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The complexity of current electricity wholesale markets and the increased volatility of electricity prices due

to the intermittent nature of renewable generation make independent power producers (IPPs) face signif-

icant challenges to submit offers. This challenge increases for those owning traditional coal-fired thermal

generators and renewable generation. In this paper, an integrated stochastic optimal strategy is proposed

for an IPP using the self-scheduling approach through its participation in both day-ahead and real-time

markets (i.e., two-settlement electricity markets) as a price taker. In the proposed approach, the IPP submits

an offer for all periods to the day-ahead market, for which a multistage stochastic programming setting is

explored for providing real-time market offers for each period as a recourse. This strategy has the advan-

tage of achieving overall maximum profits for both markets in the given operational time horizon. Such a

strategy is theoretically proved to be more profitable than alternative self-scheduling strategies, as it takes

advantage of the continuously realized scenario information of the renewable energy output and real-time

prices over time. To improve computational efficiency, we explore polyhedral structures to derive strong

valid inequalities, including convex hull descriptions for certain special cases, thus strengthening the formu-

lation of our proposed model. Polynomial-time separation algorithms are then established for the derived

exponential-sized inequalities to speed up the branch-and-cut process. Finally, both numerical and real case

studies demonstrate the potential of the proposed strategy.
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1. Introduction

Environmentally friendly policies and government incentives, such as tax benefits and renewable

energy certificate programs, have resulted in renewable energy becoming increasingly important

in global power systems (U.S. DOE 2008, Agora Energiewende and Sandbag 2019). This increase

in renewable generation can help significantly reduce emissions and has profoundly influenced

electricity market economics and operations. This trend brings challenges for market participants,

such as independent power producers (IPPs), whose generation portfolios consist of coal-fired

generators and renewable generation, as they must well utilize their renewable generation resources

when participating in wholesale electricity markets.
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The wholesale electricity markets in the U.S. and Europe mainly consist of day-ahead and real-

time markets for electricity trading, plus an ancillary service/reserve market to ensure that the

system remains reliable. The day-ahead market is cleared the day before the actual operating

day, and an independent system operator (ISO) (or transmission system operator (TSO)) takes

offers from sellers (e.g., IPPs) and buyers (e.g., utilities) and clears the market, thus ensuring the

power system’s balance and security. In this financial commitment, day-ahead locational marginal

prices (LMPs) are calculated as the basis to compensate the sellers (Conejo et al. 2005) and

charge the buyers (Ott 2003). The real-time market is cleared 10 to 15 minutes before the actual

operating time. The ISO takes the real-time generation offers to cover the load discrepancy between

the day-ahead commitment and the real-time load. Real-time LMPs are calculated for financial

transactions. Within this framework, a market participant (e.g., an IPP) is allowed to participate

in one, two or all of the day-ahead, real-time, and ancillary service markets by submitting offers

to the ISO.

For the current U.S. wholesale markets, an IPP owning a coal-fired generator can submit a

three-part offer, a self-commitment offer or a self-scheduling offer. For the three-part offer, the

IPP submits a start-up offer, a minimum-energy offer, and an energy offer curve for ISOs to make

unit commitment decisions and economic dispatch amounts (Anderson and Philpott 2002, Fleten

and Pettersen 2005, Kwon and Frances 2012). For the self-commitment offer, the IPP submits

the unit commitment status of a generator for each operating hour, and the ISO decides the

economic dispatch amounts (Papavasiliou et al. 2015). For the self-scheduling offer, the IPP offers

the generation amount for each period for day-ahead and/or real-time markets as a price taker,

whatever the LMPs are. The IPP decides unit commitment and economic dispatch to meet the

generation amount committed in the offer (California ISO 2018, MISO 2020, Conejo et al. 2002,

Li et al. 2007). After the market clearing procedure is completed, (i) for the three-part offer

submissions, the IPP whose offer is selected is notified of the awards, including the unit commitment

status and generation amount at each period, (ii) the self-commitment IPPs are notified of the

generation amounts at each committed operating hour, and (iii) the self-scheduling IPPs are notified

of the price at each operating hour for financial settlement.

In practice, a significant number of IPPs submit self-commitment and self-scheduling offers.

Midcontinent ISO (MISO), the largest ISO in the U.S., reports that approximately 76% of coal-

fired and 33% of gas-fired power plants in MISO are running self-scheduling (UtilityDive 2020). The

Southwest Power Pool (SPP) conducts analysis and reports the detailed reasons (SPP 2019). Some

reasons are unavoidable such as periodic power plant emission performance tests, cogeneration

processes for electricity and others, and specific requirements following long-term maintenance

agreements with original equipment manufacturers. Other reasons provided in the industry include
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fulfilling long-term (some are over 40 years) bilateral contracts, accommodating the gas market

(the forward gas market is cleared before the day-ahead electricity market and the gas amount

to be purchased must be decided before the electricity offer is awarded), and smooth operation

transitions between two operating days considering the commitments of generators at the beginning

and end of the operational horizon (Papavasiliou et al. 2015).

On top of these practical considerations, the non-convexities in the day-ahead market, due to

commitment decisions in the electricity market clearing problem, result in energy prices not covering

all generator operating costs. That is, day-ahead LMPs may not cover start-up and no-load (or

minimum-load) costs, because these costs are not counted in the calculation to obtain LMPs. Thus,

a generator’s revenue obtained through following the ISO’s instruction may not reach that obtained

through self-scheduling (Gribik et al. 2007) (see an illustrative example in Online Supplement A.1

for the reader’s reference). This indicates that self-scheduling can be helpful for an IPP even in the

deterministic setting. Furthermore, in a multi-interval real-time market without non-convexities,

as shown in Hua et al. (2019), due to dynamics of the intervals used in market clearance and

ramping constraint of generators, following the ISO’s instructions could lead to a loss that cannot

be compensated by energy prices. When the uncertainty is considered, the problem becomes more

challenging to be solved. Although a multistage equilibrium is provided in Philpott et al. (2016)

to address hydro-thermal electricity systems under uncertainty, the system optimization problem

is a convex program, and commitment decisions are not considered.

Meanwhile, the recent increased penetration of renewable energy and the fluctuating electricity

demand, along with the traditional unexpected outages of generation and transmission compo-

nents, have led to both the day-ahead and real-time electricity prices being significantly volatile

(Valenzuela and Mazumdar 2003). Many IPPs owning coal-fired generators have invested in renew-

able energy and are investing in energy storage (Dunn et al. 2011, Eyer and Corey 2010), partially

with the consideration of obtaining renewable energy certificates to meet state renewable portfolio

standard requirements. For example, in the U.S., the law in California requires 33% of electricity

production to be from renewable sources by 2020, i.e., electric companies must hold renewable

energy certificates equivalent to 33% of their electricity sales (Evomarkets 2015). Considering that

the day-ahead offer amount for each operating hour must be fulfilled in real-time, it accordingly

affects the real-time offer amounts due to the thermal generator’s physical constraints, uncertain

renewable generation output, and uncertain prices. Thus, making day-ahead offer amount deci-

sions needs to consider real-time decisions as a recourse. Specifically, it is important for coal-fired

generator owners with renewable generation, to derive efficient approaches to participate in both

day-ahead and real-time markets (Löhndorf et al. 2010, 2013). The invested energy storage, together

with flexible ramping capability of the thermal generator, can accommodate the intermittency of
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renewable generation to obtain relatively stable profit. Thus, submitting offers combining thermal,

renewable, and energy storage sources is more profitable than submitting each one separately by

taking advantage of flexible ramping and energy storage.

In this paper, we investigate the optimal offer submission strategy for an IPP using the self-

scheduling option to maximize its total profit under both price and renewable generation output

uncertainties, by participating in both day-ahead and real-time markets. The IPP owns a coal-fired

generator and a wind farm, with energy storage (e.g., compressed air energy storage with a large

capacity of approximately several hundred megawatts and a lead acid battery with a relatively

low capacity of below 100 MW; see Eyer and Corey (2010), IEC (2011)). We utilize stochastic

programming approaches (Birge and Louveaux 2011, Wallace and Fleten 2003) to set up the self-

scheduling model and eventually provide the optimal offer amounts.

As the day-ahead market is cleared one day ahead of the real-time market, a two-stage stochastic

programming model can reflect the reality of the offer submission process. Under this setting, an

IPP submits the offer amounts to the day-ahead market (i.e., the first-stage decisions) considering

possible offer amounts to the real-time market (i.e., the second-stage decisions) under different

realizations of uncertain real-time market prices and renewable generation outputs as a recourse.

Accordingly, two-stage stochastic programming approaches (Carøe and Schultz 1998) have been

extensively utilized to enhance the offer submission process by solving self-scheduling unit com-

mitment problems. Studies of different market settings (Plazas et al. 2005, Heredia et al. 2010),

risk-constrained bidding strategies (Li et al. 2007), and hydrothermal scheduling (Wu et al. 2008)

have been conducted, and various solution approaches, including Benders decomposition (Wang

et al. 2008, Zheng et al. 2013) and Lagrangian relaxation (Papavasiliou and Oren 2013), have been

elaborated to solve the corresponding models.

In the above two-stage framework, the second-stage decisions, in terms of offer amounts to

the real-time market corresponding to each period, are assumed to be made at the beginning of

the operating day (e.g., before midnight). In practice, the real-time market is cleared every 15

minutes, and the real-time offer amounts can be submitted dynamically by adapting to uncertainty

realization at each period, thus utilizing the partial uncertainty that has been realized in the

real-time markets. For example, the real-time market offer amount for period t can be decided

at period t− 1, instead of before midnight. In this way, the renewable generation amounts and

electricity prices from periods 1 to t− 1 are realized. Uncertain information from period t to the

end of the operational horizon will also be more accurately presented, as the forecast becomes

further accurate when approaching the actual specific time slot. Thus, making an offer for period

t based on the historical information from periods 1 to t− 1, with the anticipation of uncertainty

from period t to the end of the operational horizon, fits well in practice and leads to an improved
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recourse for the first-stage decision with an increased overall expected profit. Therefore, in the

second stage, we take a scenario-tree-based multistage stochastic programming approach (Cerisola

et al. 2009) to decide the real-time offer amounts submitted to the real-time market corresponding

to each period, where the scenario tree can also help express the uncertain parameter dependencies

among different periods. Thus, this approach fits the real-time market operations better than the

two-stage approach, as multistage decisions are made by capturing the uncertainty dynamics over

the periods and incorporating multistage forecasting information with varying accuracy and by

modeling the renewable generation and electricity price dependencies among consecutive periods,

as reflected in practice. Multistage stochastic programming approaches were originally proposed

in the 1990s for power system operators (Carpentier et al. 1996, Takriti et al. 1996) to address

load uncertainty for vertically integrated utilities. Transmission constraints were later incorporated

in Wu et al. (2007). A multistage stochastic self-scheduling model for IPPs participating in the

day-ahead and ancillary service markets is proposed in Cerisola et al. (2009) and that for the real-

time market only is proposed in Pan and Guan (2016b). In Morales et al. (2010), a three-stage

stochastic programming model is developed for a wind power producer to participate in day-ahead,

adjustment, and balancing markets to address various uncertainties, where each stage corresponds

to day-ahead, adjustment, and balancing markets, respectively.

To accommodate both day-ahead and real-time markets, our innovative model includes a two-

stage stochastic programming framework with a multistage stochastic program embedded in the

second stage as a recourse. This leads to a large-scale deterministic equivalent formulation, for

which the computational complexity increases as the size of the scenario tree grows. To reduce

the computational burden and ensure the approach is practically useful, we explore strong valid

inequalities, which are customized for our innovative formulation and derived through the polyhe-

dral study of the corresponding polytope, as cutting planes (Guan et al. 2009) to strengthen the

formulation of our proposed model and speed up the branch-and-cut algorithm used to solve the

problem. Our main contributions are as follows:

1) We offer an innovative self-scheduling strategy for IPPs to participate in both day-ahead

and real-time markets, instead of the traditional approaches to participate in each market

separately, to ensure a high overall profit, by coordinating generation assets and day-ahead and

real-time markets. The proposed strategy can well capture current electricity market practices,

including the renewable generation amount and electricity price dependencies among different

periods.

2) We develop a new framework that combines two-stage and multistage stochastic programming

modeling approaches, in which the overall two-stage framework corresponds to the one offer

submission process in the day-ahead market and overall real-time market operations, and the
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multistage model corresponds to the multiple real-time offer submissions within the operating

day. This framework enables the IPPs to develop an optimal self-scheduling strategy to exploit

the synergy of renewable generation, the ramping capability of coal-fired generation, and

energy storage in a way that cannot be accomplished separately by two-stage and multistage

stochastic programming models.

3) We explore strong valid inequalities to efficiently solve the proposed model. Specifically, we

derive several families of strong valid inequalities, including convex hull descriptions for certain

special cases and multi-period strong valid inequalities for general cases, by exploring the

structures of the specific model and the scenario tree, to strengthen the formulation.

4) We show that theoretically our innovative model outperforms alternatives in terms of profit.

Our case studies confirm this finding and also show the effectiveness of our proposed strong

valid inequalities.

The remainder of this paper is organized as follows. We first introduce the notation and model for

the optimal self-scheduling strategy problem in Section 2, and then compare our proposed model

with alternatives to demonstrate that ours offers the best objective value in Section 3. Subsequently,

we explore strong valid inequalities to tighten the derived formulation and the corresponding

separation algorithms, thus improving the computational performance of our proposed model, in

Section 4. We conduct numerical and real case studies in Section 5 to verify the strength of our

model and the effectiveness of our strong valid inequalities in speeding up the branch-and-cut

algorithm used to solve the problem. The paper concludes in Section 6.

2. Offer Submission Process and the Model

Under the current electricity market framework, an IPP can submit offers at different periods to

day-ahead and real-time electricity markets to an ISO, as shown in Figure 1. To participate in the

day-ahead market, for each operating day (e.g., day m), the IPP is required to submit its day-ahead

offer (e.g., the offer amount for each period of day m) at noon the day before (e.g., day m− 1).

At some time in the afternoon (depending on different markets), the ISO runs the market-clearing

procedure (i.e., day-ahead unit commitment runs) and publishes the day-ahead LMPs for each

period of day m (MISO 2020). During the operating day (e.g., day m), the IPP can submit its

real-time offer by participating in the real-time market for each period (e.g., each operating hour)

of day m. The ISO publishes the real-time LMPs for each period after running security-constrained

economic dispatch problems. By using the self-scheduling strategy, the IPP can submit the offer

amounts to participate in both day-ahead and real-time markets. Under this policy, each offer is

guaranteed to be taken.

To model the offer submission process for an IPP participating in both markets, we propose a

two-stage framework, where the IPP submits day-ahead and real-time offers in the first and second
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· · · · · · · · · · · · · · ·
Noon

Submit day-ahead

offer for day m

Publish

day-ahead LMPs

Submit real-time

offer for time t

t

Day m− 1 Day m

Figure 1 Offer submission process for day-ahead and real-time markets

stages, respectively. We assume there are T periods in a given day (denoted by day m) and use

Figure 2 to illustrate this framework when there is no uncertainty involved. We use a solid node t

(t∈ {1,2, . . . , T}) in Figure 2 to represent the deterministic system state at period t of day m. We

use dt and rt to represent the day-ahead and real-time offer amounts, respectively, for each period

t of day m. In the first stage (on day m− 1), the IPP submits day-ahead offers (d1, d2, . . . , dT )

in one shot before noon, and in the second stage (on day m), the IPP submits real-time offers

(r1, r2, . . . , rT ) individually at each period.

· · · · · · · · · · · · · · ·
1 2 10 11 12 13 14 T − 2 T 1 2 t− 1 t s s+ 1 T

Noon

Submit day-ahead offer

(d1, d2, . . . , dT )

for day m in one shot

Submit real-time

offer rt for time t

r1 r2 rt−1 rs rs+1 rT−2 rT−1 rT

Day-ahead offer for day m
(submitted at day m− 1)

Real-time offer for day m
(submitted at day m)

Figure 2 Brief two-stage offer submission process

During the real-time offer submission process where uncertainty is generally involved, the IPP

can submit its offer when close to the actual operating period (e.g., one period ahead), so an

adaptive offer submission approach can be utilized by observing the uncertain real-time prices and

renewable generation outputs stage by stage as time goes on. Thus, to determine the real-time offer

amounts, we apply the scenario tree to represent the possible realizations of the real-time prices

and renewable generation outputs, and accordingly consider multistage decisions. We assume that

the uncertain parameters (i.e., real-time price and renewable generation output) during the real-

time operation follow a discrete-time stochastic process that evolves in a finite probability space,

and use a scenario tree T = (V,E) with T stages to describe the possible realizations, as shown in
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Figure 3. Note here that T = 24 for most industry practices. In addition, we add a parent node

(denoted as node 0, including T periods) to the root node of V (denoted as node 1) to indicate the

offer submission to the day-ahead market and let V̂ = V ∪ {0}. Each scenario node i ∈ V on stage

t of the tree provides the system state that can be distinguished by information available up to

stage t. Accordingly, corresponding to each node i∈ V, we let t(i) represent its time period in the

real-time operation, P(i) the set of nodes along the path from the root node (i.e., node 1) to node

i, and pi the probability associated with the state represented by node i. We use St to denote the

set of nodes in stage t. The decisions corresponding to each node i are assumed to be made after

observing the realizations of the problem parameters along the path from the root node to this

node i, but are nonanticipative with respect to future realizations.

0

t= 1 2 T

1 p

i

j

Real-time offers

Scenario Tree T =(V,E)

V̂=V∪{0}

Day-ahead
offer

Time 1 Time t(p) Time t(i) Time T

Figure 3 Proposed two-stage offer submission process

Based on the above two-stage framework and scenario tree setting, we develop an optimal self-

scheduling strategy model for the IPP in this framework, including day-ahead offer amounts as

the first-stage decisions and real-time multistage offer amounts as a recourse for the first-stage

decisions, and denote the model as TMS.

To mathematically describe model TMS, we first introduce the physical characteristics of the

thermal generator as follows. We let L (`) denote its minimum-up (-down) time limit, C (C) its

generation upper (lower) bound if the generator is online, V its ramp-up/-down rate limits, V its

start-up/shut-down ramp rate limits, U (D) its start-up (shut-down) cost, and a nondecreasing

convex function f(·) the fuel cost as a convex function of its electricity generation amount. In
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addition, we let Qd
t (ξ) > 0 denote the day-ahead electricity price at period t corresponding to

scenario ξ and Qr
i > 0 denote the real-time electricity price at node i for each i∈ V. In addition, we

let Wi denote the renewable generation at node i for each i∈ V, λc (λd)∈ (0,1) the storage charge

(discharge) efficiency, Hc (Hd) the unit storage charge (discharge) cost, and Λ the energy storage

capacity.

For the decision variables, the first-stage decisions have been denoted by dt for any t∈ {1, . . . , T}

in Figure 2, i.e., the offer amount for each period t to the day-ahead market. In the second stage, for

each node i∈ V, we let ri represent the offer amount to the real-time market, xi the actual electricity

generation amount, hc
i (hd

i ) the electricity charged to (discharged from) the energy storage, and si

the storage level at node i. We also let the binary variables (yi, ui) represent the unit commitment

status of the generator, with yi indicating the online/offline status and ui indicating the start-up

decision.

Therefore, model TMS can be formulated as follows:

ZTMS = max

{
gTMS(d, y,u,x, r, s, hc, hd) := E

( T∑
t=1

Qd
t (ξ)dt

)
+
∑
i∈V

pi

(
Qr

i ri−
(
Uui

+D(yi− − yi +ui) + f(xi)
)
−Hch

c
i −Hdh

d
i

)
: (d, y,u,x, r, s, hc, hd)∈X TMS

}
,

where X TMS is defined by the following constraints:

yi− yi− ≤ yk, ∀i∈ V \ {1},∀k ∈HL(i), (1a)

yi− − yi ≤ 1− yk, ∀i∈ V \ {1},∀k ∈H`(i), (1b)

yi− yi− ≤ ui, ∀i∈ V \ {1}, (1c)

ui ≤min{yi, 1− yi−}, ∀i∈ V \ {1}, (1d)

Cyi ≤ xi ≤Cyi, ∀i∈ V, (1e)

xi−xi− ≤ V yi− +V (1− yi−), ∀i∈ V \ {1}, (1f)

xi− −xi ≤ V yi +V (1− yi), ∀i∈ V \ {1}, (1g)

si = si− +λch
c
i −hd

i /λd, ∀i∈ V, (1h)

dt(i) + ri = xi +Wi−hc
i +hd

i , ∀i∈ V, (1i)

s0 = 0; yi ∈ {0,1},0≤ si ≤Λ, ri ≥ 0, hc
i ≥ 0, hd

i ≥ 0, ∀i∈ V,

ui ∈ {0,1}, ∀i∈ V \ {1}; dt ≥ 0, ∀t= 1, . . . , T, (1j)

where Hr(i) = {k ∈ V(i) : 0 ≤ t(k)− t(i) ≤ r − 1} represents all of the nodes that occur no more

than r periods after the occurrence of node i, including itself, V(i) represents the set of all of the

descendants of node i, including itself, and f(·) is a quadratic function, i.e., f(xi) = ax2
i + bxi +
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cyi, and approximated by a piece-wise linear function throughout the paper for computational

convenience.

The objective of TMS is to maximize the expected total profit, which is equal to the revenue

obtained from the day-ahead and real-time markets minus the start-up, shut-down, fuel, and storage

charge/discharge costs. Constraints (1a) (resp. (1b)) represent the minimum-up (resp. minimum-

down) time requirements. That is, if the generator starts up (resp. shuts down) at node i, then it

should stay online (resp. offline) for all of the nodes in the set HL(i) (resp. H`(i)). Constraints (1c)

and (1d) define the relationships between y and u. Constraints (1e) describe the upper and lower

bounds of the electricity generation amount if the generator is online at node i. Constraints (1f)

(resp. (1g)) describe the ramp rate limits, including the start-up/shut-down ramp rate. Finally,

constraints (1h) and (1i) represent the storage balance and power balance at each node, respectively.

In this model, for each node i ∈ V, hc
i and hd

i cannot be strictly positive simultaneously in the

optimal solution due to the energy loss in the charging/discharging activities, as shown in the

following Proposition 1. We delay all the proofs in the paper to the Online Supplement.

Proposition 1. For any optimal solution (d∗, y∗, u∗, x∗, r∗, s∗, hc∗, hd∗) of model TMS, we have

hc∗
i h

d∗
i = 0 for any i∈ V.

In summary, model TMS is a stochastic programming with recourse model in which the mul-

tistage stochastic programming decisions for the real-time market provide the recourse for the

day-ahead offer decisions.

Remark 1. Although TMS is a risk-neutral model with the expected profit as the objective

function, different risk measures can be applied to formulate its risk-averse counterparts. We provide

a risk-averse model that minimizes a weighted sum of the negative expected profit and conditional

value-at-risk (CVaR) of the loss function (i.e., negative profit) (Rockafellar and Uryasev 2000).

When uncertain parameters (i.e., real-time price and renewable generation output) have finite

support, which is the case for our scenario-tree based setting, the CVaR-based risk-averse model

can be reformulated using linear constraints, as shown in Online Supplement B.2. It leads to a

model with the same computational tractability as model TMS.

3. Alternative Models and Comparisons

In this section, we compare model TMS with alternatives studied and implemented by IPPs.

3.1. Day-Ahead Self-Scheduling and Real-Time Adaptive Offer Submission Model

In this model, we provide an alternative two-stage stochastic programming framework, with a

multistage stochastic real-time offer submission process embedded in the second stage as a recourse,

denoted as TMSR. This model is similar to TMS, but it makes the unit commitment decisions
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only in the first stage. That is, TMSR makes decisions on the day-ahead offer amounts and unit

commitment status in the first stage before the real-time market operation starts, with the adaptive

real-time offer amounts in the real-time market following different scenarios explored by the scenario

tree T as a recourse. The detailed formulation is provided in Online Supplement C.1. We refer to a

similar model (Garces and Conejo 2010), in which an IPP decides the generator status and weekly

power generation quantity before the price is realized and submits real-time offers to adjust the

power quantity when the prices are realized using a scenario tree.

3.2. Two-Phase Offer Submission Models

In this part, we provide two two-phase offer submission models. For both, we obtain the day-

ahead offer amounts and unit commitment decisions in the first phase. Then, using the first-phase

decisions as inputs, in the second phase we take two different approaches to decide the real-time

offer amounts, resulting in two strategies.

First Phase: Two-Stage Stochastic Programming Model. To obtain the first-phase deci-

sions, we develop a traditional two-stage stochastic programming model, denoted as TS, in which

the day-ahead offer amounts and unit commitment decisions are made in the first stage with the

second-stage offer amounts corresponding to each scenario as a recourse, as shown in Figure 4,

where set S is defined as the collection of all of the scenarios (i.e., all of the possible paths from

the root node 1 to each leaf node at period T ) in the scenario tree T . As compared to TMSR

described in Section 3.1, each scenario in TS represents the possible realizations of renewable gen-

eration amounts and electricity prices from period 1 to the end of the operational horizon. There

are no nonanticipativity constraints among scenarios as illustrated in the scenario-tree setting for

the multistage case in TMSR. In an example that reflects the TS model (Garcia-Gonzalez et al.

2008), a pumped-storage unit and wind farm submit the day-ahead offer in the first stage and

adjust the real-time power output in the second stage as a recourse after observing a set of possible

price scenarios.

Based on the obtained day-ahead offer amounts and unit commitment decisions following model

TS, real-time offers are traditionally submitted immediately before the real-time market operations

begin by respecting one scenario (in set S) for the operational horizon. However, as mentioned in

Section 1, in practice the real-time market is cleared every period and the real-time offer amounts

can be submitted dynamically at each period. Meanwhile, at the beginning of the real-time market

operations, it is not accurate to estimate the price or renewable generation output scenario that

will happen in the entire operational horizon. Therefore, using the first-phase decisions (i.e., the

day-ahead offer amounts and unit commitment decisions from model TS) as inputs, we decide the

second-phase decisions (i.e., real-time offer amounts) through two realistic methods:
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1 2 T

real-time offers
r

Day-ahead offer
and unit commit-
-ment decisions

(d, y,u)

set S

Figure 4 Offer submission process for TS

1. A multistage stochastic real-time offer submission by respecting the scenario tree T ,

2. An offer submission with respect to an arbitrary scenario in which the outcome for each period

is set as the mean value of all of the scenarios,

which lead to two second-phase models. We first describe model TS as follows, to obtain the

day-ahead offer amounts and unit commitment decisions for the first phase.

ZTS = max

{
gTS(d, y,u,x, r, s, hc, hd) := E

( T∑
t=1

Qd
t (ξ)dt

)
−

T∑
t=2

(
Uut +D(yt−1− yt +ut)

)

+ E

( T∑
t=1

(
Qr

t (η)rt(η)− f(xt(η))−Hch
c
t(η)−Hdh

d
t (η)

))
: (d, y,u,x, r, s, hc, hd)∈X TS

}
, (2)

where X TS is described in Online Supplement C.2, Qr
t (η) denotes the real-time price at t corre-

sponding to scenario η ∈ S, and Wt(η) denotes the renewable generation output at t corresponding

to scenario η ∈ S. By solving model TS (i.e., (2)), we obtain an optimal solution (d∗, y∗, u∗) and use

this as an input in the second-phase models to decide the offer amounts for the real-time markets.

The corresponding two second-phase models are as follows.

Second Phase: Multistage Stochastic Real-Time Offer Submission Model. In this

model, denoted as MSV, based on the obtained first-phase decision (d∗, y∗, u∗) and following the

scenario tree T , we obtain the real-time offer amounts for the real-time markets corresponding to

each node in the scenario tree. The corresponding second-phase model can be formulated as:

ZMSV = max

{
gMSV(x, r, s,hc, hd) := E

( T∑
t=1

Qd
t (ξ)d

∗
t

)
−

T∑
t=2

(
Uu∗t +D(y∗t−1− y∗t +u∗t )

)
+
∑
i∈V

pi

(
Qr

i ri− f(xi)−Hch
c
i −Hdh

d
i

)
: (x, r, s,hc, hd)∈XMSV

}
,

where XMSV is described in Online Supplement C.2. This model respects actual real-time operations,

because real-time markets are cleared stage by stage and uncertain real-time electricity prices and
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renewable generation amounts are realized continuously as time passes. The real-time offer amounts

obtained from this model that explores the uncertainty evolution are more realistic than those

obtained by respecting one scenario in set S in model TS.

Second Phase: Mean-Value Scenario Model. From this model, denoted as MEV, we obtain

the real-time offer amounts based on the first-phase decision (d∗, y∗, u∗), by only considering the

scenario that represents the mean value of all possible scenarios in set S, as shown in Figure 5.

Thus, the corresponding second-phase model can be formulated as:

ZMEV = max

{
gMEV(x, r, s,hc, hd) := E

( T∑
t=1

Qd
t (ξ)d

∗
t

)
−

T∑
t=2

(
Uu∗t +D(y∗t−1− y∗t +u∗t )

)

+
T∑

t=1

(
Q̄r

trt− f(xt)−Hch
c
t −Hdh

d
t

)
: (x, r, s,hc, hd)∈XMEV

}
, (3)

where Q̄r
t (resp. W̄t) represents the mean value of uncertain real-time prices (resp. renewable

generation amounts) at period t, i.e., Q̄r
t =

∑
i∈Vt piQ

r
i and W̄t =

∑
i∈Vt piWi with Vt = {i ∈ V :

t(i) = t} for any t∈ {1, . . . , T}, and XMEV is described in Online Supplement C.2.

1 2 T

mean-value

scenario η̄

real-time offers
r

Day-ahead offer
and unit commit-
-ment decisions

(d∗, y∗, u∗) given

Figure 5 Offer submission process for MEV

Considering the mean-value scenario and then deciding the real-time offer at the beginning of the

real-time market operations is straightforward. However, this model may not be profitable enough,

as the mean-value scenario is not sufficient to capture the actual realizations of the uncertain

parameters.

3.3. Day-Ahead Only Model

Finally, we present an offer submission model for the IPP by only participating in the day-ahead

market, denoted as DA. This model is widely used by IPPs (Arroyo and Conejo 2000, Conejo et al.

2002, Simoglou et al. 2012), as they only need to submit the day-ahead offer amounts to maximize

their total expected profits. There are no recourse decisions to be made for the real-time market.

Accordingly, the IPP runs this offer submission model (see details in Online Supplement C.3) with

the day-ahead price.
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3.4. Model Comparison

We present four alternative models in total to realistically submit offers by participating in day-

ahead and/or real-time markets, and assess their differences. Plus model TMS, all of the five models

measure the same thing, i.e., the expected total profit for the day-ahead and real-time offer submis-

sions, under the same underlying evolved discrete-time stochastic process. It can be observed that

Proposition 1 also applies to all models, i.e., hc
i and hd

i cannot be strictly positive simultaneously

in the optimal solution for each of them. These models demonstrate that our proposed model TMS

allows flexibility in unit commitment decisions in either day-ahead or real-time stages, as long as

the offer amounts can be satisfied during the real-time operations. Thus, TMS produces a larger

profit than TMSR does, which requires the unit commitment decisions made during the day-ahead

stage. In addition, as the optimal solution of MSV is a feasible solution of TMSR, MSV leads to a

smaller profit than TMSR does. MEV only considers the mean-value scenario, so it may produce

a smaller profit than that provided by MSV. The theoretical relationships among different models

can be shown in the following proposition.

Proposition 2. The optimal objective values for different offer submission strategies satisfy

ZTMS ≥ ZTMSR ≥ ZMSV, and ZMSV ≥ ZMEV if Wi = Wj when t(i) = t(j) for each pair (i, j) ∈ V.

Furthermore, if Q̄d
t = Q̄r

t for any t with Q̄d
t = E(Qd

t (ξ)), we have ZDA ≥ZMEV, and ZTMSR ≥ZDA if

Wi =Wj when t(i) = t(j) for each pair (i, j)∈ V.

Proposition 2 shows that TMS provides the highest profit for an IPP. However, the curse of

dimensionality prevents it from being solved quickly, as the numbers of scenarios and binary vari-

ables increase significantly with the scenario tree size. To obtain the benefits from TMS in a

computationally efficient way for the IPPs, we focus on deriving its strong formulations to improve

the computational performance in the next section. More specifically, we consider strengthening the

model TMS by studying the polyhedral structure of the generator’s physical constraints (1a) - (1g).

We define this set of constraints as P := {(x, y,u) ∈ R|V| ×B(2|V|−1) : (1a)− (1g)} with B := {0,1}

and use conv(P ) to denote the convex hull of the set of feasible points in P . Before exploring the

details, we describe the following observation at the end of this section.

Remark 2. The polyhedral results of conv(P ) can be applied to strengthen related problems

with set P embedded, such as the problems considering two or more units in the portfolio.

4. Strengthening Model TMS

In this section, we study the polytope conv(P ) to strengthen the model TMS in two steps by

deriving convex hull results for certain special cases in Section 4.1 and strong valid inequalities for

the general case in Section 4.2.
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4.1. Convex Hull Results

We focus on two-period and certain three-period cases by deriving their convex hull representations,

which provide the perfect linear programming formulations for the corresponding two- and three-

period problems. The derived strong valid inequalities used to describe the convex hulls can be

applied to strengthen the original model TMS effectively.

For the two-period case, there is only one root node with several scenarios in the second period

(i.e., leaf nodes), each with a corresponding given probability. We let n represent the total number

of leaf nodes and N = {1,2, . . . , n} represent the set of leaf nodes, i.e., the scenario nodes in the

second period, which share the same parent node, denoted as i−, ∀i ∈N . Because there are only

two periods, without loss of generality, we assume L= `= 1; accordingly, the minimum-up/-down

time constraints (1a) and (1b) are not needed here. Thus, the corresponding original set P can be

described as P2 =
{

(x, y,u)∈Rn+1×Bn+1×Bn :

yi− yi− −ui ≤ 0, ui− yi ≤ 0, ui + yi− ≤ 1, ∀i∈N , (4a)

−xi +Cyi ≤ 0, ∀i∈N ∪{i−}, (4b)

xi−Cyi ≤ 0, ∀i∈N ∪{i−}, (4c)

xi−xi− ≤ V yi− +V (1− yi−), xi− −xi ≤ V yi +V (1− yi), ∀i∈N
}
. (4d)

Note that in P2, we have x and y variables defined for all of the nodes and u variables defined

for each node in the second period. That is, there is no start-up decision for the root node. In

this way, the derived inequalities can be applied recursively for each node (not only the root node)

in the scenario tree T , e.g., we can apply them to each non-leaf node i ∈ V and its child nodes.

Meanwhile, considering the industrial practices for coal-fired generators, we assume C−C−2V ≥ 0

and C−V −V ≥ 0. Considering the relationships among different scenarios in model TMS, we can

derive the following strong valid inequalities.

Proposition 3. The inequalities

xi− ≤ V yi− + (C −V )(yi−ui), ∀i∈N , (5)

xi ≤ (V +V )yi−V ui + (C −V −V )(yj −uj), ∀i, j ∈N , (6)

xi−xi− ≤ V yi−Cyi− + (C +V −V )(yi−ui), ∀i∈N , (7)

xi− −xi ≤ V yi− −Cyi + (C +V −V )(yj −uj), ∀i, j ∈N , (8)

xi−xj ≤ (V +V )yi−V ui−Cyj + (C +V −V )(yk−uk), ∀i, j, k ∈N , i 6= j, (9)

are valid for conv(P2).

Based on inequalities (5) - (9), we can further obtain a stronger result.
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Theorem 1. The linear programming description of conv(P2) can be described as

Q2 :=
{

(x, y,u)∈R3n+2 : (4a)− (4b), (5)− (9)

ui ≥ 0, ∀i∈N
}
. (10)

To make the formulation of model TMS stronger, we extend our study to the three-period case

in which the uncertainty is explored in the third period and there is only one scenario node in

each of the first and second periods. We denote the scenario nodes in the third period as set

N = {1,2, . . . , n}, where n represents the total number of leaf nodes (i.e., the scenario nodes in the

third period). For notational brevity, for any i∈N , we let i−k represent the kth-fold parent of node

i for any integer k ≥ 0 with i−0 = i and i−1 = i−. For this case, the convex hull results are different

depending on the minimum-up/-down time limits. We illustrate the results for the case in which

L= `= 1 here with other cases described in Online Supplement D.6 for brevity. The corresponding

P can be described as P 1
3 :=

{
(x, y,u)∈Rn+2×Bn+2×Bn+1 :

yi− yi− −ui ≤ 0, ∀i∈N ∪{i−}, (11a)

ui− yi ≤ 0, ∀i∈N ∪{i−}, (11b)

ui + yi− ≤ 1, ∀i∈N ∪{i−}, (11c)

−xi +Cyi ≤ 0, ∀i∈N ∪{i−2 , i−}, (11d)

xi−Cyi ≤ 0, ∀i∈N ∪{i−2 , i−}, (11e)

xi−xi− ≤ V yi− +V (1− yi−), ∀i∈N ∪{i−}, (11f)

xi− −xi ≤ V yi +V (1− yi), ∀i∈N ∪{i−}
}
. (11g)

As compared to P2, P
1
3 contains one more node: the parent node of the root node of P2. Accord-

ingly, the linear programming description of conv(P 1
3 ) can be described as follows:

Theorem 2. For a three-period problem in which L= `= 1, conv(P 1
3 ) can be described as Q1

3 ={
(x, y,u)∈R3n+5 : (11a)− (11d),

ui ≥ 0, ∀i∈N ∪{i−}, (12a)

xi−2
≤ V yi−2 + (C −V )(yi− −ui−), (12b)

xi−2
≤ V yi−2 +V (yi− −ui−) + (C −V −V )(yi−ui), ∀i∈N , (12c)

xi− ≤ V yi− + (C −V )(yi− −ui−), (12d)

xi− ≤ V yi− + (C −V )(yi−ui), ∀i∈N , (12e)

xi ≤ (V +V )yi−V ui + (C −V −V )(yj −uj), ∀i∈N , j ∈N ∪{i−}, (12f)

xi− −xi−2
≤ V yi− −Cyi−2 + (C +V −V )(yi−ui), ∀i∈N , (12g)
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xi−2
−xi− ≤ V yi−2 −Cyi− + (C +V −V )(yi− −ui−), (12h)

xi−xi− ≤ V yi−Cyi− + (C +V −V )(yi−ui), ∀i∈N ∪{i−}, (12i)

xi− −xi ≤ V yi− −Cyi + (C +V −V )(yj −uj), ∀i∈N , j ∈N ∪{i−}, (12j)

xi−xi−2
≤ (V +V )yi−V ui−Cyi−2 + (C +V −V )(yj −uj), ∀i∈N , j ∈N ∪{i−}, (12k)

xi−2
−xi ≤ V yi−2 −Cyi +V (yi− −ui−) + (C +V −V )(yj −uj), ∀i, j ∈N , (12l)

xi−2
−xi ≤ V yi−2 −Cyi + (C + 2V −V )(yi− −ui−), ∀i∈N , (12m)

xi−xj ≤ (V +V )yi−V ui−Cyj + (C +V −V )(yk−uk),

∀i, j ∈N , i 6= j, k ∈N ∪{i−}
}
. (12n)

The proofs are similar to those for Theorem 1 and are thus omitted here.

Remark 3. Note that P 1
3 , in which L= `= 1, is equivalent to the problem without minimum-

up/-down time constraints. It then can be considered as a relaxation of the cases in which the

minimum-up/-down times are larger than 1 in model TMS. Thus, the derived inequalities in Q1
3

are valid for the original model TMS.

Remark 4. In the convex hull representations, there are no inequalities containing variables

corresponding to four or more scenario nodes. It follows that the number of inequalities to describe

the convex hulls is in the order of n3, i.e., O(n3), and thus no separation algorithms are required.

4.2. General Multi-Period Strong Valid Inequalities

We further strengthen the model TMS by exploring strong valid inequalities for conv(P ) covering

multi-period nodes. For notational brevity, we let [a, b]Z represent the set of integers {a,a+1, . . . , b}

with [a, b]Z = ∅ if b < a.

j−T−1

= 1

p

i

j

Time t(p) Time t(i)Time 1 Time T

Figure 6 Multistage stochastic scenario tree
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We consider a general multi-period scenario tree in model TMS as described in Figure 6. For

any two nodes i and j in the figure, we let p = arg max{t(k) : k ∈ P(i) ∩ P(j)}. This indicates a

path from nodes i to j passing through node p as the node with the smallest period, i.e., the bold

solid line path in Figure 6. We define P(i, p) =P(i) \P(p) and the distance between nodes i and j

dist(i, j) = |P(i, p)|+ |P(j, p)|.
We first present a family of strong valid inequalities incorporating the nodes on the same scenario

(Pan and Guan 2016a) by utilizing the physical thermal generator constraints in model TMS as

follows.

Proposition 4. For each k ∈ {[2, T − 2]Z :C −V − (k− 1)V > 0}, the inequality

xi−
k
≤ V yi−

k
+V

k−1∑
h=1

(
yi−
h
−

min{k,h+L−1}∑
n=h

ui−n

)
+ (C −V − (k− 1)V )

(
yi−

min{k,L−1}∑
h=0

ui−
h

)
, (13)

is valid for conv(P ) for each i∈ V such that t(i)∈ [min{k+ 2,L+ 1}, T ]Z. Furthermore, it is facet-

defining for conv(P ) when one of the following conditions is satisfied: (1) L≤ 3 and t(i) = T ; (2)

L≤ 3 and k= b(C −V )/V c+ 1 for each i∈ V such that t(i)∈ [min{k+ 2,L+ 1}, T ]Z.

Inequality (13) tightens the generation upper bound for each node in the tree. Now, we propose

several families of strong valid inequalities (i.e., (14) - (16)) incorporating nodes covering multiple

scenarios in the scenario tree by utilizing the specific structures of model TMS and the scenario

tree.

Proposition 5. For each pair (i, j) ∈ V with i /∈ P(j), j /∈ P(i), and i being a leaf node of V,

the inequality

xi−xj ≤ (C + kV )yi−Cyj −
min{L−1,k−1}∑

h=0

(
C + (k−h)V −V

)
ui−
h
, (14)

where k = dist(i, j) such that k ∈ {[2, T − 1]Z : C − C − kV > 0}, is valid and facet-defining for

conv(P ).

Inequality (14) describes the relationships between the generation amounts of any two nodes

(e.g., i and j) on different scenarios in the scenario tree. The condition C−C−kV > 0 guarantees

that the generator is able to ramp up k times starting from its generation lower bound C or ramp

down k times starting from its generation upper bound C. With respect to the scenario tree, this

condition implies that the generator is able to ramp up m times based on the generation amount

at node p (i.e., xp) along one path to node i and meanwhile ramp down n times based on xp

along another path to node j such that m+ n= k and p= arg max{t(s) : s ∈ P(i)∩P(j)}. Thus,

the maximum difference in the generation amounts between nodes i and j is kV if yi = yj = 1.

Similarly, we can propose the following inequality (15) by linking nodes i− and j that are not on

the same scenario.
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Proposition 6. For each pair (i, j)∈ V with i− /∈P(j) and j /∈P(i−), the inequality

xi− −xj ≤ V yi− −Cyj + (C +V −V )

(
yj −

L−1∑
h=0

uj−
h

)
+ (k− 1)V (yi−ui)−

min{L−1,k}∑
h=1

(
k−h

)
V ui−

h
,

(15)

where k = dist(i−, j) such that k ∈ {[2, T − 2]Z : C − C − kV > 0}, is valid and facet-defining for

conv(P ) when t(i−) = t(j) or t(i) = t(j).

The proof is similar to that for Proposition 5 and is thus omitted here.

All of the proposed inequalities until now in this section are in polynomial size in terms of the

input size of the scenario tree and are at most in the order of |V|2, i.e., O(|V|2). Therefore, we do not

need separation procedures for them to speed up the branch-and-cut algorithm. In the following,

we further explore and discover a more general family of inequalities in exponential size for model

TMS to bound the generation difference between xi−
k

and xj for any two nodes i and j in V.

Proposition 7. For each pair (i, j) ∈ V with i−k /∈ P(j), j /∈ P(i−k ), and min{t(i−k ), t(j)} ≥ 2,

S0 = [1, n̂−1]Z, and S ⊆ [n̂+ 1, k−1]Z with n̂= min{t(i−k )−2,L−2} if min{t(i−k )−2,L−2} ≥L/2

and n̂= max{1,L+ 1− t(i−k )} otherwise, the inequality

xi−
k
−xj ≤ V yi−

k
−Cyj +V

∑
n∈S0

(
yi−
k−n
−

min{L−1,n+w}∑
m=0

ui−
k−n+m

)

+V
∑

n∈S∪{n̂}

(
gn−n

)(
yi−
k−n
−

L−1∑
m=0

ui−
k−n+m

)
+ψ(y,u) +φ(u), (16)

is valid and facet-defining for conv(P ), where k = dist(i−k , j) such that k ∈ {[2,2T − 2]Z :

C − C − kV > 0}, gn = min{a ∈ S ∪ {k} : a > n}, w is a nonnegative integer for which

t(i−k+w) = 2, ψ(y,u) = (C + V − V )(yi −
∑L−1

m=0 ui−m
) or (C + V − V )(yj −

∑L−1
m=0 uj−m

), and φ(u) =

V
∑

m:m≥1,t(i−
k+m

)≥T−L+1mui−
k+m

+V
∑

m:2≤t(i−
k+m

)≤T−L,m≤L−1 min{L−m− 1,m}ui−
k+m

.

Separation: Because the size of inequalities (16) is exponential, we explore a separation scheme

to find the most violated inequality (correspondingly the set S in (16)) in polynomial time. For

a given point (x̂, ŷ, û) ∈ R3|V|−1
+ , to find the most violated inequality (16) corresponding to each

combination of (i, j, k), we construct a shortest path problem on a directed acyclic graph G= (V,A),

as shown in Figure 7, with the node and arc sets described as follows:

(i) Node set V= {s, t}∪V′ with s representing the source node, t representing the sink node, and

V′ = {n̂, n̂+ 1, . . . , k− 1, k} representing a set of nodes from i−k−n̂ to i in (16).

(ii) Arc set A = {(s, n̂), (k, t)} ∪A′ with A′ = ∪n̂≤n1<n2≤k{(n1, n2)}. We let wij represent the cost

of arc (i, j) for each (i, j)∈A and provide the details as follows:
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(1) wsn̂ = V ŷi−
k
−Cŷj +V

∑
n∈S0

(ŷi−
k−n
−
∑min{L−1,n+w}

m=0 ûi−
k−n+m

)− x̂i−
k

+ x̂j;

(2) wkt =ψ(ŷ, û) +φ(û);

(3) wn1n2
= V (n2−n1)(ŷi−

k−n1

−
∑L−1

j=0 ûi−
k−n1−j

) for n1, n2 ∈ [n̂, k]Z and n1 <n2.

The shortest path from nodes s to t represents the maximum violation of inequality (16) if the

value is negative, and the visited nodes in V′ on the shortest path determine the set S. Because

it is an acyclic graph and there are O(T 2) arcs and O(T ) nodes, the shortest path can be found

in O(T 2) time for each combination of (i, j, k). Therefore, there is an O(|V|2T 2) time algorithm

to solve the separation problem for all (i, j) with dist(i−k , j) = k, considering the fact that k is

bounded above by a constant number, i.e., (C −V )/V .

s n̂ · · · n1 · · · n2 · · · k t

n̂+ 1≤ n1 <n2≤ k− 1

wsn̂ wn̂n1

wn̂n2

wn̂k

wn1n2

wn1k

wn2k

wkt

Figure 7 Directed acyclic graph

Proposition 8. Given a point (x̂, ŷ, û) ∈ R3|V|−1
+ , there exists an O(|V|2T 2) time separation

algorithm to find the most violated inequality (16), if one exists.

At the end of this section, we would like to point out that our study not only strengthens

the formulation of our proposed model TMS but also enriches the existing approaches for related

polyhedral structures, e.g., Lee et al. (2004), Rajan and Takriti (2005), Ostrowski et al. (2012),

Morales-España et al. (2013), Pan et al. (2015), Damcı-Kurt et al. (2016), Gentile et al. (2017),

Queyranne and Wolsey (2017), among others. Our polytope is more general in terms of the model

setting, polytope structure, and derived inequalities. First, these existing approaches consider

deterministic problems, which can be considered as a special case for our stochastic programming

setting with only one scenario with probability one. All of our derived results for a specific sce-

nario could be applied to the corresponding deterministic cases. We have also derived inequalities,

e.g., (14)-(16), linking different scenarios (by incorporating the nodes at different scenarios in the

scenario tree), which cannot be generated from the deterministic case. Second, for the embedded

deterministic problem corresponding to each scenario, we consider all of the physical constraints of

each generator (e.g., generation upper/lower bounds, minimum-up/-down time, ramping rate, and

logical constraints) in one single set (i.e., P ), as compared to these existing approaches considering
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a part of the physical constraints. For instance, Damcı-Kurt et al. (2016) consider the ramping

polytope without the minimum-up/-down time constraints. In general, for a MILP formulation, if

we consider more constraints when deriving the strong valid inequalities, the formulation will be

tighter.

5. Numerical and Case Studies

In this section, we provide numerical results and case studies that demonstrate the benefits of

our proposed self-scheduling strategy model presented in Section 2. We numerically compare our

proposed model TMS with alternative models. We also verify the effectiveness of our proposed

strong valid inequalities in a branch-and-cut framework by comparing our approach with default

CPLEX. We finally illustrate the performance of our model TMS through empirical studies using

real data. All of the numerical experiments and case studies were conducted on a computer node

with two AMD Opteron 2378 Quad-Core Processors at 2.4 GHz with 4 GB of memory. IBM ILOG

CPLEX 12.3 with a single thread was utilized as the MIP solver, and the time limit was set at one

hour per run except when specified.

5.1. Problem Settings

The first set of instances are based on a coal-fired generator from a modified IEEE 118-bus sys-

tem, available online at motor.ece.iit.edu/data/SCUC 118, with C = 61MW,C = 300MW, V =

58MW/h, V = 97MW/h, and U = $300. We let Hc = $8,Hd = $10, Λ = 30MW, and λc = λd = 0.99

for the energy storage settings, similar to those described in (Eyer and Corey 2010, IEC 2011). To

obtain the electricity price, we follow the historical electricity price published by PJM (PJM 2018).

For the renewable generation output, we consider Wi ∈ [0,C/2], ∀i ∈ V. To test the variations of

the proposed instances, we consider different types of minimum-up/-down time limits (i.e., L(`)),

scenario-tree structures, and total periods (i.e., T ). We let L= `= 2,3, and 4. We denote K as the

number of branches for each non-leaf node in the scenario tree T , with each branch assigned the

same probability. We set K = 2,3, and 4. We let T ∈ {10,11,12} for the case K = 2, T ∈ {6,7,8}

for the case K = 3, and T ∈ {5,6,7} for the case K = 4. Thus, various instances are generated

based on different combinations of L(`),K, and T . For each combination, we test three randomly

generated instances1 and report the average result.

5.2. Comparison of Offer Submission Models

In this section, we compare the five models presented in Sections 2 and 3 and report the results

in Table 1. The CPLEX under default settings (henceforth denoted as “default CPLEX”) is used

to solve them. For each combination of L(`),K, and T , we report the objective value and CPU

time for each model. When TMS cannot be solved to default optimality (i.e., 0.01%) within the

motor.ece.iit.edu/data/SCUC_118
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Table 1 Model Comparisons

L(`) K T

TMS TMSR MSV MEV DA

ZTMS CPU secs
(TGap(%))

ZTMSR CPU
secs

ZMSV CPU
secs

ZMEV CPU
secs

ZDA CPU
secs

2

2

10 12623.1 1256.2 (0.05) [1] 11938.2 46.0 11915.0 1141.4 9816.6 1117.9 10289.2 0.02

11 14795.8 3600 (0.08) [3] 14052.7 235.1 14051.9 5083.5 12336.2 4998.9 12868.4 0.02

12 14040.8 3600 (0.10) [3] 13114.8 787.9 12171.6 36059.1 10321.6 35674.8 11673.1 0.01

3

6 7283.1 31.2 6957.3 611.6 6955.0 114.7 6242.7 59.4 6463.1 0.01

7 10033.8 2513.4 (0.04) [2] 9545.9 53.4 9545.1 898.9 8376.0 872.9 8635.2 0.01

8 9329.2 3600 (0.73) [3] 8828.5 503.5 8827.0 15980.8 7399.3 15736.1 7848.7 0.01

4

5 6633.8 46.2 6288.9 498.5 6229.6 79.5 5086.7 52.6 5653.7 0.01

6 7482.2 3600 (0.06) [3] 7014.9 76.5 7014.8 1227.2 5957.9 1187.9 6273.8 0.01

7 9500.6 3600 (0.76) [3] 9115.6 1450.8 9073.6 36033.7 7741.0 35654.2 8114.1 0.01

3

2

10 12434.0 434.7 11981.1 51.6 11981.1 993.0 9803.7 969.1 10636.8 0.01

11 14854.0 3600 (0.06) [3] 14464.4 184.4 14463.8 4951.2 11737.6 4864.2 12185.7 0.02

12 14737.7 3600 (0.11) [3] 14176.7 793.6 14169.0 33770.0 11575.3 33412.8 12358.3 0.01

3

6 6557.7 942.7 6268.7 958.2 6266.3 124.7 5751.5 70.4 5966.6 0.01

7 8650.6 1062 (0.03) [1] 8327.9 54.8 8323.6 906.2 7106.4 880.3 7420.8 0.01

8 8654.7 3600 (0.20) [3] 8336.1 672.2 8333.1 22211.7 7060.4 21971.2 7260.8 0.01

4

5 8550.8 41.9 8347.7 175.8 7973.5 52.4 7714.6 48.2 7793.4 0.01

6 6858.4 3600 (0.08) [3] 6602.9 80.3 6600.8 1204.7 5309.9 1168.9 5652.6 0.01

7 9407.9 3600 (0.63) [3] 9100.1 1481.7 9098.2 44469.7 8073.2 43804.5 8390.8 0.01

4

2

10 12197.3 3600 (0.05) [3] 11658.2 48.5 11656.3 938.2 9032.4 915.5 9884.3 0.02

11 14370.6 3600 (0.10) [3] 13843.8 175.2 13822.5 5862.3 11524.1 5788.1 12013.3 0.02

12 14559.5 3600 (0.62) [3] 13876.8 770.7 13294.8 48482.2 10397.0 34294.6 12074.1 0.02

3

6 9664.3 29.1 9415.2 411.6 9410.3 89.9 8480.3 65.4 8757.4 0.01

7 9293.3 3600 (0.06) [3] 8908.5 55.3 8907.0 966.4 7565.2 940.6 7922.5 0.01

8 8917.1 3600 (0.39) [3] 8443.0 690.5 8425.2 13855.3 7150.1 13667.7 7682.2 0.01

4

5 7336.5 48.7 7079.4 838.5 7078.7 117.4 6493.8 96.3 6628.8 0.01

6 6805.3 2963.6 (0.03) [2] 6442.8 80.2 6442.8 1304.9 5116.5 1268.7 5773.5 0.01

7 9054.9 3600 (0.43) [3] 8679.5 1527.1 8677.1 46692.4 7603.6 46379.7 7758.1 0.01

time limit, we report the terminating gap (i.e., TGap(%)). The numbers in brackets indicate the

number of instances (out of three) not solved to default optimality within the time limit. When all

three instances cannot be solved to default optimality within the time limit, we report the CPU

time as the time limit (i.e., 3600 seconds). The table shows that the numerical results verify the

theoretical results described in Proposition 2. For example, our proposed model TMS provides

higher profits than the other models, as the multistage stochastic real-time offer submission process

takes advantage of the continuously realized scenario information as time evolves. Although the

optimal solution of MSV is only a feasible solution of TMSR, it obtains good unit commitment

decisions from model TS and accordingly produces profits similar to ZTMSR, but our approach is

far better than both alternatives. In addition, ZMSV is much larger than ZDA and ZMEV is far

smaller than the profits of the other models, which implies that intuitive stochastic programming

approaches may perform poorly. Furthermore, solving most of the instances for model TMS within

the time limit is difficult.



23

5.3. Branch-and-Cut Algorithm

In this section, we show the effectiveness of the convex hull results and strong valid inequalities

in solving our proposed model TMS. We add strong valid inequalities as cutting planes to speed

up the branch-and-cut algorithm to solve TMS. In our branch-and-cut framework, the strong

valid inequalities for the convex hull results in Section 4.1 (i.e., inequalities (5)-(9), (12b)-(12n),

and (EC.16a)-(EC.16l)) are added to the model as constraints. The strong valid inequalities for

the multi-period cases in Section 4.2 are added as cutting planes (i.e., the user cuts through the

callback function of CPLEX). Considering the trade-off between the reduction in the number of

branch-and-bound nodes and the size increment of the problem corresponding to each node, as

shown in Achterberg (2007), inequalities (13)-(15) are added as user cuts in all of the possible

branch-and-bound nodes and inequalities (16) in the first 50 nodes.

Table 2 Effectiveness of Proposed Inequalities in Tightening the LP Relaxation

K T
L= `= 2 L= `= 3 L= `= 4

LP Gap
(%)

Cut
(%)

Percent-
age (%)

LP Gap
(%)

Cut
(%)

Percent-
age (%)

LP Gap
(%)

Cut
(%)

Percent-
age (%)

2

10 2.77 0.21 92.56 3.30 0.05 98.55 4.63 0.19 95.84

11 2.29 0.19 91.93 2.78 0.04 98.39 2.98 0.16 94.64

12 2.68 0.18 93.19 3.06 0.04 98.77 3.60 0.10 97.19

3

6 2.61 0.17 93.65 2.32 0.02 99.29 2.56 0.07 97.20

7 2.73 0.18 93.52 3.14 0.05 98.43 3.21 0.14 95.74

8 4.40 0.18 95.91 3.79 0.04 99.04 4.15 0.07 98.31

4

5 3.38 0.10 96.97 1.55 0.06 96.01 1.83 0.11 93.81

6 2.92 0.17 94.10 3.83 0.06 98.51 4.63 0.05 98.83

7 2.69 0.11 95.82 3.72 0.07 98.22 3.54 0.12 96.58

We tested the same instances used by TMS in Section 5.2. The results are reported in Tables 2 and

3. In Table 2, the effectiveness of our strong valid inequalities in tightening the linear programming

(LP) relaxation of model TMS (a maximization problem) is reported for different instances. The

column “LP Gap (%)” reports the relative LP relaxation gap of the original formulation with

respect to a feasible solution leading to the largest objective value obtained within the time limit

(referred to as the best feasible solution) from default CPLEX and our branch-and-cut framework.

The value “LP Gap (%)” is defined as (ZLP−ZMILP)/ZLP, where ZLP is the optimal objective value

of the LP relaxation of model TMS without adding any strong valid inequalities, and ZMILP is

the objective value corresponding to the best feasible solution. The column “Cut(%)” reports the

LP relaxation gap after adding our strong valid inequalities. The value “Cut(%)” is defined as

(ZCut
LP −ZMILP)/ZCut

LP , where ZCut
LP represents the objective value of the LP relaxation of model TMS

with our derived inequalities added as constraints. The table shows that the LP relaxation gap

decreases dramatically after adding the proposed strong valid inequalities to tighten model TMS.
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The degree of the reduction is shown in the column “Percentage (%),” where Percentage (%) =

(LP Gap (%) - Cut (%))/LP Gap (%). A reduction of more than 95% can be achieved, indicating

that the proposed strong valid inequalities are extremely effective in tightening TMS.

Table 3 Results for the Branch-and-Cut Framework

L(`) K T
Default CPLEX Branch-and-Cut

CPU Time TGap (%) # Nodes CPU Time TGap (%) # Nodes # Cuts

2

2

10 1256.2 0.05 [1] 80486 82.3 0.00 2988 2848

11 3600.0 0.08 [3] 88505 441.3 0.00 7074 3569

12 3600.0 0.10 [3] 35537 1688.5 0.00 12389 7541

3

6 131.2 0.00 3803 33.4 0.00 821 2695

7 2513.4 0.04 [2] 141526 127.5 0.00 5386 3801

8 3600.0 0.73 [3] 38272 1455.7 0.00 13600 7857

4

5 146.2 0.00 1979 87.1 0.00 842 3007

6 3600.0 0.06 [3] 145486 201.4 0.00 4505 6076

7 3600.0 0.76 [3] 22488 3598.3 0.05 [2] 18246 17041

3

2

10 434.7 0.00 18321 66.9 0.00 2620 5471

11 3600.0 0.06 [3] 86388 321.7 0.00 7255 4858

12 3600.0 0.11 [3] 36174 3468.2 0.02 [1] 28198 8371

3

6 942.7 0.00 39143 189.9 0.00 7622 4203

7 1602.0 0.03 [1] 75680 117.1 0.00 2584 5206

8 3600.0 0.20 [3] 39205 1880.5 0.00 22636 9382

4

5 41.9 0.00 1299 27.4 0.00 925 5310

6 3600.0 0.08 [3] 112913 177.5 0.00 5378 5991

7 3600.0 0.63 [3] 18717 3036.3 0.01 [1] 16914 16698

4

2

10 3600.0 0.05 [3] 150761 69.0 0.00 2572 4658

11 3600.0 0.10 [3] 77072 548.9 0.00 12924 4289

12 3600.0 0.21 [3] 32555 1662.1 0.00 15646 8562

3

6 99.1 0.00 3471 61.7 0.00 3433 3233

7 3600.0 0.06 [3] 168636 101.7 0.00 4266 4233

8 3600.0 0.39 [3] 35915 1669.4 0.00 19675 11189

4

5 48.7 0.00 1556 46.8 0.00 899 4996

6 2963.6 0.03 [2] 91189 163.7 0.00 4545 7737

7 3600.0 0.43 [3] 19098 3279.7 0.00 15464 16991

In Table 3, we report the performance of our branch-and-cut framework (“Branch-and-Cut”) in

solving model TMS and compare it with the default CPLEX (“Default CPLEX”). The derived

inequalities are added to model TMS only because they are developed based on the specific struc-

ture of the model. The column “CPU Time” provides the average computational time in seconds

needed to solve the corresponding instances, with 3600 given for cases in which all three instances

cannot be solved to default optimality. The column “TGap (%)” provides the final optimality gap

obtained within the time limit. The numbers in brackets indicate the number of instances (out of

three) that are not solved to default optimality (i.e., 0.01%) within the time limit. The column “#

Nodes” provides the number of nodes explored in the branch-and-bound searching tree. The last
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column “# Cuts” represents the number of multi-period strong valid inequalities utilized in the

branch-and-cut framework to solve the instances.

Table 3 shows that our branch-and-cut framework has much better performance than the default

CPLEX does, and can solve most instances in a short time, while the default CPLEX cannot solve

most of them to optimality within the time limit. Our framework explores fewer branch-and-bound

nodes than the default CPLEX does. For the case in which both approaches cannot solve the

problem to optimality within the time limit, our framework provides a much smaller terminating

gap. In summary, our proposed model TMS provides both the highest profit (as indicated in Table

1) and can be solved in a shorter time than most of the alternative models (see Tables 1 and 3).

Table 4 Results for Long Horizon Instances

L
(`)

#
Sce.

Model Comparisons
Branch-and-Cut

IGap (%) Pct.
(%)

CPU Time (TGap (%)) # Nodes #
CutsTMS TMSR MSV MEV DA TMS Cut TMS Cut TMS Cut

4

250 30883.5 29650.2 29649.7 23806.7 24198.2 2.56 0.14 94.53 93.3 51.0 2137 928 4203

500 30966.8 29922.4 29922.3 22625.9 23511.3 2.78 0.22 92.09 *** (0.05) [3] 4158.6 (0.03) [1]38605 46282 8315

100031915.5 30775.1 30770.5 24296.5 24816.6 2.21 0.11 95.02 *** (0.02) [3] 3416.5 (0.02) [1]37945 1903610638

200030103.8 29031.6 29031.5 22872.5 23308.7 2.58 0.21 91.86 *** (0.11) [3] *** (0.09) [3] 9737 1153319376

6

250 29695.7 28698.4 28696.8 22571 23415.9 3.33 0.31 90.69 2470.5 1373.9 17899 24212 4278

500 31146.6 30237.5 30237.1 23328.4 23876.7 2.69 0.22 91.82 *** (0.04) [3] 4808.1 (0.02) [1]31267 35517 8311

100032053.3 31117.5 31097.1 25133 25541 2.73 0.18 93.41 *** (0.04) [3] 6537.2 (0.03) [2]17214 1990110083

200029514.5 28436 28436 21549.5 22645.5 3.04 0.23 92.43 *** (7.31) [3] *** (0.06) [3] 2047 1423 19753

8

250 30039 29173.5 29160.7 23167.3 23871.2 3.09 0.32 89.64 221.0 107.3 477 155 3668

500 31135.9 30351.4 30341.7 23780.2 24364.7 3.02 0.33 89.07 *** (0.02) [3] 5416.8 16621 22497 6680

100032299.9 31625.7 31625.6 24735 24897.4 2.75 0.27 90.18 *** (0.06) [3] *** (0.04) [3] 8342 1328610194

200030319.6 29446.5 29446.4 22644 23535.8 2.95 0.26 91.196618.1 (18.24) [2] 5782.1 (0.15) [2] 0 49 20665

10

250 30791.9 30141.8 30141.4 23941.7 24526.7 2.96 0.33 88.85 4610.0 [1] 2944.0 [1] 17520 22008 3001

500 30594.1 29922.4 29922.3 22625.9 23511.3 3.26 0.32 90.18 *** (0.04) [3] *** (0.03) [3] 8599 11919 5910

100030509.9 29708.6 29705.3 23470.3 24136 2.98 0.28 90.6 *** (0.04) [3] 4816.1 (0.09) [1] 9220 7181 9656

200030352.3 29601.9 29601.5 22826.1 23702.1 3.01 0.34 88.7 *** (32.80) [3] 7088.0 (0.09) [2] 0 71 21738

To further demonstrate the benefits of our proposed model TMS and the effectiveness of our

proposed strong valid inequalities in a setting with a long horizon, we conduct experiments over

various 24-time-period instances based on the generator data described in Section 5.1. We generate

four scenario trees with 24 periods and each tree has a different number of scenarios, with the

number of branches at each node between 1 and 4 (Heitsch and Römisch 2009). For each scenario

tree, we consider the minimum-up/-down time limit (i.e., L(`)) varies in set {4,6,8,10}. We set the

time limit per run as two hours as we are solving larger instances. Similar to the above experiments,

given L(`) and a scenario tree, we test three randomly generated instances and report the average

result in Table 4. The column “# Sce.” provides the number of scenarios in each scenario tree. The

column “Model Comparisons” compares our model TMS with the other four alternative models
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(i.e., TMSR, MSV, MEV, and DA). We can observe similar results as those in Table 1. The

column “Branch-and-Cut” reports the performance of our strong valid inequalities in speeding up

the solution process of model TMS. We use columns “TMS” and “Cut” to represent the original

model solved by default CPLEX and that by adding our inequalities as user cuts, respectively. The

column “IGap (%)” reports the relative LP relaxation gap and the column “Pct. (%)” provides the

gap reduction in percentage after adding our inequalities to tighten model TMS. We can observe

that a reduction of around 90% can be obtained. The column “CPU Time (TGap (%))” reports

the computational time in seconds to solve the model. We use “***” to indicate that none of three

randomly generated instances are solved into optimality within the time limit, and accordingly,

we report the terminating gap labeled “TGap (%)”, which indicates the relative gap between the

objective value corresponding to the best integer solution and the best upper bound when the time

limit is reached. It is clear that our proposed inequalities significantly reduce computational time

and terminating gap.

5.4. Arbitrage vs No-arbitrage Cases

Considering the fact that optimization under uncertainty models that deal with price uncertainty

tend to be extremely sensitive to the uncertainty model. In this section, we conduct case studies

in which each scenario tree is constructed based on explicit no-arbitrage assumptions. The second-

stage real-time tree is a martingale. The expected values of uncertain parameters for the nodes

at a time period in the first-stage day-ahead tree are equal to the expected values of uncertain

parameters for the corresponding nodes in the real-time tree at the same time period. Such a sce-

nario tree does not create arbitrage opportunities for the IPPs. To that end, we perform additional

experiments following the same problem settings in Section 5.1 except that we randomly generate

the uncertain electricity price and wind generation satisfying the no-arbitrage conditions (denoted

as “No-arbitrage Case”). In addition, to perform a comparison, based on the scenario tree under

no-arbitrage conditions, we perturb the day-ahead price at each time period by 10% and keep the

real-time prices the same, leading to a scenario tree with arbitrage opportunities (denoted as “Arbi-

trage Case”). For both cases, we compare the five models presented in Sections 2 and 3 and report

the results in Table 5. We observe similar results as in Table 1. That is, our proposed model TMS

provides higher profits than the other alternative models under both cases. Note here that as the

“Arbitrage Case” provides arbitrage opportunities between the day-ahead and real-time markets,

the benefits of our proposed model TMS can be slightly exaggerated. However, since we primarily

focus on the self-scheduling for an IPP’s assets with limited capacities, although the “Arbitrage

Case” does provide arbitrage opportunities, the capacity limits of generation resources prevent the

IPP from selling and buying electricity in extremely large or small values.
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Table 5 Model Comparisons under No-arbitrage vs. Arbitrage Cases

L(`) K T
No-arbitrage Case Arbitrage Case

ZTMS ZTMSR ZMSV ZMEV ZDA ZTMS ZTMSR ZMSV ZMEV ZDA

2

2
10 12580.0 9468.9 9468.9 4976.2 6600.0 12602.9 9800.9 9517.2 5025.0 6632.7
11 14615.4 11042.5 10799.1 5500.1 7235.1 14722.2 11325.3 10825.9 5527.2 7210.1
12 15660.8 11957.3 11957.3 5971.4 7920.0 15714.2 12427.5 12070.2 6084.7 7953.7

3
6 7880.4 6207.8 6207.8 2985.7 3960.0 7895.9 6418.4 6313.6 3093.3 3907.1
7 7360.3 5638.2 5638.2 3483.3 4620.0 7452.0 5915.5 5756.8 3605.1 4547.2
8 10034.7 7610.3 7610.3 3980.9 5280.0 10051.5 7798.5 7700.5 4072.8 5071.4

4
5 4776.3 3702.1 3702.1 2488.1 3300.0 4800.4 3787.8 3721.3 2508.2 3135.7
6 7728.5 6000.1 6000.1 2985.7 3960.0 7873.4 6334.3 6109.9 3098.6 4018.1
7 7871.4 6134.8 6134.8 3483.3 4620.0 7947.1 6494.1 6291.0 3642.7 4631.6

3

2
10 12918.8 9908.3 9908.3 4976.2 6600.0 13012.3 10246.1 9952.1 5020.2 6411.3
11 19497.9 15728.9 15476.1 5499.9 7229.3 19593.6 16017.4 15546.8 5571.0 7198.6
12 23420.6 17986.3 17986.3 5971.4 7920.0 23510.1 18547.9 18121.9 6107.1 8003.9

3
6 7457.5 5826.6 5826.6 2985.7 3960.0 7475.4 5983.3 5916.2 3076.3 3931.2
7 8704.1 6777.6 6777.6 3483.3 4620.0 8766.8 6917.0 6795.4 3501.1 4385.8
8 12616.7 10012.2 10012.2 3980.9 5280.0 12654.1 10205.3 10030.4 3999.3 5053.7

4
5 4590.7 3411.7 3411.7 2488.1 3300.0 4658.3 3514.3 3417.9 2494.3 3247.8
6 6014.0 4597.5 4597.5 2985.7 3960.0 6165.1 4959.3 4798.7 3190.3 4090.4
7 9139.5 7209.9 7209.9 3483.3 4620.0 9322.0 7706.8 7332.6 3608.3 4737.0

4

2
10 13941.5 10814.4 10814.4 4976.2 6600.0 14080.3 11176.9 10876.4 5038.6 6519.9
11 15786.6 12812.4 12512.1 5505.3 7367.0 15878.4 13159.9 12567.2 5560.7 7474.0
12 19474.2 15013.7 15013.7 5971.4 7920.0 19500.2 15412.0 15083.4 6041.2 7771.7

3
6 7555.7 5868.4 5868.4 2985.7 3960.0 7654.5 6206.7 6001.6 3120.3 4172.0
7 8399.0 6595.9 6595.9 3483.3 4620.0 8490.4 6983.1 6726.2 3616.8 4673.5
8 12653.6 10081.8 10081.8 3980.9 5280.0 12868.9 10465.5 10116.7 4016.1 5139.4

4
5 5038.9 3811.7 3811.7 2488.1 3300.0 5157.1 4111.2 4049.9 2742.1 3377.1
6 7406.1 5952.8 5952.8 2985.7 3960.0 7496.5 6257.6 6101.5 3138.4 4001.0
7 9442.2 7279.5 7279.5 3483.3 4620.0 9510.6 7710.3 7409.8 3616.3 4797.4

5.5. The Risk-Averse Model

We report the computational results of the risk-averse model of TMS based on CVaR, as described

in Online Supplement B.2. We follow the settings in Section 5.1 to generate instances corresponding

to a combination with (L(`),K,T ) = (4,2,9) and conduct the experiments by varying the values

of λ ∈ [0,1] for α= 0.9 and α= 0.95, and report the results in Figures 8 and 9, respectively. Note

(a) Profit Information (b) 95% Confidence Interval

Figure 8 Risk-Averse Model with α= 0.9
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that when λ= 1, the risk-averse model (EC.1) is equivalent to the risk-neutral model TMS. For

model (EC.1), we solve it to obtain the risk-averse solution and evaluate the solution using the

objective function of our proposed risk-neutral model TMS, leading to the expected profit. We also

check the profits corresponding to the worst and best scenarios in the scenario tree T evolved in

the real-time market, leading to the worst-case and best-case profits, respectively, and calculate

the standard deviation of the profits corresponding to all the scenarios. The results are reported

in Figure 8a, where the left and right vertical axes specify the profit and standard deviation,

respectively. The dashed, solid, dash-dot, and dotted lines represent the best-case profit, expected

profit, worst-case profit, and standard deviation, respectively. In addition, based on the results on

the expected profit and standard deviation, we construct a 95% confidence interval (CI) for each

given λ and report the results in Figure 8b, where the dashed, solid, and dash-dot lines represent

the CI upper level, expected profit, and CI lower level, respectively. From Figure 8, we can observe

that when λ increases, i.e., the model becomes more risk-neutral, the expected profit increases,

while the profit variance increases with respect to possible realizations of the uncertainty, and the

confidence interval length slightly increases as well. The results are due to the well-known fact that

a risk-averse model protects the decision-maker with low risk but may lead to a meager profit.

Similar results can be obtained when we set α= 0.95, as shown in Figure 9. We also note that the

magnitudes of both the profit and variance differences are not very significant, and in the following,

we accordingly continue to conduct the experiments using our risk-neutral model TMS.

(a) Profit Information (b) 95% Confidence Interval

Figure 9 Risk-Averse Model with α= 0.95

5.6. Empirical Validation

In this section, we use out-of-sample tests to implement our proposed approach using real data, to

further show its potential benefits to real-world practitioners.
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5.6.1. Data Instances We select four thermal generators that are currently used in practice

for numerical testing to show that the results are robust for generators with different physical

characteristics. They are from regions covered by a U.S. wholesale market (i.e., PJM). The detailed

physical data, with minimal perturbation from the real data of these four generators, are shown in

Table 6, where parameters a, b, and c are the coefficients of function f(xi) = ax2
i + bxi + cyi.

Table 6 Generator Data

Generator
C

(MW)
C

(MW)
L(`)

V
(MW/h)

V
(MW/h)

U ($)
a

($/MW2h)
b

($/MWh)
c

($/h)

1 17.88 44.7 5 23.38 11 45 0.00977 22.9423 58.81

2 40.8 170 3 61.8 42 400 0.01088 12.8875 6.78

3 44.2 260 6 76.7 65 100 0.0024 12.3299 28

4 22 87 2 32.5 21 300 0.0068 5.8645 230

For the uncertain electricity price, we collect the historical day-ahead and real-time electricity

prices published by PJM at its Zone 1 from July 14, 2013 to July 10, 2017. For the uncertain

renewable generation, we collect the historical wind outputs generated from one region (i.e., the

Mid-Atlantic) covered by PJM within the same period. The electricity price and wind output data

are divided into two groups with respect to the time periods they cover for the out-of-sample test

purpose: group one covers July 14, 2013 to November 9, 2016 (1215 days in total) and group two

covers November 10, 2016 to July 10, 2017 (243 days in total).

5.6.2. Out-of-Sample Tests The out-of-sample tests are performed in two steps: First, we

use the group one data to generate scenarios to construct the optimization models described in

Sections 2 and 3 and thus obtain the corresponding day-ahead solutions. Second, for each model,

we validate the effectiveness of the obtained day-ahead solutions by using the group two data.

We perform the tests for the TMS model and two common models in practice: the MEV and

DA models. In the first step, the historical day-ahead and real-time prices in group one are used to

generate the day-ahead and real-time price scenarios, respectively. The historical wind output data

in the same group are utilized to generate the renewable generation output scenarios. Following

this approach, since we have one observed sample that combines day-ahead prices, real-time prices,

and wind output amounts for each particular operating day, there are 1215 samples. Following

the procedure described in Heitsch and Römisch (2009), we use these 1215 samples to generate a

scenario tree T with 240 scenarios to build the TMS model. For the MEV model, we aggregate these

1215 samples into 240 independent scenarios for its first phase and one mean-value scenario for its

second phase. The historical wind outputs represent the generation amounts in a large region, so

we scale them down to the level at which the maximum wind generation amount is around one
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half of the generation upper bound (i.e., C) of the thermal generator (detailed percentages shown

in the column “Wind Scale” in Table 7).

After obtaining the day-ahead offer amounts for the TMS, MEV, and DA models through solving

the optimization problems above, in the second step, we take the group two samples as simulation

scenarios (one day as a scenario and 243 days in total) to perform the validation (Fleten et al.

2002). We define set U as the collection of these 243 scenarios with each scenario representing

the day-ahead price, real-time price, and wind output for each specific day. The average value of

the day-ahead prices in the simulation scenarios in U is used to calculate the day-ahead market

profit for each model. For the real-time market profit, the calculations are as follows: For the DA

model, there is no real-time market profit. For the MEV model, we take the average real-time price

and wind power output amount of the simulation scenarios in U as the input in the second-stage

mean-value scenario model to obtain the real-time market offer amounts and the corresponding

real-time market profit. For the TMS model, we validate the obtained day-ahead solutions with

respect to each simulation scenario in U through a rolling horizon approach. Corresponding to

each simulation scenario, we solve an optimization model at each period in the real-time market

operation. Specifically, given a simulation scenario s ∈ U and at each period t, we perform the

following procedure:

1. Generate a scenario tree that covers the following six periods from periods t to t+ 5. Based

on the observed realization of this scenario s from periods 1 to t, we select 240 scenarios

from the 1215 historical samples used in the first step, which have similar values from periods

1 to t as those in this simulation scenario s, to construct the scenario tree. Based on this

scenario tree, we build a multistage stochastic programming model (covering periods t to t+5)

corresponding to this simulation scenario s and this period t.

2. Solve the corresponding multistage stochastic programming problem and obtain the root node

decision as the offer amount corresponding to this scenario s and this period t with the

corresponding profit for this scenario and this period denoted as zst.

Accordingly, the total profit for scenario s is equal to
∑T

t=1 zst. The average of profits among

all scenarios in U , i.e.,
∑

s∈U
∑T

t=1 zst/|U|, represents the real-time market profit from the TMS

model. Note that in Step 2, each problem is solved within five seconds with most instances within

one second, which is fast enough for the real-time operations in practice.

The results are reported in Table 7. The columns “TMS”, “MEV”, and “DA” provide the total

profits obtained from the TMS, MEV, and DA models under different cases. The fifth column

labelled “PR MEV” indicates the percentage of the profit reduction from TMS to MEV, i.e.,

PR MEV = (ZTMS −ZMEV)/ZTMS. The last column “PR DA” indicates the percentage of profit

reduction from TMS to DA. The table shows that our approach achieves a significantly higher

profit than the MEV and DA models do for all combinations in the case study.
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Table 7 Out-of-Sample Test Results

GeneratorWind Scale TMS MEV PR MEV DA PR DA

1
45% 1688.7 1372.3 18.74% 1480.3 12.34%

55% 3152.2 2717.2 13.80% 2960.5 6.08%

2
45% 6647.0 5136.3 22.73% 5523.2 16.91%

55% 7194.0 5630.9 21.73% 6074.8 15.56%

3
45% 6989.5 5762.0 17.56% 5921.1 15.29%

55% 8306.0 7073.8 14.83% 7401.3 10.89%

4
45% 1642.5 1488.6 9.37% 1586.0 3.44%

55% 1980.5 1757.7 11.25% 1903.2 3.90%

6. Conclusion

In this paper, we proposed an integrated optimal self-scheduling strategy for an IPP that partic-

ipates in both day-ahead and real-time electricity markets. It leads to a practical innovation that

allows IPPs to better manage their generation assets and coordinate the offers between the two

markets. To effectively model this practical innovation, we developed a new stochastic program-

ming framework that combines two-stage and multistage stochastic programs. The IPP submits

the day-ahead offer amounts in the first stage considering the possible real-time offer amounts

under uncertain real-time price and renewable generation output as a recourse in the second stage,

which is a scenario-tree-based multistage stochastic program in itself. We showed that our approach

outperforms alternative models through both theoretical proofs and numerical experiments. To effi-

ciently solve the resulting formulation of our proposed model, we performed an extensive study to

derive strong valid inequalities, including convex hull representations for certain special cases, and

corresponding polynomial-time separation algorithms to speed up the branch-and-cut process, to

solve the formulation. Finally, real case studies confirmed the advantage of our proposed approach

and the strength of our proposed strong valid inequalities. In future research, we will explore the

integration of our approach with decomposition algorithms, e.g., progressive hedging (Rockafellar

and Wets 1991, Watson and Woodruff 2011) and Lagrangian relaxation (Fisher 1981), to solve

large-scale problems by decomposing the scenario tree into subtrees and making use of our derived

cutting planes in this paper to help solve the subproblem corresponding to each subtree or scenario.
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Endnotes

1. All the instance data are publicly available at https://github.com/letsplayagamee/Integrated-

Self-Scheduling/.

https://github.com/letsplayagamee/Integrated-Self-Scheduling/
https://github.com/letsplayagamee/Integrated-Self-Scheduling/
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Appendix A: Supplement to Section 1

A.1. An Illustrative Example

We create an example showing the incentive for an IPP to conduct self-scheduling due to the non-convexity

issue. In particular, we consider two generators (denoted by G1 and G2) initially off in a single-bus system to

serve system loads in two operational periods (with each period as one hour), which are 50MW and 120MW

in the first and second periods, respectively. The first generator G1 has generation lower and upper bounds at

55MW and 100MW, respectively, start-up/shut-down ramp rate limits at 100MW/h, general ramp-up/-down

rate limits at 5MW/h, and minimum-up/-down time limits at 1 hour. It has a start-up cost of $100 and its

unit generation cost is $1/MWh. The second generator G2 has generation lower and upper bounds at 30MW

and 200MW, respectively, start-up/shut-down ramp rate limits at 200MW/h, general ramp-up/-down rate

limits at 10MW/h, and minimum-up/-down time limits at 1 hour. It has a start-up cost of $200 and its unit

generation cost is $10/MWh. Both generators have shut-down costs at $0 and only linear generation costs.

By using our notation in the paper, we summarize the above generator parameters in the following table:

Table EC.1 Generator Parameters

Generator
C

(MW)
C

(MW)
V

(MW/h)
V

(MW/h)
L(`) U ($)

b
($/MWh)

G1 55 100 100 5 1 100 1
G2 30 200 200 10 1 200 10

The system optimization model for market clearance schedules G1 to produce 0MW and 80MW and G2 to

produce 50MW and 40MW in the first and second periods, respectively, to satisfy system loads towards the

minimum total generation cost at $1280 (= 80×1+100+(50+40)×10+200). The corresponding locational

marginal prices (LMPs, i.e., the optimal dual values corresponding to the load balance constraints in solving

the economic dispatch problem when the generators’ online/offline statuses are fixed) are $19/MWh and

$1/MWh in the first and second periods, respectively.
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On the one hand, if these two generators follow the system dispatch, then the individual profits (i.e.,

revenue minus generation cost) for G1 and G2 are $−100 (= 80× (1− 1)− 100) and $−110 (= 50× (19−

10)+40× (1−10)−200), respectively. On the other hand, if they perform self-scheduling based on the LMPs

with the objectives of maximizing the profits, then generator G1 produces 100MW in both the first and

second periods, leading to the total profit at $1700 (= 100× (19− 1) + 100× (1− 1)− 100) and generator

G2 produces nothing, leading to the total profit at $0. For both generators, we see profit differences (i.e.,

$1700− (−$100) = $1800 for G1 and $0− (−$110) = $110 for G2) due to the non-convexity issue.

Appendix B: Supplement to Section 2

B.1. Proof of Proposition 1

Proof of Proposition 1 We prove it by contradiction. Suppose hc∗i h
d∗
i 6= 0 for some i ∈ V. Then hc∗i > 0

and hd∗i > 0 by nonnegativity restrictions (1j). We define V> = {i∈ V : hc∗i h
d∗
i 6= 0} and let ZTMS∗ denote the

objective value corresponding to (d∗, y∗, u∗, x∗, r∗, s∗, hc∗, hd∗). In the following, we create another feasible

solution (d′, y′, u′, x′, r′, s′, hc′, hd
′
) that achieves an objective value ZTMS′ such that ZTMS′ >ZTMS∗.

We let (d′, y′, u′, x′, s′) = (d∗, y∗, u∗, x∗, s∗). For the values of (r′, hc′, hd
′
), we first define V>+ = {i ∈ V> :

hc∗i − hd∗i /(λcλd)≥ 0} and V>− = V> \ V>+ . Then for any i ∈ V>+ , we let hci
′ = hc∗i − hd∗i /(λcλd), hdi

′
= 0, and

r′i = r∗i + (1/(λcλd)− 1)hd∗i . For any i ∈ V>− , where hc∗i − hd∗i /(λcλd)< 0, we let hci
′ = 0, hdi

′
= hd∗i − λcλdhc∗i ,

and r′i = r∗i + (1−λcλd)hc∗i . For any i∈ V \V>, where hc∗i h
d∗
i = 0, we let hci

′ = hc∗i , hdi
′
= hd∗i , and r′i = r∗i .

Since (d∗, y∗, u∗, x∗, r∗, s∗, hc∗, hd∗) is a feasible solution of model TMS, we have (d′, y′, u′, x′, r′, s′, hc′, hd
′
)

satisfies (1b) - (1g) and (1j) because (d′, y′, u′, x′, s′) = (d∗, y∗, u∗, x∗, s∗). Further, it is easy to check that

(d′, y′, u′, x′, r′, s′, hc′, hd
′
) satisfies (1h) - (1i), and thus it is also a feasible solution of model TMS. It follows

that

ZTMS′ =ZTMS∗+
∑
i∈V>

+

pi
(
Qr
i (1/(λcλd)− 1)hd∗i + (Hc/(λcλd) +Hd)h

d∗
i

)
+
∑
i∈V>−

pi

(
Qr
i (1−λcλd)hc∗i + (Hc +λcλdHd)h

c∗
i

)
>ZTMS∗,

where the inequality holds because λcλd < 1, hc∗ > 0, hd∗ > 0, Qr
i > 0 (∀i∈ V), and |V>|> 0. This contradicts

the fact that (d∗, y∗, u∗, x∗, r∗, s∗, hc∗, hd∗) is an optimal solution. Thus, our original claim hc∗i h
d∗
i = 0, ∀i∈ V

holds. �

B.2. A Risk-Averse Model of TMS

The conditional value-at-risk (CVaR) is a risk measure applied to cope with uncertain loss function. We

consider the negative profit in the second stage of TMS as the loss function and propose a risk-averse model

of TMS using CVaR. Given the first-stage decision d and realized uncertain parameters (Qr,W ), we let

ΩTMS(d,Qr,W ) denote the second-stage loss function. Thus, we have

EP
[
ΩTMS(d,Qr,W )

]
=−

∑
i∈V

pi

(
Qr
i ri−

(
Uui +D(yi− − yi +ui) + f(xi)

)
−Hch

c
i −Hdh

d
i

)
,
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where EP represents the expectation with respect to the joint probability distribution P of the underlying

uncertain electricity price and renewable generation. We consider the α-CVaR of the loss function, with

α ∈ (0,1) being the given risk parameter, and introduce a parameter λ ∈ [0,1] to allow the decision maker

to control her risk attitude. We accordingly consider λEP[ΩTMS(d,Qr,W )] + (1−λ)CVaRα(ΩTMS(d,Qr,W ))

as the second-stage objective, where λ= 1 reflects the risk-neutral attitude and λ= 0 focuses on risk-averse

attitude only. Based on the reformulation described in Rockafellar and Uryasev (2000), we have

CVaRα

(
ΩTMS(d,Qr,W )

)
= min

ζ≥0

{
ζ +

1

1−α
EP

[(
ΩTMS(d,Qr,W )− ζ

)+]}
.

Therefore, by introducing auxiliary variable ωk for any k ∈ ST , the risk-averse model of TMS based on CVaR

can be described as follows:

min −E
( T∑
t=1

Qd
t (ξ)dt

)
−λ

∑
i∈V

pi

(
Qr
i ri−

(
Uui +D(yi− − yi +ui) + f(xi)

)
−Hch

c
i −Hdh

d
i

)
+(1−λ)

(
ζ +

1

1−α
∑
k∈ST

pkωk

)
(EC.1a)

s.t. (1a)− (1j),

ωk ≥−
∑
i∈P(k)

(
Qr
i ri−

(
Uui +D(yi− − yi +ui) + f(xi)

)
−Hch

c
i −Hdh

d
i

)
− ζ, ∀k ∈ ST , (EC.1b)

ωk ≥ 0, ∀k ∈ ST ; ζ ≥ 0, (EC.1c)

where ST represents the set of all scenario nodes in stage T .

Appendix C: Supplement to Section 3

C.1. Day-Ahead Self-Scheduling and Real-Time Adaptive Offer Submission Model

The corresponding model can be described as follows.

ZTMSR = max

{
gTMSR(d, y,u,x, r, s, hc, hd) := E

( T∑
t=1

Qd
t (ξ)dt

)
−

T∑
t=2

(
Uut +D(yt−1− yt +ut)

)
+
∑
i∈V

pi

(
Qr
i ri− f(xi)−Hch

c
i −Hdh

d
i

)
: (d, y,u,x, r, s, hc, hd)∈XTMSR

}
,

where XTMSR is defined by the following constraints: (1h) - (1i),

yt− yt−1 ≤ yk, ∀t∈ [2, T ]Z,∀k ∈ [t,min{t+L− 1, T}]Z, (EC.2a)

yt−1− yt ≤ 1− yk, ∀t∈ [2, T ]Z,∀k ∈ [t,min{t+ `− 1, T}]Z, (EC.2b)

yt− yt−1 ≤ ut ≤min{yt, 1− yt−1}, ∀t∈ [2, T ]Z, (EC.2c)

Cyt(i) ≤ xi ≤Cyt(i), ∀i∈ V,

xi−xi− ≤ V yt(i−) +V (1− yt(i−)), ∀i∈ V \ {1},

xi− −xi ≤ V yt(i) +V (1− yt(i)), ∀i∈ V \ {1},

s0 = 0; 0≤ si ≤Λ, ri ≥ 0, hci ≥ 0, hdi ≥ 0, ∀i∈ V,

dt ≥ 0, yt ∈ {0,1}, ∀t∈ [1, T ]Z; ut ∈ {0,1}, ∀t∈ [2, T ]Z.
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C.2. Two-Phase Offer Submission Models

The constraint set XTS is defined by the following constraints: (EC.2a) - (EC.2c),

Cyt ≤ xt(η)≤Cyt, ∀t∈ [1, T ]Z,∀η ∈ S,

xt(η)−xt−1(η)≤ V yt−1 +V (1− yt−1), ∀t∈ [2, T ]Z,∀η ∈ S,

xt−1(η)−xt(η)≤ V yt +V (1− yt), ∀t∈ [2, T ]Z,∀η ∈ S,

st(η) = st−1(η) +λch
c
t(η)−hdt (η)/λd, ∀t∈ [1, T ]Z,∀η ∈ S,

dt + rt(η) = xt(η) +Wt(η)−hct(η) +hdt (η), ∀t∈ [1, T ]Z,∀η ∈ S,

s0 = 0; 0≤ st(η)≤Λ, rt(η)≥ 0, hct(η)≥ 0, hdt (η)≥ 0, ∀t∈ [1, T ]Z,∀η ∈ S,

yt ∈ {0,1}, dt ≥ 0, ∀t∈ [1, T ]Z;ut ∈ {0,1}, ∀t∈ [2, T ]Z,

where set S collects all of the scenarios in the scenario tree T .

The constraint set XMSV is defined by the following constraints: (1h),

Cy∗t(i) ≤ xi ≤Cy∗t(i), ∀i∈ V,

xi−xi− ≤ V y∗t(i−) +V (1− y∗t(i−)), ∀i∈ V \ {1},

xi− −xi ≤ V y∗t(i) +V (1− y∗t(i)), ∀i∈ V \ {1},

d∗t(i) + ri = xi +Wi−hci +hdi , ∀i∈ V,

s0 = 0; 0≤ si ≤Λ, ri ≥ 0, hci ≥ 0, hdi ≥ 0, ∀i∈ V.

The constraint set XMEV is defined by the following constraints:

Cy∗t ≤ xt ≤Cy∗t , ∀t∈ [1, T ]Z,

xt−xt−1 ≤ V y∗t−1 +V (1− y∗t−1), ∀t∈ [2, T ]Z,

xt−1−xt ≤ V y∗t +V (1− y∗t ), ∀t∈ [2, T ]Z,

st = st−1 +λch
c
t −hdt/λd, ∀t∈ [1, T ]Z, (EC.3a)

d∗t + rt = xt + W̄t−hct +hdt , ∀t∈ [1, T ]Z,

s0 = 0; 0≤ st ≤Λ, hct ≥ 0, hdt ≥ 0, ∀t∈ [1, T ]Z.

C.3. Day-Ahead Only Model

The corresponding model can be described as follows.

ZDA = max

{
gDA(d, y,u,x, s, hc, hd) := E

( T∑
t=1

Qd
t (ξ)dt

)
−

T∑
t=2

(
Uut +D(yt−1− yt +ut)

)

−
T∑
t=1

(
f(xt) +Hch

c
t +Hdh

d
t

)
: (d, y,u,x, s, hc, hd)∈XDA

}
,

where XDA is defined by the following constraints: (EC.2a) - (EC.2c), (EC.3a),

Cyt ≤ xt ≤Cyt, ∀t∈ [1, T ]Z,
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xt−xt−1 ≤ V yt−1 +V (1− yt−1), ∀t∈ [2, T ]Z,

xt−1−xt ≤ V yt +V (1− yt), ∀t∈ [2, T ]Z,

dt = xt + W̄t−hct +hdt , ∀t∈ [1, T ]Z, (EC.4a)

s0 = 0; yt ∈ {0,1},0≤ st ≤Λ, dt ≥ 0, hct ≥ 0, hdt ≥ 0, ∀t∈ [1, T ]Z,

ut ∈ {0,1}, ∀t∈ [2, T ]Z.

C.4. Proof of Proposition 2

Proof of Proposition 2 First, we show ZTMS ≥ZTMSR ≥ZMSV by proving each inequality holds as follows.

(i) ZTMS ≥ZTMSR. For each optimal solution (d∗t , y
∗
t , u
∗
t ,∀t;x∗i , r∗i , s∗i , hc∗i , hd∗i ,∀i) of model TMSR, we can

always construct a feasible solution (d̄t,∀t; ȳi, ūi, x̄i, r̄i, s̄i, h̄c, h̄d,∀i) of model TMS by letting 1) d̄t = d∗t

for each t; 2) ȳi = y∗t and ūi = u∗t when t(i) = t, x̄i = x∗i , r̄i = r∗i , s̄i = s∗i , h̄
c
i = hc∗i , and h̄di = hd∗i for each

i. It is easy to observe that ZTMS ≥ gTMS(d̄, ȳ, ū, x̄, r̄, s̄, h̄c, h̄d) = gTMSR(d∗, y∗, u∗, x∗, r∗, s∗, hc∗, hd∗) =

ZTMSR.

(ii) ZTMSR ≥ ZMSV. Because each optimal solution (d∗t , y
∗
t , u
∗
t ,∀t;x∗i , r∗i , s∗i , hc∗i , hd∗i ,∀i) based on the two-

phase model MSV is always a feasible solution of model TMSR, it follows that ZTMSR ≥ gTMSR(d∗, y∗, u∗,

x∗, r∗, s∗, hc∗, hd∗) = gMSV(x∗, r∗, s∗, hc∗, hd∗) =ZMSV.

(iii) ZMSV ≥ ZMEV if Wi = Wj for each i, j ∈ V with t(i) = t(j), i.e., any deterministic sequence of wind

power generation. Model MEV can be rewritten as

ZMEV = max
{
gMSV(x, r, s, hc, hd) : (x, r, s, hc, hd)∈XMSV,

xi = xj , ri = rj , si = sj , h
c
i = hcj , h

d
i = hdj , ∀i, j ∈ V such that t(i) = t(j)

}
.

That means, model MSV is a relaxation of model MEV under the same objective function of a maxi-

mization problem. It follows that ZMSV ≥ZMEV.

Next, we prove the conclusion for the case when Q̄d
t = Q̄r

t for any t. We show each inequality holds as

follows.

(i) ZDA ≥ZMEV. We split variable dt in model DA into d′t and r′t by letting dt = d′t + r′t with d′t ≥ 0 and

r′t ≥ 0 for each t. It follows that

ZDA = max

{
gDA(d, y,u,x, s, hc, hd) := E

( T∑
t=1

Qd
t (ξ)dt

)
−

T∑
t=2

(
Uut +D(yt−1− yt +ut)

)

−
T∑
t=1

(
f(xt) +Hch

c
t +Hdh

d
t

)
: (d, y,u,x, s, hc, hd)∈XDA

}

= max

{
gDA(d′, y, u,x, r′, s, hc, hd) := E

( T∑
t=1

Qd
t (ξ)(d

′
t + r′t)

)
−

T∑
t=2

(
Uut +D(yt−1− yt +ut)

)

−
T∑
t=1

(
f(xt) +Hch

c
t +Hdh

d
t

)
: (d′, y, u,x, r′, s, hc, hd)∈ X̂DA

}

= max

{
gDA(d′, y, u,x, r′, s, hc, hd) := E

( T∑
t=1

Qd
t (ξ)d

′
t

)
−

T∑
t=2

(
Uut +D(yt−1− yt +ut)

)

+

T∑
t=1

(
Q̄r
tr
′
t− f(xt)−Hch

c
t −Hdh

d
t

)
: (d′, y, u,x, r′, s, hc, hd)∈ X̂DA

}
, (EC.5)
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where the first equation is due to the definition of ZDA in Section C.3, the second equation is because

dt = d′t + r′t for each t (X̂DA collects all of the constraints in XDA except that dt in (EC.4a) is replaced

with d′t+r′t), and the third equation holds because Q̄r
t = Q̄d

t for each t. Through comparing (EC.5) with

model MEV in Section C.2, we can observe that any optimal solution (d∗, y∗, u∗, x∗, r∗, s∗, hc∗, hd∗) of the

two-phase model MEV is a feasible solution of X̂DA in model DA because (y∗, u∗) satisfies constraints

(EC.2a) - (EC.2c) and (d∗, x∗, r∗, s∗, hc∗, hd∗) satisfies the remaining constraints in X̂DA. It follows that

ZDA ≥gDA(d∗, y∗, u∗, x∗, r∗, s∗, hc∗, hd∗)

=E

( T∑
t=1

Qd
t (ξ)d

∗
t

)
−

T∑
t=2

(
Uu∗t +D(y∗t−1− y∗t +u∗t )

)
+

T∑
t=1

(
Q̄r
tr
∗
t − f(x∗t )−Hch

c∗
t −Hdh

d∗
t

)
=gMEV(x∗, r∗, s∗, hc∗, hd∗) =ZMEV,

where the first inequality holds because (d∗, y∗, u∗, x∗, r∗, s∗, hc∗, hd∗) is a feasible solution of model DA,

the first equation holds due to (EC.5), and the second and third equations hold due to the definition

of ZMEV in (3) in Section 3.2.

(ii) ZTMSR ≥ ZDA if Wi = Wj for each i, j ∈ V with t(i) = t(j), i.e., any deterministic sequence of wind

power generation. Following (EC.5), we have

ZDA = max
{
gTMSR(d, y,u,x, r, s, hc, hd) : (d, y,u,x, r, s, hc, hd)∈XTMSR,

xi = xj , ri = rj , si = sj , h
c
i = hcj , h

d
i = hdj , ∀i, j ∈ V such that t(i) = t(j)

}
.

The above formulation shows that any optimal solution for model DA is a feasible solution for model

TMSR, and corresponding to each optimal solution for model DA, we have the corresponding objective

of TMSR is the same as that of model DA. Thus, model TMSR is a relaxation of model DA and

ZTMSR ≥ZDA. �

Appendix D: Supplement to Section 4.1

D.1. Proof of Proposition 3

Proof of Proposition 3 To prove the validity of inequality (5), which essentially tightens xi− ≤ Cyi−

in (4c), we show how (5) is obtained and accordingly illustrate the corresponding insights. Since Cyi− =

V yi− + (C −V )yi− , the following inequality

xi− ≤ V yi− + (C −V )(yi−ui) (EC.6)

tightens xi− ≤ Cyi− because 0≤ yi − ui ≤ yi− due to (4a). It is easy to observe that (EC.6) is valid when

yi − ui = yi− , which reduces back to xi− ≤ Cyi− . We only need to verify the case in which yi − ui < yi− ,

which only happens when yi−ui = 0 and yi− = 1 (because yi−ui ≥ 0). This further implies that yi = ui = 0

because yi− = 1. Thus, for this case, (EC.6) reduces to xi− ≤ V , which is valid due to ramp-down constraints

in (4d) as the generator shuts down from node i− (online) to node i (offline). Since inequality (EC.6) is the

same as inequality (5), the validity proof of (5) is done.

For inequality (6), which tightens xi ≤ Cyi in (4c), we can similarly show how it is obtained as follows.

Since Cyi = V yi + (C −V )yi, the following inequality

xi ≤ V yi + (C −V )(yi−ui) (EC.7)



ec7

tightens xi ≤ Cyi because 0 ≤ yi − ui ≤ yi as 0 ≤ ui ≤ 1. It is easy to observe that (EC.7) is valid when

yi−ui = yi, which reduces back to xi ≤Cyi. We only need to verify the case in which yi−ui = 0 and yi = 1,

i.e., yi = ui = 1, from which (EC.7) reduces to xi ≤ V , which is valid due to ramp-up constraints in (4d) as

the generator starts up at node i (note that ui = 1 implies yi− = 0).

Furthermore, in (EC.7) we can rewrite V yi + (C − V )(yi− ui) = V yi + V (yi− ui) + (C − V − V )(yi− ui).

Thus, xi ≤Cyi can be further tightened to be

xi ≤ V yi +V (yi−ui) + (C −V −V )(yj −uj) (EC.8)

by replacing (C−V −V )(yi−ui) with (C−V −V )(yj −uj). It is easy to observe that (EC.8) is valid when

j = i, which reduces back to (EC.7). For the case in which j 6= i, (EC.8) is clearly valid when yi− = 0 since

it leads to yi = ui and yj = uj due to (4a), indicating ramp-up restrictions. When yi− = 1, (EC.8) is also

valid because (EC.8) converts to xi ≤ (V +V )yi + (C −V −V )yj (This conclusion is obvious when yi = 0 or

yi = yj = 1. When yi = 1 and yj = 0, we have xi− ≤ V̄ , which implies xi ≤ V̄ +V ). Since inequality (EC.8) is

the same as inequality (6), the validity proof of (6) is done.

To prove the validity of (7), which essentially tightens xi−xi− ≤ V yi− +V (1− yi−) in (4d), we show how

(7) is obtained and accordingly illustrate the corresponding insights. Due to ramp-up process characteristics

and V <C +V , we have

xi−xi− ≤ (C +V )yi−Cyi− . (EC.9)

Since (C + V )yi = V yi + (C + V − V )yi and yi ≥ yi− ui ≥ 0 due to 0≤ ui ≤ 1, we can try to tighten (EC.9)

to be

xi−xi− ≤ V yi−Cyi− + (C +V −V )(yi−ui), (EC.10)

which is clearly valid when yi − ui = yi. When yi − ui < yi, i.e., yi = ui = 1, it follows that yi− = 0 and

therefore (EC.10) is valid because it reduces to xi ≤ V , which is valid due to ramp-up constraints in (4d) as

the generator starts up at node i. Since inequality (EC.10) is the same as inequality (7), the validity proof

of (7) is done.

Similar argument as above for (6) and (7) can be applied to prove that inequality (8) is valid and thus we

omit the corresponding proofs here.

For inequality (9), we can show how it is obtained as follows. Due to ramp-up process characteristics and

V <C +V , we have

xi−xj ≤ (C + 2V )yi−Cyj , ∀i 6= j. (EC.11)

The validity of inequality (EC.11) holds obviously when yi = yj = 0 or yi = 0, yj = 1. When yi = yj = 1, due

to ramp-up restriction, we have xi − xj ≤ 2V . When yi = 1, yj = 0, the generator shuts down from node i−

to node j. Then, we have xi− ≤ V due to shut-down ramping and accordingly xi ≤ V + V ≤ C + 2V . The

inequality (EC.11) can further be tightened to be

xi−xj ≤ V yi−Cyj + (C + 2V −V )(yi−ui), (EC.12)
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following the similar logic of obtaining (EC.10). Since (C+ 2V −V )(yi−ui) = V (yi−ui) + (C+V −V )(yi−
ui), we can also tighten (EC.11) to be

xi−xj ≤ V yi−Cyj +V (yi−ui) + (C +V −V )(yk−uk), (EC.13)

by replacing (C+V −V )(yi−ui) with (C+V −V )(yk−uk) following the similar logic of obtaining (EC.8).

Therefore, inequality (EC.13) is the same as inequality (9) and it follows that the corresponding validity

proof is done. �

D.2. Proof of Theorem 1

Proof of Theorem 1 Based on Proposition 3, this conclusion holds immediately if every inequality in Q2

is facet-defining for conv(P2) and every extreme point of Q2 is integral in y and u and feasible for P2, which

are proved in the following two propositions respectively.

Proposition EC.1. Each inequality in Q2 is facet-defining for conv(P2).

Proof of Theorem EC.1 See Online Supplement D.3. �

Now we prove that all of the extreme points of Q2 are integral in y and u. To show this, we first provide

the following Lemma.

Lemma EC.1. For the following two-period multistage stochastic self-scheduling problem

z∗ = max

{ n∑
i=0

aixi +

n∑
i=0

biyi +

n∑
i=1

ciui : (x, y,u)∈ P2

}
, (EC.14)

where (a, b, c)∈R3n+2, there exists at least one optimal solution satisfying one of the following six conditions:

(1) x0 = 0, xi ∈ {0, C, V }, ∀i = 1, . . . , n, (2) x0 = C, xi ∈ {0, C, C + V }, ∀i = 1, . . . , n, (3) x0 = V ,

xi ∈ {0, C, V + V }, ∀i = 1, . . . , n, (4) x0 = C + V , xi ∈ {C, C + 2V }, ∀i = 1, . . . , n, (5) x0 = C − V ,

xi ∈ {C, C − 2V }, ∀i= 1, . . . , n, and (6) x0 = C, xi ∈ {C − V, C}, ∀i= 1, . . . , n, where binary variables y

and u are uniquely decided following the constraints in P2 in each condition.

Proof of Lemma EC.1 See Online Supplement D.4. �

Proposition EC.2. All of the extreme points of Q2 are integral in y and u.

Proof of Proposition EC.2 See Online Supplement D.5. �

Finally, by the formulation representations, we have both P2 and Q2 bounded. Meanwhile, it is easy to

observe that Q2 is full-dimensional. In addition, because all of the inequalities in Q2 are valid and facet-

defining for conv(P2) based on Propositions 3 and EC.1, we have Q2 ⊇ conv(P2). Moreover, we have that

any extreme point in Q2 is binary in y and u and is feasible for P2 based on Proposition EC.2. Thus Q2 =

conv(P2). �

D.3. Proof of Proposition EC.1

Proof of Proposition EC.1 For each inequality, we generate 3n+2 affinely independent points in conv(P2)

that satisfy the inequality at equality. We sort the scenario nodes in the second period in the order of

1,2, . . . , n and label node i− as index 0, so that we have n+ 1 nodes, i.e., 0,1,2, . . . , n. Because 0∈ conv(P2),

it is sufficient to generate other 3n+ 1 linearly independent points in conv(P2) for each inequality. In the

following proofs, we use the superscript of (x, y,u), e.g., r in (xr, yr, ur), to represent the index of different

points in conv(P2) and let ε be an arbitrarily small positive real number.
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For inequality (4a) yi− yi− −ui ≤ 0, ∀i∈N : We create five groups of points as follows:

(i) We create a point (x́, ý, ú)∈ conv(P2) (totally one point) such that

x́s =

C + ε, s= 0
C, s= i
0, s∈ [0, n]Z \ {0, i}

, ýs =

{
1, s∈ {0, i}
0, s∈ [0, n]Z \ {0, i}

, and
ús = 0,
s∈ [1, n]Z

.

(ii) For each r ∈ [0, n]Z \ {i} (totally n points), we create (x̄r, ȳr, ūr)∈ conv(P2) such that

x̄rs =

{
C, s∈ [0, r]Z ∪{i}
0, o.w.

, ȳrs =

{
1, s∈ [0, r]Z ∪{i}
0, o.w.

, and
ūrs = 0,
s∈ [1, n]Z

.

(iii) For each r ∈ [0, n]Z \ {i} (totally n points), we create (x̂r, ŷr, ûr)∈ conv(P2) such that

x̂rs =

{
V , s∈ [0, r]Z ∪{i}
0, o.w.

, ŷrs =

{
1, s∈ [0, r]Z ∪{i}
0, o.w.

, and
ûrs = 0,
s∈ [1, n]Z

.

(iv) We create a point (ẋ, ẏ, u̇)∈ conv(P2) (totally one point) such that

ẋs =

{
0, s= 0
C, o.w.

, ẏs =

{
0, s= 0
1, o.w.

, and
u̇s = 1,
s∈ [1, n]Z

.

(v) For each r ∈ [1, n]Z \ {i} (totally n− 1 points), we create (x̃r, ỹr, ũr)∈ conv(P2) such that

x̃rs =

{
C, s∈ [r,n]Z \ {i}
0, o.w.

, and ỹrs = ũrs =

{
1, s∈ [r,n]Z \ {i}
0, o.w.

.

Finally, these five groups of points are collected in Table EC.2, from which we can observe that (x̂, ŷ, û),

(ẋ, ẏ, u̇), and (x̃, ỹ, ũ) are linearly independent because they can construct a lower-triangular matrix based

on the values of y and u after Gaussian elimination on the u part. Moreover, (x́, ý, ú) and (x̄, ȳ, ū) are further

linearly independent with them because all of them can construct a whole lower-triangular matrix after

Gaussian elimination between (x̄, ȳ, ū) and (x̂, ŷ, û) on the x part because V > C. Thus, we have created

1 +n+n+ 1 + (n− 1) = 3n+ 1 linearly independent points in conv(P2) as desired.

Similarly, we can show that ui − yi ≤ 0 and ui + yi− ≤ 1, ∀i ∈N , in inequalities (4a) are facet-defining,

so is inequality (10). In the following proofs, we follow the similar way described above to create linearly

independent points in conv(P2) by firstly generating several groups of points that can construct a lower-

triangular matrix in terms of the values of x and y (e.g., (x́, ý, ú), (x̄, ȳ, ū), and (x̂, ŷ, û) for yi− yi− −ui ≤ 0

above) and then generating several groups of points that can construct an upper-triangular matrix in terms

of the value of u (e.g., (ẋ, ẏ, u̇) and (x̃, ỹ, ũ) for yi− yi− −ui ≤ 0 above).

For inequality (4b) xi ≥ Cyi, ∀i ∈ N ∪ {i−} : For the root node i− indexed as 0, we create 3n + 1

independent points in conv(P2) in the following three groups:

(i) For each r ∈ [0, n]Z (totally n+ 1 points), we create (x̄r, ȳr, ūr)∈ conv(P2) such that

x̄rs =

{
C, s∈ [0, r]Z
0, o.w.

, ȳrs =

{
1, s∈ [0, r]Z
0, o.w.

, and
ūrs = 0,
s∈ [1, n]Z

.

(ii) For each r ∈ [1, n]Z (totally n points), we create (x̂r, ŷr, ûr)∈ conv(P2) such that

x̂rs =

{
C, s∈ [r,n]Z
0, o.w.

, and ŷrs = ûrs =

{
1, s∈ [r,n]Z
0, o.w.

.

(iii) For each r ∈ [1, n]Z (totally n points), we create (x̃r, ỹr, ũr)∈ conv(P2) such that

x̃rs =

{
V , s∈ [r,n]Z
0, o.w.

, and ỹrs = ũrs =

{
1, s∈ [r,n]Z
0, o.w.

.

In addition, for a fixed node i∈N of inequality (4b) and for inequalities (5) - (8), we can similarly create

3n+ 1 linearly independent points in conv(P2) for each inequality and thus we omit them here.
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Group
x y u

xi− xix1· · ·xi−1xi+1· · ·xn yi−yiy1· · ·yi−1yi+1· · ·yn uiu1· · ·ui−1ui+1· · ·un
(x́, ý, ú) C + εC 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

(x̄, ȳ, ū)

C C 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

C C C · · · C C · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

C C C · · · C C · · · C 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(x̂, ŷ, û)

V V 0 · · · 0 0 · · · 0 1 1 0 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

V V V · · · 0 0 · · · 0 1 1 1 · · · 0 0 · · · 0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

V V V · · · V 0 · · · 0 1 1 1 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 0

V V V · · · V V · · · 0 1 1 1 · · · 1 1 · · · 0 0 0 · · · 0 0 · · · 0

..

.
..
.

..

.
...

...
...

..

.
..
.

..

.
...

...
...

..

.
..
.

..

.
...

...

V V V · · · V V · · · V 1 1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 · · · 0

(ẋ, ẏ, u̇) 0 C C · · · C C · · · C 0 1 1 · · · 1 1 · · · 1 1 1 · · · 1 1 · · · 1

(x̃, ỹ, ũ)

0 0 C · · · C C · · · C 0 0 1 · · · 1 1 · · · 1 0 1 · · · 1 1 · · · 1

0 0 0 · · · C C · · · C 0 0 0 · · · 1 1 · · · 1 0 0 · · · 1 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · 0 C · · · C 0 0 0 · · · 0 1 · · · 1 0 0 · · · 0 1 · · · 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 · · · 0 0 · · · C 0 0 0 · · · 0 0 · · · 1 0 0 · · · 0 0 · · · 1

Table EC.2 3n+ 1 linearly independent points for yi− yi− −ui ≤ 0, ∀i∈N

For inequality (9) xi−xj ≤ (V +V )yi−V ui−Cyj +(C+V −V )(yk−uk), ∀i, j, k ∈N , i 6= j : Due to the

scenario node symmetry, without loss of generality we assume j 6= i and i= 1, j = 2, k = n. Now, we create

3n+ 1 linearly independent points in conv(P2) in the following six groups:

(i) We create a point (ẋ, ẏ, u̇)∈ conv(P2) (totally one point) such that

ẋs =

{
C, s= 0
0, o.w.

, ẏs =

{
1, s= 0
0, o.w.

, and
u̇s = 0,
s∈ [1, n]Z

.

(ii) For each r ∈ [0, n− 1]Z (totally n points), we create (x̄r, ȳr, ūr)∈ conv(P2) such that

x̄rs =


V , s= 0
V +V, s= [0, r]Z ∩{1}
C, s∈ [2, r]Z
0, o.w.

, ȳrs =

{
1, s∈ [0, r]Z
0, o.w.

, and
ūrs = 0,
s∈ [1, n]Z

.

(iii) For r= n (totally one point), we create (x̄r, ȳr, ūr)∈ conv(P2) such that

x̄rs =

C +V, s= 0
C + 2V, s= 1
C, s∈ [2, n]Z

,
ȳrs = 1,
s∈ [0, n]Z

, and
ūrs = 0,
s∈ [1, n]Z

.

(iv) We create a point (ẍ, ÿ, ü)∈ conv(P2) (totally one point) such that

ẍs =

C −V, s= 0
C, s= 1
C − 2V, s∈ [2, n]Z

,
ÿs = 1,
s∈ [0, n]Z

, and
üs = 0,
s∈ [1, n]Z

.
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(v) For each r ∈ [1, n]Z (totally n points), we create (x̂r, ŷr, ûr)∈ conv(P2) such that

x̂rs =

 V , s∈ [r,n]Z ∩{1}
C, s∈ [r,n]Z \ {1}
0, o.w.

, and ŷrs = ûrs =

{
1, s∈ [r,n]Z
0, o.w.

.

(vi) For each r ∈ [3, n]Z (totally n− 2 points), we create (x̃r, ỹr, ũr)∈ conv(P2) such that

x̃rs =

{
V , s∈ [r,n]Z
0, o.w.

, ỹrs =

{
1, s∈ [r,n]Z
0, o.w.

, and ũrs =

{
1, s∈ [r,n]Z
0, o.w.

.

We collect these 3n+ 1 linearly independent points in Table EC.3.

Group
x y u

xi− x1 x2 x3 · · · xn−1 xn yi−y1y2y3· · ·yn−1yn u1u2u3· · ·un−1un

(ẋ, ẏ, u̇) C 0 0 0 · · · 0 0 1 0 0 0 · · · 0 0 0 0 0 · · · 0 0

(x̄, ȳ, ū)

V 0 0 0 · · · 0 0 1 0 0 0 · · · 0 0 0 0 0 · · · 0 0

V V +V 0 0 · · · 0 0 1 1 0 0 · · · 0 0 0 0 0 · · · 0 0

V V +V C 0 · · · 0 0 1 1 1 0 · · · 0 0 0 0 0 · · · 0 0

V V +V C C · · · 0 0 1 1 1 1 · · · 0 0 0 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

V V +V C C · · · C 0 1 1 1 1 · · · 1 0 0 0 0 · · · 0 0

C +V C + 2V C C · · · C C 1 1 1 1 · · · 1 1 0 0 0 · · · 0 0

(ẍ, ÿ, ü) C−V C C− 2V C− 2V · · ·C− 2V C− 2V 1 1 1 1 · · · 1 1 0 0 0 · · · 0 0

(x̂, ŷ, û)

0 V C C · · · C C 0 1 1 1 · · · 1 1 1 1 1 · · · 1 1

0 0 C C · · · C C 0 0 1 1 · · · 1 1 0 1 1 · · · 1 1

0 0 0 C · · · C C 0 0 0 1 · · · 1 1 0 0 1 · · · 1 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · C C 0 0 0 0 · · · 1 1 0 0 0 · · · 1 1

0 0 0 0 · · · 0 C 0 0 0 0 · · · 0 1 0 0 0 · · · 0 1

(x̃, ỹ, ũ)

0 0 0 V · · · V V 0 0 0 1 · · · 1 1 0 0 1 · · · 1 1

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

0 0 0 0 · · · V V 0 0 0 0 · · · 1 1 0 0 0 · · · 1 1

0 0 0 0 · · · 0 V 0 0 0 0 · · · 0 1 0 0 0 · · · 0 1

Table EC.3 3n+ 1 linearly independent points for (9)

In summary, all of the inequalities in Q2 are facet-defining for conv(P2). �

D.4. Proof of Lemma EC.1

Proof of Lemma EC.1 Let A+ = {i ∈ [1, n]Z : ai ≥ 0}, A− = {i ∈ [1, n]Z : ai < 0}. We discuss two different

cases based on the online/offline status of the generator at the root node.

(1) The generator is offline at the root node, i.e., x0 = y0 = 0. For this case, we further discuss the following

two situations based on if i∈A+ or i∈A− for each i∈ [1, n]Z:

(i) If i∈A+, to maximize the objective function (EC.14), the generator at node i should be scheduled

online at its start-up ramp rate limit V following constraints (4c) and (4d) if aiV + bi + ci ≥ 0

or offline otherwise. It follows that (xi, yi, ui) = (V ,1,1) if the generator is online at node i or

(xi, yi, ui) = (0,0,0) otherwise.
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(ii) If i∈A−, to maximize the objective function (EC.14), the generator at node i should be scheduled

online at its minimum generation amount C if aiC+ bi + ci ≥ 0 or offline otherwise. It follows that

(xi, yi, ui) = (C,1,1) if the generator is online at node i or (xi, yi, ui) = (0,0,0) otherwise.

From the above (i) and (ii), we verified Claim (1).

(2) The generator is scheduled online at the root node, i.e., y0 = 1. It follows that ui = 0 for all i= 1, . . . , n.

For notational brevity, we let Ā+(x0) = {i ∈ [1, n]Z : ai ≥ 0, aimin{C,x0 +V }+ bi ≥ 0} and Ā−(x0) =

{i∈ [1, n]Z : ai < 0, aimax{C,x0−V }+ bi ≥ 0}. We further discuss the following two cases in terms of

the value of x0:

(i) If C ≤ x0 ≤ V , similar to (1) above, we further discuss the following two cases based on if i ∈A+

or i∈A− for each i∈ [1, n]Z:

1) If i ∈ A+, to maximize the objective function (EC.14), the generator at node i should be

scheduled online at min{C,x0 +V } following constraints (4c) and (4d) if i∈ Ā+(x0) or offline

otherwise. It follows that (xi, yi, ui) = (min{C,x0 +V },1,0) if the generator is online at node

i or (xi, yi, ui) = (0,0,0) otherwise.

2) If i ∈ A−, to maximize the objective function (EC.14), the generator at node i should be

scheduled to be online at max{C,x0−V } following constraints (4b) and (4d) if i∈ Ā−(x0) or

offline otherwise. It follows that (xi, yi, ui) = (max{C,x0−V },1,0) if the generator is online

at node i or (xi, yi, ui) = (0,0,0) otherwise.

Based on the above 1) and 2), we can write the optimal objective value of (EC.14) for a

given set of (a0, b0, ai, bi, ci), i = 1, . . . , n, as a function of x0. Denote it as g(x0) = (a0x0 + b0) +∑
i∈Ā+(x0)(aimin{C,x0 +V }+bi)+

∑
i∈Ā−(x0)(aimax{C,x0−V }+bi), which is a continuous func-

tion with respect to x0 on [C,V ]. Thus, z∗ = max{g(x0) : C ≤ x0 ≤ V }. Because C ≤ x0 ≤ V , it

follows that min{C,x0 + V } = x0 + V and max{C,x0 − V } = C. Then we have g(x0) = (a0x0 +

b0) +
∑

i∈A+ [ai(x0 + V ) + bi]
+ +

∑
i∈A− [aiC + bi]

+ where we define [t]+ = max{0, t} for ∀t ∈ R.

Thus, g(x0) is a convex function with respect to x0 on [C,V ]. It follows that the optimal solutions

happen at the points where x0 =C or V . Now we discuss these two scenarios as follows.

• When x0 =C, xi, i= 1, . . . , n, can be obtained based on (i) and (ii) right above. Thus, Claim

(2) is verified.

• When x0 = V , there exists at least one xk for some k ∈ {1, . . . , n} such that xk = 0. This

can be proved by contradiction. If no such xk exists, then xi can only be either C or C + V

based on the calculation (i) and (ii) right above. Without loss of generality, we let xi =C+V

for each i ∈N1 ⊆N and xi = C for each i ∈N \N1. It is easy to observe that this solution

(denoted as (x;y;u)) can be written as a linear combination of the following two solutions:

(x;y;u) = (1/2)(x̂; ŷ; û) + (1/2)(x̃; ỹ; ũ),

where ŷ = ỹ = y, û= ũ= u, x̂0 = x0 + ε, x̃0 = x0− ε, x̂i = xi + ε and x̃i = xi− ε for each i∈N1,

and x̂i = x̃i = xi for each i ∈ N \ N1, with ε representing an arbitrarily small positive real

number. This is a contradiction because (x;y;u) should be an extreme point of conv(P2) if

there is only one optimal solution for (EC.14). Thus, Claim (3) is verified.
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(ii) If V < x0 ≤C, similar to (1) above, we further discuss the following two cases based on if i ∈A+

or i∈A− for each i∈ [1, n]Z:

1) If i∈A+, to maximize the objective function (EC.14), the generator at node i should be sched-

uled online at min{C,x0 +V } following constraints (4c) and (4d). It follows that (xi, yi, ui) =

(min{C,x0 +V },1,0).

2) If i ∈ A−, to maximize the objective function (EC.14), the generator at node i should be

scheduled to be online at max{C,x0−V } following constraints (4b) and (4d). It follows that

(xi, yi, ui) = (max{C,x0−V },1,0).

Note that because x0 >V , the generator at node i (for each i∈N ) should be scheduled online so

that ramp-down rate constraints (4d) hold. Based on the above 1) and 2), we can write the optimal

objective value of (EC.14) for a given set of (a0, b0, ai, bi, ci), i= 1, . . . , n, as a function of x0. Denote

it as g(x0) = (a0x0 + b0) +
∑

i∈A+(aimin{C,x0 +V }+ bi) +
∑

i∈A−(aimax{C,x0−V }+ bi), which

is a continuous function with respect to x0 on (V ,C]. Thus, z∗ = max{g(x0) : V < x0 ≤C}.

To obtain an explicit formula of z∗, we continue considering the following three situations:

i) If V < x0 ≤C + V , it follows that min{C,x0 + V }= x0 + V and max{C,x0− V }=C. Then

we have g(x0) = (a0x0 + b0) +
∑

i∈A+ [ai(x0 + V ) + bi] +
∑

i∈A−(aiC + bi), which is a convex

function with respect to x0 on (V ,C +V ]. Thus, the optimal solutions happen at the points

where x0 = V + ε or C+V . A similar contradiction argument as that in (i) can be applied to

show the point with x0 = V + ε is not an optimal solution. Thus we only need to discuss the

case when x0 =C+V . Similarly, we can follow the contradiction argument in (i) right above

and calculation in 1) and 2) to verify Claim (4).

ii) If C+V ≤ x0 ≤C−V , it follows that min{C,x0 +V }= x0 +V and max{C,x0−V }= x0−V .

Then we have g(x0) = (a0x0 + b0)+
∑

i∈A+ [ai(x0 +V )+ bi]+
∑

i∈A− [ai(x0−V )+ bi], which is

a convex function with respect to x0 on [C+V,C−V ]. Thus, the optimal solutions happen at

the points where x0 =C+V or C−V . Here we only need to discuss the case when x0 =C−V .

Similarly, we can follow the contradiction argument in (i) right above and calculation in 1)

and 2) to verify Claim (5).

iii) If C − V ≤ x0 ≤C, it follows that min{C,x0 + V }=C and max{C,x0− V }= x0− V . Then

we have g(x0) = (a0x0 + b0) +
∑

i∈A+(aiC + bi) +
∑

i∈A− [ai(x0 − V ) + bi], which is a convex

function with respect to x0 on [C − V,C]. Thus, the optimal solutions happen at the points

where x0 = C − V or C. We only need to consider the case when x0 = C. For this case,

xi, i= 1, . . . , n, can be defined based on 1) and 2) right above. Hence, Claim (6) is verified.

This completes the proof. �

D.5. Proof of Proposition EC.2

Proof of Proposition EC.2 We prove the claim by showing that every point in the six groups of extreme

points described in Lemma EC.1 satisfies 3n+2 linearly independent inequalities at equation, which indicates

that they are also extreme points of Q2. Thus, the desired statement holds because of the facet-defining

conditions shown in Proposition EC.1. In the following, we prove the claim in the following six possible cases:
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1) For Group (1) points, we have x0 = y0 = 0 and let xi = 0 for i ∈ [1, r]Z, xi = C for i ∈ [r+ 1, s]Z, and

xi = V for i ∈ [s+ 1, n]Z for some given r and s. It follows that yi = ui = 0 for i ∈ [1, r]Z, yi = ui = 1

for i ∈ [r+ 1, n]Z. Without loss of generality, we only consider the case in which r ≥ 1, s≥ r+ 1, and

n≥ s+ 1. That is, there exists at least one scenario corresponding to each possible generation amount

xi of 0, C, or V . The following 3n+ 2 linearly independent inequalities, (4b) (for each i ∈ [0, s]Z), (6)

(for each i ∈ [s+ 1, n]Z, and some j ∈ [1, r]Z), yi − yi− − ui ≤ 0 (some i ∈ [1, n]Z), ui − yi ≤ 0 (for each

i∈ [1, n]Z), (10) (for each i∈ [1, r]Z), and ui + yi− ≤ 1 (for each i∈ [r+ 1, n]Z) are tight.

2) For Group (2) points, we have x0 = C, y0 = 1 and let xi = 0 for i ∈ [1, r]Z, xi = C for i ∈ [r + 1, s]Z,

and xi = C + V for i ∈ [s+ 1, n]Z. It follows that ui = 0 for i ∈ [1, n]Z, yi = 0 for i ∈ [1, r]Z, and yi = 1

for i ∈ [r+ 1, n]Z. Without loss of generality, we only consider the case in which r ≥ 1, s≥ r+ 1, and

n≥ s+ 1. That is, there exists at least one scenario corresponding to each possible generation amount

xi of 0, C, or C +V . The following 3n+ 2 linearly independent inequalities, (4b) (for each i∈ [0, s]Z),

(7) (for each i ∈ [s+ 1, n]Z), ui − yi ≤ 0 (for each i ∈ [1, r]Z), yi − yi− − ui ≤ 0 (for each i ∈ [r+ 1, n]Z),

(10) (some i∈ [1, n]Z), and ui + yi− ≤ 1 (for each i∈ [1, n]Z) are tight.

3) For Group (3) points, we have x0 = V , y0 = 1 and let xi = 0 for i ∈ [1, r]Z, xi = C for i ∈ [r + 1, s]Z,

and xi = V + V for i ∈ [s+ 1, n]Z. It follows that ui = 0 for i ∈ [1, n]Z, yi = 0 for i ∈ [1, r]Z, and yi = 1

for i ∈ [r+ 1, n]Z. Without loss of generality, we only consider the case in which r ≥ 1, s≥ r+ 1, and

n≥ s+ 1. That is, there exists at least one scenario corresponding to each possible generation amount

xi of 0, C, or V +V . The following 3n+ 2 linearly independent inequalities, (5) (some i∈ [1, n]Z), (4b)

(for each i ∈ [1, s]Z), (9) (for each i ∈ [s+ 1, n]Z, some j ∈ [r+ 1, s]Z, and some k ∈ [1, r]Z), ui − yi ≤ 0

(for each i ∈ [1, r]Z), yi − yi− − ui ≤ 0 (for each i ∈ [r+ 1, n]Z), (10) (some i ∈ [1, n]Z), and ui + yi− ≤ 1

(for each i∈ [1, n]Z) are tight.

4) For Group (4) points, we have x0 = C + V, y0 = 1 and let xi = C for i ∈ [1, r]Z and xi = C + 2V for

i ∈ [r+ 1, n]Z. It follows that yi = 1, ui = 0 for i ∈ [1, n]Z. Without loss of generality, we only consider

the case in which r≥ 1 and n≥ r+ 1. That is, there exists at least one scenario corresponding to each

possible generation amount xi of C or C + 2V . The following 3n+ 2 linearly independent inequalities,

(8) (some i ∈ [1, r]Z and some j ∈ [1, n]Z), (4b) (for each i ∈ [1, r]Z), (7) (for each i ∈ [r + 1, n]Z),

yi − yi− − ui ≤ 0 (for each i ∈ [1, n]Z), (10) (some i ∈ [1, n]Z), and ui + yi− ≤ 1 (for each i ∈ [1, n]Z) are

tight.

5) For Group (5) points, we have x0 = C − V, y0 = 1 and let xi = C for i ∈ [1, r]Z and xi = C − 2V for

i ∈ [r+ 1, n]Z. It follows that yi = 1, ui = 0 for i ∈ [1, n]Z. Without loss of generality, we only consider

the case in which r≥ 1 and n≥ r+ 1. That is, there exists at least one scenario corresponding to each

possible generation amount xi of C or C − 2V . The following 3n+ 2 linearly independent inequalities,

(7) (some i∈ [1, r]Z), (6) (for each j = i∈ [1, r]Z), (9) (for each j ∈ [r+ 1, n]Z, some i∈ [1, r]Z, and some

k ∈ [1, n]Z), yi − yi− − ui ≤ 0 (for each i ∈ [1, n]Z), (10) (some i ∈ [1, n]Z), and ui + yi− ≤ 1 (for each

i∈ [1, n]Z) are tight.
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6) For Group (6) points, we have x0 = C, y0 = 1 and let xi = C for i ∈ [1, r]Z and xi = C − V for i ∈
[r+ 1, n]Z. It follows that yi = 1, ui = 0 for i ∈ [1, n]Z. Without loss of generality, we only consider the

case in which r ≥ 1 and n ≥ r + 1. That is, there exists at least one scenario corresponding to each

possible generation amount xi of C or C − V . The following 3n+ 2 linearly independent inequalities,

(5) (some i∈ [1, n]Z), (6) (for each j = i∈ [1, r]Z), (8) (for each j = i∈ [r+ 1, n]Z), yi− yi− −ui ≤ 0 (for

each i∈ [1, n]Z), (10) (some i∈ [1, n]Z), and ui + yi− ≤ 1 (for each i∈ [1, n]Z) are tight.

In summary, we show that all of the extreme points of Q2 are integral in y and u. �

D.6. Convex Hull Results for Three-Period Cases

For the case in which the minimum-up/-down times are 2 (L= `= 2), the mathematical formulation for the

original set P can be described as P 2
3 :=

{
(x, y,u)∈Rn+2×Bn+2×Bn+1 : (11a), (11d)− (11g),

ui− +ui− yi ≤ 0, ∀i∈N , (EC.15a)

yi−2
+ui− +ui ≤ 1, ∀i∈N

}
. (EC.15b)

Theorem EC.1. For a three-period problem in which the minimum-up/-down times are 2, conv(P 2
3 ) can

be described as Q2
3 =

{
(x, y,u)∈R3n+5 : (11a), (EC.15a)− (EC.15b), (11d), (12a),

xi−2
≤ V yi−2 +V (yi− −ui−) + (C −V −V )(yi−ui−ui−), ∀i∈N , (EC.16a)

xi− ≤ V yi− + (C −V )(yi−ui−ui−), ∀i∈N , (EC.16b)

xi ≤ (V +V )yi−V ui + (C −V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.16c)

xi− −xi−2 ≤ V yi− −Cyi−2 + (C +V −V )(yi−ui−ui−), ∀i∈N , (EC.16d)

xi−2
−xi− ≤ V yi−2 −Cyi− + (C +V −V )(yi− −ui−), (EC.16e)

xi−xi− ≤ V yi−Cyi− + (C +V −V )(yi−ui), ∀i∈N , (EC.16f)

xi− −xi ≤ V yi− −Cyi + (C +V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.16g)

xi−xi−2 ≤ (V +V )yi−V ui−Cyi−2 + (C +V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.16h)

xi−2
−xi ≤ V yi−2 −Cyi +V (yi− −ui−) + (C +V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.16i)

xi−xj ≤ (V +V )yi−V ui−Cyj + (C +V −V )(yk−uk−ui−),∀i, j, k ∈N , i 6= j, (EC.16j)

xi−2
−xi− +xi ≤ V yi−2 − [(V −V )yi− +V ui− ] + [(V +V )yi−V ui]

+(C −V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.16k)

xi−2
−xi− +xi−xj ≤ V yi−2 − [(V −V )yi− +V ui− ] + [(V +V )yi−V ui]−Cyj

+(C +V −V )(yk−uk−ui−), ∀i, j, k ∈N , i 6= j
}
. (EC.16l)

The proofs are similar to those for Theorem 1 and thus are omitted here.

Theorem EC.2. For the case in which L = 1 and ` = 2, the convex hull representation of the orig-

inal set (e.g., denoted as P 1,2
3 ) can be described as Q1,2

3 = conv(P 1,2
3 ) = {(x, y,u) ∈ R3n+5 : (11a) −

(11b), (EC.15b), (11d), (12a)− (12n)}.

Theorem EC.3. For the case in which L= 2 and `= 1, the convex hull representation of the original set

(e.g., denoted as P 2,1
3 ) can be described as Q2,1

3 = conv(P 2,1
3 ) = {(x, y,u) ∈ R3n+5 : (11a), (EC.15a), (11c)−

(11d), (12a), (EC.16a)− (EC.16l)}.
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Appendix E: Supplement to Section 4.2

To show that one inequality is facet-defining for conv(P ), we create 3|V| − 1 affinely independent points in

conv(P ) that satisfy the inequality at equality. Because 0∈ conv(P ), it is sufficient to create the remaining

3|V|−2 linearly independent points. Meanwhile, for each node i in V, we denote C(i) as the set of immediate

children and V(i) as the set of all descendants of node i, including itself, respectively. For the convenience

of generating points, we label the nodes in the tree as follows. Due to the symmetry of the scenario tree as

shown in Figure EC.2 with each node having n children scenario nodes, we label the nodes in V following

the breadth-first search rule as we did for the nodes of a three-period case in Figure EC.1, i.e., root node 0

is labelled as 0, the first node at t(1) is labelled as 1, the first node at t(2) is labelled as n+ 1, etc. Moreover,

in Figure EC.2, without loss of generality, we assume that node p is the first node in the stage t(p), node i

is the first node in the stage t(i), node j is the first node in set C(j−) \ {j−} (i.e., the set of scenario nodes

following node j−). Similarly, we assume that every node along the path from node i to node j passing

through node p is the first scenario node among those following their corresponding parent node. In addition,

we let k1 = dist(i, p) = |P(i, p)|, k2 = dist(j, p) = |P(j, p)|, P(i, j) =P(i, p)∪P(j, p)∪{p}. Meanwhile, we use

the superscript of (x, y,u), e.g., r in (xr, yr, ur), to indicate the index of different points in conv(P ).

E.1. Proof of Proposition 4

Proof of Proposition 4 Here we only prove inequality (13) is facet-defining under condition (2), from

which we have C ≤ V +kV , as the case under condition (1) can be proved similarly. Due to the symmetry of

the scenario nodes in Figure EC.2, without loss of generality we assume every node i−h along the path P(i) is

the first node at period t(i−h ), as shown in Figure EC.2. We collect all of the nodes at period t(i−h ) (∀h∈ [0, k]Z)

in Γ(t(i−h )), collect all of the nodes between period [t(0), t(i−k+1)] in Γ(0), and collect all of the nodes between

period [t(i) + 1, T ] in Γ(T ). In addition, we denote the second node at period t(i−h ) (∀h∈ [0, k]Z) as σ(t(i−h ))

and the last node as τ(t(i−h )).

In general, we create the points in two main steps. First, we create two groups of points, G1 and G2, which

form a lower-triangular matrix in terms of the values y and x. Second, we create another two groups of

points, G3 and G4, which form an upper-triangular matrix in terms of the value u. Finally, all of the points

can form a similar structure like the points in Table EC.2.

Now we explain the details to construct the points in G1 and G2 for the first main step. First, we can

easily observe that 1) the y part for G1 and G2 can be easily transformed to a lower-triangular matrix as

shown in Table EC.4, with each row corresponding to one point, and 2) us = 0 for ∀s ∈ V \ {0}, because ys

is ordered as the way we label the node above, i.e., the first one is y0 for the root node. Then, we assign

the value x for each row in Table EC.4. For each row from row 0 to row |Γ(0)| − 1, two groups of value

are assigned to x, and for each remaining row, one group of value is assigned to x, to make the inequality

tight at the points as follows. Eventually we will obtain |V|+ |Γ(0)| linearly independent points in conv(P ).

Because when ys = 0, the corresponding xs = 0, we only assign the value x when ys = 1.

(i) For each row r ∈ [0, |Γ(0)|−1], let xs = V (∀s : ys = 1) and assign this point to G1; let xs =C (∀s : ys = 1)

and assign this point to G2.
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i−2
0

i−

1

i n+ 1

n+ 2

2n

j−

2

j 2n+ 1

2n+ 2

3n

n

n2 + 1

n2 + 2

n2 +n
Time t(i−2 ) Time t(i−) Time t(i)

Figure EC.1 Breadth-first search rule

0 i−k+1

i−k
p = i−k1

= j−k2

i−k1−1 i−k1−2 i
−
2 i−

j−k2−1 j
−
k2−2 j−3 j−2

i

j− j

V1

V2
V2(i)

Time t(p) Time t(i) t(j)Time 1 Time T

Figure EC.2 Complete scenario tree

(ii) For each row r ∈ [|Γ(0)|, |Γ(0)| +
∑k

h=1 |Γ(t(i−h ))| − 1] such that yi−
h

= 1, yi−
h−1

= 0 (∀h ∈ [1, k]Z), let

xθ = V + (s− h)V for ∀s ∈ [h,k]Z, θ ∈ Γ(t(i−s )) and xs = xi−
k

= V + (k − h)V for ∀s ∈ Γ(0). We assign

this point to G1. This point is valid because V + (k− 1)V ≤C.

(iii) For each row r ∈ [|Γ(0)|+
∑k

h=1 |Γ(t(i−h ))|, |V|−1] where yi = 1, let xs = V for ∀s∈ {Γ(t(i))∪Γ(T ) : ys =

1}, xθ = V + sV for ∀s ∈ [1, k− 1]Z, θ ∈ Γ(t(i−s )), and xs = xi−
k

= C for ∀s ∈ Γ(0)∪ Γ(t(i−k )). We assign

this point to G1. This point is valid because V + kV ≥C.

Next, we create another 2|V| − |Γ(0)| − 2 linearly independent points in two groups, G3,G4, while the

value u for each group of points constructs an upper-triangular matrix, as shown in Table EC.5, which are



ec18

Table EC.4 Matrix in terms of y

row
Γ(0) Γ(t(i−k )) · · · Γ(t(i−)) Γ(t(i)) Γ(T )

y0· · ·yi−
k+1
· · ·y

τ(t(i
−
k+1

))
y
i
−
k
· · ·y

τ(t(i
−
k

))
· · · yi− · · ·yτ(t(i−)) yi · · ·yτ(t(i)) yn,∀n∈ Γ(T )

0 1 · · · 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 0 · · · 0

...

...
...

...
...

...
...

...
...

...
...

...

1 · · · 1 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...

|Γ(0)| − 1 1 · · · 1 · · · 1 0 · · · 0 · · · 0 · · · 0 0 · · · 0 0 · · · 0

|Γ(0)| 1 · · · 1 · · · 1 1 · · · 0 · · · 0 · · · 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

|Γ(0)|+ |Γ(t(i−k ))| − 1 1 · · · 1 · · · 1 1 · · · 1 · · · 0 · · · 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

|Γ(0)|+
k∑
h=2

|Γ(t(i−h ))| 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 0 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

|Γ(0)|+
k∑
h=1

|Γ(t(i−h ))| − 1 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1 0 · · · 0 0 · · · 0

|Γ(0)|+
k∑
h=1

|Γ(t(i−h ))| 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

|Γ(0)|+
k∑
h=0

|Γ(t(i−h ))| − 1 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1 · · · 1 0 · · · 0

|Γ(0)|+
k∑
h=0

|Γ(t(i−h ))| 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1 · · · 1 1 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

|V|− 1 1 · · · 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1 · · · 1 1 · · · 1

immediately linearly independent with G1 and G2 above. In Table EC.5, ys (∀s ∈ [0, |V| − 1]Z) is ordered

as the way we label the node above, i.e., the first one is y0 for the root node and y|V|−1 corresponds to

the last node at the last period. The same order is applied to us (∀s ∈ [1, |V| − 1]Z). In addition, we define

V̂ = V \ (Γ(0)∪Γ(t(i−k ))). For each row r ∈ [1, |V|−1]Z, ys = 0 (∀s∈ [1, r]Z). And at this row r, for those nodes

with us = 1 (i.e., the generator starts up at the node s), the generator keeps online on the scenario node set

HL(s) for the minimum-up (L) periods.

(i) For each row r ∈ [1, |Γ(0)| − 1]Z, we let xi−
k

= max{C,V + (k−h)V } if yi−
k

= 1 and the generator shuts

down at i−h along the path from i−k to i−h . The value of x for other nodes can be assigned easily. We

assign this point to G3. For the validity of this point, we let the generator start up at i−k+1 and keep

online for L periods, xi−
k

will be max{C,V + (L− 2)V }, which should be less than V + V because of

ramp-up constraints (1f). Because we assume L≤ 3, it is automatically valid. For other cases, it can be

easily checked.

(ii) For each row r ∈ [|Γ(0)|, |V|− 1]Z, we let xs = V for ∀s such that ys = 1 and assign this point to G3.

(iii) For each row r ∈ [|Γ(0)|+ 1, |V|− 1]Z, we let xs =C for ∀s such that ys = 1 and assign this point to G4.

�



ec19

Table EC.5 Upper-triangular matrix in terms of u

row
Γ(0) Γ(t(i−k )) V̂ Γ(0) Γ(t(i−k )) V̂

y0y1· · ·yτ(t(i−
k+1

))
y
i
−
k
y
σ(t(i

−
k

))
· · ·y

τ(t(i
−
k

))
yn, n∈ V̂ u1· · ·uτ(t(i−

k+1
))

u
i
−
k

u
σ(t(i

−
k

))
· · ·u

τ(t(i
−
k

))
un, n∈ V̂

1 0 1 · · · yŝ = 1,∀ŝ∈HL(s),∀s∈ Γ(t(1)) · · · 0 us = 1,∀s s.t. t(s) = 1 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

|Γ(0)| − 1 0 0 · · · 1 yŝ = 1,∀ŝ∈HL(s),∀s∈ Γ(t(i−k )) 0 0 · · · 1 us = 1,∀s∈ Γ(t(i−k )) \ H̄1(τ(t(i−k+1))) 0

|Γ(0)| 0 0 · · · 0 yŝ = 1,∀ŝ∈HL(s),∀s∈ Γ(t(i−k )) 0 0 · · · 0 1 1 · · · 1 0 · · · 0

|Γ(0)|+ 1 0 0 · · · 0 0 1 · · · 1 1 · · · 0 0 · · · 0 0 1 · · · 1 1 · · · · · ·

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 · · · 0 0 0 · · · 1 1 · · · 0 0 · · · 0 0 0 · · · 1 1 · · · 0

0 0 · · · 0 0 0 · · · 0 1 · · · 0 0 · · · 0 0 0 · · · 0 1 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

|V|− 1 0 0 · · · 0 0 0 · · · 0 0 · · · 1 0 · · · 0 0 0 · · · 0 0 · · · 1

For the proofs in the remaining part of this paper, we continue to apply this way to create linearly

independent points, i.e., first create points constructing a lower-triangular matrix in terms of y, then create

points constructing an upper-triangular matrix in terms of u, and in the meantime assign corresponding value

to x. Meanwhile, from the construction of the linearly independent points here, we only need to consider the

scenario tree with two different scenarios including nodes i and j, respectively, due to the symmetry of the

scenario tree.

E.2. Proof of Proposition 5

Proof of Proposition 5 Following the proof in Online Supplement E.1, we apply the same way to create

linearly independent points in conv(P ) to prove inequality (14) is facet-defining for conv(P ). Note that in

this way of creating points, we only need to prove inequality (14) is facet-defining for conv(P̄ ), where P̄ is

constructed with the same constraints in P that are applied to the scenario structure V̄ in Figure EC.3, as

shown in the proof described in Online Supplement E.1.

0 i−k+1

i−k i−k1+1
p = i−k1

= j−k2

i−k1−1 i−k1−2

j−k2−1 j
−
k2−2 j−3 j−2

i− i

j− j d

V̄

Time t(p) Time t(i) t(j)Time t(0) = 1 Time T

Figure EC.3 Complete scenario tree
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Because node i is a leaf node, we have k1 ≥ k2 and t(i) = T , where k1 and k2 are defined in Figure EC.3,

dist(i, j) = dist(i, p) + dist(j, p) = k1 + k2 = k. We let node d be a leaf node in which j ∈P(p, d). To simplify

the process of creating linearly independent points, we reindex the nodes in V̄ as follows:

(i) The nodes 0, . . . , i−k+1, i
−
k , . . . , i

−
k1+1, p are reindexed as 0, . . . , n − k2 − 1, n − k2, . . . , n − 1, n with n =

t(p)− 1,

(ii) The nodes j−k2−1, j
−
k2−2, . . . , j

−, j, . . . , d are reindexed as n+ 1, n+ 2, . . . , n+ k2− 1, n+ k2, . . . , n+ k1,

(iii) The nodes i−k1−1, i
−
k1−2, . . . , i

−, i are reindexed as n+ k1 + 1, n+ k1 + 2, . . . , n+ 2k1− 1, n+ 2k1.

In total, there are n+ 2k1 + 1 nodes.

Now we create 3(n+ 2k1 + 1)− 1 affinely independent points in conv(P̄ ) that satisfy inequality (14) at

equality. Because 0 ∈ conv(P̄ ), we generate the remaining 3n+ 6k1 + 1 linearly independent points in the

following groups.

First, we create two groups of points based on a lower-triangular matrix in terms of y and assign corre-

sponding value to x.

(i) For each r ∈ [0, n+ 2k1− 1]Z (totally n+ 2k1 points), we create (x̄r, ȳr, ūr)∈ conv(P̄ ) such that

x̄rs =

{
C, s∈ [0, r]Z
0, s∈ [r+ 1, n+ 2k1]Z

, ȳrs =

{
1, s∈ [0, r]Z
0, s∈ [r+ 1, n+ 2k1]Z

, and
ūrs = 0,
∀s∈ [1, n+ 2k1]Z

.

(ii) For r= n+ 2k1 (totally one point), we create (x̄r, ȳr, ūr)∈ conv(P̄ ) such that

x̄rs =


C + k2V, s∈ [0, n]Z
C + (n+ k2− s)V, s∈ [n+ 1, n+ k2− 1]Z
C, s∈ [n+ k2, n+ k1]Z
C + (k2 + s−n− k1)V, s∈ [n+ k1 + 1, n+ 2k1]Z

,
ȳrs = 1,
∀s , and

ūrs = 0,
∀s .

(iii) For each r ∈ [0, n+ k2− 1]Z (totally n+ k2 points), we create (x̂r, ŷr, ûr)∈ conv(P̄ ) such that

x̂rs =

{
V , s∈ [0, r]Z
0, o.w.

, ŷrs =

{
1, s∈ [0, r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(iv) For each r ∈ [n+ k2 + 1, n+ 2k1− 1]Z (totally (2k1− k2− 1)+ points), we create (x̂r, ŷr, ûr) ∈ conv(P̄ )

such that

x̂rs =

 V , s∈ [0, r]Z \ {n+ k2}
C, s= n+ k2

0, o.w.
, ŷrs =

{
1, s∈ [0, r]Z
0, o.w.

, and
ûrs = 0,
∀s .

(v) For r= n+ 2k1 (totally one point), we create (x̂r, ŷr, ûr)∈ conv(P̄ ) such that

x̂rs =


C + k2V + ε, s∈ [0, n]Z
C + (n+ k2− s)V + ε, s∈ [n+ 1, n+ k2− 1]Z
C + ε, s∈ [n+ k2, n+ k1]Z
C + (k2 + s−n− k1)V + ε, s∈ [n+ k1 + 1, n+ 2k1]Z

,
ŷrs = 1,
∀s , and

ûrs = 0,
∀s .

Next, we create a group of points based on an upper-triangular matrix in terms of u and assign corre-

sponding value to x. Here we assume min{L− 1, k− 1} ≥ k1, otherwise linearly independent points can be

generated easily. In addition, without loss of generality, we let k≥L and then min{L− 1, k− 1}=L− 1, as

for the case in which k≤L− 1 the linearly independent points can be generated similarly.

(vi) For each r ∈ [1, n+ k1−L]Z (totally n+ k1−L points), we create (x́r, ýr, úr)∈ conv(P̂ ) such that

x́rs =

{
C, s.t. ýrs = 1
0, o.w.

, ýrs =

 1, s∈ [r, r+L− 1]Z
∪[n+ k1 + 1, k1 + r+L− 1]Z

0, o.w.
, and úrs =

{
1, s= r
0, o.w.
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(vii) For each r ∈ [n+k1−L+ 1, n]Z (totally (L−k1)+ points), i.e., the generator starts up at node i−n+k1−r,

we create (x́r, ýr, úr)∈ conv(P̂ ) such that

x́rs =



V + (s− r)V, s∈ [r,n]Z
min{V + (2n− s− r)V,C},
s∈ [n+ 1, n+ k1]Z

V + (s− k1− r)V,
s∈ [n+ k1 + 1, n+ 2k1]Z

0, o.w.

, ýrs =

{
1, s∈ [r,n+ 2k1]Z
0, o.w.

, and úrs =

{
1, s= r
0, o.w.

(viii) For each r ∈ [n+ 1, n+ k1]Z (totally k1 points), we create (x́r, ýr, úr)∈ conv(P̂ ) such that

x́rs =

{
C, s∈ [r,n+ k1]Z
0, o.w.

, ýrs =

{
1, s∈ [r,n+ k1]Z
0, o.w.

, and úrs =

{
1, s= r
0, o.w.

(ix) For each r ∈ [n+ k1 + 1, n+ 2k1]Z (totally k1 points), we create (x́r, ýr, úr)∈ conv(P̂ ) such that

x́rs =

{
V + (s− r)V, s∈ [r,n+ 2k1]Z
0, o.w.

, ýrs =

{
1, s∈ [r,n+ 2k1]Z
0, o.w.

, and úrs =

{
1, s= r
0, o.w.

Finally, these linearly independent points, i.e., (x̄r, ȳr, ūr)n+2k1
r=0 , (x̂r, ŷr, ûr)n+2k1

r=0,r 6=n+k2
, and (x́r, ýr, úr)n+k2

r=1 ,

can construct a table similar to Table EC.2 and can be transformed to be a lower-triangular matrix easily.

Thus we created 2(n+2k1 +1)−1+n+2k1 = 3n+6k1 +1 linearly independent points and thus the statement

holds. �

E.3. Proof of Proposition 7

Proof of Proposition 7 Here we only provide the proof for the case in which ψ = (C + V − V )(yj −∑L−1
m=0 uj−m) because the case in which ψ= (C +V −V )(yi−

∑L−1
m=0 ui−m) can be proved similarly.

(Validity) It is clear that inequality (16) is valid when yi−
k

= 0 due to constraints (1a). In the following,

we continue to prove the validity by discussing the cases in which yi−
k

= 1.

First, we consider the case in which yj = 0. We let the last start-up node (denoted as i−k+s, s≥ 0) before

i−k in the following two possible cases.

1) s≥ L− 1. It follows that φ= 0 and i−k+s−L+1 ∈ P(i−k ). We further discuss the following three possible

cases in terms of the first shut-down node (denoted as h, h /∈ P(i−k )) after i−k , i.e., yh = 0. We observe

that yn−
∑L−1

m=0:t(n−
m)≥2

un−
m

= 1 for each n∈P(h−) \P(i−k ).

(1) h∈P(i−k−n̂). In this case, we have h= i−k−ŝ for some ŝ∈ [1, n̂]Z and xi−
k
≤ V +min{k−1, s, ŝ−1}V ≤

V +(ŝ−1)V = V yi−
k

+V
∑ŝ−1

n=1(yi−
k−n
−
∑min{L−1,n+w}

m=0 ui−
k−n+m

), which is clearly less than the RHS

of (16).

(2) h ∈ P(i) \ P(i−k−n̂). In this case, we have h= i−k−ŝ for some ŝ ∈ [n̂+ 1, k]Z and xi−
k
≤ V + min{k−

1, s, ŝ−1}V ≤ V +(ŝ−1)V = V +(t̂−1)V +(ŝ− t̂)V ≤ V
∑

n∈S0
(yi−

k−n
−
∑min{L−1,n+w}

m=0 ui−
k−n+m

)+

V
∑

n∈(S∩[n̂+1,k−ŝ+1]Z)∪{n̂}(gn − n)(yi−
k−n
−
∑L−1

m=0 ui−k−n+m
), which is clearly less than the RHS of

(16).

(3) h∈ V(i)\P(i). Inequality (16) converts to xi−
k
≤C+kV ≤ V + (k−1)V , which is clearly valid due

to yj = 0 and constraints (1f) and (1g).
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2) s ∈ [0,L − 2]Z. It follows that i−k+s−L+1 ∈ V(i−k ) \ P(i−k ) and yi−
k−n
−
∑min{L−1,n+w}

m=0 ui−
k−n+m

for each

n∈ [1,L− 1− s]Z. We further discuss the following three possible cases in terms of the first shut-down

node (denoted as h, h /∈P(i−k+s−L+1)) after i−k , i.e., yh = 0. We observe that yn−
∑L−1

m=0:t(n−
m)≥2

un−
m

= 1

for each n∈P(h−) \P(i−k+s−L+1).

(1) L−1− s∈ [1, n̂−1]Z. We further discuss the following three possible cases in terms of the value h.

(a) h∈P(i−k−n̂). In this case, we have h= i−k−ŝ for some ŝ∈ [L−1− s, n̂]Z and xi−
k
≤ V + min{k−

1, s, ŝ−1}V ≤ V +min{s, ŝ−1}V ≤ V +(ŝ−1− (L−1−s))V +φ for φ= sV or (L−1−s)V ,

which is clearly the RHS of (16).

(b) h ∈ P(i) \ P(i−k−n̂). In this case, we have h = i−k−ŝ for some ŝ ∈ [n̂ + 1, k]Z and xi−
k
≤ V +

min{k− 1, s, ŝ− 1}V . Inequality (16) converts to xi−
k
≤ V + (n̂− 1− (L− 1− s))V + f̃ + φ,

where f̃ = V
∑

n∈(S∪{n̂})∩[n̂,ŝ−1]Z
(gn − n). It is easy to observe that f̃ ≥ ŝ− t̂. Now we only

need to show

V + min{s, ŝ− 1}V ≤ V + (n̂− 1− (L− 1− s))V + f̃ +φ. (EC.17)

If φ= sV , then (EC.17) holds clearly; otherwise, φ= (L− 1− s)V , then the RHS of (EC.17)

becomes V + (n̂− 1 + f̃)V ≥ V + (ŝ− 1)V due to f̃ ≥ ŝ− t̂, indicating (EC.17) holds.

(c) h∈ V(i)\P(i). In this case, we have xi−
k
≤ V + min{k−1, s, ŝ−1}V . Inequality (16) converts

to xi−
k
≤ V + (n̂− 1− (L− 1− s))V +V

∑
n∈S∪{n̂}(gn−n) +φ= V + (n̂− 1− (L− 1− s))V +

(k− n̂) +φ. Now we only need to show

V + min{k− 1, s, ŝ− 1}V ≤ V + (n̂− 1− (L− 1− s))V + (k− n̂) +φ. (EC.18)

If φ= sV , then clearly (EC.18) holds; otherwise, φ= (L− 1− s)V , then the RHS of (EC.18)

becomes V + (k− 1)V , indicating (EC.18) holds.

(2) L− 1− s≥ n̂. It follows that s≤L− 1− n̂≤L− 2 Note that if L− 1− s≥ k, we have i−k+s−L+1 ∈

V(i) \P(i) We further discuss the following three possible cases in terms of the value h. Similar to

the argument above, we only need to show

V + min{k− 1, s, ŝ− 1}V ≤ V + f̃ +φ, (EC.19)

where f̃ = V
∑

n∈(S∪{n̂})∩[0,L−s]Z
(gn − n). If φ = sV , then clearly (EC.19) holds; otherwise, φ =

(L− 1− s)V , i.e., L− 1− s≤ s− 1. In the following, we assume s≥ L− s and try to obtain the

contradiction, which indicates that s≥L− s is not possible to happen.

(a) If t(i−k )≥L, then min{t(i−k )−2,L−2}=L−2≥L/2 and therefore n̂=L−2 by the definition

of n̂. It follows that L−1−s≤L/2−1≤ (L−2)−1 = n̂−1 (the first and second inequalities

follow because L− 2≤ s≤L/2), which contradicts to the condition L− 1− s≥ n̂.

(b) If t(i−k ) ≤ L− 1, then t(i−k+s−L+1) = t(i−k ) + L− 1− s ≤ 2(L− 1)− s ≤ −2 because s ≥ L/2,

which contradicts to the condition L− 1− s≥ n̂.
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Next, we consider the case in which yj = 1. We let p= arg max{t(k) : k ∈ P(i−k ) ∩P(j)}= i−k+k1
= j−k2 . If

there is a start-up between i−k+k1
and i−k or(and) a start-up between j−k2 and j, then the proof is similar

to the discussion above and thus is omitted here. Therefore, we consider the case in which yn = 0 for each

n∈ (P(i−k )∪P(j))\P(j−k2). If k1 ≥L−1, then it is clear that inequality (EC.19) is valid following the similar

argument above, because φ= 0 in (EC.19); otherwise, we consider the case in which k1 ≤ L− 2 as follows.

We let the last start-up node (denoted as i−k+s, s≥ 0) before i−k in the following two possible cases.

1) s≥ L− 1. It follows that φ= 0 and i−k+s−L+1 ∈ P(i−k ). We further discuss the following three possible

cases in terms of the first shut-down node (denoted as h, h /∈ P(i−k )) after i−k , i.e., yh = 0. We observe

that yn−
∑L−1

m=0 un−
m

= 1 for each n∈P(h−) \P(i−k ).

(1) h∈P(i−k−n̂). In this case, we have h= i−k−ŝ for some ŝ∈ [1, n̂]Z and xi−
k
−xj ≤min{kV,V +min{k−

1, s, ŝ− 1}V − C + (C + V − V )} ≤ V + (ŝ− 1)V − C + (C + V − V ) = V yi−
k

+ V
∑ŝ−1

n=1(yi−
k−n
−∑min{L−1,n+w}

m=0 ui−
k−n+m

)−Cyj + (C +V −V )(yj −
∑L−1

m=0 uj−m), which is clearly less than the RHS

of (16).

(2) h∈P(i)\P(i−k−n̂). In this case, we have h= i−k−ŝ for some ŝ∈ [n̂+1, k]Z and xi−
k
−xj ≤min{kV,V +

min{k−1, s, ŝ−1}V −C+(C+V −V )} ≤ V +(ŝ−1)V −C+(C+V −V ) = V +(t̂−1)V +(ŝ− t̂)V −

C + (C + V − V ) ≤ V
∑

n∈S0
(yi−

k−n
−
∑min{L−1,n+w}

m=0 ui−
k−n+m

) + V
∑

n∈(S∩[n̂+1,k−ŝ+1]Z)∪{n̂}(gn −

n)(yi−
k−n
−
∑L−1

m=0 ui−k−n+m
)−Cyj +(C+V −V )(yj−

∑L−1
m=0 uj−m), which is clearly less than the RHS

of (16).

(3) h∈ V(i) \P(i). Inequality (16) converts to xi−
k
−xj ≤ kV , which is clearly valid due to constraints

(1f) and (1g).

2) s ∈ [k1,L− 2]Z. The discussion is similar to subcase 2) in the case in which yj = 0 and thus is omitted

here.

(Facet-defining) The facet-defining proof is similar to that for Proposition 4 in Online Supplement E.1

and thus is omitted here. �
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