

proposed scheme is as follows: In PDR-based methods, the 

horizontal attitude angles are measured under the assumption 

that external acceleration is absent, and walking acceleration is 

the only external acceleration source that acts on the device. 

However, when collecting inertial data from freely-moving 

users, external acceleration is prevalent owing to pedestrian 

behavior, walking speed, and the change in smartphone poses. 

Consequently, the attitude angles are susceptible to significant 

distortion that deforms the generated trace compared with the 

actual one.  

In the early stages of data collection for a ubiquitous system, 

the correction of the collected traces is hindered by the absence 

of calibration resources (i.e., floor plans or internal ANs). 

Therefore, the collected traces between the outer ANs (i.e., 

GNSS or elevator ANs) should have a geometric shape nearly 

similar to the actual ones to achieve accurate localization 

performance after aligning them. To achieve geometric 

similarity (GS), the generated traces must preserve the actual 

shape with limited distortion in the measured angles and 

distances, regardless of the variation in scale and rotation of the 

entire trace (i.e., that can be recovered by determining the 

transformation parameters). 

 
Fig. 3. The proposed scheme for offline database generation. 

Notably, measuring the similarity between the collected and 

real traces is considered unfeasible without floor plans, as the 

case in developing ubiquitous systems. Consequently, the 

relationships between the GS and inertial data characteristics 

were tested to infer which data can reflect collecting traces with 

higher GS. These characteristics can distinguish qualified traces 

without any external requirements. An empirical test was 

conducted to determine these characteristics. The selection 

criteria were determined based on the results of the empirical 

analysis. 

2) Empirical Test 

We collected paths between two outer ANs (i.e., installed 

inside two elevators, see Fig. 4 (a)) from different users, 

walking speeds, and smartphone poses.  Five types of poses 

were considered, which included the users holding the 

smartphone horizontally, at their ear while calling, or in their 

swinging hand as they walked. The fourth pose involved the 

users keeping the smartphone in a front pocket. The fifth type 

of pose was a miscellaneous classification that included 

multiple poses. To measure the GS of the collected traces, we 
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used the building floor plan to extract the references of the 

generated traces. The generated trace was aligned by 

determining the transformation parameters (see Section IV.C). 

Subsequently, the RMSE of the aligned trace was calculated 

relative to that of the reference trace. Accordingly, the inertial 

data of the collected traces were analyzed to infer the 

characteristics that provide a high GS and low RMSE. GS 

measurement, data processing, and inferred criteria are 

discussed in the following subsections.  

a) Measuring the GS  

We employed a GS method that primarily reflects the 

preservation of trace shapes. The image-matching-based Hu 

moments method [31] was selected because it is invariant with 

rotation, transition, and scaling. The degree of similarity 

between the generated and reference traces was measured as 

follows: 1) the two traces were converted into two binary 

images with a similar scale and plotting area; 2) the seven Hu 

moments were computed (in-depth details can be found in 

[31]); subsequently a log transformation was applied to make 

them comparable; and 3) the GS between the generated and 

actual traces was computed as follows: 

 GS = 100 − 100 ⋅ ∑ |
𝑚𝑖

𝑟−𝑚𝑖
𝑔

𝑚𝑖
𝑟 |6

𝑖=0  (4) 

where GS ranges from 0 to 100 and the top scores indicate a 

high GS. 𝑚𝑖
𝑟  and 𝑚𝑖

𝑔
are the 𝑖𝑡ℎ log-transformed Hu moments 

for actual and generated traces, respectively. 

b) Inferring the Selection Criteria  

The linear acceleration and angular velocity data for each 

trace were filtered using a low-pass filter to reflect pedestrian 

motion more clearly with less noise. The first feature was 

inferred from the filtered epoch-by-epoch acceleration data 

related to the acceleration differences between successive step 

extremes (peaks/valleys) (i.e., obtained from the step detection 

results). These differences provided a distinct feature for the 

traces that provided a high degree of GS and low RMSE (see 

Fig. 5 (a)). When these differences were less than 3.0 m/s2, the 

GSs were greater than 90%, and the average RMSE over the 

aligned traces was ~5.0 m. This was attributed to the low 

external acceleration attached to the walking acceleration when 

the differences between successive extremes were low. When 

carrying the smartphone in a stable position, such as 

horizontally handheld or calling, the extremes of the steps are 

formed with a nearly similar range of accelerations, as shown 

in Fig. 4 (b) and (c). The steady walking mode with a constant 

speed and the device carried in a stable pose could result in 

marginal differences between successive extremes, high GS, 

and low RMSE. 

However, the differences in the extremes were the only 

remarkable feature obtained from the filtered epoch-by-epoch 

data; thus, a sliding window was applied to the filtered 

acceleration and angular velocity data with a 50% overlap to 

help extract more features. The statistical characteristics of the 

windows data were estimated relative to the x-, y-, and z- 

directions and their magnitudes. Among the different 

characteristics, the acceleration variances of the sliding 

windows provided remarkable features that distinguished traces 

with high GS and lower RMSE. Fig. 5 (b) shows the GSs and 

RMSEs estimated for the generated traces compared with the 

maximum acceleration variances recorded for their sliding 

windows. The traces that had sliding windows with maximum 

acceleration variances of less than 7 m2/s4 scored a GS higher 

than 90% and RMSE of 10.0 m. Thus, the maximum 

 
Fig. 4. (a) Geometric similarity (GS) of generated tracks based on PDR of different smartphone poses, (b) step peaks and 

valleys for different poses, (c) the differences between successive steps extremes, (d) variances of linear acceleration within 

sliding windows of 130 samples with 50% overlap, and (e) variances of angular velocity within sliding windows of 265 samples 

with 50% overlap. 
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acceleration variances of trace sliding windows can be 

considered another indicator of high GS. Notably, most of these 

traces were collected in handheld or calling poses. Similarly, 

the variance in the angular velocity provides another distinct 

feature. The higher GS and lower RMSE traces were 

characterized by maximum angular velocity variances lower 

than 0.25 deg2/s2. Fig. 5 (c) presents the GSs and RMSEs 

estimated for the generated traces compared with the angular 

velocity variances recorded for their sliding windows.  

 

Based on the results of the empirical test, the inertial data of 

a portion of a trace were considered qualified if the following 

three criteria were satisfied: 1) the maximum differences 

between the successive peaks/valleys for the detected steps 

were less than 3.0 m/s2; 2) the maximum acceleration variances 

(in x, y, z directions, and magnitude) of its sliding windows 

were less than 7 m2/s4; and 3) the maximum angular velocity 

variances (in x, y, z directions, and magnitude) of the sliding 

windows were less than 0.25 deg2/s2. 

B. Outer Anchor Nodes Detection 

In the initial stages of database generation, GNSS data with 

position accuracy higher than 5.0 m and horizontal dilution of 

precision (HDOP) less than 20 were considered qualified to 

serve as outer ANs to align the collected traces. With respect to 

elevator ANs, BLE RSS measurements are susceptible to large 

fluctuations (see Fig. 6). Therefore, an average filter was first 

applied to smooth the raw RSS data; subsequently, a sliding 

window was used to detect the RSS peak when the user 

traversed the beacon coverage area. Finally, when RSS peak 

exceeded a certain threshold, this ensured that the pedestrian 

was near the detected AN and the position of BLE AN (i.e., 

elevator location) was updated the user location.  

 
Fig. 6. BLE RSS smoothing and peak detection. 

C. Traces Segmentation and Aligning  

After identifying the number and locations of the detected 

outer ANs over portions with qualified inertial data, these 

portions were segmented into two types. The segments 

collected between two or more ANs were defined as closed 

segments. These segments were subsequently corrected and 

utilized to extract the database information in the initial stages. 

Conversely, segments that were located between less than two 

ANs were defined as open segments. These segments were 

corrected and utilized only after inferring information from the 

internal ANs (i.e., in subsequent generation stages).  

The reference locations of the detected ANs that bound each 

closed segment were used to align the measured locations in 

this segment. This was accomplished by estimating the 

translation, rotation, and scaling parameters that minimized the 

RMSE of two sets of pairs (i.e., the measured and reference 

locations of the ANs). Accordingly, for a closed segment with 

𝑛 ANs, the measured and reference locations of the ANs were 

defined as 𝑩 = (𝒃𝟏 . . . .  𝒃𝒏)  and 𝑨 = (𝒂𝟏 . . . .  𝒂𝒏) , 

respectively. The transformation parameters for aligning 𝑩 

with 𝑨 were obtained using least-squares, as discussed in [32]. 

The demonstrated steps can be summarized as follows. First, 

the covariance matrix 𝑯 and its singular value decomposition 

UDV were calculated as follows:  

 ( ) ( )
0

1
,   

n
T

T
i A i B

in =

= − − =H a μ b μ H UDV  (5) 

where 𝝁𝐴 and 𝝁𝐵 are the centroids of 𝑨  and 𝑩 points, 

respectively. Second, to detect and prevent reflections, the 𝑺 

matrix is computed as follows: 

 ( ) ( )( )( )1 Tdiag ,sgn det det=S U V  (6) 

where sgn, det and diag are the signum function, determinant, 

and diagonal matrix, respectively. Third, the optimal rotation 

matrix 𝑹, scale factor 𝑠, and translation vector 𝒕 are estimated 

as follows:  

 

 

 
Fig. 5. Comparing the GS and RMSEs of the traces with (a) 

the acceleration differences between successive extremes, 

(b) the linear acceleration variances of the trace sliding 

windows, and (c) the angular velocity variances of the trace 

sliding windows. 
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Finally, the aligned location 𝒃𝒊
′  for point 𝑖 is estimated as 𝒃𝑖

′ =
𝒕 + 𝑠𝑹𝒃𝑖 . The aligned data for the selected traces were 

combined and spatially divided into small square grids of 

0.5 × 0.5  m2 and 1.0 × 1.0m2 to generate the magnetic and 

radio maps, respectively. Notably, the grids with a lack of steps 

(i.e., less than 10% of the steps of the grid with the maximum 

number of steps) were filtered out to obtain dense signatures at 

the surviving grids. Finally, the quality of the signatures of the 

surviving grids was checked, as described in the following 

section. 

D. Signature Data Selection  

The quality of MF and RSS signatures of extracted grids was 

checked to ensure the quality of the clustered signatures at each 

grid as follows: (1) the WiFi APs with weak RSS (e.g., less than 

-90 dBm) were excluded; (2) at each grid, APs with few 

signatures (e.g., less than a certain threshold) were discarded; 

(3) the grids with fewer than six unique APs were discarded, as 

recommended by [11], because the fingerprinting accuracy 

deteriorates when the number of APs was less than 6 per RP; 

(4) outlier filtering was conducted on the grids containing more 

data than the threshold. The RSS values for AP and MF data 

higher than 𝑄3 + 1.5 𝐼𝑄𝑅  or lower than 𝑄1 − 1.5 𝐼𝑄𝑅 were 

filtered out, where 𝑄1  and 𝑄3  are the 25th and 75th percentile 

values, respectively, and 𝐼𝑄𝑅 indicates the interquartile range 

(i.e., 𝑄3 − 𝑄1 ). The RP location was calculated as the 

coordinates of the grid center. In addition, the means of the RSS 

and MF data were calculated and assigned as a signature at the 

RP location. The surviving RPs created magnetic and radio 

maps. Moreover, these RPs were used to infer information from 

fixed WiFi APs that can serve as internal ANs within the floors, 

as discussed in the following subsection.  

E. Fixed WiFi APs and Internal WiFi Anchor Nodes 

1) Self-Identifying of the Fixed WiFi APs 

Each time a crowdsourced dataset is collected, different WiFi 

APs may be observed, whether temporarily from mobile 

transmitters or permanently from fixed ones. Our scheme aims 

to self-identify the basic service set identifiers (BSSIDs) list of 

permanently observed and fixed APs to construct a radio map 

of the target floor. The construction of the radio map was 

confined to the observed fixed APs to reduce the computational 

overhead in the online positioning engine and improve the 

position estimation. A few  considerations were made in 

selecting the fixed APs. First, frequently observed WiFi APs 

(i.e., more than three days) were selected from the collected 

data. Subsequently, from the frequently observed APs, those 

with an RSS greater than -55 dBm were selected to ensure that 

the AP was within the target floor (i.e., not observed from 

adjacent buildings, upper floors, or lower floors). In the 

following step, the AP strong signature locations were 

estimated from the aligned traces and clustered to ensure a WiFi 

AP is installed at a fixed location. Subsequently, the AP with a 

cluster area within 100 m2 was considered a fixed AP. Finally, 

these fixed APs were used to construct the floor radio map.  

2) Inferring Internal WiFi Anchor Nodes  

Relying on only outer ANs to realize ubiquitous systems has 

the following limitations:1) long traces are susceptible to 

significant heading drift; 2) several traces with qualified inertial 

data may not be bounded by two outer ANs, and, therefore, 

cannot be included in the database; and 3) the generated 

databases cannot cover the entire floor area. Therefore, we 

aimed to infer the locations of fixed WiFi APs that can serve as 

internal ANs within the floor.  

Thus, the locations of the fixed APs should be precisely 

estimated. We utilized the radio map generated from the closed 

segments aligned by the outer ANs to infer the qualified RPs. 

For each fixed AP, we checked the signatures of its RPs as 

follows:1) an RP was qualified to estimate the AP location if it 

contained dense signatures for this AP (i.e., more than 20 from 

different traces) in combination with less signature variation 

(i.e., 𝜎𝑅𝑆𝑆 ≤ 8 dBm); 2) APs with qualified RPs (i.e., more than 

50) were only selected; and 3) the mean RSS of each qualified 

RPs was estimated to check if qualified RPs were observed with 

strong RSS (i.e., greater than -55 dBm).  

If the qualified RPs for a fixed AP satisfied the 

aforementioned conditions, we considered it qualified to serve 

as AN, and its location (𝑥𝑖 , 𝑦𝑖), path-loss exponent (𝑛𝑖), and 

RSS at 1 m (𝑟𝑠𝑠𝑜𝑖 ) were estimated using the least-squares 

estimation method based on the path-loss propagation model 

[33] as follows: 

 ( )2 2
1010i ,u i i u i u in log x y rsso= − − − − +rss x y( ) ( ) (8) 

where subscripts i and u indicate the fixed AN and the RP 

indices, respectively. The design matrix 𝑫𝑖 is obtained as: 
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where j indicates the RP index and 1010

i , j i

i

rss rsso

n
i, jd

−

= . The state 

vector 𝒙𝑖 = [𝑥𝑖    𝑦𝑖   𝑛𝑖   𝑟𝑠𝑠𝑜𝑖]
𝑇 , and covariance matrix 𝑷̂𝑖  are 

calculated as follows:  

 
1 1

1 1
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− −
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where iz is the observation vector (i.e., equal to 

1

T

j Nrss rss rss   ...  ... ), 𝑹𝑖 = 𝑑𝑖𝑎𝑔(𝜺𝑟𝑠𝑠𝑖)  and 𝜺𝑟𝑠𝑠𝑖  is the 

RSS noise vector.  

3) Aligning the Collected Traces Using the WiFi ANs  

The following procedures were performed to use WiFi ANs 

to align the collected traces. The WiFi RSS data were smoothed 

using an average filter for each WiFi AN detected within trace 

data, and RSS peaks were determined. If the RSS of a peak was 

higher than or equal to the estimated 𝑟𝑠𝑠𝑜  for this AP, the 

location of this peak was considered as the measured AN 

location and added to the B vector (i.e., that contains the 

measured locations of the detected ANs as stated in Section 
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IV.C). The estimated reference location for this AN was added 

to the A vector (i.e., containing the reference locations of the 

detected ANs). Accordingly, these two vectors were used to 

determine the transformation parameters and align the trace. 

V. ONLINE INDOOR POSITIONING  

In our online scheme, the generated radio and magnetic maps 

were utilized to estimate fingerprinting solution; Section V.A 

illustrates the method of wireless localization-based 

fingerprinting. PDR was then integrated with the estimated 

fingerprinting solution using EKF to bridge wireless outages 

and curb PDR drift, refer to section V.B. Notably, before fusing 

fingerprinting and PDR solutions, the reliable relative PDR 

displacement and gyro heading change were leveraged to 

improve the selection of the best nearest neighboring RPs in 

certain scenarios. 

A. Online Fingerprinting  

In a conventional KWNN, selecting the best K neighboring 

RPs is based on the minimum summation of the Euclidean 

distance between the online MF and WiFi RSS signatures and 

the offline RPs. The online fingerprinting position 𝑷 can then 

be estimated by: 

 
K K

1 1

( ), ( )RP RP

i i i i

i i

x w y w
= =

 
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 P  (11) 

where (𝑥𝑖
𝑅𝑃 , 𝑦𝑖

𝑅𝑃) is the position of 𝑖𝑡ℎ RP from the K-selected 

RPs and the weight 
iw  is computed as follows: 
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where   is the difference between offline and online signatures. 

However, different locations possessing similar signatures 

exist. Moreover, the offline and online data vary [4, 19], 

especially when heterogeneous smartphones generate an offline 

database. Thus, selecting the best neighboring RPs may be 

susceptible to mismatching. To improve the selection of the 

best K neighboring RPs, we proposed utilizing the high 

credibility of the gyro heading change over short periods (i.e., 

periods between two successive WiFi scans) and the accurate 

estimation of the walked distance and gyro heading during this 

period as aiding selection criteria. It is important to point out 

that this aiding can effectively exploited while the user is 

walking in straight line between successive WiFi scans. In these 

portions, the difference between the distance from each RP to 

the previous fingerprinting position and the PDR displacement 

between the two scans and the summation of gyro heading 

change should be equal zero.  

Accordingly, to determine the selection criteria for the K-

nearest RPs, walking status and 𝜆𝑙  were first estimated. If a 

WiFi scan was triggered during making a turn or while in a 

static mode, the K-nearest RPs were selected based on matching 

the MF and WiFi RSS signatures. Conversely, if a WiFi scan 

was triggered while the user was walking in a straight line (i.e., 

∆ℎ𝑚𝑎𝑥  ≤ 𝜆𝑙 , as stated in SectionIII), the distance walked and 

the heading change between the last WiFi scan were used to 

boost the selection of the K-nearest RPs. These approaches 

were applied as follows: We computed the distance from each 

RP to the previous fingerprinting position (𝑥𝑡−1
𝐹𝑃 , 𝑦𝑡−1

𝐹𝑃 ) , and 

compared it with the distance walked within this period. The 

difference between the two distances d is computed for each 

RP using the following expression:  
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where 𝑛 is the number of steps walked from the last WiFi scan 

(t-1), and sl is the estimated step length. The change in the 

heading ( H ) between two the straight lines was calculated. 

The first line was between the 𝑖𝑡ℎ RP and the preceding 

fingerprinting position and the second line was between the last 

two fingerprinting positions (i.e., (𝑥𝑡−1
𝐹𝑃 , 𝑦𝑡−1

𝐹𝑃 )  and 

(𝑥𝑡−2
𝐹𝑃 , 𝑦𝑡−2

𝐹𝑃 )). The expression for H  is as follows:  
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When walking in a straight line, H  and d  should be equal to 

zero. Accordingly, the RSS , MF , d , and H  were summed, 

the K RPs with the least summation were selected as the K-

nearest neighbors to the current user location, and the 

fingerprinting position was computed by weighting them. 

B. Integrated Localization Based on Extended Kalman Filter 

We proposed an integrated solution based on the EKF to 

combine the available measurements. The location of a 

pedestrian at timestamp 𝑡 (𝑥𝑡 , 𝑦𝑡) is updated as soon as a new 

step is triggered, as follows: 
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where 𝑑𝑡  and 𝑠𝑡  indicate the distance moved and distance 

correction, respectively. ℎ𝑡  and Δℎ𝑡  are the heading and 

heading changes, respectively. 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑠  and 𝜎ℎ  are the east, 

north, distance, and heading noises, respectively. In addition, 

owing to the nonlinearity of the PDR model, a nonlinear version 

of the Kalman filter (KF) was used [34]. The state vector is 

defined as 𝒙 = [𝛿𝐸 𝛿𝑁 𝛿𝑠 𝛿ℎ]𝑇, where 𝛿 is the error for each 

parameter. The transition model is linearized using a partial 

derivative. The state equation can be described as 𝒙𝑡 =

𝑨𝑡−1,𝑡𝒙𝑡−1 + 𝑩𝝎𝑡 , where 𝑨𝑡−1,𝑡  indicates the state transition 

matrix from epoch 𝑡 − 1 to 𝑡, 𝑩 is the system noise matrix, and 

𝝎𝑡 is the system noise vector with covariance matrix 𝑸: 𝝎𝑡−1 ∼

𝑁(0, 𝑸𝑡−1). Furthermore, because the error of the parameters 

within a small-time interval had a minimal value (i.e., less than 

millimeters for the localization parameters), the higher-order 

term can be neglected. Thus, the transition matrix is expressed 

as: 
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The observation mode can be represented as follows: 𝒛𝑡 =
𝑪𝑡𝒙𝑡 + 𝝊𝑡, where 𝑪𝑡 is the matrix used to estimate the predicted 

measurement 𝒛𝑡  from the predicted state 𝒙𝑡 , and 𝝊𝑡  is the 

observation noise which is assumed to have a zero mean with 
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the covariance matrix 𝑹: 𝝊𝑡 ∼ 𝑵(0, 𝑹𝒕) . The localization 

results from the inertial sensors and wireless measurements are 

incorporated into the observation vector as 𝒛𝑡 =
[Δ𝐸 Δ𝑁 Δ𝑠 Δℎ]𝑇, where Δ is the bias in each parameter. 

The transition matrix 𝑪 was defined as 𝑑𝑖𝑎𝑔(𝑐1, 𝑐2, 𝑐3, 𝑐4) and 

covariance matrix 𝑹 was donated as 𝑑𝑖𝑎𝑔(𝑟1, 𝑟2, 𝑟3, 𝑟4).  

When the WiFi scan was triggered, online position-based 

fingerprinting is estimated, the parameters 𝑐1 and 𝑐2 are set to 

1. Δ𝑥 and Δ𝑦 are estimated as the difference between the PDR 

and fingerprinting positions and updated 𝒛 . The covariance 

matrix is updated as follows: 

  𝑟1 = 𝑟2 = 𝜎𝐹𝑃
2 =

∑ (𝑤𝑖∙ √(𝑥𝑓𝑝−𝑥𝑖)2+(𝑦𝑓𝑝−𝑦𝑖)22
)𝐾

𝑖=1

∑ (𝑤𝑖)𝐾
𝑖=1

 (17) 

where (𝑥𝑓𝑝 , 𝑦𝑓𝑝)  is the estimated fingerprinting solution. 

(𝑥𝑖 , 𝑦𝑖) and 𝑤𝑖  are the location and estimated weight of the i-th 

RP. 𝐾  is the number of best neighboring RPs selected to 

estimate the fingerprinting position. When a user walks in a 

straight line between two ANs, the step length is calibrated as 

follows:  

 
2 2ˆ ( ) ( )AB ABAB

calib

dx dyl
sl

N N

+
= =  (18) 

where 𝑙𝐴𝐵  is the actual distance between ANs A and B, 𝑑𝑥𝐴𝐵  

and 𝑑𝑦𝐴𝐵  are the easting and northing between A and B, 

respectively, and 𝑁 is the number of steps triggered between A 

and B. In the fusion model, the length parameters are updated 

as follows: 

 
3 3,  1,   0.005calib imps sl sl c and r = − = =  (19) 

where 𝑠𝑙𝑖𝑚𝑝 is the estimated empirical step length. Similar to the 

step length calibration, the step heading is also calibrated after 

the user walks in a straight line between two ANs by computing 

the error in the estimated heading as follows: 

 arctan arctan
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A B A B
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
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= −   
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 (20) 

where the superscripts m and r refer to the measured and 

reference locations of the detected ANs, in the EKF model. The 

heading parameters are updated as follows: 

 
4 4,  1,   0.001h h c and r = = =  (21) 

Then, the integrated position of the user is estimated as follows: 
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VI. EXPERIMENTS, RESULTS, AND EVALUATIONS 

A. Experimental Settings 

An Android application was developed to apply the proposed 

system to real-world scenarios. The developed application was 

written in JAVA code and was run entirely on smartphones. A 

Google Map API was used as the user interface to display the 

location of indoor pedestrians, as shown in Fig. 7. (a). The 

smartphones supported BLE and WiFi scans at intervals of 300 

ms and ~3 s, respectively. For all the tests, the sampling 

frequency of the accelerometers and magnetometer was set to 

50 Hz. A higher sampling frequency (i.e., 100 Hz) was used for 

angular velocity measurements to accurately estimate the 

angular changes. 

B. Tests Description and Setups 

The tests can be broadly divided into 1) track-generation 

based on PDR, 2) offline database generation using 

crowdsourced data, and 3) online positioning. The setup and 

description of each test are presented below.  

 
Fig. 7. (a) Everywhere user interface, (b) the pedometer test 

area, and (c) an interactive interface for checking the ground 

truth points and creating the manual fingerprinting databases. 

1) Track Generation-based-PDR Tests  

A rectangular corridor with a total length of 75.3 m, 

represented in Fig. 7 (b), was selected as a test field for step 

detection, length, and heading estimation. The total step count 

over the track is ~ 110 steps. Regarding step detection, 

experimenters walked along the corridor with different 

smartphone poses and three walking speeds (i.e., slow, regular, 

and fast). Each experimenter manually counted the walked 

steps and recorded them as the actual steps count. We evaluated 

the step detection method by estimating the difference between 

the user count and the steps counted using the proposed 

approach. Additionally, we compared the detection accuracy of 

our approach with the mean crossing detection (MCD) method 

[27] and the fast Fourier transformation (FFT)-based peak 

detection method [35] for further evaluation of our method’s 

performance. 

The same track was walked ten times to assess the variation 

in step length estimation and heading performance over a long 

navigation period (~ 20 minutes). The step length was estimated 

using the nonlinear model and compared with: 1) the constant 

step length (i.e., estimated as 𝑠𝑙 = 𝑐 ⋅ ℎ , where ℎ  is the 

pedestrian height, and 𝑐 is a constant equal to 0.413 and 0.415 

for females and males, respectively), and 2) the linear model 

proposed in [36]. The heading from the gyroscope, MF, and 

calibrated weighted heading were estimated and compared with 

the reference heading. Finally, two tracks were used to evaluate 

the performance of turn detection and PDR outlier filtering. The 

results of each PDR part were demonstrated in Section VI.C. 
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2) Offline Database Generation Tests  

Our test site was a large campus floor of ~7200 m2, located 

on floor 6 of block Z, the Hong Kong Polytechnic University 

(see Fig. 11 (a)), comprising two blocks connected by two 

bridges and a garden. A BLE beacon was installed inside the 

north and south elevators (i.e., the red arrows in Fig. 7 (a)). 

Floor users were invited to participate in the data collection 

after the assurance that their data would be protected. Most of 

those who accepted the invitation were willing to share their 

data in accessible, public, and authorized areas outside their 

offices and without accessing others’ offices to avoid the 

COVID-19 pandemic. The volunteers were a group of students 

and colleagues with different body profiles, step lengths, 

walking behaviors, and models of Android smartphones. On 

average, there were seven volunteers per day. In terms of sex, 

there were approximately 3:4 women and men. Notably, no 

instructions were provided to them; they collected the data 

during their daily routines without altering their natural 

behaviors. The overall data were collected over 12 days at 

different times. The following data were recorded for offline 

database generation: raw inertial sensor measurements, WiFi 

scan information (i.e., APs BSSIDs and RSS), BLE scan 

information (i.e., UUID, minor ID, and RSS), GNSS data (i.e., 

position, accuracy, and HDOP), MF readings, and the system 

timestamp of each measurement. The results of the generated 

database are presented in Section VI.D, and the database 

evaluation is presented in Section VI.E. 

3) Online Positioning Tests  

We designed three experiments to evaluate online 

positioning performance. A track with a total length of 

approximately 360 m extending from the north to the south 

block was used as the experimental field (see Fig. 7 (a)), and 

online data were collected using a smartphone carried in a 

horizontal handheld pose. The first test assessed the 

fingerprinting performance using different RP selection criteria. 

Next, the fingerprinting accuracy achieved using different types 

of databases was compared. Subsequently, the performance of 

the integrated solution based on EKF was evaluated, following 

which it was compared with PDR and fingerprinting solutions. 

The results of the three online tests are presented in Section 

VI.F. 

4) Ground Truth, Static and Dynamic Database Establishment 

The following setups were implemented to obtain ground 

truth points for evaluating the proposed system. The absolute 

locations of benchmarks were obtained in the garden area using 

Trimble R10 GNSS receiver. These benchmarks were equipped 

by Leica total station to obtain other benchmarks points within 

the floor. The floor benchmarks were employed to 

georeferenced digital map of the floor plan (i.e., in AutoCAD 

format). The proposed method in [37] was conducted to create 

check points in online positioning tests by marking distinct 

features on the user interface screen. These features represented 

the reference position of the measured online location. Some 

key reasons for using the chosen method are its cost efficiency 

and the enriching of the floor plan with many distinct landmarks 

such as gates, corners, elevators, stairs, and office doors. By 

virtue of the georeferenced map, we labeled and estimated the 

absolute positions of floor landmarks (i.e., distributed at 

distances approximately 6.0 m). Then, an interactive Google 

map-based marker labeling option (as shown in Fig. 7 (c)) was 

developed to facilitate recording the check points in online 

positioning experiments.  

Static and dynamic database creation options were also 

included in the application interface for the testing purposes 

(i.e., as can be shown from the red dashed rectangle in Fig. 7 

(a)). Static RP was captured by dragging the developed Google 

map-based marker (i.e., orange marker in Fig. 8 (c) ) at the 

location of RP on the georeferenced map, then the WiFi and MF 

scans were recorded for 30 s using a Huawei Mate 20 Pro 

smartphone. A dynamic database was also created by walking 

each corridor separately at a constant walking speed. The 

position of each RP was estimated by interpolating between the 

walking steps. 

C. Track Generation-based-PDR Results 

TABLE II summarizes the statistical results of the step 

detection test. The overall performance of our proposed step 

detection method showed high accuracy for the handheld pose 

with a maximum detection error of less than 2%. Detection 

errors were also measured at different speeds, phone poses, and 

device models, and achieved mean and maximum error rates of 

2.3% and 4.6% respectively. Additionally, the comparison with 

existing step detection methods (i.e., MCD [27] and FFT [35]), 

see Fig. 9, verified that our proposed method can deliver similar 

performance with different smartphone poses. The statistical 

results of the step length estimation are summarized in TABLE 

III. The nonlinear step length model outperformed the linear 

model and the constant step length estimation methods, with a 

maximum error of 2 ± 1 m measured for a trajectory with a 75 

m total length. The results of the heading estimation are 

visualized in Fig. 9. The MF heading scored a sharp variation 

with maximum error raised to 50º sometimes because of the 

indoor magnetic disturbance. The cumulative error of gyro 

heading reached 90º owing to the cumulative drift. However, 

the weighted heading achieved a higher accuracy with a 

maximum error of 5º after approximately 20 minutes of 

walking.  

TABLE II 

STEP DETECTION RESULTS  

Activity Speed 

Error Percentage (%) 

Mate 20 Pro Huawei P20 Samsung Note 8 

Mean Max Mean Max Mean Max 

Handheld 

Slow  0.5 1.0 0.7 0.9 0.7 1.0 
Normal  0.3 0.5 0.5 0.8 0.6 1.2 
Fast 0.6 1.1 1.2 1.6 1.5 1.9 

Calling 

Slow  0.6 0.9 0.8 1.3 0.6 1.2 
Normal  0.3 0.6 0.4 0.8 0.5 1.0 
Fast 0.7 1.2 0.9 1.5 1.2 1.4 

Swing 

Slow  1.9 4.0 2.4 4.2 2.5 3.8 
Normal  1.8 3.2 2.0 3.0 2.1 3.1 
Fast 2.2 4.6 3.1 3.8 2.7 4.1 

Pocket 

Slow  1.2 2.0 1.5 2.3 1.3 2.0 
Normal  0.7 1.6 0.9 2.0 0.9 1.8 
Fast 1.5 2.2 1.4 3.1 1.6 2.5 



13 

 

Fig. 10 visualizes the localization performance of track 

generation-based-PDR method for two different tracks where 

the blue markers show the triggered turns. Fig. 10 (a) shows the 

steps utilized to initialize the RANSAC model after each turn 

(i.e., plotted by a black line). Fig. 10 (b) visualized the linear 

model estimated using RANSAC to filter PDR outliers (i.e.,  

plotted by the red lines). The proposed model successfully 

detected all the turns and accurately localized the triggered 

steps with outliers less than 0.75 m (compared to the centerlines 

positions of the corridors). 

 

Fig. 8. Performance comparison of different step detection 

methods. 

TABLE III 

STEP LENGTH ESTIMATION RESULTS  

Model 

Error in meters 

Mate 20 Pro Huawei P20 Samsung Note 8 

Std 

m (%) 

Max 

m (%) 

Std 

m (%) 

Max 

m (%) 

Std 

m (%) 

Max 

m (%) 

Constant  1.2(1.6) 1.9(2.5) 1.4(1.8) 2.7(3.6) 1.3(1.7) 2.5(3.3) 

Linear  1.3(1.7) 2.2(2.9) 1.2(1.6) 2.9(3.8) 1.5(2.0) 3.7(4.9) 
Non-

linear 
0.5(0.7) 1.6(2.1) 0.4(0.5) 1.9(2.5) 0.8(1.1) 1.5(2.0) 

 
Fig. 9. Performance comparison of different heading estimation 

methods. 

 
Fig. 10. Performance of turn detection, outlier filtering, and 

PDR localization.  

D. Offline Database Generation Results 

More than 249 tracks were collected within 12 days. Fig. 11 

(a) shows the floor plan of the test area, and Fig. 11 (b) displays 

the generated tracks of all collected traces before handling. We 

first applied the preprocessing steps prior to the application of 

the inertial data selection criteria as follows:1) our proposed 

step detection procedures were employed to detect the triggered 

steps and estimate the accelerations at the step peaks and 

valleys; and 2) a sliding window with 50% overlap was applied 

to the filtered linear acceleration and angular velocities with 

sample sizes of 130 and 265, respectively. The selection criteria 

of the inertial data (see Section IV.A) were applied to all 

collected traces. The portions of tracks that satisfied these 

criteria were considered to contribute to database generation, 

whereas the others were discarded. Table IV illustrates the 

number of collected data and the percentage of the unqualified 

and qualified portions. The tracks generated from the qualified 

inertial data before aligning their positions are presented in Fig. 

11 (c). TABLE IV summarizes the statistical properties of the 

selected inertial data characteristics of the qualified portions. 

1) Initial Generation 

In the initial generation, the outer ANs that satisfied the ANs 

conditions (see Section IV.B) were used to align the collected 

portions with the qualified inertial data. Table IV shows the 

percentage of closed and opened segments, where the mean 

percentage of closed segments was approximately 20% of the 

qualified portions. The closed segments were aligned by 

determining the optimal transformation parameters (Section 

IV.C). Fig. 12 (a) shows the localization solution of the samples 

of closed traces before and after aligning them. Fig. 12 (b) 

shows the alignment of the entire closed segment by the outer 

ANs. All the aligned portions were combined, and the entire 

covered area was divided into small grids with a size 1.0 m2 to 

generate the grids of the radio map. About 2738 grids were 

obtained in at least one step. However, only grids with more 

than four steps were considered when generating the floor map. 

Fig. 12 (c) shows the remaining grids (only 661 grids) after 

filtering, indicating the presence of areas that are not covered 

by dense data and , consequently, excluded from the generated 

map. 

Subsequently, the BSSIDs of the fixed and permanent WiFi 

APs were identified to construct the radio map of the target 

floor. Table IV shows that the mean number of WiFi APs is 

approximately 400 per day. Only 32 APs out of 400 were 

detected several times per day for more than three days and 

were considered permanent APs. The locations of signatures 

stronger than -65 dBm for the 32 APs were obtained from the 

aligned data. To better distinguish the APs installed in a fixed 

position, only the APs with signatures’ locations clustered in 

less than 100 m2 we selected. Of the 32 APs, 25 satisfied the 

last condition and were considered to be installed at fixed 

locations, and their BSSIDs were used to construct the floor 

radio map. Of the 25 APs, eight had qualified RPs data to 

estimate their APs locations after checking the stated conditions 

in Section (IV.E.2). Fig. 13 shows the qualified RPs of WiFi 

ANs for three of the eight WiFi ANs. The location and 

propagation parameters were then estimated for the eight WiFi 
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ANs, as described in Section (IV.E.2). The estimated locations 

of the WiFi ANs were compared with their actual locations. The 

mean and maximum RMSEs were approximately 1.12 m and 

1.91 m, respectively. Finally, the reference RSS (i.e., at 1.0 m) 

and loss exponent were estimated for the eight WiFi ANs (see 

Fig. 13). 

TABLE IV 

STATISTICAL SUMMARY OF THE INERTIAL DATA 

CHARACTERISTICS OF THE QUALIFIED PORTIONS 

 Mean Std. Min. 25% 50% 75% Max. 

σax 1.16 0.66 0.23 0.72 1.01 1.40 3.61 

σay 1.22 0.83 0.31 0.67 1.03 1.49 4.76 

σaz 2.70 1.35 0.77 1.69 2.36 3.45 6.88 

σ||a|| 1.24 0.89 0.38 0.65 0.89 1.51 4.71 

σωx 0.06 0.04 0.02 0.04 0.05 0.07 0.28 

σωy 0.04 0.03 0.01 0.02 0.04 0.05 0.19 

σωz 0.05 0.03 0.01 0.03 0.04 0.06 0.20 

σ||ω|| 0.04 0.02 0.01 0.03 0.04 0.05 0.16 

ΔPeak 1.82 0.57 0.51 1.41 1.85 2.15 2.90 

ΔValley 1.39 0.57 0.38 0.99 1.29 1.71 2.85 

 

2) Subsequent Generation 

In the second generation, the inferred WiFi ANs were 

leveraged to align the segments with qualified inertial data, as 

described in Section (IV.E.3). Samples of trace alignment using 

WiFi ANs and outer ANs are shown in Fig. 14 (a). The upper-

right panel in Fig. 14 (a) shows a remarkable enhancement in 

aligning the open trace. Additionally, aligning the traces with 

outer ANs together with WiFi ANs improved the alignment 

even for the closed segments, as shown in the upper left panel. 

By virtue of the inferred WiFi ANs, up to 70% of the open 

segments were converted into closed segments (see Table IV). 

Fig. 14 (b) displays the localization of all aligned traces by 

internal and outer ANs. Fig. 14 (c) shows the grids generated 

after combining the aligned traces, reflecting the extension of 

the spatial coverage of the generated map. The generated grids 

were then used to create magnetic and radio-map RPs.  

The clustered signatures at each grid were checked to ensure 

consistency of the RPs using the criteria stated in Section IV.D. 

Fig. 15 shows the radio maps generated for nine out of the 25 

fixed WiFi APs. Notably, the displayed RPs satisfied the 

signature quality check, and the total number of these RPs is 

attached to each plot. Fig. 15 shows that the reference location 

of the WiFi AP almost coincides with the location of the strong 

signature. Fig. 16 (a) shows the magnetic field measurements 

over the aligned traces, and Fig. 16 (b) shows the generated 

magnetic map. 

3) Database Generation Over Time  

Developing a generated database over time is crucial for 

developing a self-deployable system. Without dependency on 

floor plans, user feedback, or internal BLE ANs in the initial 

generation stage, only traces entirely collected with qualified 

data between outer ANs were considered for the database 

regardless of their lengths. At this stage, the following points 

are worth mentioning:1) as shown in Table IV, several traces 

with qualified inertial data (~80%) did not contribute to 

database generation because of their locations lacked 

calibration resources; 2) the spatial coverage of the initial 

database was confined to the common paths between outer 

ANs, as shown in Fig. 13 (c); and 3) long traces were exposed 

to heading drift owing to the long walking paths between the 

outer ANs and the absence of internal ANs in such a large-scale 

building, as shown in Fig. 13 (b). Inferring pervasive 

adjustment resources is a feasible solution for extending the 

spatial coverage and overcoming heading drift.  

The cumulative increase in data over time improved the 

probability of obtaining more traces with qualified inertial data 

between the outer ANs, which, in turn, helped increase the 

number of qualified RPs to infer the locations of internal WiFi 

APs. For example, from Table IV, by day seven, the RPs data 

for only three fixed WiFi APs were qualified to estimate their 

APs positions. The number of ANs increased over time, and 

reaching eight APs by day 12. Hence, we can conclude that as 

time progresses, more fixed WiFi APs can be expected to obtain 

qualified RPs to estimate their locations. Deriving the locations 

of WiFi APs to serve as internal ANs significantly increases the 

quantity of contributed data, which can explain why the 

frequency of user movements within the floor areas is higher 

than that when the users cross from the outdoors to the indoors, 

or vice versa. Most of the open segments generated from traces 

within the floor were boosted by internal WiFi ANs and 

converted into closed segments, aligned, and included in the 

database. Accordingly, the spatial coverage of the next 

generated databases was extended to zones far away from the 

common paths between the floor entrances, as shown in Fig. 14 

(c). In summary, we can conclude that cumulative increase in 

the amount of data is beneficial for developing a ubiquitous 

system. Moreover, updating the database with time can keep the 

database pace with frequent changes in WiFi APs. 

TABLE V 

CROWDSOURCED DATA PROCESSING WITH TIME  

Days 
Number of 

tracks 

Inertial data check Total 

detected 

WiFi APs1 

Fixed and 

permanent 

observed 

APs2 

Segments with 

outer ANs 

Number of 

internal 

WiFi 

ANs3 
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Open 

segments 

converted 

to closed4 
Unqualified 

portions 

Qualified 

portions 

< 2 

Open  

≥ 2 

Closed  

Day 1 & 2 29 31% 69% 409 - 91% 8%  - 71% 

Day 3 & 4 38 55% 45% 487 - 72% 28% - 52% 

Day 5 & 6 54 68.5% 30.5% 464 22 84% 16% - 63% 

Day 7 & 8 43 65% 35% 505 23 76% 24% 3 72% 

Day 9 & 10 45 73% 27% 393 25 78% 22% 6 69% 

Day 11&12 40 52.5% 47.5% 532 25 81% 19% 8 67% 
1Mean number of APs per day, 2The BSSIDs of the fixed WiFi APs used for radio map generation (cumulatively counted); 3the WiFi APs with RPs 

qualified to estimate their positions to act as ANs (cumulatively counted); 4 a percentage from the open portions.  
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Fig. 11. (a) The sixth-floor plan, (b) the track generation of the entire collected data, and (c) the track generation of the portions 

with qualified inertial data. 

 

 
Fig. 12. (a) Samples of traces aligned by outer ANs, (b) the closed traces aligned by outer ANs, and (c) the generated grids from 

the aligned traces obtained from (b) to create the radio map at the initial generation stage. 

 

 
Fig. 13. Radio map for WiFi ANs from the initial generation stage. (a), (b), and (c) represent the radio maps for three selected 

WiFi APs. (aʹ), (bʹ) and (cʹ) display the mean RSS of the qualified RPs used to estimate the location information of the three WiFi 

ANs (panels and color bar are bounded by red dashed rectangle). (a˝), (b˝), and (c˝) show the standard deviation of the RSS values 

of the qualified RPs (panels and color bar are bounded by green dashed rectangle). 

 

 
Fig. 14. (a) Samples of traces aligned by outer and internal WiFi ANs, (b) the alignment of the whole traces with qualified inertial 

data aligned by outer or internal WiFi ANs, and (c) the generated grids to create the radio map at the second-generation stage. 
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Fig. 15. The second-generation of the radio maps for 9 APs out 

of the 25 fixed WiFi APs (RPs satisfied the signature quality 

check are plotted, whereas the other RPs were set to -100 dBm 

and not visualized here). 

 

Fig. 16. (a) the MF over the aligned traces, and (b) the second-

generation of the magnetic map (RP area 0.5×0.5 m2). 

E. Evaluation of the Crowdsourced Databases  

We considered the database created by static surveying to be 

the most trustworthy for assessing the signatures of 

crowdsourced databases. Consequently, we compared the 

second generated crowdsourced radio and magnetic maps (i.e., 

presented in Fig. 15 and Fig. 16 (b)) with the corresponding 

static maps. For the radio map, the absolute difference between 

the RSS of the crowdsourced RPs and the corresponding RSS 

of the static RPs was calculated for each fixed WiFi AP. A 

similar comparison was performed for the magnetic map, where 

the mean magnetic norm of each crowdsourced RP was 

compared with the corresponding static RP norm. Table VI 

summarizes the differences between the maps. The RSS 

differences scored a mean difference of approximately 6 dBm, 

and 75% of the results were less than 9.5 dBm. Similarly, the 

mean MF differences was approximately 5 µT, and 75% of the 

results were less than 6.7 µT. 

Particularly, the validation was mainly executed to 

investigate the extent to which the crowdsourced signatures 

differed from  the static signatures (i.e., the most trusted RPs). 

Notably, these differences were expected to occur and can be 

ascribed to the variability of the crowdsourced signatures 

collected by free-moving users who carried heterogeneous 

smartphones, whereas the human-supervised static databases 

were created in static mode at the actual locations of their RPs. 

However, the positioning results of crowdsourced databases are 

the predominant factor in the final decision on whether the 

proposed method is applicable in real localization scenarios. 

TABLE VI 

DIFFERENCES BETWEEN THE CROWDSOURCED AND STATIC 

SURVEYING SIGNATURES 

 Mean Std. 25% 50% 75% 90% 

WiFi RSS 

(dBm)  
6.1 4.8 2.4 5.2 9.5 12.3 

MF (µT) 5.2 3.1 1.8 4.9 6.7 7.2 

F. Online Positioning Results  

1) Fingerprinting Performance Using Different Selection 

Criteria for the K-Nearest RPs  

 Using the same online dataset, we compared the online 

fingerprinting results when the K-nearest RPs were selected 

based on the RSS only, (RSS and MF), and (RSS, MF, and PDR 

displacement and orientation change). The second generation 

of crowdsourced databases (i.e., presented in Fig. 15 and Fig. 

16 (b)) was utilized to test the three selection criteria. The test 

was conducted on the designed online testing path shown in Fig. 

7 (a). Fig. 17 (a) shows the empirical cumulative distribution 

function (ECDF) of the localization error for the three selection 

criteria. The combination of RSS, MF, and PDR provided 

localization errors of ~ 75% below 2.95 m with a mean error of 

2.05 m. In contrast, the RSS and (RSS & MF) scored 75% of 

the errors of 3.35 and 3.5 m with a mean error of 2.55 and 2.4 

m, respectively. Therefore, we can conclude that the accuracy 

is enhanced by approximately 18% when PDR guides the 

selection of the best K-nearest RPs, together with both RSS and 

MF signatures. 

 
Fig. 17. ECDF of fingerprinting results using (a) different K-

nearest RPs selection criteria and (b) different database creation 

techniques. 

2) Fingerprinting Performance Using Different Creation 

methods for the Offline Databases  

In the next step, we used the same online dataset utilized in 

the previous test and the selection of the K-nearest RPs based 

on the RSS, MF, and PDR changes in displacement and 
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orientation. Using these, we altered the crowdsourced databases 

to static surveying and dynamic walking databases to estimate 

the fingerprinting solution for each database type. Fig. 17 (b) 

shows the ECDF results for each database type. The positioning 

results indicate that the static database achieved the best 

accuracy compared to dynamic walking and crowdsourced 

database with a mean and 90% of the localization errors of 1.5 

m and 2.0 m, respectively. However, the crowdsourced 

databases achieved a mean error of 2.1 m, and 90% of the 

localization errors were less than 3.5 m. 

3) PDR, Fingerprinting, and EKF Results  

This test compared the online solutions-based PDR, 

fingerprinting, and EKF methods. We used the second 

generated crowdsourced database as the offline database and 

selected the K-nearest RPs based on the combination of (RSS, 

MF, and PDR) for online matching. The EKF results 

outperformed PDR and fingerprinting solutions with a mean 

error of ~1.42 m compared with 1.83 m and 2.05 m for PDR 

and fingerprinting solutions, respectively. TABLE VII lists the 

accuracy achieved for each method and Fig. 19 shows the 

positioning solution for each method. 

G. Comparison with Existing Approaches 

We compared our proposed framework with existing 

counterparts in terms of the capability of developing ubiquitous 

systems and solution accuracy, as listed in TABLE VIII. The 

SoiCP system [17] achieves a positioning accuracy of 3.0 m and 

depends on accurate GNSS data to align the collected traces. 

Although SoiCP can attain a certain level of ubiquity with 

buildings surrounded by open-sky areas, it performs badly 

when applied to multistory buildings. Moreover, its accuracy 

would deteriorate even further when employed for buildings 

surrounded by GNSS-denied areas. The 3D-CSWS system [11] 

deployed six BLE internal ANs and achieved an accuracy of 

1.98 m and 5.18 m in the office and the open areas, respectively; 

similarly, ten BLE ANs were deployed per floor in [10] that 

provided positioning accuracy of about 6.3 m. Similarly, [16] 

deployed BLE beacons at intervals of 7.0 m. We also collected 

crowdsourced data after deploying four internal BLE ANs to 

practically compare the performance of two cases: 1) with outer 

ANs only (i.e., as proposed in our scheme); and 2) with the 

existence of internal ANs (i.e., as proposed in existing work). 

In the second case, less total time was required to collect 

massive qualified closed traces between ANs data and generate 

the final databases. Also, better aligning for the collected traces 

with less heading drift was achieved owing to the availability 

of short paths between internal ANs. The database generated 

from the second case achieved a marginal fingerprinting 

accuracy improvement (less than 5%) compared with that 

obtained from the database of the first case. However, in 

multistory and large-scale buildings, a large number of BLE 

beacons are required to satisfy the requirements of such 

systems, which is costly and labor-intensive. Consequently, the 

ubiquity of these systems (i.e., that require internal auxiliary 

ANs) is limited and the accuracy improvement is marginal.  

TABLE VII 

PDR, FINGERPRINTING, AND EKF SOLUTIONS ACCURACIES 

Solution Mean Max 75% 90% 

PDR 1.83 7.70 3.20 4.30 

Fingerprinting 2.10 5.40 2.80 3.50 

EKF 1.42 6.30 2.35 3.15 

 
Fig. 18. Localization results of PDR, fingerprinting, and EKF. 

TABLE VIII 

COMPARISON WITH EXISTING SYSTEMS 

System Cost and effort 

Suitable for building 

surrounded by 
Accuracy 

GNSS-

denied area 

Open-sky 

area 

3D-CSWS 

[11] 
Costly and tedious ✓ ✓ 1.9 m 

[16] Costly and tedious ✓ ✓ 1.0 m 

[10] Costly and tedious ✓ ✓ 6.3 m 

SoiCP [17] 
Low-cost and 

applicable 
✗ ✓ 3.0 m 

Everywhere 
Low-cost and 

applicable 
✓ ✓ 2.1 m 

 

Our system, similar to SoiCP, leverages the available GNSS 

accurate data to serve as outer ANs and deploys an outer BLE 

AN inside the building’s elevator. Thereby, it guarantees 

accurate localization even for the building surrounded by 

GNSS-denied areas, where one node can precisely serve as 

outer AN for all floors and saves the cost of deploying dense 

internal ANs at each floor. Thus, the proposed system can guide 

the development of ubiquitous systems. Additionally, the 

accuracy of our fingerprinting solution is superior to that of its 

counterparts by the virtue of the quality of the generated offline 

database and the improved selection criteria of the neighboring 

RPs in the online stage. 

VII. CONCLUSION AND FUTURE WORK  

The widespread use of smartphones and their unlimited 

spatial coverage of human mobility have enabled the collection 

of pervasive crowdsourced signatures. Consequently, 

autonomous localization of such signatures can be used to 

develop a self-deployable and ubiquitous IPS. However, 

previous indoor positioning studies-based crowdsourcing have 

not paid attention to the overarching aim of utilizing such data. 
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The sources and methods used in these studies potentially 

militate against realizing ubiquitous systems. The proposed 

framework relies on multisensory integration to develop a low-

cost, self-deployable, and ubiquitous IPS that can be used for 

buildings surrounded by either GNSS-denied or open-sky areas. 

Compared with existing crowdsourcing-indoor positioning 

systems, our system has the following contributions: 

1.  In the offline phase, we introduced selection criteria for 

qualified inertial data that depended entirely on the 

characteristics of the collected data and eliminated the need 

for external resources. These criteria helped to include the 

data that generated traces with a geometric shape similar to 

the ones that are actually described by users. Including only 

traces with qualified data helped achieve better trace 

localization after aligning them and consistent signatures 

per RP after combining them (i.e., with mean differences 

less than 6 dBm and 5 µT, for the radio and magnetic 

signatures, respectively, compared to the reference 

signature-based static surveying). 

2. Additionally, we reduced the expected large errors while 

depending on GNSS ANs to localize crowdsourced 

signatures in buildings surrounded by GNSS-denied areas 

or those with multiple stories by deploying BLE AN per 

elevator. The deployment of BLE beacons facilitates the 

maintenance of a high localization accuracy with low cost 

and effort. 

3.  Furthermore, to improve trace localization and extend the 

spatial coverage of the generated databases without the 

need to deploy BLE ANs within the floors or utilize floor 

plans, we leveraged the phenomenon of cumulative data 

densification to derive the identifiers, locations, and 

propagation information of fixed WiFi APs that can serve 

act as internal ANs. The estimated locations of the inferred 

WiFi ANs achieved mean and maximum RMSEs of 

approximately 1.12 m and 1.91 m, respectively. These 

inferred pervasive ANs significantly extended the spatial 

coverage and improved trace localization in subsequent 

database generation.   

4. In the online phase, we exploited the high credibility of the 

short-period gyro heading change and PDR displacement 

to boost the selection of the best K-nearest RPs. This 

enhanced online fingerprinting by approximately 18%, 

with a mean accuracy of 2.1 m. Our integrated solution 

achieved a mean and 90% accuracy of about 1.42 m and 

3.15 m, respectively. Interestingly, our system 

outperformed its counterparts and promoted ubiquitous IPS 

development for buildings surrounded by either open-sky 

or GNSS-denied areas. 

Because the research on ubiquitous indoor localization is at 

an early stage, more improvements are probably required. 

However, the concepts introduced in this study should help 

guide research in this area. Here, we shed light on further 

improvements and considerations that could extend our work in 

developing ubiquitous IPSs, as follows: 1) utilizing other 

pervasive features to augment the adjustment of trace 

localization; 2) including barometric data and elevator 

acceleration patterns to obtain 3D indoor localization; 3) 

introducing attitude estimation approaches to improve the 

overall PDR performance in online navigation with different 

smartphone poses (e.g., calling, swinging, in-pocket, and in-

handbag poses); and 4) examining online fingerprinting 

performance in open-space areas. 

Using the proposed system, regular users can easily produce 

the requirements of IPSs (i.e., that limit the ubiquity of IPSs). If 

such crowdsourcing systems are widely deployed, LBSs can 

ubiquitously improve their accuracy indoors. It is, however, 

crucial to propose user-friendly data collection strategies and 

privacy guarantees in order to make such promising systems 

widely adopted. Ignoring the negative impact of data collection 

on the users’ devices (e.g., battery power draining and device 

performance slowing) can limit the applicability and 

widespread of the crowdsourced-IPSs. Therefore, protecting 

user data privacy and reducing the cost borne by the user device 

to collect these data must be seriously considered. 
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