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Characterizing Mobility Patterns of Private Electric Vehicle Users 

with Trajectory Data 

Abstract 

Human mobility pattern analysis has received rising attention. However, little is known about 

the mobility patterns of private Electric Vehicle (EV) users. In response, this paper characterized 

mobility patterns of private EV users using a unique one-month dataset containing moving 

trajectories of 76,774 actual private EVs in January 2018 in Beijing. Specifically, we first 

explored the diversity, regularity, spatial extent, and uniqueness of EV users’ mobility patterns. 

The results suggested that most EV users had both regular travel and activity patterns (the mean 

travel and activity entropies were 2.17 and 1.83, respectively) with special preferences towards 

some specific activity locations relative to all the locations they visited (the mean number of 

activity locations visited was 13.57 in one month). Furthermore, they tended to perform 

activities within a small geographical area (the mean radius of gyration was 7.60 km) and have a 

short daily travel distance (the mean value was 37.35 km) relative to their electric driving range. 

Further, we associated EV users’ mobility patterns with the built environment through ordinary 

least squares and geographically weighted regression models, particularly considering the so-

called modifiable areal unit problem (MAUP). Due to the MAUP, most of the statistically 

significant built environment variables varied across spatial analysis units (SAUs). Gymnasia 

was the only variable statistically associated with the mobility patterns for all SAUs; while the 

variables related to residence and workplace were not statistically associated. 

 

Keywords: Electric Vehicle; Mobility Patterns; Trajectory Data; Built Environment  
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1 Introduction 

The popularization of electric vehicles (EVs) helps to develop a more sustainable 

transportation system [1-3]. Both adoption and usage rates have increased significantly over the 

past few years with various supportive policies, such as subsidies and tax exemption [4-6]. At 

the end of 2020, there were more than 10 million EVs globally, as reported in “Global EV 

Outlook 2021” by International Energy Agency (IEA) [7]. However, conventional vehicles 

(CVs), such as petrol cars, are still dominant in the vehicle market. To further promote the 

adoption and usage of EVs, understanding mobility patterns of EV users is essential, as EV-

related policy making, infrastructure planning and technology investment need to take EV users’ 

mobility patterns into account [8-10]. 

 

On the other hand, human mobility pattern analysis has received increasing attention over the 

past decade, in part due to the emergence of various urban big data sources, such as mobile 

phone data, trajectory data and smart card data, which contain rich information on individual 

movements. Many empirical studies have been conducted to characterize mobility patterns of 

mobile phone users [11-13] and the travelers using different transport modes, such as active 

transport modes [14, 15], public transport [16, 17], shared modes [18], and private conventional 

cars [19, 20]. Further, some of them explored the relationship between mobility patterns and the 

built environment.  

 

Meanwhile, many attempts have been made to investigate mobility patterns of EV users, with 

a focus on their travel, parking and charging patterns or behaviors [21-23]. However, most of 
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these EV studies used traditional questionnaire survey data or small EV GPS datasets, and the 

samples from such small datasets could not be representative enough and the mobility patterns 

revealed were very likely to be biased. 

 

To better characterize the mobility patterns of private EV users, which would be helpful for 

the EV-related policy making, infrastructure planning and technology investment, this study will 

use a unique one-month GPS dataset containing moving trajectories of 76,774 private EVs in 

January 2018 in Beijing. Beijing had 113,280 private New Fuel Vehicles (NFVs) at the end of 

2017, which made it possible to generate such a large GPS dataset on actual private EV users. 

Specifically, there are two main contributions of this study:  

⚫ We will characterize private EV users’ mobility patterns with a large real EV trajectory 

dataset through spatial big data analysis; while previous studies tended to use traditional 

questionnaire survey data or small EV GPS datasets, which could not well represent 

mobility patterns of EV users.  

⚫ We will also explore the potential association between the EV users’ mobility patterns 

and the built environment, which has not been well understood. 

 

The rest of this paper is organized as follows: Section 2 conducts an extensive review of 

mobility patterns and their association with the built environment. Then, Section 3 describes 

study area and the datasets used, and further introduces the methods to characterize mobility 

patterns and explore the association between mobility patterns and the built environment. Next, 

Section 4 presents and discusses the results about private EV users’ mobility patterns. Finally, 
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Section 5 summarizes the key research findings and discusses further work. 

2 Literature Review  

2.1 Mobility Indicators 

Mobility analysis with various indicators portrays individual activity space through measuring 

activity locations and movements between them, so as to reveal the inherent properties and 

mechanism in mobility patterns [24-26]. Typical mobility indicators include the number of 

activity locations, activity entropy, travel entropy, radius of gyration, k-radius of gyration, and 

unicity, which can be used to characterize the diversity, regularity, spatial extent and uniqueness 

of individual mobility patterns [26]. These typical mobility indicators are reviewed below. 

 

Indicators of the number of activity locations, activity entropy, and travel entropy are used to 

quantify the diversity and regularity of individual mobility patterns. Xu et al. [26] found that 

mobile phone users in Singapore and Boston exhibited similar level of mobility regularity 

characterized by activity entropy and travel entropy, although users in Boston generally visited 

more diverse activity locations. Xu et al. [27] used these three indicators to measure and 

compare the mobility patterns of tourists traveling to three different Korean tourism cities, i.e., 

Jeonju, Gangneung and Chuncheon. Zhao et al. [28] displayed an underestimation of individual 

activity entropy only using the call detail records (CDR) dataset that has a low temporal 

sampling rate, compared to the estimates using a complete and more granular mobile phone 

location dataset. Pappalardo et al. [29] aggregated mobile phone users’ travel entropy at the 

municipality level and related it to sociodemographic indicators, revealing the strong 
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relationship between them. The concept of entropy has also been used to measure the evolution 

of electric taxis’ mobility and charging patterns. According to the indicator, Entropy of Charging 

Location Evolution, Wang et al. [30] found that electric taxis drivers in Shenzhen, China had 

stable charging locations over time. In addition to the number of activity locations, the number 

of unique origin-destination trips [31, 32] can also be used to measure the diversity of individual 

mobility patterns. 

 

Indicators of radius of gyration and k-radius of gyration can be used to measure the spatial 

extent of individual mobility patterns. Ahmouda et al. [33] used radius of gyration to measure 

the variation of individual activity space under harsh weather conditions (e.g., hurricane). Using 

mobile phone data and GPS trajectory data of conventional vehicles (CVs) separately, 

Pappalardo et al. [13] delineated the probability distributions of radius of gyration and k-radius 

of gyration and found that they both generally fit the truncated power-law with different 

parameters. Tian et al. [34] used radius of gyration as an indicator to compare the operating 

coverage of electric and conventional taxis in Shenzhen, China. The results showed that the 

operating coverage of conventional taxis tented to be larger than that of electric taxis. Diameter 

of convex hull [31, 32] is another indicator that can be used to measure the spatial extent of 

individual activity space. 

 

As for unicity, it is a measure of re-identifiability, characterizing the uniqueness of individual 

mobility traces [11]. Xu et al. [26] and de Montjoye et al. [11] both found out around 95% of 

mobile phone users can be uniquely identified only using top 4 frequently visited 500×500 m 
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grids. The results from Xu et al. [26] also suggested that the re-identifiability power would, to 

some extent, decline when conducting the empirical analysis at a coarser spatial unit (e.g., 1×1 

km grid). 

2.2 Mobility Patterns of Electric Vehicle Users 

It is of paramount importance to analyze real-world EV operating data to facilitate the 

understanding of the mobility patterns of EV users. Up to the present, researchers have put 

noticeable efforts into investigating the mobility patterns of EV users at the trip level but mostly 

with a small sample of EVs. Some specific examples are reviewed below: 

 

Zhang et al. [21] collected the operating data of 41 private EVs in Beijing, China and 

statistically characterized the travel patterns of EV users with seven trip-related indexes, such as 

the trip distance, trip start time, daily distance travelled and the number of trips per day. Similar 

investigations were conducted using EV-generated datasets collected from different regions of 

the global. For example, Corchero et al. [22] analyzed 140,000 EV trips extracted from a fleet of 

503 monitored EVs spreading eight European countries. Kessler and Bogenberger [35] analyzed 

54,000 trips generated from the one-year travel history of 40 BMW i3 (one common EV model) 

users in Germany and found that the average EV trip distance was 11.1 km. Weldon et al. [36] 

collected the real data of 15 EVs in Ireland and utilized both analysis of variance (ANOVA) and 

interquartile range (IQR) to investigate the trip characteristics of EV users. Habla et al. [23] 

accessed private and shared electric and conventional fleets (among which 16 private EVs and 

91 shared EVs were included) and their usage patterns (e.g., single-day and annual distance 

travelled) in Germany in which they discovered that EVs drove shorter distances comparing to 
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conventional vehicles, on average. One exceptional case was that Sun et al. [9] tried to uncover 

trip, parking and charging patterns of private EV users using a unique dataset which contained 

moving trajectories of over 76,000 private EVs collected in January 2018 in Beijing. However, 

it only looked at statistical and spatiotemporal distributions of these three typical events of EV 

users (i.e., travel, parking and charging events), with little regular patterns observed. This study 

will also use this unique dataset, but will take one step forward: specifically, we will 

characterize mobility patterns of private EV users at the individual level using typical mobility 

indicators and further associate the mobility patterns with different built environment factors. 

These two aspects have not been explored in the previous study by Sun et al. [9], and thus are 

the contributions of our study. 

 

In addition to measuring descriptive and statistical trip characteristics of EV users, a few 

previous studies have strived for a deeper understanding of EV users’ mobility patterns. 

However, these studies were mostly focused on non-private vehicles, such as taxis. Tian et al. 

[34] employed Centriod and Radius of Gyration to characterize the operating coverage of 

electric taxis using GPS records data of around 600 electric taxis in Shenzhen, China. The 

results showed that the operating coverage of electric taxis was smaller than that of conventional 

taxis. Chen et al. [37] incorporated the theory of entropy to capture the vehicle usage stability 

with a one-week GPS trajectory data of 8,000 EVs collected in Shanghai, China. Using a multi-

source dataset comprising the five-year GPS data of 427 electric taxis in Shenzhen, China, Wang 

et al. [38] estimated the evolution of mobility patterns of electric taxis network with three 

indicators, namely coverage density, daily distance travelled and overhead after charging. 
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2.3 Association between Mobility Patterns and the Built Environment 

Compared with other factors (e.g., socioeconomic and sociodemographic factors), the built 

environment has been commonly considered as potentially influential factors and incorporated 

to examine their relationships with travel demand/patterns, due to the acknowledgement that 

they could heavily influence travelers’ behavior [39, 40]. Also, easily acquirable point of interest 

(POI) data containing high accuracy land use information had commonly been used to measure 

the built environment in relevant studies [15, 40-42]. For example, Shen et al. [20] used 

geographically and temporally weighted regression (GTWR) models to analyze the relationship 

between a variety of POIs and the travel demand of car users and total persons. They found that 

the influence of various POIs varied spatially and temporally. Liu et al. [43] employed the GWR 

model to explain the spatial heterogeneity of taxi ridership in Xiamen, China with collected POI 

data. The results showed that the density of residential buildings and transport infrastructure 

would generally induce more taxi use demand. 

 

There is a considerably large literature on exploring the association between different built 

enviroment factors and mobility patterns (or travel demand/patterns) of the travelers using 

different means of tranport, including active transport modes [14, 44], public transport [16, 45], 

and vehicle-related transport mode (e.g., private conventional car, taxi ridership, ride-sourcing, 

and ride-hailing) [19, 20, 46, 47]. Taking those studies focusing on vehicle-related transport 

modes as an example, Bi et al. [18] investigated the effects of the built enviornment on car-

hailing ridership with geographically weighted regression (GWR) uisng Chengdu, China as the 

study area. Wang and Noland [46] extended the understanding of the association between car-
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hailing ridership in Chengdu, China and the built environment factors by additionally 

considering other factors, such as population density and housing price, using both ordinary 

least-squares (OLS) and GWR models. Tu et al. [16] and Qian and Ukkusuri [48] leveraged 

GWR models to explain the spatial variation of taxi ridership by relating it to various 

sociodemographic and built eneviroment variables. Moreover, Tu et al. [16] conducted the 

comparion of the similarities and differences between the taxi ridership and public transport 

ridership regarding the effects of their exploratory factors. Soltani et al. [19] investigated the 

relationships between the mobility patterns of older private CV users in Iran and the 

sociodemographic and built environment variables. Among these studies reviwed the above, 

OLS and GWR tended to be the most-commonly used global and local regression models, 

respectively. 

2.4 Research Gaps and Aims 

We conducted a comprehensive review of mobility patterns, in terms of mobility indicators, 

mobility patterns of EV users, and the association between mobility patterns and the built 

environment, and identified three research gaps below: 

⚫ A collection of mobility indicators has been commonly used to characterize human 

mobility patterns, but were not used to characterize mobility patterns of EV users, 

particularly for private EV users. 

⚫ Most existing studies of EV mobility patterns were focused on EV users’ travel patterns 

(e.g., travel distance and duration). In general, they used a small dataset (e.g., 

questionnaire survey datasets and GPS trajectory datasets with a small number of 

participants), and the samples were not representative enough and the results could be 
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largely biased. 

⚫ The association between mobility patterns and the built environment has been explored 

extensively for travelers using different transport modes, including active transport 

modes, shared modes, and private conventional cars. However, little is done for private 

EV users, in part due to the lack of proper EV datasets for the association analysis. 

 

To overcome the limitations above, this paper will characterize mobility patterns of private 

EV users using a unique one-month dataset which contains moving trajectories of 76,774 actual 

private EVs in January 2018 in Beijing (with a sample rate of 68%) [9]. Specifically, we will 

first explore the diversity, regularity, spatial extent, and uniqueness of EV users’ mobility 

patterns using eight typical mobility indicators, namely the number of activity locations, activity 

entropy, travel entropy, radius of gyration, k-radius of gyration, unicity, average daily travel 

distance, and proportion of travel distance on different road types, which will be computed with 

activity and travel information extracted from the EV trajectory dataset. Further, we will explore 

the potential association between the EV users’ mobility patterns and the built environment 

using two classical methods, namely ordinary least squares (OLS) and geographically weighted 

regression (GWR) models.  
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3 Methodology  

3.1 Study Area and Datasets 

3.1.1 Study Area: Beijing 

As the capital of China, Beijing was one of the first batch of demonstration cities which tried 

to promote the adoption and usage of New Fuel Vehicles (NFVs) with various supportive 

policies [21], and it has experienced the rapid development of NFVs. By the end of 2019, there 

were 324,828 NFVs, among which passenger NFVs and private NFVs accounted for 95% and 

69%, respectively [49]. Fig. 1 shows the number of private NFVs owned per 1,000 permanent 

residents at the district level in 2019, suggesting that central districts tended to have relatively 

more NFVs. It is worth noting that nearly all NFVs in Beijing were EVs [9]. 
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Fig. 1 The numbers of private NFVs owned per 1,000 permanent residents in the 16 

administrative districts in Beijing in 2019 

 

Fig. 2 characterizes the built environment in Beijing with point of interest (POI), which is a 

typical data type for the description of the built environment [15, 40-42], using different spatial 

analysis units, including traffic analysis zone (TAZ) and grids with different spatial scales (i.e., 

1×1 km, 2×2 km, and 4×4 km). In this study, the POI data was from the Baidu Map 

(https://map.baidu.com/), which is one of the largest Chinese online mapping applications. In 

total, the dataset contains several POI types with a total number of over 230,000 POIs, including 

Residential Buildings, Companies/Enterprises, Government Agencies, Educational Institutions, 

and Financial Facilities (see Appendix A in the Supplementary Materials for more details about 

the POI types). It can be found from Fig. 2 that the spatial patterns of POI were different from 

each other when different spatial analysis units were used, which is known as the modifiable 

areal unit problem (MAUP), as introduced by Openshaw [50]. Therefore, we will consider the 

MAUP when exploring the potential association between mobility patterns of private EV users 

and the built environment. 
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(a) Traffic Analysis Zone (TAZ) (b) 1×1 km grid 

  

(c) 2×2 km grid (d) 4×4 km grid 

Fig. 2 Spatial patterns of POIs (unit: the number of POI per km2) 

 

3.1.2 GPS Trajectory Data on Private EVs  

We used a unique one-month GPS dataset, which was provided by the Beijing Transport 

Institute. The dataset contains moving trajectories of 76,774 actual private EVs (i.e., those EVs 

for personal use) in Beijing, which was collected from January 1, 2018 to January 31, 2018 

through on-board diagnostics (OBD) devices [9]. The dataset only contains private EVs and 
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does not contain those EVs used by businesses (e.g., delivery service). To protect private of the 

EV users, the records in the dataset were not linked to any specific persons, and their 

sociodemographic characteristics (e.g., age and income) were not collected, either. But it 

contains several fields reflecting vehicle’s real-time status, such as vehicle ID, timestamp, 

location (comprising latitude and longitude) and instantaneous speed (see Table 1), which are 

sufficient for mobility pattern analysis.  

 

Table 1 An example for the key fields in the trajectory dataset for one private EV 

Vehicle ID Timestamp Latitude Longitude 
Instantaneous Speed 

(km/h) 

… … … … … 

F1FD123743 2018-01-02 12:44:14 40.06231 116.335045 44.7 

F1FD123743 2018-01-02 12:44:24 40.062344 116.3337 29 

F1FD123743 2018-01-02 12:44:34 40.06238 116.332405 45.8 

F1FD123743 2018-01-02 12:44:44 40.06274 116.331535 38.1 

F1FD123743 2018-01-02 12:44:54 40.063835 116.331215 31.2 

F1FD123743 2018-01-02 12:45:04 40.064114 116.330765 13 

… … … … … 

 

With this trajectory dataset, we can identify travel and parking events through the EV 

trajectory data analytical framework proposed by Sun et al. [9] and Yang et al. [51], based on 

which we can further characterize private EV users’ mobility patterns in this study. Fig. 3 shows 

how an EV trajectory can be segmented into a series of connected travel and parking events 

using the EV trajectory data analytical framework. 

 

 

Fig. 3 An illustration of trajectory segmentation (Source: Adapted from [51]) 
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The one-month (i.e., January 2018) trajectory dataset will be used to characterize EV users’ 

mobility patterns. However, it was argued that different ambient temperatures in different 

months (or seasons) could influence the real-world driving range of EVs significantly (e.g., a 

low temperature could lead to a much shorter driving range) [52, 53], and thus might have 

indirect effects on EV users’ mobility patterns.  

 

In practice, the current EV battery capacity is larger enough to meet most EV users’ mobility 

demand in one single day, even when EVs suffer from a shorter real-world driving range in the 

cold weather. This means that EV users do not have to change their activity schedule due to the 

decrease in the driving range. The statistical evidence extracted from the EV trajectory dataset 

shows that there were only 1.06% of travel days in which the EVs’ cumulative percentage of 

consumed charge is over 100% (in such cases, EVs have to get recharged at some of their trip 

destinations in daytime, and could not just rely on overnight charging). On the other hand, the 

changes in the real-world EV driving range caused by the variation of ambient temperatures in 

different months (or seasons) could directly influence EVs’ charging patterns (e.g., charging 

frequency and charging duration), but its further influence on EV users’ mobility patterns 

(reflecting how EV users move around within their activity space) would be limited. Also, some 

studies indicated that the seasonal effects on EV charging patterns were not significant. For 

example, Hao et al. [52] found that the charging events at workplace for private EVs in Beijing 

only increased by 4% in winter, compared with other seasons. For these two reasons above, we 

would expect that the monthly or seasonal effects on EV users’ mobility patterns tend to be 
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limited. Therefore, using one-month trajectory data in this study should be adequate and could 

well uncover EV users’ mobility patterns. 

3.2 Analytical Framework 

Fig. 4 shows the analytical framework for characterizing mobility patterns of private EV users 

and further associating mobility patterns with the built environment. Specifically, we first use 

the EV trajectory analysis method by Sun et al. [9] to extract individual mobility information 

(i.e., travel and parking events of private EVs). Then, we further infer each private EV user’s 

activity locations with the mobility information (see Appendix B in the Supplementary Materials 

for the approach that we used), based on which we calculate several typical mobility indicators 

(including the number of activity locations, activity entropy, travel entropy, radius of gyration, 

k-radius of gyration, unicity, average daily travel distance, and proportion of travel distance on 

different road types) to characterize private EV users’ mobility patterns, i.e., diversity, regularity, 

spatial extent, and uniqueness (see Section 3.3). Furthermore, we explore the potential 

association between mobility patterns of private EV users and the built environment (described 

with POIs) at multiple scales, particularly considering the modifiable areal unit problem (MAUP) 

(see Section 3.4). 
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Fig. 4 Analytical framework 

3.3 Characterizing Mobility Patterns of Private EV Users 

We used eight typical mobility indicators which have been widely used in human mobility 

analysis (see Section 2.1 for a review), to characterize mobility patterns of private EV users, 

namely the number of activity locations (𝑁𝑎), activity entropy (𝐸𝑎), travel entropy (𝐸𝑡), radius of 

gyration (𝑅𝑔), k-radius of gyration (𝑅𝑔
𝑘), unicity (𝑈𝑘), average daily travel distance (ADTD), and 

proportion of travel distance (PTD) on different road types.  

 

(1) The Number of Activity Locations (𝑵𝒂)  

𝑁𝑎  quantifies the total number of activity locations visited by a private EV user during a 
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specific period of time, reflecting whether the user tends to perform activities at more diverse 

locations or not. A large value suggests the user tends to perform activities at a wider variety of 

places [26, 32]. 𝑁𝑎 can be calculated with Equation (1). Here, we used the number of parking 

lots which an EV user used as the number of activity locations visited with an assumption that 

EV users perform their activities around the parking lots where their EVs are parked. 

 

𝑁𝑎 = |{𝑎𝑙1, 𝑎𝑙2, ⋯ , 𝑎𝑙𝑁}| = |𝑠𝑒𝑡{𝑝𝑙1, 𝑝𝑙2, ⋯ , 𝑝𝑙𝑛}| (1) 

Where, 𝑎𝑙𝑖 denotes the 𝑖𝑡ℎ activity location; {𝑎𝑙1, 𝑎𝑙2, ⋯ , 𝑎𝑙𝑁} denotes a collection of a private 

EV user’s activity locations referred from the parking events sequence by the user 

{(𝑝𝑙1, 𝑝𝑡1
𝑠, 𝑝𝑡1

𝑒), (𝑝𝑙2, 𝑝𝑡2
𝑠, 𝑝𝑡2

𝑒), … , (𝑝𝑙𝑛, 𝑝𝑡𝑛
𝑠 , 𝑝𝑡𝑛

𝑒)}, in which, 𝑝𝑙𝑗 denotes the parking location of 

the 𝑗𝑡ℎ parking event; 𝑝𝑡𝑗
𝑠 and 𝑝𝑡𝑗

𝑒  denote the starting and ending times of the parking event. 

 

(2) Activity Entropy (𝑬𝒂) 

Compared with the indicator Number of Activity Locations (𝑁𝑎), which only considers the 

number of activity locations visited by an EV user, the indicator, Activity Entropy (𝐸𝑎), takes a 

further step and additionally considers the visitation frequency at each activity location. If an EV 

user performs its activities more frequently at some specific locations (rather than visiting all the 

locations with an equal frequency), it tends to have a more regular mobility pattern [12, 26, 28]. 

Given the number of activity locations 𝑁𝑎, the visitation probability at each activity location for 

a private EV user can be described with a vector {𝑝1
𝑎 , 𝑝2

𝑎  , ⋯ , 𝑝𝑁
𝑎 }, where 𝑝𝑖

𝑎 =
𝑎𝑓𝑖

∑ 𝑎𝑓𝑖
𝑁
𝑖=1

 denotes 

the ratio of the visitation frequency at the 𝑖𝑡ℎ activity location to the total number of visitations. 

Thus, ∑ 𝑎𝑓𝑖
𝑁
𝑖=1 = 1. Based on the calculated visitation probability at each activity location, the 

activity entropy 𝐸𝑎 can be calculated with Equation (2). A small value indicates the user has 
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preferences towards some particular activity locations and thus perform activities more 

frequently at these locations. Therefore, the user has a more regular mobility pattern. 

 

𝐸𝑎 = − ∑ 𝑝𝑖
𝑎 × log (𝑝𝑖

𝑎)

𝑁

𝑖=1

 (2) 

 

(3) Travel Entropy (𝑬𝒕) 

Similar to activity entropy 𝐸𝑎 , travel entropy 𝐸𝑡  also measures the regularity of human 

mobility behavior but with a focus on the link (or relation) between paired activity locations, 

rather than individual activity locations. Specifically, it quantifies the extent to which a private 

EV user’ travels were uniformly distributed across paired activity locations (see Equation (3)). A 

large value suggests more evenly distributed (or less laterality) [27, 29].  

 

𝐸𝑡 = − ∑ 𝑝(𝑡𝑟𝑣) × log (𝑝(𝑡𝑟𝑣))

𝑡𝑟𝑣∈𝑇

 (3) 

Where, 𝑡𝑟𝑣  denotes the travel between two specific activity locations (i.e., an origin-

destination pair); 𝑇 denotes a set of unique origin-destination pairs without considering direction; 

𝑝(𝑡𝑟𝑣) is the ratio of the number of observed travel events between an origin-destination pair to 

the total number of travel events by the user. Thus, ∑ 𝑝(𝑡𝑟𝑣) = 1𝑡𝑟𝑣∈𝑇 . 

 

The three indicators, namely Number of Activity Locations (𝑁𝑎), Activity Entropy (𝐸𝑎), and 

Travel Entropy (𝐸𝑡), are used to reveal whether private EV users tend to perform activities at a 

small number of specific activity locations and to move between these locations more frequently, 
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relative to all the activity locations they visited, so as to characterize the diversity and regularity 

of private EV users’ mobility patterns. The empirical findings are expected to be helpful for 

transport planners and infrastructure companies to better deploy charging facilities according to 

EV users’ specific activity and travel patterns. 

 

(4) Radius of Gyration (𝑹𝒈) 

𝑅𝑔 measures the range of activity space of a private EV user. A large value suggests that the 

user prefers to drive his/her EV to perform activities over a broad geographical area [13, 26, 54]. 

𝑅𝑔 can be calculated by Equation (4). 

 

𝑅𝑔 = √
∑ (𝑎𝑓𝑖 × ((𝑥𝑖 − 𝑥̅)2 + (𝑦𝑖 − 𝑦̅)2))𝑁

𝑖=1

∑ 𝑎𝑓𝑖
𝑁
𝑖=1

 (4) 

Where, (𝑥𝑖 , 𝑦𝑖) denotes spatial coordinates of the 𝑖𝑡ℎ activity location; (𝑥̅, 𝑦̅) is the center of 

mass of all activity locations, which can be calculated by (
∑ (𝑎𝑓𝑖×𝑥𝑖)𝑁

𝑖=1

∑ 𝑎𝑓𝑖
𝑁
𝑖=1

,
∑ (𝑎𝑓𝑖×𝑦𝑖)𝑁

𝑖=1

∑ 𝑎𝑓𝑖
𝑁
𝑖=1

). In the 

calculation, those frequently visited locations would contribute more to the result than those 

locations with less visitations. 

 

(5) K-Radius of Gyration (𝑹𝒈
𝒌) 

Instead of measuring all visited activity locations, 𝑅𝑔
𝑘, which was proposed by Pappalardo et 

al. [13], could help understand the role of the 𝑘 most important locations in determining the 

mobility range of an individual. Here, we treated the top 𝑘  most frequented visited activity 

locations of a private EV user as the 𝑘  most important locations (called top 𝑘  locations 

hereafter). 𝑅𝑔
𝑘 can be calculated by Equation (5). A large value of 𝑅𝑔

𝑘 suggests that the top 𝑘 
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locations can explain individual activity space to a large extent, while a small value indicates 

that the top 𝑘 locations play an insignificant role in determining one’s range of movements. 

Furthermore, the ratio of 𝑅𝑔
𝑘  to 𝑅𝑔  can be used to group EV users into k-returners and k-

explorers [13]. Specifically, k-returners  (defined as 𝑅𝑔
𝑘 ≥ 𝑅𝑔/2) are those individuals who have 

a propensity to intensively perform their activities at the top 𝑘 locations and the space covered 

by these locations approximates the overall activity space; while k-explorers (defined as 𝑅𝑔
𝑘 <

𝑅𝑔/2) prefer to explore outer space besides the given top 𝑘 locations. 

 

𝑅𝑔
𝑘 = √

∑ (𝑎𝑓𝑖 × ((𝑥𝑖 − 𝑥𝑘̅̅ ̅)2 + (𝑦𝑖 − 𝑦𝑘̅̅ ̅)2))𝑘
𝑖=1

∑ 𝑎𝑓𝑖
𝑘
𝑖=1

 (5) 

Where, (𝑥̅𝑘, 𝑦̅𝑘) denotes the center of mass of top 𝑘 locations.  

 

The two indicators, namely Radius of Gyration (𝑅𝑔) and K-Radius of Gyration (𝑅𝑔
𝑘), are used 

to characterize the spatial extent of private EV users’ activity space. The insights would inform 

the design of EVs (particularly, the EV battery capacity). In general, a larger activity space 

indicates a need for a larger EV on-board battery. 

 

(6) Unicity (𝑼𝒌) 

𝑈𝑘 is used to measure the uniqueness of mobility traces of private EV users. An EV user is 

considered as unique when at least one of the activity locations visited by the user had never 

been accessed by the others. Since activity locations are a collection of spatial points and it is 

difficult to define a spatial relationship between points, we quantified the uniqueness at the level 

of spatial analysis units (SAUs), including grid and traffic analysis zone [11, 26]. 
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Given a collection of an EV user’s activity locations {𝑎𝑙1, 𝑎𝑙2, ⋯ , 𝑎𝑙𝑁} and a set of SAUs 

{𝑠𝑎𝑢1, 𝑠𝑎𝑢2, ⋯ , 𝑠𝑎𝑢𝑧} , we mapped activity locations into SAUs, counted the visitation 

frequency at each SAU, sorted the SAUs in a descending order according to visitation frequency, 

and extracted the top 𝑘 SAUs for further analysis. We applied this procedure to all private EV 

users and described the uniqueness of EV users with their top 𝑘 SAUs. A private EV user was 

labeled as unique if at least one of the SAUs the user visited had never been accessed by the 

others. 𝑈𝑘 was defined as the ratio of the number of unique private EV users to the total number 

of users, as presented by Equation (6). 

 

𝑈𝑘 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝐸𝑉 𝑢𝑠𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑡𝑜𝑝 𝑘 𝑆𝐴𝑈𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝐸𝑉 𝑢𝑠𝑒𝑟𝑠 
 (6) 

 

Understanding the uniqueness of mobility traces of private EV users relative to others with 

the indicator Unicity (𝑈𝑘) would inform the suitable development strategies for public charging 

facilities. For example, it could help us to figure out whether it would be better to deploy large 

charging stations at a few places than to deploy small charging stations at many places (so as to 

extend the coverage of charging network). 

 

In addition, two indicators (namely Average Daily Travel Distance and Proportion of Travel 

Distance on Different Road Types) were particularly used to characterize driving patterns of 

private EV users [55]. 
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(7) Average Daily Travel Distance (ADTD) 

Given a set of EV travel distances from different travel days {𝑇𝐷1, 𝑇𝐷2, ⋯ , 𝑇𝐷𝑁𝑑
}  for a 

private EV user, its ADTD can be calculated by Equation (7). A larger value indicates that the 

private EV user needs to travel a longer distance for its daily activities. 

 

𝐴𝐷𝑇𝐷 =
∑ 𝑇𝐷𝑖

𝑁𝑑
𝑖=1

𝑁𝑑  
 (7) 

Where, 𝑁𝑑 denotes the total number of travel days in one month for a private EV user; 𝑇𝐷𝑖 

denotes the travel distance in the 𝑖𝑡ℎ travel day for the user. 

 

(8) Proportion of Travel Distance (PTD) on Different Road Types 

For private EV users, they may have heterogenous preferences in planning a route from one 

activity to another. Here, we used the indicator, Proportion of Travel Distance on Different Road 

Types, to indicate EV users’ preferences toward different levels of road links, namely, arterial 

road and above (with three lanes and above for one direction), secondary road (with two lanes 

for one direction), and branch (with one lane for one direction), in route choice. This can be 

mathematically represented by a vector (see Equation (8)). It is worth noting that the level of 

road links chosen is closely associated with electricity consumption of EVs [56, 57]. 

 

(𝑃𝑇𝐷𝑎, 𝑃𝑇𝐷𝑠, 𝑃𝑇𝐷𝑏) = (
𝑇𝐷𝑎

𝑇𝐷𝑎 + 𝑇𝐷𝑠 + 𝑇𝐷𝑏
,

𝑇𝐷𝑠

𝑇𝐷𝑎 + 𝑇𝐷𝑠 + 𝑇𝐷𝑏
,

𝑇𝐷𝑏

𝑇𝐷𝑎 + 𝑇𝐷𝑠 + 𝑇𝐷𝑏 
) (8) 

Where, 𝑃𝑇𝐷𝑎, 𝑃𝑇𝐷𝑠, and 𝑃𝑇𝐷𝑏 denote the proportions of distances travelled on arterial roads 

and above, secondary roads, and branches, respectively; 𝑇𝐷𝑎 , 𝑇𝐷𝑠 , and 𝑇𝐷𝑏  denote the total 

distances travelled on arterial roads and above, secondary roads, and branches, respectively. 
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3.4 Exploring the Association between Mobility Patterns and the Built 

Environment: OLS and GWR Models 

It has been commonly accepted that human mobility patterns are associated with the built 

environment [14, 20, 40]. Particularly for EV users, their interaction with the built environment 

involves the influence of vehicles’ energy consumption and the availability of charging facilities. 

Therefore, we could observe that EV users’ mobility patterns are similar to their charging 

patterns (see Appendix C in the Supplementary Materials for more details).  

 

Here, we will explore how mobility patterns of private EV users may be associated with the 

built environment, using two typical regression models, i.e., ordinary least squares (OLS) and 

geographically weighted regression (GWR). For the spatial regression analysis, the OLS 

estimation is usually a good start point, as it is simple but could provide a global understanding 

of the association between mobility patterns and the built environment [15]. Further, since the 

spatial autocorrelation is found for mobility patterns of private EV users (described with the 

daily number of visitations to SAUs) and the built environment variables based on the Moran’ I 

test (see Appendix D in the Supplementary Materials for more details), GWR, which takes the 

spatial correlation into consideration, can be used to model the local (i.e., spatially varying) 

relationship between mobility patterns and the built environment [46, 58]. Compared with other 

similar local regression models, such as Multi-Scale GWR, GWR tends to be the most popular 

one and has been widely used in geographical [59] and transportation [40] studies. 

 

(1) Ordinary Least Squares (OLS) Model 
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OLS is a global model and uses least square approach to estimate the value of a dependent 

variable with one or more exploratory variables in a linear function form, as presented by 

Equation (9). The term global implies that the effect of exploratory variables on the dependent 

variable remains the same over space, and thus it fails to capture spatial non-stationarity [14, 20]. 

Although OLS does not account for spatial variability, it could examine the global effects of the 

built environment variables on mobility patterns of EV users. 

 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖, 𝑖 ∈ {1,2, ⋯ 𝑧}

𝑚

𝑘=1

 (9) 

Where,  𝑖 ∈ {1,2, ⋯ 𝑧}  denotes a SAU; 𝑘  denotes an exploratory variable; 𝑥𝑖𝑘  denotes the 

value of the 𝑘𝑡ℎ exploratory variable in the 𝑖𝑡ℎ SAU; 𝛽𝑘 denotes the estimated coefficient for 𝑥𝑖𝑘; 

𝛽0 denotes the intercept; 𝜀𝑖 denotes the error term; 𝑦𝑖 denotes the daily number of visitations to 

the 𝑖𝑡ℎ SAU by all private EV users in the trajectory dataset. 

 

(2) Geographically Weighted Regression (GWR) Model 

GWR [60] is particularly designed to model spatially heterogeneous data, explicitly 

considering the spatial effect of variables with incorporation of spatial locations of SAUs, as 

presented by Equation (10). As a local regression model, GWR can be viewed as an extension of 

OLS [14, 48]: specifically, it develops a regression model for each SAU only considering nearby 

observations (rather than all observations); meanwhile, those closer observations would have a 

greater influence on the targeted SAU compared to those further ones. 
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𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 + 𝜀𝑖, 𝑖 ∈ {1,2, ⋯ 𝑛}

𝑚

𝑘=1

 (10) 

Where, (𝑢𝑖 , 𝑣𝑖) denotes the spatial location of the 𝑖𝑡ℎ SAU; 𝛽0(𝑢𝑖, 𝑣𝑖) denotes the intercept; 

𝛽𝑘(𝑢𝑖, 𝑣𝑖)  denotes the regression coefficient for 𝑥𝑖𝑘 .  Unlike fixed 𝛽𝑘  in an OLS model, 

𝛽𝑘(𝑢𝑖, 𝑣𝑖) varies spatially in a GWR model, so as to measure spatial variation of observations. 

The spatially varying coefficient for each exploratory variable can be estimated using the 

weighted least square approach, in which the Gaussian kernel function is usually employed to 

calculate the spatial weight matrix [15, 61, 62]. 

4 Results and Discussion 

4.1 Characterizing Mobility Patterns of Private EV Users in Beijing 

The calculation of eight mobility indicators for private EV users in Beijing was implemented 

through the programming language Java and was conducted on a desktop computer with a 

“Intel(R) Core (TM) i7-10700 CPU @ 2.90GHz” processor and 16 GB RAM. The total running 

time for calculating the mobility indicators was 49.2 minutes. 

4.1.1 Diversity and Regularity of Private EV Users’ Mobility Patterns 

We will first present the diversity and regularity in private EV users’ activity and travel 

patterns with three indicators, i.e., the number of activity locations (𝑁𝑎), activity entropy (𝐸𝑎), 

and travel entropy (𝐸𝑡).  

 

(1) The Number of Activity Locations (𝑵𝒂) 
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It can be found from Fig. 5-(a) that the distribution of 𝑁𝑎 is skewed to right, suggesting that a 

significant proportion of private EV users tended to perform activities at a small number of 

locations (with an average 𝑁𝑎 of 13.57 per month). Similar mobility patterns were observed for 

mobile phone users in Singapore (the average 𝑁𝑎 was 14.24) in the work by Xu et al. [26], 

which used a 50-day mobile phone dataset. Further, Fig. 5-(b) shows the differences between 

EV users from the three district categories (namely center area, suburb, and outer suburb, as 

shown in Fig. 1) in the number of activity locations visited, 𝑁𝑎. It can be found that private EV 

users from the suburb and outer suburb of Beijing were slightly prone to visit more activity 

locations than those from the central area. For example, the average numbers for EV users from 

the suburb and outer suburb were 14.38 and 14.29, respectively; while the average number was 

13.13 for those from the central area. A possible reason might be that the central area tended to 

have a higher density of activity facilities (see Fig. 2), which allowed EV users to get access 

more easily to different activity facilities in one place. As a result, EV users could visit fewer 

places. 

  

(a) The distribution of 𝑁𝑎 for all private EV users 
(b) 𝑁𝑎 distributions for EV users from three 

different district categories 

Fig. 5 The number of activity locations (𝑁𝑎) 
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(2) Activity Entropy (𝑬𝒂) 

Fig. 6-(a) shows the distribution of 𝐸𝑎  for overall private EV users, generally following a 

normal distribution (with a 𝑚𝑒𝑎𝑛 = 1.83 and 𝑠𝑡𝑑 = 0.50). It can be found that private EV users 

tended to prefer to perform activities at a small number of activity locations relative to the 

number of all the locations visited (indicating regularity to some extent). Take the median value 

of 𝑁𝑎 (which is equal to 12) as an example, it can be estimated that a user’s random visitation at 

12 activity locations (see Fig. 5-(a)) would result in a median value of 2.48 for 𝐸𝑎, which is 

higher than the actual median value of 1.82. Compared with mobile phone users in Singapore 

(the mean 𝐸𝑎  was 1.10) [26], the private EV users in Beijing tended to have a less regular 

activity pattern (with an average 𝐸𝑎 of 1.83), though the average numbers of activity locations 

visited are close to each other for private EV users in Beijing and mobile phone users in 

Singapore. Meanwhile, Fig. 6-(b) reveals that the regularity of activity patterns of the EV users 

from the three district categories was highly similar, probably because most of the EV users had 

a much higher frequency of performing their activities at a small number of locations, such as 

home and workplace. 

 

  

(a) The distribution of 𝐸𝑎 for all private EV users (b) 𝐸𝑎 distributions for EV users from three 
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different district categories 

Fig. 6 Activity entropy (𝐸𝑎) 

 

(3) Travel Entropy (𝑬𝒕) 

𝐸𝑡 measures the regularity of travel patterns of private EV users. Fig. 7-(a) shows that the 

distribution of 𝐸𝑡 generally follows a normal distribution (with a 𝑚𝑒𝑎𝑛 = 2.17 and 𝑠𝑡𝑑 = 0.75), 

revealing that private EV users did have regular travel patterns. The distribution of 𝐸𝑡 is similar 

to that of 𝐸𝑎 (see Fig. 6-(a)), because travel is commonly considered as a derived demand for 

performing activities, which is the essential concept of activity-based travel demand modelling 

[63]. Aa a result, we would expect that private EV users’ travel events were mostly associated 

with those frequently visited activity locations, rather than all the visited locations. Since EVs’ 

charging demand is closely associated with their mobility behavior, we could further speculate 

that the distribution of charging demand was likely to be spatially uneven and there was a higher 

charging demand at those activity locations that were visited frequently. Such empirical findings 

would be helpful for deployment of charging infrastructure: we could deploy charging facilities 

at those locations that EV users tend to visit more frequently. The regularity of travel patterns of 

private EV users in Beijing (with an average 𝐸𝑡 of 2.17) is similar to that of mobile phone users 

in Singapore (with an average 𝐸𝑡  of 2.28) [26]. In addition, we did not find significant 

differences between the three district categories in the regularity of travel patterns, as shown in 

Fig. 7-(b). 
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(a) The distribution of 𝐸𝑡 for all private EV users 
(b) 𝐸𝑡 distributions for EV users from three different 

district categories 

Fig. 7 Travel entropy (𝐸𝑡) 

 

Furthermore, we also examined the temporal difference between working and non-working 

days in the diversity and regularity of private EV users’ mobility patterns (see Appendix E in the 

Supplementary Materials). The results suggest that a larger proportion of private EV users 

tended to have less diverse activity locations and more regular activity and travel patterns on 

working days. This might be because private EV users tended to have more mandatory activities 

(e.g., work) generally with a fixed location on working days.  

4.1.2 Spatial Extent of Private EV Users’ Mobility Patterns 

We used another two indicators, namely radius of gyration (𝑅𝑔) and k-radius of gyration (𝑅𝑔
𝑘), 

to describe the spatial extent of private EV users’ overall activity space and the EV users’ 

activity space that was only made up of top 𝑘 activity locations, respectively.  

 

(1) Radius of Gyration (𝑹𝒈) 

As shown in Fig. 8-(a), the distribution of 𝑅𝑔 is highly skewed to right, indicating that most of 
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the private EV users tended to move around in a small geographical area. The mean 𝑅𝑔 

(specifically 6.90 km) for private EV users in Beijing is larger than the value (specifically 4.78 

km) for mobile phone users in Singapore [26]. Meanwhile, Pappalardo et al. [64] and 

Pappalardo et al. [13] found that the probability distribution of 𝑅𝑔 for CV users in the central 

Italy generally followed the truncated power-law (i.e., (𝑅𝑔 + 𝑅0)−𝛼𝑒𝑥𝑝−𝑅𝑔 𝑅𝑐𝑢𝑡⁄ ), which cannot 

be found in our case for private EV users in Beijing, as shown in Fig. 8-(b). Fig. 8-(c) compares 

the differences between the three district categories in the range of private EV users’ activity 

space: (1) the EV users from the central area tended to have a smaller 𝑅𝑔 (specifically 6.90 km 

on average) than those from the suburb users (specifically 8.86 km on average); (2) the 

proportion of EV users with 𝑅𝑔 ranging from 20 to 35 km was more remarkable for the outer 

suburb, and also a larger proportion of EV users from the outer suburb had a rather small 𝑅𝑔 

with a median value of 5.21 km. This may be attributed to different degrees of development in 

the three district categories, as well as the unique geographic relationships between them. 

Specifically, the central area has a much higher density of activity facilities (see Fig. 2), which 

generates more activity opportunities (e.g., employment opportunities) for the EV users not only 

from the central area but also from the suburb and outer suburb. As a result, the EV users 

particularly from the outer suburb had a longer travel distance if they need to travel to the 

central area. However, the long travel distance might also discourage some of the EV users to 

perform activities in the central area. Instead, they might just use activity facilities in the outer 

suburb. Note that we also explored the temporal difference in 𝑅𝑔  (see Appendix E in the 

Supplementary Materials). 
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(a) The distribution of 𝑅𝑔 for all private EV users 
(b) The probability distribution of 𝑅𝑔 for all private 

EV users 

 

 

(c) 𝑅𝑔 distributions for EV users from three 

different district categories 
 

Fig. 8 Radius of gyration (𝑅𝑔) 
 

 

(2) Radius of Gyration (𝑹𝒈) versus K-Radius of Gyration (𝑹𝒈
𝒌) 

Fig. 9 shows the relationship between 𝑅𝑔
𝑘  (𝑘 = 2, 4, 8) and 𝑅𝑔 . Each point in the figure 

represents a specific pair of 𝑅𝑔
𝑘 and 𝑅𝑔, and we used the color to indicate the number of private 

EV users at a specific point. The location of a point in the coordinate space provides insights 

into the extent to which the EV user’s top 𝑘 locations could represent the user’s overall activity 

space. Specifically, for those points located along the diagonal (i.e., 𝑅𝑔
𝑘 is close to 𝑅𝑔), the EV 

users’ top 𝑘  locations could well explain their overall activity space; while for those points 

located along the x-axis, the EV users’ top 𝑘 locations could not represent their overall activity 
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space. By comparing the subfigures (a)-(c), we found that with an increase in the number of top 

𝑘  locations used, more points move away from the x-axis, but move towards the diagonal, 

indicating that using a higher number of top 𝑘 locations could help to better present the EV 

users’ overall activity space. This was also observed in the work by Pappalardo et al. [13], which 

explored the CV users’ mobility patterns in the central Italy. 

 

   
(a) 𝑘 = 2 (b) 𝑘 = 4 (c) 𝑘 = 8 

Fig. 9 𝑅𝑔 versus 𝑅𝑔
𝑘 for all private EV users 

 

(3) K-Returners/K-Explorers 

Private EV users can be defined as k-returners or k-explorers according to the ratio of 𝑅𝑔
𝑘 to 

𝑅𝑔 (see Section 3.3 for the definitions). Fig. 10 shows the percentage of k-returners (𝑘 = 2, 4, 8) 

by day and geographical region. The following conclusions can be drawn:  

 

 There were around 60% of all private EV users were 2-returners, meaning that more than 

half of overall activity space can be explained by the top 2 locations (most likely home 

and workplace) for around 60% of private EV users. While in the work by Xu et al. [26], 

more than 70% of mobile phones users in Singapore were 2-returners. Furthermore, the 

proportion of k-returners would rise to around 95% when the 𝑘 is set to 8 (see Fig. 10-(a)). 

 There were less returners (i.e., more explorers) in the outer suburb for 𝑘 = 2, 4, 8 than the 
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central area and suburb, indicating that more EV users from the outer suburb were more 

likely to explore the outer space beyond their top 𝑘 activity locations. As a result, some 

EV users from the outer suburb had very large activity space (see Fig. 8-(c)).  

 There was a higher proportion of 2-returners on working days. This might be because the 

general top 2 locations would be home and workplace for the majority of private EV users 

on working days. However, there was no significant difference between working days and 

non-working days in the proportions of 4-returners and 8-returners.  

 

   

(a) Overall mobility patterns 
(b) Mobility patterns on working 

days 

(c) Mobility patterns on non-

working days 

Fig. 10 Percentages of k-returners (𝑘 = 2, 4, 8) by day and geographical region. Note that the 

percentage of k-explorers can be calculated by subtracting the percentage of k-returners from 

100%.  

4.1.3 Uniqueness of Private EV Users’ Mobility Patterns 

We further explored the uniqueness of private EV users’ mobility patterns with a typical 

indicator, i.e., Unicity (𝑈𝑘), particularly considering the modifiable areal unit problem (MAUP). 

Specifically, we used the four types of spatial analysis unit (SAU) in quantification of 

uniqueness, namely 1×1 km grid, 2×2 km grid, 4×4 km grid, and traffic analysis zone (TAZ). 

Fig. 11 shows the percentage of uniquely identified private EV users when the top 2 to 10 SAUs 

were used to extract from EV users’ mobility. As found by Xu et al. [26], over 90% of mobile 

phone users could be uniquely identified in Singapore with only five 1×1 km grids visited; 
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while our results reveal a higher level of uniqueness for private EV users in Beijing at the same 

spatial scale: the uniqueness degree in our case was almost 100%, see Fig. 11-(a). Also, we 

found that the uniqueness could remain at an extremely high level (specifically, above 95%) 

even a lower-resolution spatial analysis unit (e.g., 2×2 km grid or TAZ) was used. Compared 

with 1×1 km and 2×2 km grids, 4×4 km grids would significantly weaken the ability to 

uniquely distinguish between EV users, especially when a small number of SAUs visited (e.g., 

from 2 to 5) was used. Besides, there was no significant difference between working days and 

non-working days in the uniqueness of private EV users’ mobility patterns (see subfigures (b) 

and (c)). 

 

   

(a) Overall mobility patterns 
(b) Mobility patterns on working 

days 

(c) Mobility patterns on non-

working days 

Fig. 11 Percentages of unique private EV users   

4.1.4 Driving Patterns of Private EV users 

(1) Average Daily Distance Travelled (ADDT) 

Fig 12-(a) shows the distribution of ADTD. It can be found the mean ADTD for private EV 

users was 37.35 km (the ADTD for car travelers in Beijing in 2018 was 31.30 km [65]) and 

there were only 1.79% of private EV users having the ADTD over 100 km, suggesting that for 

most private EV users, only a short travel distance (relative to their electric driving range) was 

needed to meet their daily activity demand. Compared with the previous work by Hao et al. [52], 
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which used a dataset containing only 58 private EV users in Beijing, the ADTD in our study was 

much shorter than that (i.e., 44.8 km) from their study. This indicates the advantage of using a 

much larger dataset and more representative samples (over 76,000 EV users) in our study: the 

dataset could more accurately characterize EV mobility patterns. Also, we compared ADTDs of 

private EV users from the three different district categories, as shown in Fig. 12-(b). It can be 

found that the private EV users from the central area tended to have a shorter ADTD 

(specifically 34.52 km on average) than those from the suburb users (specifically 42.71 km on 

average). Meanwhile, the proportion of EV users with an ADTD longer than 100 km was more 

remarkable for the outer suburb, and also a large proportion of EV users from the outer suburb 

had a rather short ADTD with a median value of 27.41 km. Similar patterns were observed for 

the indicator Radius of Gyration (𝑅𝑔). This may be because that a large activity space usually 

results in a longer travel distance. 

 

  
(a) The distribution of ADTD for all private EV 

users 

(b) ADTD distributions for EV users from three 

different district categories 

Fig. 12 Average daily travel distance (ADTD) 

 

(2) Proportion of Travel Distance (PTD) on Different Road Types  

As shown in Fig. 13-(a), the PTDs on arterial roads and above, secondary roads, and branches 
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for private EV users were 28.95%, 35.88%, and 35.17%, on average. Compared with the actual 

proportions of these three levels of road links in Beijing (i.e., 8.45%, 34.94% and 56.61%, 

respectively), it can be found that in general, private EV users had preferences towards arterial 

roads and above in their route choice. This may be attributed to a higher driving speed allowed 

and less traffic congestion on arterial roads and above. Also, we compared PTD distributions for 

private EV users from the three different district categories, as shown in Fig. 13-(b). The results 

show that the private EV users from the central area tended to use more arterial roads and above 

in their journeys than those from the suburb and outer suburb. This is likely because that there 

was a larger proportion of higher level of road links (e.g., express ways and arterial roads) in the 

central area. 

 

  
(a) The distributions of PTDs for all private EV 

users 

(b) PTD distributions for EV users from three 

different district categories 

Fig. 13 Proportion of travel distance (PTD) on different road types  
 

4.2 Association between Mobility Patterns and the Built Environment 

We estimated OLS and GWR models within ArcMap 10.2 software package on a desktop 

computer with a “Intel(R) Core (TM) i7-10700 CPU @ 2.90GHz” processor and 16 GB RAM 
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to explore the possible association between mobility patterns of private EV users and the built 

environment. Before applying these two categories of models, we first examined the multi-

collinearity issue, and eliminated those exploratory variables with a variance inflation factor 

(VIF) above 7.5 [45, 66]. Furthermore, all the remaining variables passed the test of Moran’s I 

(see Appendix D in the Supplementary Materials for more details) and were used in both OLS 

and GWR models. The running time for estimating the OLS models varied from 3 to 12 seconds 

depending on the type of SAUs used (namely, 1×1 km grid, 2×2 km grid, 4×4 km grid, and 

TAZ), while the running time for estimating the GWR models varied from 5 to 30 seconds. 

4.2.1 OLS Model Results 

Table 2 shows the estimated OLS models by SAU for both working days and non-working 

days. The statistically significant variables are almost the same for working days and non-

working days with few exceptions. However, we found the classical modifiable areal unit 

problem (MAUP) [46, 66] in the model estimation. Specifically, we identified different 

statistically significant variables with different SAUs used. For example, the variable, Scenic 

Spots, had a significantly positive association with the generation of EV trips according to the 

OLS model for the 4×4 km gird, while there was a significantly negative association according 

to the OLS model for TAZ. Therefore, we will only look at those variables which are 

statistically significant in all the models so as to reduce the influence of MAUP. Gymnasia is 

found as the only variable which is statistically significant in all the eight models; while 

previous studies identified Companies/Enterprises and Residential Buildings as statistically 

significant variables to the travel demand with vehicle-related transport modes used (e.g., car-

hailing, taxi and bus) [66-69]. 
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Table 2 OLS model estimation results 

Variables 

Estimated Coefficients of Exploratory Variables 

Working Days Non-working Days 

1×1 

km 

grid 

2×2 

km 

grid 

4×4 

km 

grid 

TAZ 

1×1 

km 

grid 

2×2 

km 

grid 

4×4 

km 

grid 

TAZ 

Intercept 0.447 -2.941 -7.154 16.126 0.580 -0.803 -3.019 9.619 

Transport 

Infrastructure 
0.829 1.059 － 0.125 0.803 1.070 － 0.086 

Educational 

Institutions 
2.174 4.138 － 2.112 1.524 2.911 － 1.677 

Financial Institutions 0.651 0.513 1.142 1.280 0.591 0.706 1.102 1.024 

Scenic Spots 0.020 0.335 1.232 -0.261 -0.064 0.056 0.378 -0.306 

Culture/Media 

Facilities 
1.503 2.609 1.513 0.819 0.108 0.222 -1.001 -0.261 

Health Care Facilities -0.165 -1.133 － 0.422 -0.117 -0.295 － 0.300 

Gymnasia 4.423 7.237 16.133 4.750 3.396 6.396 13.036 3.719 

Government Agencies -0.119 -0.108 -0.291 -0.083 -0.240 -0.013 0.643 -0.062 

Service Facilities 0.963 － － 0.636 0.810 － － 0.639 

Commercial 

Establishments 
-0.074 － － -0.088 0.053 － － 0.027 

Companies/Enterprises -0.390 -0.323 1.033 -0.766 -0.725 -0.725 0.291 -0.754 

Residential Buildings -0.722 -1.237 -1.230 -0.731 -0.419 -0.639 -0.424 -0.447 

Note: (1) coefficients highlighted in bold are statistically significant at the 0.05 level; (2) “－”: denotes the 

variables that have been eliminated from the final models due to the multi-collinearity issue. 

4.2.2 GWR Model Results 

We first compared the performance of OLS and GWR models using three typical indictors, 

𝐴𝐼𝐶𝑐, 𝑅2, and Adjusted 𝑅2, as shown in Table 3. Overall, GWR models outperform OLS models 

on both working days and non-working days, and also at all the SAU levels. 

 

Table 3 OLS and GWR model performance 

Indicators 

Working Days Non-working Days 

1×1 km 

grid 

2×2 km 

grid 

4×4 km 

grid 
TAZ 

1×1 km 

grid 

2×2 km 

grid 

4×4 km 

grid 
TAZ 

𝑨𝑰𝑪𝒄 
OLS 54777.281 23482.249 9020.954 19205.775 49930.436 22331.401 8832.484 18159.874 

GWR 48690.980 21478.639 8609.670 17824.261 44949.342 20696.010 8447.149 17022.199 

𝑹𝟐 
OLS 0.666 0.791 0.878 0.510 0.701 0.815 0.888 0.581 

GWR 0.914 0.958 0.949 0.808 0.922 0.941 0.951 0.813 

Adjusted 

𝑹𝟐 

OLS 0.665 0.790 0.877 0.507 0.700 0.814 0.887 0.579 

GWR 0.891 0.937 0.938 0.779 0.893 0.924 0.940 0.786 
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Tables 4 shows the estimated GWR models on working days (see Appendix F in the 

Supplementary Materials for the estimated GWR models on non-working days). We found 

similar patterns on working days and non-working days: for nearly all exploratory variables, 

their local coefficients varied from a negative value to a positive one. This can be found even for 

those variables that are positively associated with EV travel demand at the global level, such as 

Gymnasia (see Table 2). This means that most of the built environment variables had spatially 

varying relationships with the EV users’ mobility patterns. 

 

Table 4 GWR model estimation results on working days  

Variables 

Estimated Coefficients of Exploratory Variables 

1×1 km grid 2×2 km grid 4×4 km grid TAZ 

Min Max Min Max Min Max Min Max 

Intercept -3.481 95.808 -25.059 307.393 -233.740 97.703 2.313 40.152 

Transport 

Infrastructure 
-0.434 4.850 -3.052 7.448 － － -0.728 4.263 

Educational 

Institutions 
-1.129 5.132 -2.385 7.141 － － 0.208 3.085 

Financial Institutions -5.354 6.810 -9.933 10.562 -3.557 12.882 -0.962 5.094 

Scenic Spots -4.104 3.647 -14.981 6.029 -2.956 4.116 -1.187 1.417 

Culture/Media 

Facilities 
-6.450 7.603 -17.411 13.722 -2.328 20.385 -3.331 9.157 

Health Care Facilities -3.297 7.738 -13.456 15.247 － － -1.624 8.170 

Gymnasia -4.331 9.323 -7.041 14.463 0.239 22.157 0.646 8.093 

Government Agencies -2.361 3.291 -5.815 5.949 -4.958 3.685 -2.752 1.940 

Service Facilities -1.233 1.767 － － － － -2.696 4.898 

Commercial 

Establishments 
-0.856 0.884 － － － － -0.857 0.955 

Companies/Enterprises -3.935 9.124 -5.364 12.334 -1.267 6.506 -0.336 0.506 

Residential Buildings -4.336 3.500 -8.357 6.505 -5.616 4.343 -4.457 2.666 

Note: “－”: denotes those variables were eliminated from the final models due to the multi-collinearity issue. 

 

We further explore the spatial variances in the local coefficients for two typical variables, 

namely Residential Buildings and Companies/Enterprises (which are generally associated with 

home and work activities of travelers, respectively), using GWR models for 1×1 km grid and 

TAZ on working days for example. Note that we found similar patterns on working days and 
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non-working days, and for GWR models for 2×2 km grid and 4×4 km grid (as presented in 

Appendix G in the Supplementary Materials). We particularly looked at Companies/Enterprises 

and Residential Buildings, as these variables were generally expected to be associated with EV 

users’ commuting patterns, but were found not statistically significant at the global level 

according to the OLS models (see Table 2). To avoid the possible influence of the modifiable 

areal unit problem (MAUP) [66], our discussion below will be focused on the common patterns 

observed in both 1×1 km grid and TAZ. 

 

(1) Spatial Variance in the Local Coefficients for Residential Buildings 

For those positive coefficients, they were mostly located in city center and those central areas 

of the suburb, as shown in Fig. 14. This was likely because a large proportion of private EV 

users lived in these areas, which generated more EV trips originated from or destinated to their 

homes. For those negative coefficients, they mostly appeared in the areas around the city center 

where we can find many large residential communities. For instance, two of the most famous 

ones called Hui-Long-Guan and Tian-Tong-Yuan were located in the northwest and north areas 

away from the city center, in which we could observe significantly negative local coefficients 

for Residential Buildings (see Fig. 14). This may be attributed to the competition between EV 

and the other transport modes (e.g., metro). It is generally easy to access to public transit in 

these large residential communities [40], and the residents (especially for commuters) would 

prefer to travel through subway system if there is a subway station nearby [16], which could 

help to get rid of traffic congestion and save travel time. 
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(a) 1×1 km grid (b) TAZ 

Fig. 14 Spatial distribution of coefficients estimated for the variable Residential Buildings on 

working days (Note that those SAUs with no private EV visitation were eliminated from the 

GWR estimation) 

 

(2) Spatial Variance in the Local Coefficients for Companies/Enterprises 

For both 1×1 km grid and TAZ, the positive coefficients were mostly located in the city 

center (where CBD and Beijing Financial Street are located) and the northwest area adjacent to 

the city center (e.g., Xi-Er-Qi, where many high-tech companies are clustered), as shown in Fig 

15. In addition, the areas which is southeast away from the city center (highlighted with a black 

circle in the figure) also had positive coefficients, as it is located in the economic development 

zone of Beijing. All the areas above have a high density of workplaces.  
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(a) 1×1 km grid (b) TAZ 

Fig. 15 Spatial distribution of coefficients estimated for the variable Companies/Enterprises on 

working days (Note that those SAUs with no private EV visitation were eliminated from the 

GWR estimation)  

5 Conclusions and Future Work 

This paper characterized mobility patterns of private EV users using a unique one-month 

dataset comprising moving trajectories of 76,774 actual private EVs in January 2018 in Beijing. 

Specifically, we used eight mobility indicators, namely the number of activity locations (𝑁𝑎), 

activity entropy (𝐸𝑎), travel entropy (𝐸𝑡), radius of gyration (𝑅𝑔), k-radius of gyration (𝑅𝑔
𝑘), 

unicity (𝑈𝑘), average daily travel distance (ADTD), and proportion of travel distance (PTD) on 

different road types, to characterize the diversity, regularity, spatial extent and uniqueness of 

private EV users’ mobility patterns. The statistical distributions of these indicators show that 

most private EV users had both regular travel and activity patterns with special preferences 

towards some specific activity locations relative to all the activity locations they visited. Also, 

they tended to perform activities within a small geographical area and have a short daily travel 

distance (relative to their electric driving range). Furthermore, private EV users’ mobility traces 
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tended to be highly unique to each other. In addition, we used the ordinary least squares (OLS) 

and geographically weighted regression (GWR) models to explore the potential association 

between mobility patterns of private EV users and the built environment (described with POIs), 

particularly considering the modifiable areal unit problem (MAUP). Overall, GWR models 

outperformed OLS models, as the former captured the spatially varying relationships between 

mobility patterns and the built environment variables. Due to the MAUP, most of the statistically 

significant built environment variables varied across spatial analysis units (SAUs). Gymnasia 

was found as the only variable with the significantly positive coefficient in all the global models.  

 

Our findings on private EV users’ mobility patterns have several important implications for 

EV-related policymaking and infrastructure planning. First, private EV users tended to perform 

activities more frequently at some specific activity locations among all the locations they visited. 

Since EVs’ charging demand is closely associated with their mobility behavior, there was a 

higher charging demand at these activity locations with more frequent visitations. Therefore, it 

is of significant importance to prioritize the deployment of charging facilities at these activity 

locations that were visited frequently (e.g., the residential places and workplaces of private EV 

users). Second, most private EV users tended to move around within a small activity space and 

have a short daily travel distance (relative to their electric driving range), and thus the current 

EV battery capacity (64% of battery EVs produced in China in 2018 had a range of over 300 km 

[70]) is large enough to meet their daily mobility demand. Therefore, instead of over-emphasis 

on the provision of those long-range EVs, more supportive policies (e.g., fiscal subsidy and free 

parking) and charging infrastructure should be developed to promote the uptake of EVs [52]. 
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Third, considering that the high uniqueness of private EV users’ mobility traces, it would be 

better to deploy small charging stations across the city, rather than to deploy large charging 

stations at a few places. This would help extend the coverage of charging network and thus 

provide more charging opportunities. 

 

Our future work will be focused on the following several aspects: first, only a one-month 

trajectory dataset was used in this study to characterize private EV users’ mobility patterns and it 

would be interesting to further examine whether the monthly or seasonal effects on private EV 

users’ mobility patterns exist, for example, using a one-year dataset. Second, since there may be 

a nonlinear relationship between mobility patterns of private EV users and the built environment 

variables, advanced machine learning techniques, such as the Interpretable Memristive LSTM 

Network [71] and Gradient Boosting Decision Trees [72], could be used to capture the possible 

nonlinear impacts and further to predict the future mobility patterns of private EV users. Third, 

the empirical findings about the mobility patterns of private EV users could be further used in 

modelling of private EV users’ mobility behaviors. For example, we could use the mobility 

patterns to define behavioral rules in an agent-based travel behavior model for private EV users. 
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