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Highlights: 

1. The fractional contribution of road dust to PM2.5 was found to be increasing year by year. 

2. As a non-exhaust emission, road dust was found to be highly modulated by relative humidity. 

3. Lower relative humidity is associated with higher road dust emissions.  

4. Non-tailpipe emissions can be reduced by technology improvement and regulations. 
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Abstract 17 

Traffic contributes to fine particulate matter (PM2.5) in the atmosphere through engine exhaust emissions 18 

and road dust generation. However, the evolution of traffic related PM2.5 emission over recent years 19 

remains unclear, especially when various efforts to reduce emission e.g., aftertreatment technologies and 20 

high emission standards from China IV to China V, have been implemented. In this study, hourly 21 

elemental carbon (EC), a marker of primary engine exhaust emissions, and trace element of calcium (Ca), 22 

a marker of road dust, were measured at a nearby highway sampling site in Shanghai from 2016 to 2019. 23 

A random forest-based machine learning algorithm was applied to decouple the influences of 24 

meteorological variables on the measured EC and Ca, revealing the deweathered trend in exhaust 25 

emissions and road dust. After meteorological normalization, we showed that non-exhaust emissions, i.e., 26 

road dust from traffic, increased their fractional contribution to PM2.5 over recent years. In particular, 27 

road dust was found to be more important, as revealed by the deweathered trend of Ca fraction in PM2.5, 28 

increasing at 6.1% year−1, more than twice that of EC (2.9% year−1). This study suggests that while 29 

various efforts have been successful in reducing vehicular exhaust emissions, road dust will not abate at 30 

a similar rate. The results of this study provide insights into the trend of traffic-related emissions over 31 

recent years based on high temporal resolution monitoring data, with important implications for 32 

policymaking. 33 
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1 Introduction 38 

Vehicular emissions contribute to ambient fine particulate matter (PM2.5) through engine exhaust and 39 

non-exhaust emissions e.g., road dust (An et al., 2019; Fuzzi et al., 2015; Gentner et al., 2017; Mukherjee 40 

et al., 2020). Exposure to emissions from heavily trafficked roadways can lead to adverse health effects, 41 

including dementia, Parkinson's disease, lung cancer, cardiovascular and respiratory diseases 42 

(Annavarapu and Kathi, 2016; Chen et al., 2017; Halonen et al., 2016). In particular, people living close 43 

(<500 m) to major roadways are directly impacted by vehicular emissions, exposing them to elevated 44 

PM2.5 concentrations compared to the urban background level (Karner et al., 2010; Lin et al., 2020). 45 

Moreover, traffic-related PM2.5 emissions containing elemental carbon (EC) and fugitive road dust (Chen 46 

et al., 2019) are likely more toxic than those e.g., sulfate and nitrate in the urban background PM2.5 47 

(Rappazzo et al., 2015; Sbihi et al., 2013). 48 

With respect to primary PM2.5 emissions from engine exhausts, gasoline vehicles generally pollute 49 

less than diesel vehicles, especially with the recent implementation of high emission standards (e.g., 50 

China IV and V) (Huang et al., 2022). Presently, over 90% of the vehicles in China are gasoline-powered, 51 

owing to the phasing out of vehicles with old emission standards (i.e., China I–III) (Wang et al., 2019). 52 

Moreover, exhaust gas recirculation (to reduce NOx) and particulate filters have shown success in 53 

reducing vehicular emission (Ayodhya and Narayanappa, 2018; Cédric et al., 2016; Grange et al., 2017). 54 

Nevertheless, traffic emissions are still one of the most important sources of ambient PM2.5 in urban 55 

China (An et al., 2019; Zhu et al., 2018). In real-world conditions, traffic mix and volume, vehicles ages, 56 

and vehicle speed can also impact the contribution of traffic to PM2.5. On road or mobile measurements 57 

can capture the emission characteristics of various vehicle types (Huang et al., 2022). However, to 58 

monitor the overall trend of vehicular emissions, long-term multiple-year roadside measurements are 59 

necessary (Dabek-Zlotorzynska et al., 2019; Lin et al., 2020). Meteorological conditions, such as wind 60 

speed and direction, can also impact the observed PM2.5, complicating the measurement process, and 61 

should be considered to reveal the deweathered trend in the evolution of vehicular emissions (Mukherjee 62 

et al., 2020; Wang et al., 2022). 63 

Road dust caused by traffic-generated turbulence has attracted considerable research interest in recent 64 

years (Chen et al., 2019; Kong et al., 2011; Niu et al., 2019; Reff et al., 2009; Shakya et al., 2017). 65 

However, it has often been neglected or substantially underestimated by the current models (Chen et al., 66 

2019). For example, in urban Lanzhou, China, Chen et al. (2019) constructed an emission inventory for 67 

road dust caused by traffic with an emission rate estimated to be approximately 1141±71 kg d−1, 68 

accounting for 24.6% of total PM2.5 emission. Such large road dust emissions were estimated to cause 69 

234 premature deaths annually in urban Lanzhou (Chen et al., 2019). Through roadside filter 70 

measurements in the Kathmandu Valley, Nepal, Shakya et al. (2017) showed that road dust contained 71 

abundant elements, including silica, calcium, aluminum, and iron, the sum of which accounted for 10-72 

19% of the PM2.5 mass. Niu et al. (2019) compared the elemental compositions of road dust in 21 cities 73 

in China and revealed its spatial distribution across the country. However, most of these studies were 74 

based on filter measurements, influenced by artificial artifacts occurring during filter sampling and poor 75 

temporal resolution (e.g., 24 h mean), which have failed to provide sufficient information e.g., the diurnal 76 

variation. Moreover, lack of long-term roadside measurements of road dust limits our understanding of 77 

its recent trend and our ability to predict future emissions. In particular, as the number of vehicles is 78 

increasing (Jin and He, 2019; Wang et al., 2019), the corresponding road dust is expected to increase 79 

however, this remain poorly investigated in real-world conditions because of the lack of long-term 80 

roadside data. 81 



In this study, markers for engine exhaust (EC), and road dust (calcium; Ca), were measured, along 82 

with the major components of PM2.5, at an hourly resolution at a roadside near a highway in Shanghai 83 

from 2016 to 2019. A random forest-based machine learning algorithm (Grange and Carslaw, 2019; 84 

Grange et al., 2018; Grange et al., 2017) was applied to train the model to rebuild the measured EC, Ca, 85 

PM2.5, and NOx using meteorological and temporal variables as the model input. The SHapley Additive 86 

explanation (SHAP) algorithm (Lundberg et al., 2020; Oukawa et al., 2022) was used to understand the 87 

physical and chemical processes that govern the measured EC, Ca, and PM2.5. Finally, a trend analysis 88 

was performed after meteorological normalization to reveal the deweathered changes over the four years. 89 

2 Method 90 

2.1 Sampling site 91 

Hourly samples of EC and Ca in PM2.5 were collected for four years at the Dianshan Lake (DSL) supersite 92 

(31.09° N,120.98° E, approximately 15 m above ground), located in Qingpu District in western Shanghai 93 

(Fig. S1). The DSL sampling site was approximately 7 km east of Dianshan Lake and 50 km west of 94 

downtown Shanghai, at the intersection of Jiangsu, Shanghai, and Zhejiang Provinces (Jia et al., 2020). 95 

The two highways (G318 and G50) were located approximately 1 km west of the sampling site. Windrose 96 

analysis showed that the sampling site could be affected by the two nearby highways (Figure S2). Owing 97 

to maintenance, data from July to September 2019 (6% of the four-year data) were not available. 98 

2.2 Instruments 99 

Hourly EC and organic carbon (OC) were measured on-line by a Sunset Carbon Analyzer (Model RT-4, 100 

Sunset Lab, USA) with a detection limit 0.04 and 0.2 μg m−3, respectively. OC was converted to organic 101 

matter (OM) using a factor of 1.8 (Via et al., 2021; Wu et al., 2018). Ca with a size cut-off PM2.5 was 102 

determined by a continuous multi-metals monitor (Model Xact 625, Cooper Environmental Services, 103 

Beaverton, OR, USA) along with other elements (Si, K, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Ag, Cd, Ba, 104 

Pb, and Hg). Because Ca showed a well-defined diurnal pattern with typical rush hour peaks (see Section 105 

3), we focused on its trend analysis, which was used as a marker for road dust caused by vehicles passing 106 

through nearby highways. 107 

The total PM2.5 mass concentrations were measured using a tapered-element oscillating microbalance 108 

monitor (1405 TEOM, Thermo Fisher Scientific, Massachusetts, SUA), while an online Monitor for 109 

AeRosols and Gases (MARGA, Model ADI2080, Metrohm Applikon B.V., The Netherlands) was 110 

deployed to measure the water-soluble inorganic ions, including sulfate, nitrate, chloride, and ammonium 111 

in PM2.5. A Visala automatic weather station (WXT520, Vaisala Ltd., Finland) was deployed to monitor 112 

air temperature (air_temp), wind direction (wd), wind speed (ws), relative humidity (RH), pressure, and 113 

rainfall. The gaseous pollutants nitrogen monoxide (NO) and nitrogen dioxide (NO2) were measured 114 

with Thermo Scientific gas analyzers (Thermo 42i, Thermo Fisher Scientific, Massachusetts, USA). 115 

2.3 Data analysis 116 

2.3.1 Random Forest modeling set-up and validation 117 

A decision-tree-based random forest model was developed to understand the trends of the observed EC, 118 

Ca, PM2.5, and NOx individually over the four years (2016–2019). EC was used as a marker of traffic 119 

exhaust emissions as traffic was its main contributor in Shanghai (Jia et al., 2021), whereas Ca was used 120 

as a marker of non-exhaust emissions (i.e., road dust) (Chang et al., 2018). The diurnal patterns of EC 121 

(Fig. S3), and Ca (Fig. S4) show elevated concentrations during rush hour, which is consistent with its 122 



traffic-induced emission pattern. However, Ca may be occasionally associated with dust storms in spring, 123 

leading to the observed spikes. By comparing the time series trends of the original Ca and Ca after 124 

removing the days with high concentrations (top 5% of the data), we concluded that occasional dust 125 

storms did not impact the Ca trend. 126 

Four random forests were developed, when the meteorological (ws, wd, air_temp, RH, rainfall, and 127 

pressure) and, time (date_unix, day of the year (day_julian), weekday, hour of the day, and day of the 128 

lunar year) variables for each random forest were used as model inputs. These variables can affect the 129 

observed PM2.5 concentration, its components, and emission strengths from various sources. For example, 130 

time variables can act as proxies for emission strengths as they vary over time e.g., diurnal cycles and 131 

seasonal variations. The inclusion of the day of the lunar year Wang et al. (2020); Dai et al. (2021) to 132 

consider the effects of the Chinese New Year holiday. Eighty percent of the dataset was randomly selected 133 

as the training dataset, whereas the remaining 20% used to validate the models using the latest 134 

“rmweather” R package (Grange et al., 2018). To develop a tree, the number of independent/explanatory 135 

variables was set to three. The number of trees in the forest was set to 300, following Grange et al. (2018). 136 

The statistics of the model performance are summarized in Table S1 with root mean square error and 137 

mean absolute err in the range of 0.10–27.7 μg m−3 and 0.056–16.0 μg m−3, respectively. The coefficient 138 

of determination (R2) was 0.71–0.86, comparable to the reported values of similar studies (Qin et al., 139 

2022; Zhou et al., 2022). 140 

2.3.2 Meteorological normalization 141 

For each target pollutant, meteorological normalization was performed by repeatedly resampling the 142 

explanatory variables (only meteorological variables included) and predicting the values at a specific 143 

time on a rolling basis over four years using deweathering techniques (Vu et al., 2019). The input 144 

meteorological variables (ws, wd, air_temp, RH, rainfall, and pressure) were randomly resampled from 145 

the original dataset (Vu et al., 2019). The resampled meteorological variables were subsequently fed to 146 

the random forest model to predict the dependent variables (EC, Ca, PM2.5, and NOx). This process was 147 

repeated 1000 times for each target variable. The corresponding 1000 predictions were arithmetically 148 

averaged to obtain meteorologically normalized or deweathered pollutants (Dai et al., 2021; Shi et al., 149 

2021), i.e., the deweathered pollutants were not affected by a specific meteorological condition at a 150 

particular time. 151 

2.3.3. Feature importance analysis 152 

SHAP can be used to explain the output of any machine learning model (Lundberg et al., 2020; Oukawa 153 

et al., 2022). The SHAP (https://github.com/slundberg/shap) method was applied to evaluate the 154 

importance of the meteorological variables in predicting each target pollutant. SHAP uses an additive 155 

feature attribution method to produce an interpretable model (Lundberg et al., 2020), which quantified 156 

the contribution of the input meteorological variables to a single prediction at a specific time, producing 157 

a SHAP value in the same unit as the target pollutant. In this study, only the morning rush hour data 158 

(6:00–10:00) of the study period were used as model input to minimize the impact of daily variation on 159 

the pollutants. 160 

2.3.4 Trend analysis using Theil-Sen algorithm 161 

The long-term trends of EC, Ca, PM2.5, and NOx were assessed using the Theil-Sen regression algorithm 162 

(Carslaw and Ropkins, 2012), which is commonly used for long-term trend analysis as it can account for 163 

autocorrelation (Grange et al., 2018; Vu et al., 2019). It was used at the 95% confidence level to indicate 164 



a significant trend. Slopes of the target pollutant (i.e., EC, Ca, PM2.5 and NOx) were calculated using the 165 

median value of all the possible slopes, based on bootstrap resampling, taken as a representative value 166 

for long-term trend analysis (Grange et al., 2018; Vu et al., 2019). The Theil-Sen functions provided in 167 

the “openair” package in R (version 4.1.2) (Carslaw and Ropkins, 2012) were applied in this study. 168 

3 Results 169 

3.1 Overview of PM2.5 from 2016 to 2019: impact of traffic 170 

Figure 1 shows the daily average time series of PM2.5, EC, Ca, and NOx concentrations at the roadside 171 

sampling site of the Dianshan Lake in Shanghai over the four years from 2016 to 2019. The time series 172 

of daily PM2.5 varied from 6.6 to 218.0 μg m−3, with a mean of 47.0±33.3 (standard deviation; SD) μg 173 

m−3 (Fig. 1). The annual PM2.5 was highest in 2016 (Table 1), with an annual average of 52.3±35.3 μg 174 

m−3 (median of 42.0 μg m−3; Table 1). It decreased to 44.8±31.3 μg m−3 in 2017 and to 43.6±33.8 μg m−3 175 

in 2018 but slightly increased in 2019 (47.1±31.5 μg m−3), which is still lower than in 2016. Median 176 

values followed the same trend as the mean values over the study period (Table 1). Despite the decrease 177 

in the annual PM2.5 concentration, it was still substantially (1.5–5 times) higher than the air quality 178 

standards or guidelines, when compared to China’s national ambient air quality standard (NAAQS-II) of 179 

35 µg m−3 and the WHO guideline of 10 µg m−3. 180 

Among the four seasons, winter was the most polluted, with an average PM2.5 concentration of 60.8 ± 181 

41.4 μg m−3, followed by spring (50.7±30.2 μg m-3), autumn (38.1±27.3 μg m−3), and summer (35.4 ± 182 

23.2 μg m−3). The high PM2.5 concentration in winter and spring is likely associated with low 183 

temperatures and a relatively stable atmosphere, favoring the build-up of pollutants. The average 184 

temperatures in winter and spring are 6.3 oC and 16.5 oC, respectively, lower than in autumn (19.2 oC) 185 

and summer (27.5 oC). The diurnal pattern of PM2.5 showed an increase during the morning rush hour 186 

(6:00 – 10:00; Fig. 2), suggesting the direct impact of traffic emission. This is confirmed by the diurnal 187 

pattern of EC (discussed in Section 3.2) and NOx, showing a typical increase during the morning rush 188 

hour (Fig. 2). The diurnal pattern of PM2.5 over the four years were similar (Fig. S5), suggesting no 189 

significant changes in the source types but with different source strengths. 190 

Of the major PM2.5 components (Fig. 3), included nitrate, organic matter, nitrate, sulfate, ammonium, 191 

trace elements, EC, and chloride, accounting for 22.6%, 22.1%, 15.8%, 13,7%, 3.8%, 3.0%, and 2.1% of 192 

the measured PM2.5, respectively. The unidentified fraction accounted for 16.9% of the PM2.5 mass. The 193 

large unidentified fraction suggests that road dust (e.g., minerals) was likely an important fraction of the 194 

component. The measured Ca also showed a diurnal pattern with a morning rush hour spike (Fig. 2) 195 

similar to EC, suggesting the resuspension of road dust caused by passing vehicles. Notably, uncertainties 196 

of the measured species (10–15%) might also add up, leading to a high fraction of unidentified PM2.5 197 

components. Nevertheless, sum of the measured trace elements (Ca, Si, K, V, Cr, Mn, Fe, Ni, Cu, Zn, As, 198 

Se, Ag, Cd, Ba, Pb, and Hg) had a higher fraction of PM2.5 than EC (3.8% vs. 3.0%), confirming the large 199 

fraction of road dust to PM2.5. 200 

3.2 Traffic-related EC and Ca 201 

EC varied from <0.1 to 7.34 μg m−3, with an average of 1.43 μg m−3 over the four years (Fig. 1). The 202 

diurnal pattern of EC showed rush hour peaks with concentration (>1.50 μg m-3) above the average. 203 

Moreover, it also showed a smaller peak at around 21:00, the late evening rush hour. A similar pattern 204 

was observed for NOx, confirming that the major source of EC was traffic emissions. Such trends were 205 

observed throughout the study period (Fig. S3), but with varying magnitudes. Moreover, no differences 206 



were observed between the weekdays and weekends (Fig. S6), suggesting that the nearby highway was 207 

busy throughout the sampling period. On an average, EC accounted for 3.0% of the PM2.5 mass, which 208 

may appear small. However, direct emissions from traffic also contain OC, which is usually over twice 209 

higher than the EC concentration for gasoline vehicles (DeWitt et al., 2015; Huang et al., 2022). 210 

Therefore, the total primary aerosol emissions from vehicles may account for >10% of the PM2.5 mass. 211 

Moreover, NOx emitted from traffic can also act as precursor gases for nitrate, which is also a major 212 

component of PM2.5. In this study, EC was used as a marker for the primary aerosol emission from 213 

vehicles. 214 

Ca concentration varied in the range of 0.01–1.64 μg m−3, with an average of 0.16 μg m−3 over the four 215 

years (Fig. 1). Although the diurnal cycles of Ca and EC were similar (Fig. 2), their time series were 216 

poorly correlated with an R2 of 0.12 (Fig. 3). This is reasonable considering that EC is a by-product of 217 

incomplete combustion emitted from engine exhaust, while Ca occurs is due to the re-suspension of road 218 

dust that can be caused by any type of vehicle, including electric vehicles (no EC emission) and/or 219 

gasoline vehicles with high emission standards, i.e., low EC emissions from China V vehicles (Huang et 220 

al., 2022). Even at low EC levels (<1.0 μg m−3), the distribution of Ca for datapoints of >0.1 μg m−3 was 221 

highly scattered (Fig. S6) with a 75% percentile of >0.2 μg m−3, suggesting clean vehicles with low EC 222 

emission can also cause high Ca, i.e., road dust in PM2.5. 223 

Ca concentration varied slightly during the study period (2016–2019), with annual values in the range 224 

of 0.15–0.17 μg m−3 (Table 1). However, it increased during rush hours (Fig. S4) in the study period. As 225 

Ca is sourced from the re-suspension of road dust caused by passing vehicles and assuming its amount 226 

released by each vehicle is similar, the observed increasing Ca trend suggests that the actual number of 227 

vehicles on the road also increased. However, such a trend needs to be confirmed after meteorological 228 

normalization because changes in RH, ws, and wd can also alter the Ca concentrations (discussed in 229 

Section 3.4). 230 

3.3 Random Forest modelling and the importance of meteorological variables 231 

For each of the random forests developed for PM2.5, EC, Ca, and NOx, the predicted values were well 232 

correlated with the observed values (R2 >0.95) for the training dataset (Figure 4), while for the testing 233 

dataset, the predicted value was reasonably well correlated with observed value (R2 >0.70), suggesting 234 

the model explained roughly 70–85% of the variation. Good correlation between the predicted and 235 

observed values demonstrated the explanatory power of the developed random forest model built, 236 

providing more reliability for subsequent meteorological normalization. 237 

To quantify the contribution of meteorological variables to the random forest-based prediction, SHAP 238 

modelling was performed (see Methods section, Figure 5). A negative or positive SHAP value (μg m−3) 239 

indicates that the meteorological variable contributes more, whereas an SHAP value closer to zero 240 

indicates less contribution to the prediction. For the random forest of PM2.5, ws was the most important 241 

meteorological variable, followed by air_temp, wd, pressure, RH, and rainfall (Fig. 5a). In particular, 242 

when ws was low (i.e., <1.1 m s−1; 25th percentile; Table 2), a SHAP value of >10 μg m−3 was observed. 243 

In contrast, higher ws (>2.8 m s−1) negatively contributed to PM2.5, with SHAP values of < -10 μg m−3. 244 

Air_temp was the second most important variable, also demonstrating a negative relationship with PM2.5 245 

(Fig. 5a). Wd (in degrees) was the third-most important variable. The wind direction dependence is also 246 

shown as polar plots, with a wd of 200–300 being associated with higher concentrations (Fig. S8). 247 

Rainfall was the least important among the six variables, contributing negatively to PM2.5, as well as 248 

other pollutants, consistent with its we-deposition effects on air pollutants. 249 

Similarly, ws was an important variable for EC and NOx, with an overall negative impact (Fig. 5). In 250 



contrast, RH was the most important parameter for the random forest grown of Ca (Fig. 5c), showing an 251 

inverse correlation (Fig. 5c), with low RH (<64%) associated with higher SHAP values of >0.1 μg m−3. 252 

This reflects that the air was dry during Ca production (i.e., low RH) as Ca is primarily associated with 253 

the resuspension of road dust induced by passing vehicles, and humid air decreases its production rate. 254 

As demonstrated by the polar plots, ws and wd were also important variables, showing patterns similar 255 

to those of other pollutants, (Fig. S8). 256 

3.4 Trend analysis of traffic exhaust and road dust emission 257 

To decouple the effects of meteorological variables on the pollutants, meteorological normalization or 258 

deweathering analysis was performed (see the Methods section). Table 1 presents the yearly mean, one 259 

SD, and median PM2.5, EC, Ca, and NOx concentrations before and after meteorological normalization. 260 

For the mean value, the difference between the observed and weathered ((deweathered-261 

observed)/observed) pollutants range from -1.8 to 7.7 % (Table 1), whereas for the median value, a larger 262 

difference (20–51.4 %) was observed. Large differences in the median values were likely caused by the 263 

uncertainties associated with machine learning training that failed to capture the extreme events, leading 264 

to significant deviations from the average values. 265 

Figure 6 shows the trend analysis of monthly averaged PM2.5 over the study period, as well as the 266 

fraction of EC in PM2.5 and the fraction of Ca in PM2.5 after meteorological normalization using the 267 

Theil-Sen algorithm; Figure S9 shows the trend before normalization. Specifically, for the deweathered 268 

PM2.5, a trend of -6.4% year-1 (or -3.65 μg m−3 year−1) was estimated (Fig. 6), while it was -6.7% year−1 269 

(or -3.67 μg m−3 year−1) for the observed PM2.5 (Fig. S10). Therefore, trend of the deweathered PM2.5 was 270 

only slightly more positive than the observed trend. The decreasing rate 6.4% year−1 of PM2.5, was a 271 

result of all contributing factors, such as, industry, power plants, and residential sector (Zheng et al., 272 

2018), as along with traffic (this study). 273 

While the deweathered EC also showed a decreasing trend with a rate of -2.9% year−1 (or -0.04 μg m-274 

3 year−1; Fig. S10), it was more than two times lower than the decreasing rate (-6.4 % year−1) for PM2.5. 275 

This suggests that the absolute primary particulate emissions from traffic have decreased over recent 276 

years, but the decreasing rate has been slower than that of other sources (e.g., power stations and industry 277 

(Zheng et al., 2018)) which contributed to a greater decrease in PM2.5. The reduction in primary emissions 278 

from vehicles was confirmed by the decreasing trend (-3.1% year−1) observed for the deweathered NOx 279 

(Fig. 6d). The slightly lower decreasing rate for EC than NOx (-2.9% year−1 vs. -3.1% year−1) suggests 280 

that vehicular particulate emissions were controlled in a less effective way than NOx in recent years. 281 

Moreover, it is important to note that the decreasing trend in emissions from vehicles was not due to the 282 

decreasing number of vehicles on the road. This is corroborated by the fact that the normalized Ca, only 283 

showed a marginal decrease of -1.2% year−1 (Fig. S10). According to the database from the Ministry of 284 

Transport, China, the number of privately owned motor vehicles in Shanghai increased from 2.4 million 285 

in 2016 to 3.2 million in 2019 (MinistryOfTransport). The larger decreasing trend observed for EC, 286 

compared to Ca, were likely due to the green technology and/or higher emission standards applied to the 287 

exhaust particulate emissions. 288 

The fraction of EC in PM2.5 showed an increasing rate of 2.5% year−1 (Fig. 6) owing to the decreasing 289 

rate (-2.9% year−1) of absolute EC concentration being roughly half of the decreasing rate of -6.4% year−1 290 

for PM2.5. Thus, studying the direct particulate emission from traffic is important despite the decrease of 291 

traffic emission itself (but not as fast as other PM2.5 sources). As shown in Figure 6, the fraction of EC 292 

in PM2.5 had an increasing rate of 1.21% year−1. The increasing rate of Ca in PM2.5 at 6.1% year−1, which 293 

is more than twice that of BC is more alarming. Therefore, road dust is projected to become even more 294 



important in the near future as the number of vehicles on the road increases. 295 

4 Discussion 296 

Based on the random forest algorithm, we showed that the meteorologically normalized PM2.5 decreased 297 

at a rate of -6.4% year−1 from 2016 to 2019. This value was smaller than the values (-7.8% year−1) 298 

reported in Beijing over 2013–2017 (Vu et al., 2019), although with different starting concentrations. 299 

Nevertheless, the results suggest that emission reductions in response to the Clean Air Act were less 300 

significant in Shanghai than in Beijing (Vu et al., 2019; Zhang et al., 2019; Zheng et al., 2018). As an 301 

important source of PM2.5, vehicular exhaust emissions, i.e., EC, also decreased over the four years 302 

(2016–2019). The reduction in vehicular emissions was also confirmed by the trend analysis of the NOx 303 

emissions. This is consistent with the implementation of aftertreatment technologies and the progressive 304 

tightening of emission standards (e.g., from China IV to China V) (Huang et al., 2022). A reduction in 305 

NOx has also been observed in Europe (Grange et al., 2017). However, few studies have reported traffic-306 

related EC trends based on high temporal resolution roadside monitoring data. To the best of our 307 

knowledge, this is the first study to report a long-term trend in EC near the highways. 308 

We also showed that, despite various efforts to decrease vehicular exhaust emissions, road dust is 309 

becoming increasing  important, with an increased contribution to PM2.5 over the study periods and the 310 

predictable future under the current increase in the number of on-road vehicles (MinistryOfTransport). 311 

However, unlike EC or NOx emissions, which can be controlled with aftertreatment technologies, road 312 

dust can be caused by passing vehicles, even for seemingly low-emission electric vehicles. According to 313 

a recent market report (Jin and He, 2019), the sales of electric vehicles has increased in recent years, with 314 

sales numbers reaching over 500,000 in China in 2017. In this study, we showed that, although switching 315 

to electric vehicles can reduce direct EC or NOx emissions, road dust emissions do not seem to be abating 316 

at the same pace, which is likely to become increasingly important in the future. Using the machine 317 

learning algorithm, we showed that road dust, as suggested by the marker element of Ca, is inversely 318 

correlated with RH, with high Ca correlated with low RH levels. Therefore, as global warming may lead 319 

to a drier environment in certain locations (Byrne and O’Gorman, 2018), more road dust can be generated 320 

by future vehicles, which is a significant health concern for people living close to roadways. However, 321 

because road dust is sensitive to RH, policies on reducing road dust, such as street sweeping and washing, 322 

may help abate its emissions (Chang et al., 2018), in addition to technological advancements in road 323 

surface and tire designs. 324 

5 Conclusion 325 

In this study, hourly EC and Ca in PM2.5 from highway sampling site in Shanghai were collected from 326 

2016 to 2019, and were analyzed using a random forest-based machine learning algorithm. Four random 327 

forests were developed with satisfactory performances. Based on machine learning, the predicted values 328 

agreed well with the observed values, with R2 >0.70. The effects of temperature and RH, as well as ws 329 

and wd on the observed values were revealed through the SHAP algorithm. After meteorological 330 

normalization, we showed that PM2.5, decreased by -6.4% year−1 over four years. As an important source 331 

of PM2.5, vehicular exhaust emissions, i.e., EC, also decreased but at a rate slower than that of PM2.5. 332 

Thus, direct particulate emissions from traffic were suggested to become increasingly important, despite 333 

the decrease in traffic emissions. Moreover, road dust, as opposed to engine exhaust, which cannot be 334 

directly controlled by aftertreatment technology, was suggested to be become increasingly important. 335 

The fraction of Ca in PM2.5 showed an increasing rate of 6.1% year−1, roughly twice that of BC. The 336 

results from this study suggest that road dust will not abate even with cleaner on-road traffic owing to 337 



advances in aftertreatment technology and stricter emission standards. Such a trend may be exacerbated 338 

by global warming, leading to a drier atmosphere (i.e., low RH) in certain areas, inducing higher 339 

emissions of road dust from on vehicles. 340 
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Table 1. Annual mean, one standard deviation (SD), and median values for PM2.5, EC, Ca, and NOx 

concentration (in μg m-3) before and after meteorological normalization (deweathered). 

 

 PM2.5 EC Ca NOx 

 observed deweathered observed deweathered observed deweathered observed deweathered 

Mean         

2016 52.3 53.6 1.57 1.63 0.163 0.174 58.4 62.9 

2017 44.8 46.1 1.32 1.37 0.161 0.161 60.1 59.0 

2018 43.6 44.2 1.41 1.42 0.151 0.158 50.9 54.5 

2019 47.2 48.6 1.41 1.44 0.172 0.179 60.8 62.7 

SD         

2016 35.3 26.4 1.26 0.995 0.194 0.133 61.4 47.0 

2017 31.3 16.9 1.08 0.809 0.195 0.0894 56 36.1 

2018 33.8 16.9 1.04 0.821 0.182 0.0784 48.9 32.0 

2019 31.5 15.0 0.951 0.747 0.197 0.071 57.1 32.2 

Median         

2016 42.0 54.6 1.20 1.59 0.105 0.159 40.0 55.1 

2017 37.0 44.6 1.05 1.28 0.104 0.142 42.0 52.0 

2018 34.0 44.5 1.11 1.35 0.0998 0.147 37.0 48.8 

2019 38.0 47.6 1.14 1.38 0.113 0.168 45.0 56.5 

 

 

Table 2. Statistics including mean, SD, median, 25th percentile (Q1), and 75th percentile (Q3) for the 

meteorological variables over the four years.  

 mean SD median Q1 Q3 

ws (m s-1) 2.04 1.29 1.9 1.1 2.8 

RH (%) 75.8 18.7 79 64 92 

air_temp (oC) 17 9.19 17.6 9.5 24.3 

pressure (hPa) 1017 9.15 1017 1009 1024 

rainfall (mm) 0.14 0.09 0 0 0 

 

 



 

Figure 1. Time series of PM2.5, elemental carbon (EC), Ca, and NOx from 2016 to 2019. Data are daily 

averaged from the original hourly resolution. 

 

 

 

Figure 2. Diurnal cycle of (a) PM2.5, (b) EC, (c) Ca, and (d) NOx. Box plots show the 5th, 25th, median, 

75th, and 95th percentile. The triangle inside the box represents the mean value over the four years. 
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Figure 3. (a) Average chemical composition of PM2.5 including organic matter (OM = 1.8 × OC), EC, 

sulfate (SO4), nitrate (NO3), chloride (Cl), ammonium (NH4), and trace elements; the unidentified part 

is the gap between the measured and rebuilt PM2.5. (b) scatter plot between the observed Ca and EC 

(in μg m-3) over the four years, showing poor coefficient of determination R2 of 0.12. 
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Figure 4. Correlation between the predicted and observed values (in μg m-3) during the build of random 

forest for (a) PM2.5, (b) EC, (c) Ca, and (d) NOx. 

 

 

 

Figure 5. SHAP values for the analysis of the importance of meteorological variable for the random 

forest built for (a) PM2.5, (b) EC, (c) Ca, and (d) NOx. 
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Figure 6. Monthly average (a) PM2.5 (μg m-3) (b) fraction of EC in PM2.5; and (c) fraction of Ca in PM2.5, 

and (d) NOx before (i.e., observation) after meteorological normalization (i.e., model). The red line 

represents the trend analysis of PM2.5 using the Theil-Sen estimator, with values above representing the 

modelled trend and the 95% confidence level. 
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