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A Novel Deep Odometry Network for Vehicle 

Positioning Based on Smartphone 
Jingxian Wang, Duojie Weng, Xuanyu Qu, Weihao Ding, and Wu Chen 

Abstract—Smartphone with multiple sensors integration has 

been widely used for navigation. The Inertial Measurement Unit 

(IMU) embedded in smartphones has been widely used for 

pedestrian navigation for counting steps. However, it is a challenge 

to measure the accurate velocity of the vehicle from the 

smartphone-embedded IMU data with a high noise level. Thus, 

current vehicle navigation with a smartphone relies substantially 

on the Global Navigation Satellite System (GNSS), which provides 

unreliable positions in urban dense areas due to the blockage and 

the reflection of GNSS signals. In this study, we propose a 

smartphone-based positioning method to improve vehicle 

positioning performance continuously in GNSS-degraded areas 

through the improvement of IMU velocity estimation. A 

convolutional neural network–Gated Recurrent Unit (CNN-GRU) 

combined deep learning odometry network, termed DeepOdo, is 

proposed to estimate the velocity of the vehicle with the IMU and 

barometer data as the input, rather than the traditional integral of 

the IMU measurements. Raw sensor data is utilized to boost the 

robustness. Labels of the DeepOdo are obtained from the 

integrated GNSS/IMU/Barometer solutions in the smartphone 

which significantly simplifies the dataset collection. In GNSS-

denied areas, IMU, Barometer, and DeepOdo are integrated to 

provide accurate navigation solutions for the vehicle. Results of the 

proposed method show 73.14% and 98.33% improvements in 

horizontal and vertical directions respectively, compared with the 

Non-Holonomic Constraints (NHC) aided IMU. Finally, the 
DeepOdo network is deployed in Android smartphones to 

demonstrate that the proposed solution can work properly on the 

mobile platform. 

Index Terms—IMU, barometer, smartphone, deep learning 

odometry, vehicle positioning. 

I. INTRODUCTION

ITH the continuously growing demands of Intelligent

Transportation Systems (ITS), the world has seen 

substantial development in vehicle positioning technologies in 

terms of accuracy and coverage [1]. Since the market 

penetration rate of vehicle built-in navigation systems was 

lower than 20% until 2020, smartphones are still the first choice 

for vehicle navigation. Global Navigation Satellite System 

(GNSS) module has been widely used in smartphones for 

positioning which provide global coverage with an accuracy of 

5-10 m. Differential GNSS technologies can also be

implemented in smartphones to improve the positioning

accuracy to 2 m level [2]. Benefiting from the development of

micro-electromechanical systems (MEMS) technology, the

costs and power consumptions of chips reduce continuously.

More and more sensors can be embedded into the smartphone,

including GNSS [3], WiFi [4], Bluetooth Low Energy (BLE)

[5], magnetometer [6], barometer [7], and Inertial Measurement

Unit (IMU) [8]. Integrating sensors can further improve

smartphone positioning accuracy.

IMU is a cost-controllable sensor that is not easily influenced 

by external conditions, which has been well documented in 

related research [9]. IMU was originally designed for ships, 

aircraft, and rockets which require very high accuracy while 

being insensitive to size and cost. The traditional inertial 

odometry method, such as the Inertial Navigation System 

(INS), transforms the values of the accelerometer and 

gyroscope from the body frame to the world navigation frame, 

which is then integrated to estimate the movement according to 

the mathematical model [10].  

With the continuous advancement of MEMS technology, 

IMU becomes smaller, cheaper, and can be embedded into the 

smartphone. However, the cost and process of the smartphone 

built-in IMU dictate that it cannot meet the accuracy and 

stability requirements of traditional inertial navigation. Hence, 

in smartphone-based vehicle positioning, GNSS is the most 

widely used sensor in combination with IMU [11] to fill the gap 

when GNSS is not available. In GNSS-denied areas, many self-

constrained techniques of IMU are proposed to mitigate the 

divergence of error. For instance, Heuristic Drift Reduction 

(HDR) is utilized to eliminate the drift of the gyroscope [12]. 

Zero velocity update (ZUPT) and zero integrated heading rate 

(ZIHR) are usually applied to control the divergence of the 

inertial navigation system (INS) when stationary [13]. Non-

Holonomic Constraints (NHC) are used with an odometer to 

enhance the positioning precision while traveling [14].  

High-precision odometry is a crucial and indispensable 

method to obtain 3D velocity assistance for vehicle positioning 

in dense urban areas. Different solutions have been developed 

with the use of a variety of sensors. Installing an odometer on 

the wheel is the simplest but most expensive way [15]. With the 

development of autonomous driving technology, RGB-D 

cameras have become the most commonly used sensors since 

they can provide high-quality depth images in real-time. 

According to their principles, they can be divided into two 
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categories: one is using structured light, such as Occipital 

Structure Sensor and Microsoft Kinect V1; the other is using 

time-of-flight such as Microsoft Kinect V2 and Intel Realsense 

L515 [16]–[18]. The disadvantage is that all of them are 

relatively expensive. Binocular stereo vision is another solution 

to provide the traveled distance without requirements for depth 

cameras [19]; however, it does not work well in low-lighting 

conditions.  

In addition to vision sensors, the data from other sensors are 

also integrated with IMU. For example, Walter et al. combine 

the gyroscope in the smartphone and the Controller Area 

Network (CAN) bus in the vehicle to obtain positioning results 

[20]. Gao et al. fuse the IMU and magnetometer and constrain 

their noises by the road features of the car park to realize 

positioning in underground parking [21]. Moussa et al. attach a 

smartphone to the steering wheel and use its accelerometer to 

estimate the steering angle which limits the IMU drifts during 

GNSS outages [22]. None of these methods are suitable for 

widespread dissemination. 

Recently, researchers have studied the possibility to utilize 

deep learning techniques in inertial odometry. Sequential deep 

learning methods such as Long Short Term Memory (LSTM), 

which is an artificial recurrent neural network (RNN) 

architecture, are usually used to detect the characteristics of the 

time-series data. A two-layer LSTM network with 96 hidden 

nodes in each layer is presented as IONet [23] to estimate 

odometry by using raw IMU outputs of smartphones. The 2D 

displacement estimation can be provided in several different 

postures of the smartphone. However, the input IMU data 

cannot contain large biases and the postures of the smartphone 

are one-to-one matched with the trained networks. A new 

posture of the smartphone or the wrong selection of the trained 

network will lead to incorrect results. Chen et al. presented the 

MotionTransformer framework with Generative Adversarial 

Networks to improve the generalization ability of deep inertial 

odometry in new motion domains [24]. 

Tight Learned Inertial Odometry (TLIO) is introduced to 

estimate short-term 3D displacement and its uncertainty with 

raw IMU outputs by 1D version residual neural network 

(ResNet), which is an artificial convolutional neural network 

(CNN) [25]. These short-term data are fused tightly in a Kalman 

Filter to calibrate the pose, velocity, and sensor biases for PDR 

use. But the computation burden of TLIO is too high for the 

mobile platform. Wang et al. presented the Lightweight 

Learned Inertial Odometer (LLIO) to address the limits of 

computing on mobile platforms [26]. Compared to TLIO with 

ResNet, a residual multi-layer perceptron (ResMLP) is applied 

in the LLIO which has similar performance but significantly 

enhances efficiency. 

Methods mentioned above try to solve the position directly. 

Compared with these methods, the Robust IMU Double 

Integration (RIDI) is unique in regressing the velocities from 

the history of IMU outputs with a trained deep neural network 

and correcting the linear accelerations. The corrected linear 

accelerations are integrated twice to estimate locations [27]. 

Similarly, Cortés et al. proposed a CNN-based deep-learning 

model to estimate the speed to constrain the classical INS [28]. 

As shown above, the majority of the deep learning based 

inertial odometry methods focus on solving the trajectory 

estimation problems for pedestrians. The architectures of these 

networks are designed according to the characteristics of 

pedestrian walking or running which is completely different 

from these of aerial vehicles or ground vehicles. To provide 

inertial odometry for the vehicle, Esfahani et al. proposed 

AbolDeepIO, a novel triple-channel LSTM network, to obtain 

characteristics from accelerometer, gyroscope, and time 

interval between two sampling times [29]. These characteristics 

are connected in the feature space to compute the changes in 

position and orientation. It is examined on a public dataset: the 

EuRoC micro aerial vehicle datasets [30] which shows its 

performance is better than IONet. The main issue is that 

AbolDeepIO is not integrated with the traditional INS to 

combine their strengths.  

To integrate the INS with deep neural networks, Robust 

Inertial Navigation System on Wheels (RINS-W) was 

developed to detect the specific motion profiles of the vehicle, 

such as ZUPT, ZIHR, and NHC, to constrain INS by correcting 

system errors through Kalman filter [31], but the forward 

velocity errors are not constrained. To complement this 

weakness, Tang et al. presented the OdoNet, a CNN-based 

learning odometer model, to estimate the forward velocity [32]. 

Experiments show an improved result, but the input of OdoNet, 

which is the IMU data, needs to be compensated before use, and 

the datasets are required to be labeled by a highly accurate 

odometer. Existing methodologies of deep learning-based 

inertial odometry all have certain limitations. The robustness of 

the inertial odometry for the vehicle still needs to be studied. 

More than half of the global population lives in cities, and 

there is an increasing demand for accurate vehicle positioning 

in urban areas where GNSS signals can be frequently blocked 

or reflected by buildings, flyovers, and tunnels [33]. Moreover, 

traffic jams happen frequently in these GNSS denied areas, 

which will cause long-period GNSS outages. Still, due to the 

restrictions of cost and size, the qualities of the smartphone's 

built-in sensors are relatively low. The low-quality IMU cannot 

last for sufficient time independently due to its unstable bias 

and large noise [34]. These factors pose great challenges to 

smartphone-based vehicle positioning systems. 

Consequently, extra aiding constraints are necessary to 

enhance the performance of the smartphone-based vehicle 

positioning in GNSS-denied areas. For example, ZUPT and 

ZIHR constrain the divergence of INS results for stationary 

vehicles. NHC is settled to correct the lateral and vertical 

velocities for moving vehicles. The forward velocity constraint 

for moving vehicles is usually obtained by installing an 

odometer on the wheel or connecting to the CAN of the car. 

Nevertheless, it is inappropriate to require individual users to 

install additional hardware. Hence, the deep learning inertial 

odometry network based on IMU becomes a solution. Low-

quality IMU usually contains large noises and time-variant 

biases. CNN is proficient in feature extraction of the spatial 

domain. It can be used to filter noise at the current moment. 
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Gated Recurrent Unit (GRU) can find out the relationships 

between CNN-extracted feature vectors in the time domain 

[35], which mitigates the effect of noise variations in the time 

domain on the forward velocity estimations. In addition, 

compared to LSTM, GRU has similar performance but cheaper 

computation costs. Hence, we propose a convolutional neural 

network-Gated Recurrent Unit (CNN-GRU) combined 

odometry network, called DeepOdo, to estimate the velocity of 

the vehicle based on the smartphone built-in sensors. The 

contributions of this paper are summarized as follows: 

1) DeepOdo network estimates the velocity using temporal 

and spatial features, which are extracted from sensor 

data through the integration of CNN and GRU. 

2) Raw data from barometer and IMU are taken into 

account by the proposed DeepOdo network, and they 

can significantly improve velocity estimation 

performance in terms of accuracy and robustness. 

3) Labels of the training dataset are generated by the 

GNSS/IMU/Barometer integration method on the 

smartphone, which significantly simplifies the 

collection of the training dataset. 

4) The integration of DeepOdo, IMU, and Barometer 

improves the positioning performance in GNSS-denied 

areas, and its usability has been demonstrated on normal 

Android smartphones. 

The remaining parts of this paper are organized as follows: 

Section II details the architecture of the DeepOdo network and 

the framework of the integrated navigation system. Section III 

presents the experimental results for the precision and 

robustness evaluation of the proposed method. Section IV 

concludes the proposed algorithm. 

 

II. PROPOSED METHOD 

To increase the precision of smartphone-based vehicle 

navigation in the GNSS-denied areas, this paper proposes a novel 

deep odometry network, called DeepOdo, to assist vehicle 

positioning with the barometer. The whole procedure of the 

proposed algorithm is presented in Fig. 1. The GNSS module, 

barometer, and IMU embedded in the smartphone provide the 

required data to the system-on-a-chip (SoC) for calculation. At 

first, the INS is applied, and the raw data of IMU and barometer 

are inputs of DeepOdo to estimate the forward velocity of the 

vehicle as an odometer. Then, GNSS results and altitude based on 

the barometer are integrated with the INS in the extended Kalman 

filter (EKF). Depending on the vehicle running states, different 

constraints are chosen to assist the integration of GNSS/IMU. If 

the vehicle is stationary, ZUPT and ZIHR will be used as aids. 

When the vehicle is moving, the forward velocity provided by 

DeepOdo and the NHC will be added to the EKF. This section 

describes the architecture of DeepOdo at first. Then, the barometer-

based altitude calculation method, the integration of 

GNSS/IMU/Barometer, and the assistance of 

NHC/DeepOdo/ZUPT/ZIHR are detailed in this section. 

 
Fig. 1. Framework of DeepOdo network and barometer assisted vehicle 

positioning algorithm embedded into smartphone. 

DeepOdo

Network

EKFINS

Motionless? ZUPT+ZIHR

NHC

Y

N

,

Gyroscope

Barometer

Accelerometer

IMU

GNSS

Smartphone

     

Inputs

1@50×7

 

Features

128@40×1

Convolution

Kernel 11×7

Features

128@20×1

 

Max-pooling

Kernel 2×1

Convolution

Kernel 9×1

Features

256@12×1

Max-pooling

Kernel 2×1

Features

256@6×1

 

Flatten

 

Hidden Units

1536

Hidden Units

1024

Outputs

512

 

Fully

Connected

Fully

Connected

 

Time = 1

CNN Outputs

512

 

Time = 2

CNN Outputs

512

 

Time = N-1

CNN Outputs

512

 

Time = N

CNN Outputs

512

 

GRU GRU GRU GRU

CNN

 

 

GRU

 
Fig. 2. Architecture of the proposed DeepOdo network. Convolution, Max-

pooling, Flatten and Fully Connected are the hidden layers. Below the 

Convolution layer and Max-pooling are their kernel sizes (ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ). 

The sizes of Inputs and Features are 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠@ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ. The sizes of 

Hidden Units and Outputs are 𝑙𝑒𝑛𝑔𝑡ℎ. These sizes are the optimal parameters 

obtained through experimentation. 
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A. DeepOdo Network 

The architecture of the proposed DeepOdo network is shown 

in Fig. 2. In the CNN module, the inputs pass through 2 

convolution layers and 2 max-pooling layers. After that, they 

are flattened and followed by two fully connected layers to 

generate the output (CNN extracted feature vectors) for the 

GRU module use. Considering the computational efficiency 

and vanishing gradient problems, Rectified Linear Unit (ReLU) 

is chosen as the activation function after the convolutions. 

Then, N CNN extracted feature vectors are transferred to the 

GRU module, which is a gating mechanism in RNN [35], to 

find out the relationships in the time domain for the forward 

velocity estimation. The kernel size of the convolution layer 

and max-pooling, and the units of the fully connected layer are 

demonstrated in Fig. 2. They are the optimal experimentally 

derived parameters. The CNN module and the GRU module in 

the proposed DeepOdo network are trained together. Hence, the 

inputs and outputs of the proposed DeepOdo network are shown 

as follows: 

                              (𝑤, 𝑎, 𝑃)𝑁∗50∗7 ⟶
𝐹𝜃

(𝑣̂𝑂𝑑𝑜) (1) 

where N (50, 7) vectors consist of the input data of the DeepOdo 

network 𝐹𝜃, N is the time window in GRU. Each vector contains 

3-axis angular velocity 𝑤 , 3-axis acceleration 𝑎,  and 1-axis 

barometric pressure change 𝑃  of 50 rows. In GNSS-denied 

areas, the noises of sensors are unable to be removed exactly. 

To get robust to noise, the raw data collected from the 

gyroscope, accelerometer, and barometer are used in the 

DeepOdo network. The output of DeepOdo is the estimated 

forward velocity of the vehicle 𝑣̂𝑂𝑑𝑜.  

According to the related works, IMU is the major input of the 

deep odometry networks [25], [32]. Time interval is used as an 

additional input in AbolDeepIO to reduce the influence of the 

existing sampling delay or absent problems in IMU data 

collection [29]. Since we have solved such problems in the data 

collection process, we did not use time intervals as an additional 

input. It is proved in [36] that the error of a CNN-Bidirectional 

LSTM integration method accumulates in the vertical direction. 

Since the change in barometric pressure is closely related to the 

change in altitude, the change in barometric pressure is 

considered as the additional input in our proposed DeepOdo 

network. The data frequency of the IMU and barometer used in 

the proposed integrated positioning system is 50 Hz. Since the 

update frequency of used EKF is 1 Hz, the output of DeepOdo 

is set at 1 Hz.  

To obtain the output based on the inputs, finding the optimal 

parameter 𝜃∗  of DeepOdo network F is required. It can be 

calculated by minimizing the loss function on the training 

dataset: 

𝜃∗ = argmin 𝑙𝑜𝑠𝑠 (𝐹𝜃(𝑤, 𝑎, 𝑃), (𝑣̂𝑂𝑑𝑜)) (2) 

The mean squared error (MSE) is used as the loss function 

during the network training. It is defined as: 

loss =
1

𝑁
∑  𝑁

𝑖=1 (𝑣𝑂𝑑𝑜 − 𝑣̂𝑂𝑑𝑜)2 (3) 

where 𝑣𝑂𝑑𝑜 is the truth of the forward velocity of the vehicle. 

B. Barometer-based Absolute Altitude Calculation 

Calculating the absolute altitude with a barometer usually 

requires the mean sea level (MSL) pressure at the current 

location and the pressure at the position. However, the MSL 

pressure varies with the weather and the location. The MSL of 

the current location is difficult to acquire. Furthermore, the 

smartphone barometer outputs are always influenced by 

systematic error. As a result, the absolute altitude is difficult to 

obtain directly [37]. To solve this problem, a methodology 

involving GNSS-aided absolute altitude calculation is proposed 

in this section. For altitudes within the troposphere, the formula 

that relates barometric pressure to relative altitude is: 

𝛥ℎ =
𝑇0

𝐿
((

𝑃−𝛥𝑃

𝑃0−𝛥𝑃
)

−
𝑅⋅𝐿

𝑔0⋅𝑀
− 1) (4) 

where 𝛥ℎ is the relative altitude between the current position 

and the previous position; 𝑇0  is the reference temperature 

(288.15 K); 𝐿  is temperature change over altitude 

( -0.0065 K/m ); P is the pressure measured at the current 

position; 𝑃0is the pressure measured at the previous position; 

𝛥𝑃  is the pressure systemic error of the barometer; 𝑅  is the 

universal gas constant (8.3144598 J/(𝑚𝑜𝑙 · K)); M is the molar 

mass of Earth's air (0.0289644 kg/mol); 𝑔0 is the gravitational 

acceleration (9.8099 m/s2 in Hong Kong). 

According to (4), 𝛥𝑃  can be calculated only if the 𝛥𝐻  is 

obtained. The altitude to calculate 𝛥𝐻  is provided by the 

GNSS/IMU integration from the smartphone in this paper. 

When the vehicle is running in an open area, the changes in 

altitudes and barometric pressures are recorded if the Vertical 

Dilution of Precision (VDOP) value of GNSS is less than the 

threshold which is set by experience. Until the number 𝑁𝑃 of 

the recorded data is more than 3, 𝛥𝑃  can be estimated by 

minimizing the MSE shown in (5): 

𝛥𝑃∗ = argmin
1

𝑁𝑃
∑  

𝑁𝑃
𝑖=1 (𝛥ℎ −

𝑇0

𝐿
((

𝑃−𝛥𝑃

𝑃0−𝛥𝑃
)

−
𝑅⋅𝐿

𝑔0⋅𝑀
− 1))

2

 (5) 

After getting the 𝛥𝑃 of the barometer, the position with the 

minimum VDOP value is selected as the previous position. 

Then, the absolute altitude can be calculated as follows: 

ℎ𝐵𝑎𝑟𝑜 = ℎ𝑚𝑖𝑛𝑉𝐷𝑂𝑃 +
𝑇0

𝐿
((

𝑃−𝛥𝑃

𝑃𝑚𝑖𝑛𝑉𝐷𝑂𝑃−𝛥𝑃
)

−
𝑅⋅𝐿

𝑔0⋅𝑀
− 1) (6) 

where ℎ𝐵𝑎𝑟𝑜 is the absolute altitude estimated by the barometer, 

ℎ𝑚𝑖𝑛𝑉𝐷𝑂𝑃 is the altitude of the selected position and 𝑃𝑚𝑖𝑛𝑉𝐷𝑂𝑃  

is the pressure of the selected position. The ℎ𝑚𝑖𝑛𝑉𝐷𝑂𝑃  can 

achieve meter-level accuracy in an open area, and the relative 

altitude change of the smartphone can be accurately calculated 

by the barometric change with an error of less than one meter 

[38]. Therefore, the accuracy of ℎ𝐵𝑎𝑟𝑜 is meter-level. 

C. GNSS/IMU/Barometer Integration 

In this paper, the EKF is used to combine GNSS, IMU, and 

barometer with loose coupling. EKF is the most popular method 

for the integration of non-linear systems. Traditionally, the state 

equation of the extended Kalman filter is: 

𝑋̇(𝑡) = 𝐹(𝑡)𝑋(𝑡) + 𝐺(𝑡)𝑊(𝑡) (7) 

The state vector used in this system is shown below: 

𝑋 = [𝛿𝑟  𝛿𝑉  𝛿𝐴  𝛿𝜔  𝛿𝑓]𝑇 (8) 
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where 𝛿𝑟  denotes the position error, 𝛿𝑉  denotes the velocity 

error, 𝛿𝐴 denotes the attitude error, 𝛿𝜔 denotes the bias error of 

gyroscope and 𝛿𝑓 denotes the bias error of accelerometer. The 

North, East, Down (NED) coordinate is used in our system. 

Hence, the 𝛿𝑟, 𝛿𝑉, and 𝛿𝐴 can be specified as: 

𝛿𝑟 = [𝛿𝜑  𝛿𝜆  𝛿ℎ]𝑇 (9) 

𝛿𝑉 = [𝛿𝑉𝑛  𝛿𝑉𝑒  𝛿𝑉𝑑]
𝑇
 (10) 

𝛿𝐴 = [𝛿𝐴𝑛  𝛿𝐴𝑒   𝛿𝐴𝑑]
𝑇

 (11) 

where 𝛿𝜑, 𝛿𝜆, 𝛿ℎ denotes the errors in latitude, longitude, and 

altitude. 

The observation equation is: 

𝑍(𝑡) = 𝐻(𝑡)𝑋(𝑡) + 𝑉(𝑡) (12) 

Generally, the essential observation vector provided by 

GNSS is: 

𝑍𝐺𝑁𝑆𝑆 = [

𝜑𝐼𝑀𝑈 − 𝜑𝐺𝑁𝑆𝑆 
𝜆𝐼𝑀𝑈 − 𝜆𝐺𝑁𝑆𝑆

ℎ𝐼𝑀𝑈 − ℎ𝐺𝑁𝑆𝑆

] (13) 

After the 𝛥𝑃  has been calculated in an open area, the 

observation vector based on the barometer is: 

𝑍𝐵𝑎𝑟𝑜 = [ℎ𝐼𝑀𝑈 − ℎ𝐵𝑎𝑟𝑜] (14) 

where the accuracy of ℎ𝐵𝑎𝑟𝑜  is meter-level. Hence, it can 

constrain the integrated results in the same accuracy level 

through the EKF. 

Since the smartphone's built-in sensors are very close to each 

other, the lever arms between these sensors are not considered 

in our algorithm, and the outputs of the built-in IMU are in the 

body frame specified by the smartphone. 

D. Stationary Vehicle Constraints 

When the vehicle stops at a red light or waits for someone on 

the side of the road, simple and efficient constraints such as 

ZUPT and ZIHR, are introduced to constrain the divergence of 

INS results. Theoretically, when the stationary state of the 

vehicle is detected, the velocities of the vehicle in three axes of 

the local-level frame should be all zeros. Simultaneously, the 

heading angle of the vehicle should be constant. Consequently, 

the additional observation vector is: 

𝑍𝑍𝑈𝑃𝑇 = [

𝑣̂𝑥
𝑛 − 𝑣𝑥

𝑛

𝑣̂𝑦
𝑛 − 𝑣𝑦

𝑛

𝑣̂𝑧
𝑛 − 𝑣𝑧

𝑛 

] = [

𝑣̂𝑥
𝑛 − 0

𝑣̂𝑦
𝑛 − 0

𝑣̂𝑧
𝑛 − 0 

]   (15) 

𝑍𝑍𝐼𝐻𝑅 = [𝐴̂𝑑 − 𝐴𝑠𝑡𝑜𝑟𝑒𝑑
𝑑 ]   (16) 

where 𝐴𝑠𝑡𝑜𝑟𝑒𝑑
𝑑  is the heading stored when the vehicle becomes 

stationary. 

The emphasis of ZUPT and ZIHR is that the motionless state 

of the vehicle needs to be detected. By analyzing experimental 

IMU data, results show that the vehicle can be considered static 

if the standard deviation of accelerometer and gyroscope values 

are lower than the empirical threshold. Every axis of the 

accelerometer and gyroscope can be expressed as: 

𝑆𝑇𝐷 = √
1

𝑛
∑  𝑛

𝑖=1 𝜀𝑖 − 𝜀,̅ 𝑆𝑇𝐷 < 𝑇 (17) 

where STD is the standard deviation, T is the threshold, n is the 

sample number in the moving window, 𝜀𝑖 is the current value, 

𝜀  ̅is the average value in the moving window. 

E. Moving Vehicle Constraints 

As ZUPT and ZIHR are designed for stationary vehicles only, 

it is important to distinguish whether the vehicle is moving or 

not. The vehicle will not jump from the ground or slide laterally, 

and it only has the forward velocity when traveling normally. 

Therefore, the NHC can be settled. The lateral and vertical 

velocity should be zero, and the forward velocity can be 

estimated by the proposed DeepOdo. The velocity assistances 

of NHC with the odometer are designed in the vehicle frame. 

The actual velocity of the active position in the vehicle frame 

𝑣𝐴𝑃
𝑣  is shown as follows: 

𝑣𝐴𝑃
𝑣 = [𝑣̂𝑂𝑑𝑜   0  0]𝑇 (18) 

As shown in Fig. 3, most vehicles steer with front wheels, 

and the rear wheels of the vehicle are considered as the 

installation position of the odometer and the active position (AP) 

of NHC to avoid the failure of NHC when the vehicle is steered 

[39]. Yet the smartphone is usually put in the front of the 

vehicle for user navigation with various mounting types. The 

spatial alignment between the smartphone built-in IMU in the 

body frame and the active position in the vehicle frame is 

required to be considered, which means the mounting angle and 

the lever arm between them. Therefore, when taking the spatial 

alignment between the IMU and the active position into 

consideration, the velocity in the active position can be 

calculated as: 

𝒗̂𝐴𝑃
𝑣 = 𝐶𝑏

𝑣𝐶̂𝑛
𝑏𝒗̂𝑖𝑚𝑢

𝑛 + 𝐶𝑏
𝑣(𝜔𝑛𝑏

𝑏 × 𝑙𝐴𝑃
𝑏 ) (19) 

where 𝐶𝑏
𝑣 is the direction cosine matrix from the body frame 

of IMU to the vehicle frame based on the mounting angles, 𝐶̂𝑛
𝑏 

is the estimated rotation matrix from the navigation frame to 

the body frame, 𝒗̂𝑖𝑚𝑢
𝑛  is the estimated velocity by IMU in the 

navigation frame, 𝜔𝑛𝑏
𝑏  is the angular rate vector of the body 

frame with respect to the navigation frame resolved in the 

body frame and 𝑙𝐴𝑃
𝑏  is the lever arm vector from the active 

position to the IMU in the body frame. Therefore, the velocity 

error of the active position in vehicle frame 𝜹𝒗𝐴𝑃
𝒗  can be 

acquired by (19): 

𝛿𝑣𝐴𝑃
𝑣 = 𝐶𝑏

𝑣𝐶𝑛
𝑏𝛿𝑣𝑖𝑚𝑢

𝑛 − 𝐶𝑏
𝑣𝐶𝑛

𝑏(𝑣𝑖𝑚𝑢
𝑛 ×)𝛿𝐴 − 𝐶𝑏

𝑣(𝑙𝐴𝑃
𝑏 ×)𝛿𝜔 (20) 

Therefore, the observation vectors based on DeepOdo and 

NHC are: 

𝑍𝑂𝑑𝑜 = [𝛿𝑣𝐴𝑃,𝑥
𝑣 ] = [𝑣̂𝐴𝑃,𝑥

𝑣 − 𝑣𝑥
𝑣] ≈ [𝑣̂𝐴𝑃,𝑥

𝑣 − 𝑣̂𝑂𝑑𝑜] (21) 

𝑍𝑁𝐻𝐶 = [
𝛿𝑣𝐴𝑃,𝑦

𝑣

𝛿𝑣𝐴𝑃,𝑧
𝑣 ] = [

𝑣̂𝐴𝑃,𝑦
𝑣 − 𝑣𝑦

𝑣

𝑣̂𝐴𝑃,𝑧
𝑣 − 𝑣𝑧

𝑣 ] ≈ [
𝑣̂𝐴𝑃,𝑦

𝑣 − 0

𝑣̂𝐴𝑃,𝑧
𝑣 − 0

] (22) 

 
Fig. 3. Schematics of spatial alignment between the smartphone and the active 

position of the vehicle. 

Smartphone

NHC 

Active Position

Odometer
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III. EXPERIMENTS AND RESULTS 

The procedure of the experiment and the equipment used in 

the experiment are detailed in this section. Then, the trained 

models by different datasets are compared. Furthermore, the 

enhancement of our proposed methodology in the GNSS-

denied area is analyzed. 

A. Dataset Preparation 

To assess the performance of our proposed methodology, 

extensive experiments have been conducted to collect data in 

Hong Kong, a city with lots of high-rise buildings. As shown in 

Fig. 4, a navigation-grade GNSS/IMU system (iXblue-

ATLANS-C) is installed on the car roof to provide centimeter-

level ground truth of the velocities and positions. Huawei Mate 

20 Pro is chosen as the experimental platform. The IMU 

embedded in this smartphone is InvenSense ICM20690 

(Accelerometer noise: 100 𝜇𝑔/√𝐻𝑧 , Gyroscope noise: 

±4 𝑚𝑑𝑝𝑠/√𝐻𝑧), which is a low-cost MEMS IMU released in 

2016. Most smartphone built-in IMUs have similar 

performance. The smartphone is installed under the windshield 

with a fixed mounting angle in Fig. 5. Since the mounting angle 

error is not the scope of this paper, the measured value of the 

mounting angle is set directly in our system for calculated 𝐶𝑏
𝑣. 

The smartphone's built-in GNSS module records data at 1 Hz, 

and the IMU and barometer record data at 50 Hz.  

The experimental routes are shown in Fig. 6. It contains 3 

typical road environments, including congested streets, urban 

overhead roads, and suburban highways. There are total 25490 

seconds of data collected for the dataset in 3 days. The first two 

days’ data are used for network training (randomly selected 70% 

of the data as the training dataset, 30% as the validation dataset), 

and the last day’s data is used for testing. The distributions of 

the velocities are demonstrated in Fig. 7. It shows that the 

velocity remains in the 15–25 m/s range for most of the time. It 

is very rare for velocity to be above 25 m/s.  

The data of IMU and barometer is the input dataset for 

training DeepOdo. Traditionally, the true value of the forward 

velocities provided by ATLANS is used to label the dataset for 

training DeepOdo. To validate the ability of the smartphone for 

providing labels, the forward velocities calculated by the Mate 

20 Pro built-in GNSS/IMU/Barometer integrated system are 

also used to label the dataset. Taking 1-hour data as an example 

in Fig. 8, the forward velocities calculated by the smartphone-

based integration system have a similar trend to the true values 

but with a certain level of noise. The statistics show that the 

mean absolute error (MAE) of the velocity calculated by Mate 

20 Pro data is 1.15 m/s. 

B. Velocity Estimation Performance of DeepOdo 

The proposed DeepOdo is implemented under the PyTorch 

framework and is trained by using an NVIDIA GTX 1080 GPU. 

The Adam, a first-order gradient-based optimizer [40] with a 

learning rate of 0.0002, is used in our training, and its learning 

rate decay is 0.8 in every 15 epochs. To prevent the influence 

of overfitting, 30% of dropouts are adopted in the training. 

These hyperparameters were obtained by using the grid search. 

 
Fig. 4. Installation of navigation-grade GNSS/IMU system. 

 
Fig. 5. Installation of smartphone on the vehicle. 

 
Fig. 8. Comparison of the datasets containing different labels. 

 

 
Fig. 6. Experimental routes. 

 

Overhead Roads

Congested 

Streets

 
Fig. 7. Velocity distribution in training and testing datasets. 

 

Training Dataset Testing Dataset
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As mentioned before, two DeepOdo networks are trained 

with the ATLANS labeled dataset and the Mate 20 Pro labeled 

dataset separately to validate the ability of the smartphone for 

providing labels. Another DeepOdo network is trained with the 

Mate 20 Pro labeled dataset (without pressure) to determine if 

it is necessary to add the change in barometric pressure as the 

additional input in our proposed DeepOdo network. The CNN 

module in DeepOdo (input and output parts are modified) is 

also trained with the Mate 20 Pro labeled dataset to identify the 

importance of the GRU module in DeepOdo. To demonstrate 

the effectiveness of the proposed DeepOdo, we have compared 

DeepOdo network with two typical published deep odometer 

networks, AbolDeepIO (RNN model) [29] and OdoNet (CNN 

model) [32]. They are trained with same the Mate 20 Pro 

labeled dataset. For AbolDeepIO, there are 7 different 

architectures. We evaluated the performance of the 

AbolDeepIO07 architecture (window size 10) since it has the 

minimum overall MAE of the distance estimation. For OdoNet, 

we used the same parameters as given in the previous study [32]. 

As shown in Fig. 9, the forward velocities estimated by 

DeepOdo networks, CNN module, AbolDeepIO, and OdoNet 

are compared with the true value provided by ATLANS 

separately. These estimated velocities obtained from different 

deep neural networks follow the trend of the true value with 

different levels of variation, and they are all ineffective when 

the velocity of the vehicle is greater than 25 m/s. In Fig. 9 (a), 

the MAE of the evaluated velocities by the ATLANS dataset 

trained DeepOdo network is 1.31 m/s. In Fig. 9 (b), the MAE 

of the evaluated velocities by Mate 20 Pro dataset trained 

DeepOdo network is 1.34 m/s. It shows that the error of the 

labels provided by the Mate 20 Pro built-in 

GNSS/IMU/Barometer integrated system has a very small 

effect (2.3 % larger) on training the DeepOdo network. The 

smartphone can collect the training data and label them 

individually, which significantly reduces the complexity of 

training data collection. For the Mate 20 Pro dataset (without 

barometric pressure) trained DeepOdo network, the MAE of its 

evaluated velocities is 1.52 m/s in Fig. 9 (c), which 

demonstrates that including barometric pressure as an input 

improves MAE by about 12%. In Fig. 9 (d), the MAE of the 

evaluated velocities by the Mate 20 Pro dataset trained CNN 

module is 1.61 m/s, which is 20% larger than that of the 

proposed DeepOdo network. It proves that the GRU module has 

a significant effect on improving the accuracy of forward 

 
(a) Estimation results of ATLANS dataset trained DeepOdo  (b) Estimation results of Mate 20 Pro dataset trained DeepOdo 

 
(c) Estimation results of Mate 20 Pro dataset (without pressure) trained DeepOdo (d) Estimation results of Mate 20 Pro dataset trained CNN module 

 
(e) Estimation results of Mate 20 Pro dataset trained AbolDeepIO  (f) Estimation results of Mate 20 Pro dataset trained OdoNet 

Fig. 9. The forward velocities estimated by different networks. 
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velocity predictions. In Fig.9 (e) and (f), the MAE of the 

evaluated velocity by the Mate 20 Pro dataset trained 

AbolDeepIO and OdoNet are 2.25m/s and 1.81 m/s, which are 

67% and 35% larger than that of the proposed DeepOdo 

network. It is demonstrated that the performance of our 

proposed CNN-GRU integrated network DeepOdo in velocity 

estimation is better than that of the RNN model AbolDeepIO 

and the CNN model OdoNet when using data from low-quality 

sensors. 

The detailed comparison of the velocity errors in different 

velocity intervals is shown in Fig. 10, which is presented by the 

box plot. The short horizontal line inside the box represents the 

50th percentile, and the top and bottom of the box represent the 

75th and 25th percentiles, respectively. The top and bottom 

lines represent the 10th and 90th percentiles, respectively. The 

green triangles represent the mean values. It shows that the 

errors of the velocity estimated by different networks are 

mainly kept within 2m/s when the velocity of the vehicle is less 

than 25 m/s. On the contrary, when the velocities are above 25 

m/s, these errors increase significantly. This is due to a lack of 

sufficient training data, as shown in Fig. 7, the data above 25 

m/s is less than 1% in the training dataset. The mean values of 

the errors of the velocities evaluated by three DeepOdo 

networks are similar, but the variance of the errors of the 

velocities evaluated by the Mate 20 Pro dataset trained 

DeepOdo network is slightly larger than that of the ATLANS 

dataset trained DeepOdo network, and the variance of the errors 

is also slightly larger if the barometric pressures are not used as 

the input of the network or only use the CNN module of the 

proposed DeepOdo network. It also illustrates that the variance 

of the errors of the velocities evaluated by the Mate 20 Pro 

dataset trained DeepOdo network is smaller than that of the 

Mate 20 Pro dataset trained AbolDeepIO and OdoNet. 

Currently, the training dataset and test dataset both contain 

data of the complete velocity range (0–30 m/s). To illustrate the 

generalization ability of the proposed DeepOdo network, we 

performed the cross-speed experiment by making the training 

dataset and the test dataset contain different velocity intervals. 

The ATLANS dataset is selected as the label since its velocities 

are more accurate. The data at the speed of 0-5, 10-15, 20-25 

m/s are used as the training dataset and the data at the speed of 

5-10, 15-20, 25-30 m/s are used as the test dataset. The velocity 

errors of the ATLANS dataset with the selected velocity 

intervals trained DeepOdo are compared with the conventional 

ATLANS dataset trained DeepOdo in Fig. 11. It shows that the 

mean values of the errors of the velocities evaluated by these 

two DeepOdo networks are similar, while the variance of the 

errors of the velocities evaluated by the categorized ATLANS 

dataset trained DeepOdo network is slightly larger than that of 

the conventional ATLANS dataset trained DeepOdo network. 

The MAE of the overall evaluated velocities by the categorized 

ATLANS dataset trained DeepOdo network is 1.46 m/s which 

is only 11% worse than the conventional ATLANS dataset 

trained DeepOdo network. Therefore, the generalization ability 

of our proposed DeepOdo network is acceptable. 

We deployed the proposed DeepOdo network on three kinds 

of smartphones to validate its performance. The specific 

parameters of these three phone types can be found in Table I. 

Mate 20 Pro was released in 2018, and its CPU (Kirin 980) 

performance is currently in the lower middle range. Mate 40 

Pro was released in 2020, which has a newer process-

manufactured CPU (Kirin 9000). Mi 12 Pro was released at the 

end of 2021, it is equipped with the latest process-manufactured 

CPU (Snapdragon 8 Gen 1). We carried out 10000 velocity 

estimations based on the DeepOdo network using the CPU of 

the smartphone in the test. Their estimated velocities are the 

same as the velocities estimated on the computer. According to 

Table I, the average elapsed times for each estimation of Mate 

20 Pro, Mate 40 Pro, and Mi 12 Pro are 147 ms, 139 ms, and 95 

ms separately. Since the EKF update frequency is 1 Hz, the 

forward velocity only needs to be estimated by the DeepOdo 

 
Fig. 10. Errors of the forward velocities estimated by different networks. 

 
Fig. 11. Errors of the forward velocities estimated by different datasets trained 

DeepOdo networks. 

TABLE I 

Smartphones Specific Parameters and Their Experiment Results 

Phone Type Mate 20 Pro Mate 40 Pro Mi 12 Pro 

Release Year 2018 2020 2021 

Battery Capacity  4200 mAh 4300 mAh 4600 mAh 

Average Elapsed Time  147 ms 139 ms 95 ms 

Total Power Consumption 243 mAh 107 mAh 129 mAh 
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network once a second. Hence, our proposed network can be 

used in real-time in the EKF if the elapsed time is less than 1000 

ms. The total power consumptions for the 10000 calculations of 

Mate 20 Pro, Mate 40 Pro, and Mi 12 Pro are 243 mAh, 107 

mAh, and 129 mAh respectively, which are 5.78%, 2.49%, and 

2.80% of their battery capacities. Therefore, it is expected our 

algorithm can work properly on most of the new off-the-shelf 

smartphones today and that its power consumption is 

acceptable. 

C. IMU/Barometer/DeepOdo Integration Results in GNSS-

denied Area 

To evaluate the enhancement of the integration of DeepOdo 

and barometer during a GNSS outage, the Central–Wan Chai 

Bypass Tunnel in Hong Kong is chosen as the test area. As 

shown in Fig. 12, this GNSS-denied tunnel is about 4 

kilometers and it does not overlap with the trajectory of the 

training data. The time spent in the experiment driving through 

the tunnel is 207s. Since the GNSS is blocked, four 

configurations of different vehicle positioning systems are 

chosen to compare their performances. They are IMU, 

IMU/DeepOdo, IMU/Barometer/DeepOdo, and IMU/Baro-

meter/Odometry, where the IMU stands for the INS with the aid 

of NHC and ZUPT/ZIHR, and odometry values are provided by 

ATLANS. The evaluated forward velocity by the Mate 20 Pro 

dataset trained DeepOdo is demonstrated in Fig. 13. A 

Savitzky–Golay filter is used to smooth the estimated velocities 

[41]. Its MAE is 0.87 m/s after smoothing.  

The horizontal performances of these configurations over 

time can be seen in Fig. 14. It shows that the results of IMU 

with self-constraints gradually diverge with time. The 

integration of IMU and forward velocity provided by the 

proposed DeepOdo network or the odometry can solve this 

problem. Compared with the odometry provided by ATLANS, 

there are some errors in the estimated forward velocity by 

DeepOdo, but the integrated results of two different 

configurations (IMU/Barometer/DeepOdo and 

IMU/Barometer/Odometry) have a similar trajectory in the first 

120 s. In the horizontal direction, the addition of the barometer 

has little effect on the results. However, as shown in Fig. 15, the 

altitude results of IMU/Barometer/DeepOdo (green line) and 

IMU/Barometer/Odometry (purple line) are basically the same 

as the ground truth. It demonstrates that the barometer can 

guarantee the altitude accuracy throughout the entire time 

whereas the DeepOdo can only smooth the altitude dispersion. 

 
Fig. 13. Estimation of the forward velocity by the DeepOdo network. 

 
Fig. 12. Schematic of the Central–Wan Chai Bypass Tunnel. 

 
Fig. 15. The positioning performance of the tunnel test in vertical direction. The 

results of IMU/Baro/DeepOdo and IMU/Baro/Odo are basically the same (the 

green line is mostly covered by the purple line). 

 
Fig. 14. The positioning performance of the tunnel test in horizontal direction. In the first 120 s, the results of IMU/Baro/DeepOdo and IMU/Baro/Odo are basically 

the same (the green line is mostly covered by the purple line). After 120 s, the results of IMU/Baro/DeepOdo and IMU/DeepOdo are close (the green line is 

adjacent to the blue line). 

60 s 120 s

180 s
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The reason is the altitude error calculated by the barometer data 

mainly relevant to the error of initial altitude and the accuracy 

of barometer data. It does not accumulate with time like the 

error of DeepOdo. 

The detailed MAE of different kinds of system 

configurations is illustrated in Table II. It shows that the MAE 

of IMU results are 241.6 m and 204.6 m in horizontal and 

vertical separately, which is quite large. The aid from the 

forward velocity calculated by DeepOdo can be combined with 

NHC to constrain the error only in the horizontal direction 

effectively. The MAE in the horizontal direction can be reduced 

to 68.9 m (71.5 %); however, it only decreases by 10.9 % in the 

vertical direction, an insignificant improvement. With the help 

of the barometer, the vertical error can be well controlled under 

5 m in the last 2 configurations, whereas insufficiently accurate 

mounting angles lead to a small increase in horizontal errors in 

the first 120 s. Compared to the MAE of 

IMU/Barometer/Odometry, the MAE of 

IMU/Barometer/DeepOdo is 0.9 m better in the first minute, 

and 1.7 m worse in the first 120 s. Eventually, the proposed 

algorithm which integrates IMU/Barometer/DeepOdo shows 

improvements of 73.14% and 98.33% in horizontal and vertical 

directions respectively, whereas the enhancements of 

IMU/Barometer/Odometry integration are 78.06% (horizontal) 

and 98.33% (vertical). It proves that our proposed DeepOdo 

network can be an alternative to the traditional wheeled 

odometer within a certain period. 

IV. CONCLUSION 

This paper proposed a CNN-GRU combined deep learning 

odometry network (DeepOdo) to estimate the forward velocity 

and assist the vehicle positioning with the embedded barometer. 

The proposed DeepOdo network learns to extract 

characteristics from the IMU and barometer to predict the 

velocities of vehicles. Comprehensive experiments have been 

conducted in Hong Kong to demonstrate the effectiveness and 

robustness of DeepOdo and the proposed integrated system in 

GNSS-denied areas: 

1) The MAE of the evaluated velocities by the Mate 20 Pro 

dataset trained CNN module is 1.61 m/s, which is 20% 

larger than that of the proposed DeepOdo network. The 

MAE of the evaluated velocity by the Mate 20 Pro 

dataset trained AbolDeepIO and OdoNet are 2.25m/s 

and 1.81 m/s, which are 67% and 35% larger than that 

of the proposed DeepOdo network. It is demonstrated 

that the combination of CNN and GRU can better filter 

the noises of low-quality sensors for velocity estimation 

than the individual RNN model (AbolDeepIO) and the 

CNN model (CNN module of DeepOdo or OdoNet). 

2) Compared with the Mate 20 Pro dataset (without 

barometric pressure) trained DeepOdo network (1.52 

m/s), including barometric pressure as an input improves 

MAE by about 12%. The MAE of the overall evaluated 

velocities by the categorized ATLANS dataset trained 

DeepOdo network is only 11% worse than the 

conventional ATLANS dataset trained DeepOdo 

network. It proves that the generalization ability of our 

proposed DeepOdo network is acceptable. The MAE of 

the evaluated velocities by the Mate 20 Pro dataset 

trained DeepOdo network is 2.3% larger than that of the 

ATLANS dataset trained DeepOdo network, which 

suggests that the smartphone can collect the training data 

and label them individually. 

3) In GNSS-denied areas, results show that the IMU 

positioning errors are reduced by 71.5% and 10.9% in 

horizontal and vertical directions respectively with the 

aid of the forward velocity estimated by DeepOdo, 

compared with the positioning results provided by IMU 

only. By using the barometer data, the errors can be 

further reduced by about 5.8% and 98.1% in horizontal 

and vertical directions respectively.  

4) The DeepOdo network is deployed in three kinds of 

smartphones that are released from 2018 to 2021. Their 

average elapsed times of each epoch are less than 150 

ms. The required elapsed time should be less than 1000 

ms. It demonstrates the proposed algorithm can work 

properly on mobile platforms. 

In summary, our proposed DeepOdo network can estimate 

the forward velocity of vehicles to enhance the performance of 

the integrated positioning system with the potential to replace 

the traditional wheeled odometer. This provides the basis for 

smartphone-based lane-level navigation in complex 

environments. The current shortcoming of our approach is the 

mounting angle of the smartphone in collecting the data is 

relatively homogeneous. In the future, smartphones will collect 

data at different mounting angles for model training. 
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