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Highlights 

 Trend analysis of PM2.5 over multiple years is complicated due to the impact of 

meteorology. 

 Meteorological normalization was performed using the machine learning 

algorithm. 

 Real trend in PM2.5 in a polluted northwest city was revealed after meteorological 

normalization. 

 Reduction rate in the normalized PM2.5 over the 5 years was slower than the 

observed ones. 

 Insights into the photochemical and aqueous phase chemistry of secondary PM2.5 

were gained. 
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Abstract. To evaluate the effectiveness of air pollution control policies, trend analysis of the air 15 

pollutants is often performed. However, trend analysis of air pollutants over multiple years is complicated 16 

by the fact that changes in meteorology over time can also affect the levels of air pollutants in addition 17 

to changes in emissions or atmospheric chemistry. To decouple the meteorological effect, this study 18 

performed a trend analysis of the hourly fine particulate matter (PM2.5) observed at an urban background 19 

site in Xi'an city over 5 years from 2015 to 2019 using the machine learning algorithm. As a novel way 20 

of meteorological normalization, the meteorological parameters were used as constant input for 5 21 

consecutive years. In this way, the impact of meteorological parameters was excluded, providing insights 22 

into the “real” changes in PM2.5 due to changes in emission strength or atmospheric chemistry. After 23 

meteorological normalization, a decreasing trend of −3.3% year-1 (−1.9 μg m-3 year-1) in PM2.5 was seen, 24 

instead of −4.4% year-1 from direct PM2.5 observation. Assuming the rate of −1.9 μg m-3 year-1 were kept 25 

constant for the next few decades in Xi'an, it would take approximately 25 years (in the year 2045) to 26 

reduce the annual PM2.5 level to 5 μg m-3, the new guideline value from World Health Organization. We 27 

also show that PM2.5 is primarily associated with anthropogenic emissions, which, underwent aqueous 28 

phase chemistry in winter and photochemical oxidation in summer as suggested by partial dependence 29 

of RH and Ox in different seasons. Therefore, reducing the anthropogenic secondary aerosol precursors 30 

at a higher rate, such as NOx and VOCs is expected to reduce the particulate pollution in this region more 31 

effectively than the current −3.3% year-1 found in this study. 32 

 33 

Keywords: Particulate matter; Secondary aerosol; Theil-Sen estimator; Random forest; Aqueous phase 34 

chemistry 35 

 36 
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1 Introduction 37 

Atmospheric particulate matter with a diameter of less than 2.5 μm (PM2.5) is associated with adverse 38 

health effects and plays a key role in climate change (Cai et al., 2017; Daellenbach et al., 2020; Wu et 39 

al., 2022). Globally, atmospheric PM2.5 is causing millions of premature deaths every year (Burnett et al., 40 

2018; Cohen et al., 2017; Lelieveld et al., 2015). In particular, exposure to high levels of PM2.5 is 41 

associated with a high risk of cardiovascular and respiratory disease (Brehmer et al., 2019; Lyu et al., 42 

2018; Yu et al., 2019). The World Health Organization (WHO) recommends an annual PM2.5 level of 10 43 

μg m-3 (or more recently 5 μg m-3) not to be exceeded (WHO, 2006; WHO, 2021). However, it is noted 44 

that there is no safe level of PM2.5 below which no adverse health effects would be anticipated (WHO, 45 

2006). 46 

PM2.5 can be directly emitted from sources of e.g., traffic, industry, and coal combustion; it can also 47 

be formed from the oxidation of its precursor gases of e.g., NOx, SO2, volatile organic compounds (VOCs) 48 

(Fuzzi et al., 2015; Shrivastava et al., 2017; Zhang et al., 2015), termed as primary and secondary PM2.5, 49 

accordingly. To evaluate the effectiveness of air pollution control policies and to further inform policy 50 

development, trend analysis of the observed PM2.5 in the ambient environment upon changes in emission 51 

and atmospheric chemistry over time is important, especially on a long-term basis e.g., years to decades. 52 

However, trend analysis of PM2.5 over multiple years is complicated because changes in meteorology 53 

can drive the changes in the observed PM2.5 in addition to changes in emissions or atmospheric chemistry. 54 

Therefore, it is essential to decouple the meteorological impact from the observed PM2.5 to see the real 55 

changes caused by emission over time with statistical significance. 56 

To confirm the changes in pollutant concentration over multiple years with statistical significance, a 57 

process called meteorological normalization was proposed by Grange et al. (2018) using the random 58 
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forest-based machine learning algorithm. The random forest model is computationally efficient and can 59 

well predict the PM2.5 based on the meteorological parameters (Vu et al., 2019; Zhan et al., 2022; Zhou 60 

et al., 2022). By eliminating the effect of meteorological parameters (i.e., after meteorological 61 

normalization), insights into the real changes due to emission strength over time can be gained (Grange 62 

and Carslaw, 2019; Grange et al., 2021; Grange et al., 2017). Moreover, Qin et al. (2022) show the 63 

nonlinear effect of atmospheric variables on the primary and secondary organic aerosol can be well 64 

captured by the random forest model. Using the partial dependence algorithm, the emission sources and 65 

formation process of PM2.5 can be revealed in a complex urban environment (Qin et al., 2022). 66 

In China, PM2.5 pollution is particularly serious due to rapid economic development, industrialization, 67 

and urbanization (Lu et al., 2013; Zhang et al., 2012). To tackle air pollution, many measures have been 68 

implemented e.g., the 5-year Clean Air Action Plan and the blue-sky action (Cheng et al., 2019; Wang et 69 

al., 2014; Yang et al., 2015). Despite the efforts to reduce the emission, recent studies show the annual 70 

PM2.5 concentration in Northern China is still far exceeding the WHO guideline values (Chen et al., 2019; 71 

Cheng et al., 2019; Vu et al., 2019), highlighting the challenges to improve the air quality in China. As 72 

the largest city in northwest China and home to 13 million people as of 2021, Xi'an has suffered severe 73 

air pollution over the past decades with PM2.5 levels typically higher than in Beijing (Dai et al., 2018; 74 

Elser et al., 2016; Huang et al., 2014; Niu et al., 2016). However, compared to Beijing, trend analysis of 75 

PM2.5 in this highly polluted city is lacking, limiting our understanding of the most recent changes in the 76 

evolution of PM2.5 over time. In particular, while it is widely acknowledged that 5-year Clean Air Action 77 

Plan is contributing to the reduction of PM2.5 levels in Beijing (Cheng et al., 2019; Vu et al., 2019), it is 78 

unknown if the clean air action is working in Xi'an as significantly. 79 

In this study, trend analysis of the hourly PM2.5 over 5 years from 2015 to 2019 in Xi'an was performed 80 
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using the random forest model. The random forest model was used to predict the PM2.5 using the 81 

meteorological parameters as the model input. Through the comparison of trend analysis before and after 82 

meteorological normalization, the effect of meteorological on trend estimates is revealed. Using the 83 

partial dependence algorithm, the nonlinear effects of atmospheric variables and gaseous pollutant on 84 

PM2.5 was evaluated. Finally, implications from trend analysis of PM2.5 over the 5 years in Xi'an are 85 

discussed. 86 

2 Method 87 

2.1 Data source 88 

Five years of air quality data (from 2015 to 2019) of the hourly PM2.5, NO2, SO2, O3 and CO at three 89 

national air quality monitoring stations in Xi'an were downloaded from the China National 90 

Environmental Monitoring Network website (https://www.cnemc.cn/;last access: February 1, 2022). The 91 

three sampling sites are all within the urban Xi’an, specifically in three different districts in Xi'an, with 92 

GXXQ in Gaoxin District, XZ in Yanta District, and LTQ in Lintong District (Fig. S1). The distance 93 

between GXXQ and LTQ sampling site is approximately 40 km, while it is 5 km between GXXQ and 94 

XZ (Fig. S1). With such large spatial coverage, the air quality data recorded at the three sampling sites 95 

can represent the overall air quality in Xi'an city, one of the most polluted cities in China. 96 

Hourly meteorological data including wind speed, wind direction, temperature, relative humidity (RH) 97 

recorded at Xi'an Xianyang International Airport were downloaded using the “worldMet” R package 98 

(Carslaw, 2017). Planetary boundary layer (PBL) height and atmospheric pressure were obtained from 99 

the reanalysis data at 100 m above ground level at the sampling site of GXXQ using the Hybrid Single-100 

Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Rolph, 2003), developed by 101 
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the National Oceanic and Atmospheric Administration (NOAA). Data were analyzed in RStudio with a 102 

series of packages, including “openair”, “normalweather”, and “ggplot2” (Carslaw and Ropkins, 2012; 103 

Grange et al., 2018; Vu et al., 2019). 104 

2.2 Random Forest modelling 105 

2.2.1 Building the Random Forest model 106 

A decision-tree-based random forest model was developed to understand the trend of the observed PM2.5 107 

over the 5 years and to gain insights into the formation pathways of PM2.5. Specifically, the random forest 108 

model was built to derive the relationship between PM2.5 and its predictor features including time 109 

variables (date_unix (number of seconds since 1 January 1970), day of the year (day_julian), weekday, 110 

and hour of the day), meteorological parameters (wind speed, wind direction, temperature, relative 111 

humidity (RH), PBL, and pressure). The time variables act as proxies for emission strength as they vary 112 

in time and season. 113 

In the RF model, the whole dataset was randomly divided into a training dataset to build the model 114 

and a testing dataset to test the model performance. The training dataset was comprised of 80% of the 115 

whole dataset, with the testing data (20%) used to validate the models once the forest had been grown. 116 

The number of the independent/explanatory variables used to grow a tree was set to three, while the 117 

minimum nod-size was set to five, following (Grange et al., 2018). The number of trees within a forest 118 

was set to 300. The RF model was built using the latest “rmweather” R package developed by Grange et 119 

al. (2018). 120 
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2.2.2 Meteorological normalization 121 

PM2.5 can be meteorologically normalized by repeatedly (1000 times) re-sampling and predicting using 122 

the random models as detailed by Grange et al. (2018). Briefly, PM2.5 at a specific measured time point 123 

with randomly resampled explanatory variables (except for date_unix) is predicted 1000 times and 124 

averaged. For every prediction, the explanatory variables including the time variables (excluding the 125 

date_unix variable) and meteorological parameters were randomly selected from the original observation 126 

dataset and were subsequently fed to the RF model to predict PM2.5 at that particular time point. This is 127 

repeated 1000 times, and the 1000 predictions were then averaged, representing “average” 128 

meteorological conditions and hence, was regarded as the meteorologically normalized trend. In other 129 

words, the meteorological normalized PM2.5 (in μg m-3) can be thought of as concentrations in “average” 130 

or invariant weather conditions. Because the time variables of the hour, weekday, day of the year are also 131 

included for normalization, it is not straightforward to investigate the hourly, weekday, seasonal for a 132 

comparison with the trend of the observed values. 133 

In this study, the meteorological parameters in 2015 were used as the input to predict the PM2.5 134 

concentrations in 2016, 2017, 2018, and 2019. In other words, the predicted PM2.5 in 2016, 2017, 2018, 135 

2019 were the expected PM2.5 concentrations under 2015 meteorological conditions. In this way, the 136 

predicted PM2.5 can be directly compared with the observed PM2.5 in terms of hourly, weekday, seasonal 137 

variations. Note that only the meteorological parameters (i.e., wind speed, wind direction, temperature, 138 

pressure, and PBL) were re-sampled, while the time variables were unchanged. With the predicted PM2.5 139 

under the same meteorological conditions from 2015-2019, the behavior of the PM2.5 trend due to the 140 

changes in emissions or atmospheric chemistry can be revealed. 141 
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2.2.3 Partial dependence algorithm 142 

The partial dependence algorithm was applied to assess the nonlinear effect of atmospheric variables, 143 

including physical and chemical processes, on the measured PM2.5 (Grange and Carslaw, 2019; Grange 144 

et al., 2018). The partial dependence algorithm calculated the dependence between the PM2.5 and the 145 

target atmospheric variables while holding other variables constant at their averages. By targeting all 146 

variables one by one, the partial dependence of PM2.5 on all considered atmospheric variables was 147 

calculated. 148 

In this study, the atmospheric variables used as model input included meteorological parameters and 149 

gas pollutants. Specifically, the meteorological parameters were RH and temperature which are key 150 

atmospheric variables that can influence the physical and chemical processes of PM2.5. For example, high 151 

RH may promote aqueous phase chemistry (Duan et al., 2020), while the high temperature may induce 152 

high biogenic VOC emissions in summer, key precursor gases for secondary aerosol. Gas pollutants 153 

include CO, SO2, NO2, O3, as well as Ox (NO2 + O3). CO and SO2 are indicators of primary emissions, 154 

while, Ox is a good surrogate of the oxidizing capability of the atmosphere (Lin et al., 2020). Note that 155 

although CO and SO2 are primary emissions, they are not necessarily local since they can be transported 156 

from upwind regions to the receptor sites. The partial dependence algorithm is provided in the 157 

“rmweather” package (Grange et al., 2018) in R (version 4.1.2) 158 

2.3 Trend analysis using Theil-Sen estimator 159 

The Theil-Sen regression methodology was applied to investigate the long-term trend of PM2.5 before 160 

and after the meteorological normalization. The Theil-Sen approach is commonly used for long-term 161 

trend analysis and has been detailed in Grange et al. (2018) and Vu et al. (2019). Briefly, the Theil-Sen 162 
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regression approach accounted for autocorrelation and was used at the 95% confidence level to indicate 163 

a significant trend (Grange et al., 2018). The Theil-Sen approach computed the slopes of all possible 164 

pairs of PM2.5 and took the median values of the slopes, resulting in more conservative confidence 165 

intervals for PM2.5 trend analysis. The Theil-Sen functions are provided in the “openair” package in R 166 

(version 4.1.2) (Carslaw and Ropkins, 2012). 167 

3 Results and Discussion 168 

3.1 Ambient PM2.5 in Xi'an from 2015 to 2019 169 

Figure 1 shows the daily averaged time series of PM2.5 over the five years from 2015 to 2019 at the three 170 

different sites (i.e., LTQ, XZ, and GXXQ) in Xi'an. The time series of PM2.5 at the three sites were very 171 

similar with elevated concentrations in winter (spiking over 400 μg m-3) and relatively reduced 172 

concentrations in summer (< 100 μg m-3). Averaged over the five years, PM2.5 was 65.1 ± 59.9 (SD) μg 173 

m-3 at GXXQ, while it was 62.2 ± 61.2μg m-3 and 59.3 ± 58.6 μg m-3 at XZ and LTQ, respectively (Table 174 

S1). Despite the large distance between the sampling sites (up to 40 km; Figure S1), the time series of 175 

PM2.5 at the three sites were highly correlated with correlation coefficient r > 0.85 (p-value < 0.01) and 176 

slopes close to unity. The good correlation for the observed PM2.5 at the three sampling sites suggests the 177 

observed PM2.5 were due to common pollution sources, simultaneously impacting the air quality over a 178 

large area in Xi'an with a diameter of at least 40 km. Due to the similar trend in time series and the 179 

slightly high concentration observed at GXXQ, below we focus on the discussion on the air quality data 180 

at GXXQ. 181 

In terms of annual mean concentration, the PM2.5 at GXXQ was 63.6 μg m-3 in 2015. It increased to 182 

74.8 μg m-3 in 2017 then dropped to 58.8 μg m-3 in 2019 (Table S1). Compared to China’s national 183 
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ambient air quality standard (NAAQS-II) of 35 µg m-3 and the new WHO guideline of 5 µg m-3 (WHO, 184 

2021), the annual mean PM2.5 concentration in Xi'an was approximately substantially (2-7 times) higher, 185 

highlighting the poor air quality in this city. Moreover, compared to the trend of PM2.5 in Beijing (Vu et 186 

al., 2019), which showed a decreasing trend from 88 µg m-3 in 2013 to 58 µg m-3 in 2017, the PM2.5 trend 187 

observed in Xi'an is more complicated since the annual PM2.5 concentration increased in 2017 then started 188 

decreased afterward. In particular, the number of haze days (defined as daily PM2.5 > 75 µg m-3) was 90 189 

days (i.e., ~25% of the year or 1 in 4 days; Table S2) in 2015. It increased to 112 days in 2017 then 190 

dropped to 86 days in 2019 (Table S2). Most of the haze days occurred in winter, with the average PM2.5 191 

concentrations in the range of 67.3-143 μg m-3 in winter (Table S3), roughly three times higher than in 192 

summer (24.5-38.6 µg m-3). 193 

3.2 Predicted PM2.5 in a good agreement with the observed PM2.5 over 5 years 194 

A decision-tree-based random forest model was trained for the observed PM2.5 with the independent 195 

variables including time variables and meteorological parameters as the model input (see the Method 196 

section). During the model building, 80% of the dataset was randomly selected as the training dataset, 197 

with the rest 20% as the testing dataset. For the training dataset, the predicted PM2.5 was well correlated 198 

with the observed PM2.5 with R2 of 0.99 and slope of 0.93 (Figure 2), while for the testing dataset, the 199 

model reproduced the observed PM2.5 reasonably well with R2 of 0.93 and slope of 0.84. The slope of 200 

0.84-0.93 for the testing dataset suggested the model tended to underestimate the PM2.5 by 7-16%. 201 

Nevertheless, the high R2 values (0.93-0.99) for both the training and testing dataset suggest the random 202 

forest grown in this study had a strong explanatory ability for PM2.5. 203 

The good performance of the random forest model was partly due to the strong seasonality of the PM2.5 204 
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which was well captured by the model. Specifically, the time variable (i.e., day of the year or day_Julian 205 

(1-365)) was the most important variable for PM2.5 explanation in the random forest model (Figure S2). 206 

Partial dependence on the time variable of day_julian shows the elevated PM2.5 concentrations (> 75 µg 207 

m-3) were associated with day 1-50 and day 300-365 in the year (Figure S3), consistent with the fact that 208 

haze pollution occurred mostly in winter. In contrast, the time variable of weekday and hour were of less 209 

importance. Partial dependence plots on the weekday do not present a clear weekday/weekends 210 

difference (Figure S3). Given that traffic is usually heavier during weekdays than weekends, the lack of 211 

weekday and weekends pattern suggests traffic was not the major source of PM2.5. Consistently, the 212 

partial dependence on the time variable of hour shows no rush hour peaks (Figure S3). Instead, elevated 213 

PM2.5 concentrations were found to be occurring mostly in the night till the next morning (Figure S3). 214 

Among the meteorological parameters, temperature was the most important parameter, followed by 215 

pressure, relative humidity, boundary layer height, wind speed and wind direction (Figure S2). In 216 

particular, the low temperature (< 10 oC), low pressure (< 880 hpa), high relative humidity (50-90%), 217 

low boundary layer height (< 500 m), low wind speed (< 3 m s-1) in north-eastly wind were associated 218 

with high PM2.5 concentrations (Figure S3). These meteorological parameters created a stable atmosphere 219 

with poor dispersion conditions, causing the build-up of PM2.5. Note that at higher relative humidity (95-220 

100%), precipitation events likely caused the wet deposition of PM2.5, leading to lower concentrations as 221 

a result (Figure S3). Therefore, the random forest model captured the general predictions and processes 222 

that were associated with the ambient PM2.5 concentrations, confirming the strong explanatory power of 223 

the model. 224 
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3.3 Trend analysis before and after meteorological normalization 225 

Figure 3 shows the yearly averaged PM2.5 concentration before and after meteorological normalization. 226 

It shows that PM2.5 concentration in 2019 would have been higher if under the 2015 meteorological 227 

conditions, while PM2.5 concentrations in 2017 would have been lower if under the same 2015 228 

meteorological conditions. Specifically, the observed PM2.5 concentrations (i.e., before meteorological 229 

normalization) were 63.6 μg m-3, 66.5 μg m-3, 74.8 μg m-3, 61.2 μg m-3, 58.8 μg m-3, in 2015, 2016, 2017, 230 

2018, 2019, respectively. After meteorological normalization, the predicted PM2.5 concentrations from 231 

2015 to 2019 were 63.4 μg m-3, 66.8 μg m-3, 72.3 μg m-3, 64.1 μg m-3, 60.9 μg m-3, respectively. This can 232 

be translated to percentages differences of −0.3%, 0.4%, −3.3%, 4.7%, 3.6% by comparing the predicted 233 

and observed PM2.5. The percentage differences may appear small (from −3.3% to 4.7%) when compared 234 

with the observed PM2.5. However, in terms of the yearly PM2.5 trend analysis which is usually on the 235 

scale of 1-10% (Vu et al., 2019), the changes in PM2.5 due to different meteorological conditions may 236 

have a big impact. Below, we discuss the effect of meteorological normalization on PM2.5 trend analysis. 237 

Figure 4 shows the trend analysis of monthly averaged PM2.5 before and after meteorological 238 

normalization using the same Theil-Sen algorithm (see Sect. 2.4). The temporal variations of the monthly 239 

average PM2.5 for both cases do not show a smooth trend from 2016 to 2019 because of the spikes during 240 

pollution events in cold seasons, consistent with the daily average PM2.5 as shown in Figure 1. Using the 241 

Theil-Sen estimator, the observed PM2.5 (before meteorological normalization) shows a trend of -4.4% 242 

year-1 or −2.6 μg m-3, while it shows a less negative trend of −3.3% year-1 (−1.9 μg m-3) after 243 

meteorological normalization. However, both show a large range in terms of 95% confidence level, from 244 

−10.76% year-1 to 6.1% year-1 for the observed PM2.5 and slightly positive values from −9.41% year-1 to 245 

6.7% year-1 for the meteorological normalized PM2.5. The large range of the 95% confidence level was 246 
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due to the fact that the pollution events in cold seasons do not appear abating in terms of the magnitude 247 

of the PM2.5 levels and the duration of the pollution. Nevertheless, compared to the observed PM2.5 trend, 248 

the slightly positive trend of PM2.5 after meteorological normalization results suggest that the effect of 249 

emission reduction was contributing less to the improvement of air quality in Xi'an. This is in great 250 

contrast to the findings in Beijing, where emission reductions were found to cause a larger reduction in 251 

PM2.5 after meteorological normalization although with different normalization methodology over 252 

different years (2013-2017; (Vu et al., 2019)). 253 

3.4 Formation process of haze pollution 254 

As discussed above, the most severe pollution events occurred in the winter months (December, January, 255 

and February) over the 5 years from 2016 to 2019. To gain insights into the formation processes of haze 256 

pollution in winter, gas pollutants of CO, NO2, O3, SO2, and Ox were fed into the random forest in addition 257 

to the meteorological parameters of RH, temperature, wind speed, and wind direction. As a comparison, 258 

a similar analysis was also performed during the summer months (June, July, and August). Note that 259 

because we focused on only one season, time variables were not considered. Additionally, a multi-linear 260 

regression model was also performed between PM2.5 and these gas pollutants. The results show the 261 

correlation determination R2 for the random forest model (0.64-0.71) was significantly higher than for 262 

the multi-linear regression model (< 0.4; Table S4). Therefore, the random forest model can provide 263 

higher accuracies of the PM2.5 prediction than the multi-linear regression model. 264 

Figure 5 shows the importance parameters during the model training process for the winter and 265 

summer PM2.5. In both winter and summer, CO is the most important variable in explaining the observed 266 

PM2.5 (Figure 5). Given that CO is the by-product of incomplete combustion, the strong importance of 267 
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CO in explaining PM2.5 suggests PM2.5 was primarily associated with anthropogenic combustion sources 268 

including both direct emission and/or secondary formation from anthropogenic precursor gases. However, 269 

as discussed above, the good time series correlation between the three sampling sites (despite a distance 270 

of 40 km) suggests the observed PM2.5 were regionally relevant rather than local pollution events, and, 271 

therefore, the observed PM2.5 was likely associated with the secondary formation during transport. Indeed, 272 

recent studies of PM2.5 source apportionment highlight secondary aerosols are the major component of 273 

PM2.5 instead of primary emission in Xi'an (Duan et al., 2020; Elser et al., 2016; Zhong et al., 2020).  274 

Figure 5 also shows, while RH was the second most important parameter in winter, Ox (NO2 + O3) 275 

was the second most important variable in summer. The partial dependence plot shows that high RH was 276 

associated with high PM2.5 in winter (Figure 6), while high Ox was associated with high PM2.5 in summer. 277 

Recent studies show RH can promote the aqueous formation of secondary aerosol including sulfate and 278 

oxygenated organic aerosol, while these secondary aerosols together often contribute over half of the 279 

PM2.5 mass (Elser et al., 2016; Zhong et al., 2020). In this study, the aqueous phase chemistry is reflected 280 

by the high importance of RH in winter, with the overall PM2.5 showing a positive response to RH in 281 

winter. In contrast, Ox is a good indicator of photochemical chemistry, which is more important in 282 

summer than in winter as reflected by the importance of Ox in summer (Figure 5), showing a positive 283 

response to Ox (Figure 6). As a comparison, Ox in winter was the least important gaseous variable in 284 

winter, suggesting photochemical chemistry was less significant than RH-promoted aqueous phase 285 

chemistry. In summer, RH was still the fourth important variable after O3, implying aqueous phase 286 

chemistry could also be the major pathway for secondary aerosol formation. Consistently, Duan et al. 287 

(2020) shows a large formation of secondary aerosol formation during fog-rain days in summer Xi'an. 288 
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4 Discussion 289 

Using the random forest model, we show that the 5-year hourly PM2.5 measured at the suburban site in 290 

Xi'an from 2015-2019 was reproduced well by feeding the meteorological parameters and time variables 291 

into the model. Meteorological parameters can affect the dispersion conditions and/or atmospheric 292 

chemistry of the ambient PM2.5, while the time variables act as proxies for emission strength as they vary 293 

in terms of hour, day, season, and year. Assuming the meteorological parameters were the same 294 

throughout the 5 years (i.e., normalization), we can exclude the impact of meteorological parameters, 295 

providing insights into the “real” changes in PM2.5 due to changes in emission strength or atmospheric 296 

chemistry. After meteorological normalization, we show that the PM2.5 concentration in 2019 would have 297 

been higher, while PM2.5 concentrations in 2017 would have been lower if under the same meteorological 298 

conditions as in 2015. As a result, a decreasing trend of −3.3% year-1 in PM2.5 after meteorological 299 

normalization was seen, instead of −4.4% from direct PM2.5 observation. The “real” decreasing rate of 300 

−3.3% year-1 for PM2.5 in Xi'an was roughly half of the values (−7.8% year-1) reported in Beijing over 301 

the year of 2013-2017 (Vu et al., 2019). Assuming the rate of −3.3% year-1 or 1.9 μg m-3 year-1 were kept 302 

constant for the next few decades in Xi'an, it would take approximately 25 years (in the year 2045) to 303 

reduce the yearly PM2.5 concentration to 10 μg m-3, the guideline value from WHO. Therefore, more 304 

efforts need to be taken to reduce the PM2.5 pollution in this inland city, which is the large northwestern 305 

city in China, home to over 10 million in northwest China. 306 

We also show that the non-linear effect of atmospheric variables on PM2.5 can be captured by the 307 

random forest model as opposed to the multi-linear regression. Different from the multi-linear regression 308 

model, the random forest model also provides insights into the relative importance of the atmospheric 309 

variable. In particular, we show that in both winter and summer, CO is the most important variable, 310 
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suggesting the observed PM2.5 is primarily associated with anthropogenic emissions, which, undergoes 311 

aqueous phase chemistry in winter and photochemical oxidation in summer as suggested by importance 312 

of RH and Ox, the second most important variable, accordingly, after CO. Given that the time series of 313 

PM2.5 are well correlated at the three sampling sites, despite a distance of 40 km apart, the secondary 314 

formation pathways, which is different in different seasons, play an important role covering a large area 315 

in Xi'an. As a result of secondary formation, the difference in PM2.5 concentration at the three sampling 316 

sites is marginal. Therefore, reducing the anthropogenic secondary aerosol precursors at a higher rate, 317 

such as NOx and VOCs is expected to reduce the particulate pollution in this region at a faster pace than 318 

the current −3.3% year-1 found in this study. 319 

5 Conclusion 320 

In this study, trend analysis of the hourly fine particulate matter (PM2.5) observed at an urban background 321 

site in Xi'an city over 5 years from 2015 to 2019 was performed using the machine learning algorithm -322 

random forest model. To decouple the meteorological effect, the meteorological parameters were 323 

assumed the same throughout the 5 years. In this way, the impact of meteorological parameters was 324 

excluded, providing insights into the “real” changes in PM2.5 due to changes in emission strength or 325 

atmospheric chemistry over 5 years. After meteorological normalization, the “real” decreasing trend of 326 

−3.3% year-1 in PM2.5 after meteorological normalization was roughly 30% higher than the trend of −4.4% 327 

year-1 from direct PM2.5 observation. Therefore, meteorological normalization made the decreasing trend 328 

of PM2.5 less significant. The “real” decreasing rate of −3.3% year-1 for PM2.5 in Xi'an was roughly half 329 

of the values (−7.8% year-1) reported in Beijing over the year of 2013-2017, suggesting the air quality 330 

control measures were less effective in this region. To take the decreasing trend into context, we assumed 331 
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the rate of −3.3% year-1 or 1.9 μg m-3 year-1 were kept constant for the next few decades in Xi'an. Then, 332 

it would take 25 years (in the year 2045) to reduce the yearly PM2.5 concentration to 10 μg m-3. Through 333 

relative importance analysis and partial dependence algorithm, the observed PM2.5 was found to be 334 

primarily associated with anthropogenic emissions, which, underwent aqueous phase chemistry in winter 335 

and photochemical oxidation in summer. Therefore, reducing the anthropogenic secondary aerosol 336 

precursors at a higher rate, such as NOx and VOCs is expected to reduce the particulate pollution in this 337 

region more efficiently. This study provides a robust trend analysis in PM2.5 over 5 years in a highly 338 

polluted but less studied city in northwest China, providing high certainty that the real trend is less 339 

significant under the current control measures than observed, requiring stricter policies controlling the 340 

emission of precursor gases from anthropogenic activities. 341 

 342 
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 463 

 464 

Figure 1 Time series of the daily averaged PM2.5 (in μg m-3) at the three sampling sites of GXXQ, XZ, 465 

and LTQ, with a distance of up to 40 km apart. A map of the three sampling sites is provided in Fig. S1. 466 

 467 
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 468 

Figure 2 Scatter plots of predicted and measured PM2.5 concentrations (in μg m-3) in the train set and test 469 

set. Also shown are the linear correlation and R2. 470 

 471 

 472 

Figure 3 Annual PM2.5 concentration (in μg m-3) before (i.e., the observed PM2.5) and after 473 

meteorological normalization (i.e., the normalized PM2.5). 474 

 475 

 476 

 477 
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 478 

 479 

Figure 4 Monthly averaged PM2.5 before (top panel) and after (bottom panel) meteorological 480 

normalization. The red line represents the trend analysis of PM2.5 using the Theil-Sen estimator, with the 481 

dotted red line representing the 95% confidence level. 482 

 483 

Figure 5 Variable importance for the random forest model built for the hourly PM2.5 during winter (left 484 

panel) and summer (right panel) from 2015 to 2019. The variables include gas pollutants and 485 

meteorological parameters. 486 

 487 

Summer Winter 
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 488 

Figure 6 Partial dependence plots of the RH in winter (left panel) and Ox in summer (right panel) for the 489 

random forest model built for PM2.5. 490 

 491 

Winter Summer 



  

Supplementary Material

Click here to access/download
Supplementary Material

Supplementary.docx

https://www.editorialmanager.com/stoten/download.aspx?id=6141207&guid=f7d254e6-d289-4254-9cc9-6cf80924d54d&scheme=1


Credit authorship contribution statement 

Meng Wang: designed the study, conducted data analysis, prepared the manuscript with contributions from all co-

authors. 

Zhuozhi Zhang: Formal analysis, Writing, Review and Editing. 

Qi Yuan: Formal analysis, Methodology. 

Xinwei Li: Investigation, Methodology. 

Shuwen Han: Validation, Investigation. 

Yuethang Lam: Formal analysis. 

Long Cui: Formal analysis, Investigation. 

Yu Huang: Writing, Review and Editing. 

Shun-cheng Lee: Writing - review and editing, Funding acquisition, Supervision. 

 

Author Contributions Statement




