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Abstract—Security-constrained unit commitment (SCUC) is 

one of the most fundamental optimization problems in power 

systems. The objective of SCUC is to minimize the operating cost 

while respecting both system-wide and generator-specific 

constraints. It leads to a large-scale and mixed-integer 

programming (MIP) model with a large number of binary decision 

variables which is difficult to solve. This paper, based on the 

convex hull theory of single-unit, proposes a linearization method 

for the hydro-thermal SCUC problem with decoupled thermal 

units and variable-head hydro units. Then, the strategy of 

embedding two types of convex hulls in a multi-unit commitment 

and the heuristic method of constructing a feasible solution are 

designed, by which the multi-UC is approximated from large-scale 

mixed-integer programming to linear programming that can be 

solved in polynomial time. Finally, we theoretically prove that the 

optimal solution of the proposed LP model is always better than 

that of the Lagrangian Relaxation model. Numerical experiments 

on several large-scale test systems demonstrate the effectiveness 

and efficiency of the proposed method. 

Note to Practitioners—This paper proposes a linear 

programming model for the SCUC problem by lifting up to a 

higher-dimensional space. It realizes an important innovation in 

reducing the computational complexity of SCUC from the 

perspective of linearization. The proposed method can be well 

applied to large-scale long-term unit commitment problems. To 

better use this method, the following two properties should be 

highlighted: i) the error of the proposed method is less than the 

Lagrangian relaxation method and decreases with the increasing 

system scales; ii) the computational efficiency of the proposed 

method is 10-100 times faster than that of the MIP model. We have 

tested many practical power systems and find that the error of the 

proposed LP model is usually very small compared with the 

precise MIP while the computational performance is significantly 

improved. In some practical cases, the decision makers usually do 

not want to find the precise optimal solution while only an 

approximation under a fast speed, because the boundary condition 

is imprecise. The proposed method is useful. Besides, for the cases 

that need the precise optimal solution, the proposed method can 

provide a high-quality initial solution for the MIP model to 

accelerate the convergence.  

Index Terms—Security-Constrained Unit Commitment (SCUC), 

Convex Hull, Hydro-thermal Units, Lagrangian Relaxation 

NOMENCLATURE 

Indices and Sets 

t Index of dispatching periods 

g Index of units 

l Index of transmission lines 

b Index of buses 

G/H Set of thermal/hydro units 

L Set of transmission lines 

Bus Set of buses 

ℝ Set of real numbers 

𝔹 Set of binary numbers 

ℤ Set of integer numbers 

Set of all the possible continuous “on” intervals 

Set of all the possible optimal generation amounts 

under different conditions 

Set of all the possible optimal states which can be 

described as quaternions including optimal 

generation amounts and on/off status 

0

A dummy source state as the initial status of the 

generator before period 1 
LP Feasible region of the -convex hull

LP Feasible region of the -convex hull

MILP Feasible region of the MILP model 

Γ⇒𝑖 All the immediate successors of state ei (ei ) 

Γ𝑖⇒ All the immediate predecessors of status ei (ei ) 

p,LP Feasible region of the LP model for single hydro unit 

hydro,LP 

pump,LP 

Feasible region of the LP model of the hydro 

generator 

Feasible region of the LP model of the pump 

hydro,MILP/ 

pump,MILP 

Feasible region of the MILP model for the normal 

hydro units/pumping storage units 

0 Set of units always in off-status  

1 Set of units with the binary optimal solution  

* Set of units with the fractional optimal solution  

E1t Set of units in on-status and without ramp rate 

constraints at time t 

E2t Set of units in on-status and the time period t is the 

first/last period of the entire “on” interval 

E3t Set of units with ramp rate constraints at time t 

| * | The cardinality of Set * 

Parameters and Functions 

T Number of scheduling periods (h) 

Cstart/Cshut Start-up/shut-down cost of generators ($) 

Ton/Toff Minimum-up/-down time limits (h) 

Pmax/Pmin Maximum/minimum generation outputs of a 

generator (MW) 

R0 Start-up/shut-down ramp rate limits (MW/h) 

R1 Ramp-up/-down rate (MW/h) 

ei / ej i/j-th element in  representing the optimal state     

w-e Conversion coefficient of water-to-electricity  

e-w Conversion coefficient of electricity-to-water  

Vup,max/ 

Vup,min 

Upper and lower bounds of the upstream reservoir 

capacity (m) 

Vdn,max/ 

Vdn,min 

Upper and lower bounds of the downstream reservoir 

capacity (m) 

U
up

t  / U
dn 

t  Natural inflows of upstream/downstream reservoir at 

time t (m3) 

Db,t Load of bus b at time t (MW) 

rt Reserve capacity requirement at time t (MW) 

HPTDF Power transmission distribution factor matrix 

F
max

l  Transmission limit of the l-th transmission line (MW)

O(*) Time complexity of an algorithm 
1(V) Nonlinear head-volume function of upstream reservoir 
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2(*) Nonlinear head-volume function of downstream 

reservoir 
Variables 

Pt (Pg,t) Generation amount (of the g-th unit) at time t 

xt (xg,t) 
Binary variable to indicate whether a generator is on 

at time t (xt (xg,t)=1) or not (xt (xg,t)=0) 

ut  (ug,t) 
Binary variable to indicate whether a generator starts 

up at time t (ut (ug,t)=1) or not (ut (ug,t)=0) 

vt (vg,t) 
Binary variable to indicate whether a pump starts up 

at time t (ut (ug,t)=1) or not (ut (ug,t)=0) 

zt(zg,t) 
Binary variable to indicate whether a pump storage 

station is pumping (zt(ug,t)=1) or not (zt(ug,t) =0) 


 

t 
Binary variable to indicate whether a generator starts 

up for the first time at time t (t=1)  not (t =0)  


 

t,k 

Binary variable to indicate whether a generator is on 

throughout the entire interval [ , ]t k    (t,k=1, i.e., 

starts up at time t and shuts down at time k+1) or not 

(t,k =0) 


 

t,k 

Binary variable to indicate whether a generator is off 

throughout the entire interval [ 1, 1]t k    (t,k =1 

i.e.,  shuts down at time t+1 and starts up again at 

time k+1) or not (t,k =0)  


 

t 

Binary variable to indicate whether a generator is off 

throughout the entire interval [ 1, ]t T  (t =1, i.e., 

shuts down at time t+1 and stays offline to the end) 

or not (t =0) 

𝜌𝑡,𝑘
𝜏  

Generation amount at time 𝜏  if a generator is on 

throughout the entire interval [ , ]t k  


 

tij 

Binary variable to indicate whether the optimal 

decision corresponds to a state changes from state ei 

at time t-1 to state ej at time t (
 

tij=1) or not (
 

tij=0) 

W
hydro 

t  Water consumption of power units at time t 

W
pump 

t  Pumping capacity of pumping units at time t 

P
hydro 

t  Power generation of power units at time t 

P
pump 

t  Power consumption of pumping units at t 

V
up 

t  / V
dn 

t  
Reservoir volume of the upstream /downstream 

reservoir 

 

I. INTRODUCTION 

 ecurity-constrained unit commitment (SCUC) is one of the 

most fundamental optimization problems in power systems. 

It is widely used for renewable energy consumption [1], power 

system operation [2], power market clearing [3], and power 

system resilience [4], among others. The objective of SCUC is 

to minimize the system operating cost while respecting both 

system-wide and generator-specific constraints. It leads to a 

large-scale and mixed-integer optimization problem with a 

large number of binary decision variables. How to solve such a 

difficult problem efficiently remains a critically important topic 

of research for decades.  

 Lagrangian relaxation (LR) and mixed-integer programming 

(MIP) [5] are two types of methods that are generally 

recognized and have been widely applied in engineering. The 

LR decomposes multi-unit SCUC (multi-UC) models into 

several single-unit UC (single-UC) models [6] by relaxing the 

coupling constraints (e.g., demand balance constraints). The 

duality gap of LR was set as the convergence criterion, and then 

the feasible suboptimal solution of the primal problem was 

constructed based on the dual solution of LR [7]. To apply the 

LR model to solve the long-term SCUC model, a hybrid 

subgradient and Dantzig-Wolfe decomposition method was 

established in [8] to manage Lagrangian multipliers. The LR 

model was widely used in the past decades due to its high 

computational efficiency [9]. However, a major drawback is 

that convergence is not guaranteed, particularly when the 

system constraints become more complex. With the 

development of more advanced MIP algorithms (e.g., branch-

and-cut), the application of MIP to solve SCUC has received 

more attention [10]-[13]. A temporal decomposition strategy 

was proposed in [11] to reduce the computational time of SCUC 

by using the Nesterov momentum for gradient methods to 

coordinate sub-problems in a distributed way. The solution time 

was decreased by 94% over the IEEE 118-bus system. Ref. [12] 

applied the Benders decomposition algorithm to solve the tri-

level SCUC model, considering transmission outages in the 

security criterion. Numerical results showed that the algorithm 

significantly reduced the computing memory requirement. 

Taking into account the dynamic constraints of hydro units, [13] 

presented the application of the MIP model in solving the 

stochastic hydrothermal SCUC. In the hydrothermal unit 

commitment problem, it’s crucial to accurately model the 

nonlinear hydropower generation function. Thus, a three-

dimensional interpolation technique was used in [14], while Ref 

[15] proposed an efficient linear approximation method based 

on the variable separation and piecewise linear technique. The 

results showed that the approximate error of the above method 

was very small. Furthermore, the detailed comparisons between 

LR-based and MIP-based methods were discussed in [16] in 

terms of modeling ability, feasibility and optimality, solution 

stability, computer resource consumption, hot-start capability, 

and application. 

 Due to continuously increasing demand, the number of units 

in power systems has increased dramatically. Few algorithms 

can fully balance the optimal solution quality and 

computational efficiency of SCUC. Although commercial 

solvers (e.g., GUROBI [17] and CPLEX [18]) and some 

acceleration algorithms (e.g., variable reduction [19] and 

redundant security constraints reduction [20]) can alleviate this 

situation, the NP-Hardness nature keeps the SCUC problem as 

a difficult one. In addition, the rapid development of renewable 

energy introduces uncertainty, which makes the unit 

commitment model more complex [21]. Stochastic 

optimization [22], robust optimization [23], and distributionally 

robust optimization [24],[39] are the most popular methods of 

addressing this problem. Therefore, solving large-scale SCUC 

quickly and efficiently remains an urgent problem. 

 To address such a challenge, there exist studies focusing on 

deriving algorithms to tighten or reformulate the SCUC model 

that can hopefully transform it from an MIP problem to a linear 

programming (LP) problem, by which the computational 

complexity can be reduced. To that end, the convex hull 

formulations of the SCUC model may be derived. The convex 

hull is the convex relaxation of nonconvex problems that can 

transform the mixed-integer linear programming (MILP) model 

into an LP model. The convex hull formulations or tighter 

(strong) valid inequalities are often used to strengthen the MILP 

formulation, improving the computational performance. 

However, those MILP formulations may still be difficult to 
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solve because of the many integer variables involved in the 

large-scale SCUC [25]. In addition, the convex hull 

formulations are also widely used to perform convex hull 

pricing [26],[37], which more accurately prices each asset in the 

power systems. Ref. [27] calculated the ranges of the remaining 

variables’ values by fixing one of the variables. A set of feasible 

solutions was obtained after searching each variable, and the 

convex hull was generated with these feasible solutions. In [28], 

based on a feasible solution, the neighborhood search algorithm 

was used to relax the MIP problem, and then an iterative 

compression algorithm was proposed to tighten the constraints 

to obtain a tight formulation. A convex hull was established in 

[29] by the integration of three steps: “constraint-and-vertex 

conversion,” “vertex elimination” and “parameterization”. The 

above convex hulls were all obtained from the mathematical 

view of MIP by enumeration and relaxation. However, the 

physical characteristics of the SCUC were not considered in the 

above approaches, which may lead to two issues: (i) They could 

not handle models containing complex system and unit 

constraints; (ii) The speed of forming convex hulls is slow, 

especially for large-scale systems.  

Different from the above methods, [30] proposed two types 

of convex hulls for thermal single-UC by studying all the 

possible “on” intervals and all the possible optimal generation 

amounts, respectively. These two convex hulls were 

theoretically proved to be equivalent to the original MILP 

model with a piecewise linear objective function. However, the 

models in [30] were designed for the single thermal unit, and 

could be applied to neither hydro single-UC nor multi-UC, both 

of which were critically important for current power system 

operations. We note that no studies have provided a systematic 

large-scale SCUC solution to solve the above two issues from 

the perspective of LP programming, which is the focus of this 

paper. Therefore, based on the work in [30], we established a 

linearization method of large-scale hydro-thermal SCUC. Our 

contributions can be summarized as follows: 

(i) We establish an LP model for hydrothermal scheduling. The 

model of the thermal unit is linearized by the convex hull 

formulation. Further, we propose a linearization method for the 

single-UC of a hydro unit (common hydro unit and pump storage 

station) with variable-head units. To reduce the model size, a 

strategy of embedding two types of convex hulls in a multi-UC is 

designed. We properly choose different convex hull formulations 

for different units.  

(ii) For the error caused by linearization, we design an efficient 

heuristic method to construct a feasible and near-optimal solution 

to the original MILP model with the optimal solution of our 

proposed LP model. It is proved that the error of our proposed LP 

model is theoretically smaller than that of the traditional LR model. 

In addition, the real-life case study indicates that the 

computational efficiency of the proposed LP model is more than 

twice faster than that of the LR model, and 10-100 times faster 

than that of the MILP model. It realizes the transformation of 

SCUC from the MILP model to the relaxed LP model, leading to 

practical large-scale uses. 

II. LP MODEL OF THE SINGLE-UC WITH ONE PUMP STORAGE 

In this section, according to the convex hull for single-UC 

with a thermal unit, we propose the MILP model for the single-

UC with one pump storage and reformulate the MILP model 

into an LP model. 

A. The model of single-UC for a thermal unit 

1) The MILP model of single-UC for a thermal unit 

For a single thermal unit, the corresponding MILP model can 

be expressed as follows:  

 
MIP start shut

1

1

min ( ( ) ( , ))
T

t t t t t t t

t

C u C u x x f P x



      (1) 

 1. .     [1, ]t t ts t x x u t T  ,  (2) 

 
min max [1, ]t t tx P P x P t T  ,  (3) 

 
on

on

1

[ , ]
t

i t

i t T

u x t T T
  

  ,  (4) 

 off

off

off

1

1 [ , ]
t

i t T
i t T

u x t T T


  

   ,  (5) 

 
1 0

1 1 1(1 ) [1, ]t t t tP P R x R x t T      ,  (6) 

 
start shut

0 00, 0 , {0,1} 0, 0t tx u x u C C    ， ,  (7) 

The objective function (1) is to minimize the total operating 

cost, including generation cost and generators’ start-up/shut-

down cost, and specifically ft (Pt, xt) represents the fuel cost 

minus the revenue and is approximated by a piece-wise linear 

function. Constraint (2) denotes the logical relationship 

between the binary variables xt and ut. Constraint (3) limits the 

generation output. Constraints (4)-(5) restrict the minimum-

up/-down time to avoid frequent start-up and shut-down. 

Constraint (6) specifies the ramp-up/-down rate limits. 

Constraint (7) specifies the range of decision variables and the 

initial state of the unit.  

2) The convex hull for the single-UC with a thermal unit 

As shown in Fig.1, the convex hull is the tightest convex 

relaxation of an MILP model. Ref. [30] provided two convex 

hulls in high dimensions for the MILP model of single-UC. For 

convenience, the two convex hulls are named -convex hull 

and - convex hull, respectively. Through the convex hull, the 

discrete feasible region of the single-UC for a thermal unit is 

transformed into a convex polyhedron formed by linear 

constraints, and the MILP model will be equivalent to an LP. 

The feasible region can be represented as 

MIP
LP

Feasible solutions

Optimal solution

Convex hull

Optimal solution of 

the convex hull model  

Fig.1  Convex hull of single-UC 

 MIP 2{( ) | (2) (7)}T T    P,x,u  (8) 

 LP 3 MILP{( ) | ( )}T   P,x,u conv  (9) 

where conv(*) denotes the convex hull of a set *, and P, x, u 

are the vector forms of Pt, xt, ut,t[1,T]ℤ, respectively. 

Specifically, the -convex hull is formed on the set  

which contains all the possible “on” intervals as shown below: 
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 {( , ) | [1, ] , [min{ 1, }, ]}ont k t T k t T T T      (10) 

The -convex hull can be represented as 

 start shut

LP 1

1

min ( ( ) ( , ))
T

t t t t t t t

t

C u C u x x f P x



      (11) 

 ,

( , ) , [ , ]

. .      , [1, ]t k

t k t k

s t P T




 
 

   (12) 

 
,

( , ) , [ , ]

, [1, ]t k

t k t k

x T


 
 

   (13) 

 
,

( , ) ,

, [1, ]t k

t k k

u T 


  
 

    (14) 

 
[1, ]

  1t

t T




  (15) 

 
on on

off

, ,

[min{ 1, }, ] [ ,

1]

, [1, ]t t k k t

k t T T T k T t

T

t T  
    



     (16) 

 
on off

on off

, ,

[1, 1] [ 1, ]

0, [ , 1]k t t k

k t T k t T T

t T T T 
     

        (17) 

 
on

off

,

[1, 1]

0, [ , ]t k t

k t T

t T T T 
  

     (18) 

 min max

, , , , [ , ] , ( , )t k t k t kP P t k t k        (19) 

 
0 0

, , , ,, ( , )t k

t k t k t k t kR R t k     ，  (20) 

 
1 -1 1

, , , , , [ 1, ], ( , )t k t k t k t kR R t k t k             (21) 

 , , , 0      (22) 

 A total of 3| |+5T variables are required to form a -

convex hull. The computational complexity of the above LP 

model is O(T2), and the -convex hull is equivalent to the 

original MILP model. The feasible region of the single-UC by 

-convex hull can be represented as 

 
LP 3| | 5{( , , , , ) |T  P,x,u α β χ γ ((12)-(22))} (23) 

The -convex hull is formed on the set which contains all 

the possible optimal generation amounts and on/off statuses. 

The -convex hull can be represented as follows: 
start shut

LP 1

[1, ]

min [ ( ) ( , )]t t t t t t t

t T

C u C x x u f P x



       (24) 

s.t.  
,

( )
i j i

t j tij

e e

P P e 
 

   (25) 

 
,

( )
i j i

t j tij

e e

x x e 
 

   (26) 

 
,

( )
i j i

t j tij

e e

u u e 
 

   (27) 

 
1

11 1
j

j

e




  (28) 

 1 00,
j i

ij i

e

e


   (29) 

 1, 0, , [2, ]
j i k i

tij t ki i

e e

e t T 
 



 

      (30) 

 0 , , [1, ]tij i j ie e t T    ，  (31) 

where P(ej), x(ej), and u(ej) denote the generation amount, 

on/off status, and start-up status if the optimal state of the 

generator is ej at time t, respectively. P(ej), x(ej), and u(ej) are 

presolved parameters determined by the optimal state ej, the 

construction details are given in [30]. A total of 3T+| ||  |T 

variables are required to form a convex hull, the dimension 

of set | | and the set | | are clarified in III.B. The 

computational complexity of the above LP model is O(| || | 

T), and the feasible region of the single-UC by -convex hull 

can be represented as follows: 

 
LP | || | 3{( , ) |Q T T  P,x,u λ  (25)-(31)}. (32) 

 Although the  -convex hull and the -convex hull are 

constructed with different variables, the optimal solutions 

P*,x*,u* of the single-UC with the two convex hulls are the 

same. Therefore, both the -convex hull and the -convex 

hull can be regarded as the convex hull of the original MILP 

problem. Note that the convex hull of the single-UC model with 

a thermal unit is related to only the physical parameters of the 

unit but not the load and network topology, so it can be modeled 

offline and only once. 

B. The model for the single-UC with one pump storage  

1) The MILP model for the single-UC with one pump storage 

A pump storage station, which consists of an upstream 

reservoir, a downstream reservoir, a hydro generator, and a 

pump, can either absorb or generate electricity. The pump 

storage station can undertake the tasks of peak load shifting in 

the power systems, releasing water from the upstream to 

downstream reservoirs to generate electricity by the hydro 

generator during peak load, and pumping water from the 

downstream to upstream reservoirs by the pump to consume 

electricity during valley loads. A pump storage station has three 

possible statuses: pumping, generating, and shutdown, and can 

be operated in only one of these statuses at any time. 

 For a pump storage station, both unit constraints and 

reservoir constraints should be considered.  

The reservoir constraints include: 

 
up,min up up,max

tV V V  ,
dn,min dn dn,max

tV V V   (33) 

 

up up pump hydro up

1

dn dn hydro pump dn

1

+

+

t t t t t

t t t t t

V V W W U

V V W W U





  

  
, (34) 

where constraint (33) provides the upper and lower bounds of 

the reservoir volume. Constraint (34) represents the reservoir 

volume balance considering the natural inflow. 

The unit constraints include: 

 1 , [1, ]t t tx x u t T     (35) 

 1, [1, ]t tz x t T    (36) 

 
on

on

1

, [ , ]
t

i t

i t T

u x t T T
  

   (37) 

 off

off

off

1

1 , [ , ]
t

i t T
i t T

u x t T T


  

    (38) 

 
hydro,min hydro hydro,max , [1, ]t t tx P P x P t T    (39) 

 
pump,min pump pump,max , [1, ]t t tz P P z P t T    (40) 

 
1 1 1 0

1 1 1(1 ), [1, ]t t t tP P R x R x t T         (41) 

 
hydro pump , [1, ]t t tP P P t T    (42)  

 
hydro w-e hydro up , [1, ]t t tP W h t T   (43)  

  up up

1 , [1, ]t th V t T   (44) 

 
pump e-w pump dn , [1, ]t t tP W h t T   (45) 
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  dn dn

2 , [1, ]t th V t T    (46) 

where constraints (35)-(36) limit the operation status of the 

pump storage station. Constraints (37)-(38) restrict the 

minimum-up/-down periods. Constraints (39)-(40) denote the 

limits on water consumption and pumping capacity. Constraint 

(41) specifies the ramp-up/-down rate limits of the hydro unit. 

Constraints (42)-(46) describe the conversion relationship 

between water consumption and power generation with a 

variable water head, which is highly nonlinear.  

The nonlinear function (44) and (46) can be handled by the 

piecewise linearization method [35]. Besides, (43) and (45) are 

bilinear constraints. They can be linearized by constructing a 

convex envelope around the bilinear relationship, such as 

McCormick’s envelopes (e.g., [36]). Constraint (43) can be 

linearized as: 

 

hydro w-e hydro,min up hydro up,min hydro,min up,min

hydro w-e hydro,max up hydro up,max hydro,max up,max

hydro w-e hydro,min up hydro up,max hydro,min up,max

hyd

( )

( )

( )

t t t t t t t

t t t t t t t

t t t t t t t

t

P W h W h W h

P W h W h W h

P W h W h W h

P







  

  

  

ro w-e hydro,max up hydro up,min hydro,max up,min( )t t t t t tW h W h W h  

(47) 

 

pump e-w pump,min dn pump dn,min pump,min dn,min

pump e-w pump,max dn pump dn,max pump,max dn,max

pump e-w pump,min dn pump dn,max pump,min dn,max

pump e-w pum

( )

( )

( )

(

t t t t t t t

t t t t t t t

t t t t t t t

t t

P W h W h W h

P W h W h W h

P W h W h W h

P W









  

  

  

 p,max dn pump dn,min pump,max dn,min )t t t t th W h W h 

(48) 

Since the hydro units work without fuel consumption, only 

the startup/shutdown costs and maintenance costs (i.e., ft) need 

to be considered in the objective function. Hence, the MILP 

model of pump storage single-UC can be expressed as follows: 

 
MIP

start shut

1
(

1

min ( ( ) ( , , ))
T

t t t t t t t t

t

C u C u x x f P x z




   
P,x,z,u,v)

 (49) 

 MILP ={
hydro pump

(P ,P ,x,z,u, v) | (33)-(48)} (50) 

where Phydro, Ppump, z, v are the vector forms of P
hydro 

t , P
pump 

t , zt, 

vt,t[1,T]ℤ, respectively. 

2) The LP model for the single-UC with one pump storage 

It is challenging to directly establish the convex hull for the 

single-UC with one pump storage as that with a thermal unit. 

The reasons are presented as follows:  

First, the -convex hull is constructed with all the possible 

optimal generation amounts. For a thermal unit that can be 

regarded as a closed system, the optimal state space is only 

dependent on the unit's inherent parameters, and we can use the 

convex hull under any external parameter. In contrast, the 

optimal states of a pump storage station are affected by the 

external continuous natural inflow, which leads to the non-

generality that the constructed convex hull is only applicable to 

a given natural flow. Therefore, the -convex hull is not 

directly applicable for the pump storage.  

Second, the -convex hull is established with all the 

possible “on” intervals, and the operating cost for each “on” 

interval needs to be pre-solved. For any given interval [ , ]t k , 

the operating cost of a thermal unit is independent of the on/off 

status before time t. In contrast, the reservoir volume at different 

time periods is coupled with water consumption. Different 

statuses before time t will lead to different initial reservoir 

volume status and operating costs in the interval [ , ]t k . As a 

result, the -convex hull cannot be directly applied to the 

pump storage. 

To address this problem, we model the hydro generator and 

the pump as two separate thermal units, where one is with 

positive power outputs and the other is with negative power 

outputs, respectively. Therefore, pump storage can be 

equivalent to two coupled thermal units with positive power 

outputs P
hydro 

t  and negative power outputs -P
pump 

t .  

The feasible region of the unit with the positive power (i.e., 

the hydro generator) can be expressed as follows: 

hydro,MILP={
hydro 2( ) |T T P ,x,u (35),(37)-(39),(41)} (51) 

which is the same as the MILP model with thermal units. In 

particular, (35) corresponds to (2), (39) corresponds to (3), (37) 

and (38) correspond to (4) and (5), and (41) corresponds to (6). 

Therefore, the convex hull of the MILP can be formed by 

 hydro,LP={
hydro 3 LP( ) | = or T

  P ,x,u , } (52) 

Meanwhile, the feasible region of the unit with the negative 

power (i.e., the pump) can be expressed as follows: 

 pump,MILP={
pump( ) |T T P ,z  (40)} (53) 

which is not the same as the MILP model with thermal units. 

To take advantage of the convex hull, we introduce one 

redundant variable vt and four redundant constraints as follows: 

 1 , [1, ]t t tz z v t T     (54) 

 , [1, ]t tu x t T   (55) 

 11 , [2, ]t tu x t T    (56) 

 pump pump e-w pump,max dn,max

1 2 ( ), [1, ]t tP P W V t T      (57) 

where constraint (54) limits the operation status of the pump, 

constraints (55)-(56) indicate that any status of the unit should 

continue for at least one period. Constraint (57) describes the 

ramp-up/-down rate limits. Clearly, redundant constraints do 

not change the feasible region of the pump, which can be 

reformulated as follows: 

 pump,MILP={
pump 2( ) |T T P ,z, v (40),(54)-(57)} (58) 

Although the above model is more complex, pump,MILP has a 

similar form as the MILP model with thermal units. In 

particular, (54) corresponds to (2), (40) corresponds to (3), (55) 

and (56) correspond to (4) and (5), and (57) corresponds to (6). 

Therefore, pump,LP can be formed as below: 

 pump,LP={
pump 3 LP( ) | = or T

  P ,z, v , } (59) 

Finally, according to (52) and (59), the single-UC with a 

pump storage station can be solved by a relaxed LP model 

whose formulation can be expressed as  
LP 5 hydro,LP pump,LP{( ) | , ,T    P,x,z,u, v {(33)-(34),(42)-(48)}}

  (60) 

The proposed LP formulation (60) does not represent the 

convex hull of the feasible region but provides a relaxed LP 

model. The numerical experiment in Section IV.B suggests that 

the relaxation error is very small. In addition, the proposed 

method can also model the common hydro, which can be 

modeled as one thermal power unit and its reservoir constraints. 

For the power system with cascaded plants, an LP model can be 

similarly established by using the convex hull formulation of a 
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single-UC, though its performance may not meet the economic 

requirements. In summary, the proposed model is suitable for 

the hydrothermal unit commitment problem with decoupled 

thermal units and variable-head hydro units. 

III. LP MODEL OF THE MULTI-UC FOR HYDROTHERMAL 

SCHEDULING 

In this section, we first propose the LP model of the multi-

UC for hydrothermal scheduling, and then design the strategy 

of embedding two types of convex hulls in the multi-UC and 

the method of recovering a feasible solution. Finally, we 

analyze the error of the proposed LP model. 

A. The model of the multi-UC for hydrothermal scheduling 

1) The MILP model of the multi-UC 

The multi-UC model can be expressed as (61)-(66) in the 

following formulation.  

 
start shut

, , , , , 1 , , , ,

[1, ]

min ( ( ) ( , ))g t g t g t g t g t g t g t g t g t

t T g G H

C u C u x x f P x

 

     

  (61) 

 
MILP( ) , , [1, ]g g G t T  

g g g
P ,x ,u  (62) 

 
MILP( ) , , [1, ]g g H t T  

g g g g g
P ,x ,z ,u , v  (63) 

 , , , [1, ]g t b t

g G H b Bus

P D t T
  

    (64) 

 
max

, , [1, ]g g b t t

g G b Bus

P x D r t T
 

     (65) 

PTDF PTDF max

, , , , , [1, ]l g g t l b b t l

g G H b Bus

H C P H D F l L t T
 

     (66) 

where Pg,xg,zg,ug,vg are the vector forms of P
 

g,t, xg,t, zg,t, vg,t, t 

[1,T]ℤ. The objective function (61) is to minimize the total 

operating cost, subject to the physical constraints (62)-(63) of 

units, the power balance constraint (64), reserve constraint (65), 

and transmission capacity constraint (66). 

2) The LP model of multi-UC 

Note that integer variables only exist in constraints (61)-(62). 

Replacing the constraints (61)-(62) with the convex hull of each 

unit gives the following formulation: 

 

start shut

, , , , , 1 ,

[1, ] , , ,

( ( )
min

             ( , ))

g t g t g t g t g t g t

t T g G H g t g t g t

C u C u x x

f P x



  

  



   (67) 

 s.t.
LP

,( ) , , [1, ] , or g g G t T    
g g g

P ,x ,u  (68) 

 
LP( ) , , [1, ]g g H t T  

g g g
P ,x ,u  (69) 

 (64)-(66) (70) 

The above formulation transforms the original MILP model 

into an LP model (ug,t and xg,t are defined as continuous 

variables) with a relaxed feasible region. However, there are 

still three problems to quickly obtaining a high-quality feasible 

solution of the multi-UC model. 

1) Although the single-UC model can be formulated as an LP 

by either -convex hull or -convex hull, the two convex 

hulls have different computational complexity. The poor 

adaptability of a unit to a convex hull often leads to an overall 

slowdown or even insolvability. Therefore, how to properly 

choose the form of a convex hull is quite crucial.  

2) Fig.2(a) shows the framework of the multi-UC model, 

containing several convex hulls of each single-UC model and 

the coupling constraints (i.e., system constraints (64)-(66) and 

reservoir constraints (33)-(34) of hydropower units). In 

Fig.2(b), compared with the convex hull of the multi-UC (the 

blue area), the formulation (67)-(70) provides a relaxed feasible 

region (the yellow area), which may induce a fractional optimal 

solution because the extreme points of this formulation may not 

be binary. Therefore, it is necessary to design a method to 

recover an integer feasible solution near the extreme points. 

 
(a) Framework of the LP 

MIP
LP

System constraints
Feasible solutions of 

the multi-UC

Optimal solution of 

the multi-UC

Convex hull of the 

multi-UC

Optimal solution of 

the LP model

Feasible region of the 

LP model  
(b) Relaxed polyhedral feasible region 

Fig.2 The LP model of multi-UC  

3) The recovered feasible solution may not be an optimal 

solution. The error upper bound between the feasible 

suboptimal solution of the LP model and the optimal solution 

of the original MILP model should be determined. We 

theoretically prove that the optimal solution of the proposed LP 

model is better than the optimal solution of the LR model, 

providing an upper bound for the error. 

B. The strategy of embedding two types of convex hulls in the 

multi-UC 

Note that the computational complexity of the -convex 

hull is O( | || | T).  is the set of all the possible optimal 

generation levels under different conditions, which can be 

proved to be discrete in [30] as follows 

 1 2 1min 1 0 1 max 1

0 0 0{0,( ) ,( ) ,( ) }
n n n

n n nP nR R nR P nR      (71) 

where n1=max{t[1,T]ℤ|Pmin+nR1Pmax}, n2=max{t[1,T]ℤ| 

R0+ nR1 Pmax}. Therefore, | |  is at most 2n1+n2+1, which can 

be represented as 

 

max min max 0

1 2 1 1
| | 2 1 2 1

P P P R
n n

R R

    
        

   
 (72) 

where * denotes the largest integer number no larger than *. 

is the set containing all the states when the generator is 

offline or online. The number of offline states is Toff, and the 

LP model of the multi-UC

System constraints 

Convex hull 1 of 

thermal single-UC

 

Convex 
hull 1 

Convex 
hull 2 

Feasible region 1 of 

hydro single-UC

Reservoir constraints

   

 

Convex hull 2 of 

thermal single-UC

Convex hull n of 

thermal single-UC

Feasible region n 

of hydro single-UC

https://ieeexplore.ieee.org/document/6950867/
https://ieeexplore.ieee.org/document/6950867/
https://ieeexplore.ieee.org/document/6950867/
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number of online states is | | Ton [30].  is a finite set and the 

dimension of the set is | | Ton+Toff. 

Once T is fixed, the computational complexity of the -

convex hull is only related to the unit inherent parameters, i.e., 

R1, R0, Ton, and Toff. Therefore, -convex hull can be suitable 

for the units with large R1, R0, or small Ton, Toff, such as gas-

fired and oil-fired units. 

The computational complexity of the -convex hull is O(T2). 

According to the definition of , the number of elements can 

be expressed as below: 
on( )

on on on 2

1

1 1
| | = ( )( 1) ( )

2 2

T T

n

n T T T T T T




       (73) 

It is observed from (12)-(22) that the -convex hull is 

constructed by 3T+4| | constraints and 5T+3| | decision 

variables. Once T is fixed, the complexity of the convex hull is 

only related to Ton. As Ton increases, | | decreases. For example, 

when Ton=T, the possible operating states of the unit are 

reduced to two, i.e., on or off for the entire scheduling horizon. 

In this case, only 3T + 4 constraints and 5T + 3 variables are 

needed to characterize the feasible region of a unit. In a real-life 

power system, the unit with a long Ton is usually the large 

thermal unit. This is because the startup and shutdown of the 

thermal unit are realized by the boiler and steam turbine. 

Frequent startup and shutdown of the boiler will damage the 

boiler pipe joint, resulting in shaft bending and reducing the 

service life. Therefore, the -convex hull can be suitable for 

the units with long Ton, such as thermal units. 

In addition, when the physical parameters of all the units are 

given, the computational complexity of the -convex hull is 

O(T2), and that of the -convex hull is O(T). Therefore, the 

-convex hull is not suitable for the long-timescale unit 

commitment, while the -convex hull can have an excellent 

performance in long-timescale multi-UC.   

From the above analysis, the two convex hulls clearly differ 

from each other in terms of computational complexity and 

application scenarios. For some dispatchable units, properly 

choosing a form of the convex hull is very important to improve 

the solution efficiency. For example, for the unit satisfying 

R1<<Pmax-Pmin , it would be better to choose the -convex hull.  

To address the problem of properly choosing the form of a 

convex hull, we propose the strategy of embedding two types 

of convex hulls in the multi-UC by comparing the number of 

decision variables required to form the two convex hulls. 

Constructing a -convex hull requires 3| |+5T  decision 

variables and constructing a -convex hull requires 
on off( ) 3T T T T   variables. We select the convex hull form 

with fewer variables. This process is implemented by  
on off

o

LP

L

oP nL ff

P

)

3( | |, +

(

2

3 +2

)

, | |

T T T T

T T T T


  



 

 
         (74) 

Since | | is related to R1, the parameters (i.e., R1, Ton, and 

Toff) are inherent properties of the units and are not related to 

network, load, etc. Then, (74) can be computed offline without 

additional solution time. The strategy improves the overall 

computational efficiency by using different convex hulls for 

different units to construct the multi-UC model. The scale of 

the corresponding LP model is smaller than that using only one 

type of convex hull. In addition, the -convex hull and the 

-convex hull are both the tightest formulation of a single-UC. 

When constructing the feasible region of the generators, it’s 

equivalent to selecting the -convex hull or the -convex hull 

in terms of the optimal value.  

C. The method of recovering a feasible solution 

The proposed method is different from the standard method 

that has been used in the Lagrangian relaxation literature [33]-

[34], which used dual information (e.g., the opportunity cost) 

to adjust the unit status period by period. The proposed 

method is to find an integer feasible and near-optimal solution 

based on an optimal solution from the relaxed feasible region 

given by formulation (67)-(70). Specifically, the optimal 

solution x
* 

g,t is a (|G|+|H|)T-dimensional vector in which few 

dimensions are fractional. We first adjust these fractional 

numbers to be integers and then determine whether the 

modified solution is feasible. The detailed steps are described 

as follows: 

Step1. As x [0,1]R, there are three possible values of x
* 

g,t 

(Optimal solution of xg,t), which are x
* 

g,t=0, x
* 

g,t=1, 0< x
* 

g,t  <1, 

respectively. Thus, all the generators associated with different 

time periods can be divided into three disjoint sets as follows: 

 
*

0,1

0,

* *

, ,

,

*

,1

{( , ) }

{( , ) }

{( , ) }

| 0 1, ,

| 1 0.5, ,

| 0 0.5, ,

g t g t

g t

g t

t x x t g

x t g

x t

g

t

g

g

g t





    





  

  

 

  



，

 (75) 

where  and  denote the logical "and" and "or," respectively. 

Step2. Keep the unit status unchanged for each generator in a 

period in the set 
0,1 , and adjust the unit status in the set 

0,

and
1 ，as 

 *

, 0,0,  ( , )g tx g t     (76) 

  *

, 11,  ( , )g tx g t    ，  (77) 

We check whether the above solution is a feasible solution 

for the multi-UC model via the following necessary and 

sufficient conditions [33]. 

 
1 2 3

3

max min min

,

max *

, ,              max{0, ( ) }

t t t

t

g g b t g

g E g E b Bus g E

t g g t g t

g E

P P D P

r P P x

   



  

  

   


 (78) 

 
1 3

max * max *

, , , ,( ) ( )
t t

g g t g t t g g t g t

g E g E

P P x r P P x
 

      (79) 

 
1 2 3

min min

, ,

t t t

g g b t g t

g E g E b Bus g E

P P D P
   

       (80) 

If the solution is not feasible, then turn to step3; if the 

solution is feasible, then solve the economic dispatch problem 

(61)-(62) with the current unit on/off status. Then, we can get 

the suboptimal solution of the multi-UC model and stop the 

iteration. 

Step3. We define the scheduled unit as the unit whose statuses 

are binary in all periods, and the unscheduled unit as the unit 

that is in off-status for the entire time interval [1,T] or has non-

binary status in some period. Dividing all units into two sets 

according to the above definition, we have 
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,

*

,

*

,

0 0 1

1 0,1

{ | , } { | =0 }

{ | }\{ | =0 }

( , ) ( , ) ,

( , ) , ,

g t

g t

g t g t t x t

g t

g g

g gt x t

     



   

    

，
 (81) 

where 1 is defined as the set of all scheduled units, and 0 is 

defined as the set of unscheduled units. The outputs of 

scheduled units are called as the scheduled power, and the 

difference between the total load and the scheduled power is the 

unscheduled power Dt which can be expressed as  

 
1

, , , [1, ]t b t g t

b Bus g

D D P t T
 

      (82) 

where Dt usually equals 1%~5% of the total load. 

Step4. Keep the statuses and outputs of the scheduled units 

unchanged, and reschedule the unscheduled power Dt with the 

units in 
0  by the Priority-List algorithm [38] in the 

polynomial-time complexity. First, calculate and sort the full-

load average production costs, and then a strict priority order 

for units in 
0 can be obtained by  

 
max( ( ))g gf Psort  (83) 

where sort(*) is the function order * from smallest to largest. 

Second, select the top x(x[0,|
0 |]) units from the priority 

list as the combinations at each period. Finally, modify the 

combinations based on the system constraints and unit physical 

constraints. 

As a result, the suboptimal feasible solution for the 

unscheduled power and unscheduled units are quickly 

recovered. Since the unscheduled power accounts for only 1%-

5% of the total load, the final suboptimal solution that we obtain 

usually has a small gap with respect to the true optimal solution. 

D.  Error analysis of the LP model of the multi-UC 

For the multi-UC model, we denote the optimal value of the 

proposed LP model by 
 *

, the optimal value of the MILP 

model by 
*

, and the suboptimal value obtained by 

constructing a feasible solution from the proposed LP model by 
 * . These three values should satisfy 

  * *  *   (84) 

To describe the error of the proposed model, we define the 

optimal value error v, convex relaxation error v1, and feasible 

solution construction error v2, respectively, as: 

  * * *  *  *  *

1 2, ,         (85) 

where v reflects the precise error of the proposed LP model. 

However, * cannot be directly obtained, whereas 
 *

and  *  

are easy to obtain. Thus, v2 is usually used to measure the error.  

In addition, we compare the performance of our proposed LP 

model with that of the traditional LR model. Specifically, to 

describe the error of the LR model, we define its optimal value 

by LR*Z  , the suboptimal value obtained by constructing a 

feasible solution by LR*Z , the relaxation error by v
LR 

1 , and the 

feasible solution construction error by v
LR 

2 , respectively, as 

shown in the following: 

 LR * LR* LR LR* LR*

1 2,Z Z Z      (86) 

The following proposition will characterize the errors of our 

proposed LP model.  

Proposition 1. We have
LR*Z , 

 *
, and 

*
 satisfy 

 
LR*  * *Z    (87) 

Therefore, v
LR 

1  and v1 satisfy 

 v1   v
LR 

1  (88)  

Proof. Both the LP model (67)-(70) and the MILP model (61)-

(66) can be solved by the LR approach. They use the same 

iterative framework, but the only difference is the feasible 

region of the subproblem (single-UC model), such that 

 

MILP

LP

MILP: ( )

LP : ( )

g

g





g g g

g g g

P ,x ,u

P ,x ,u
 (89) 

Note that the single-UC subproblems under both the original 

MILP and the proposed LP model are equivalent because the 

latter provides the convex hull for the former. Therefore, the 

multi-UC of the LP model and the MILP model are equivalent 

in the context of LR. Furthermore, the optimal value solved by 

the LR algorithm can be served as a lower bound. Thus, we have  

 LR* *Z   (90) 

 LR* *Z   (91) 

Taking (90) and (91) into (84) gives 

 LR* * *Z    (92) 

Furthermore, we have 

 * * * LR* LR

1 1v Z v      (93) 

(Q.E.D.) 

Proposition 2. We have v1
 satisfies 

 
start min 2

1 (max{ } 2 max{ ( ,1)} 2 ),g g gv C T f P T g      (94) 

Furthermore, the relative error *

1v  satisfies 

 
*  *

1

* *
lim lim 0
n n

v

 


   (95) 

where n is the number of units in the system. 

Proof. Recovering a feasible solution for the LR model requires 

adjusting the status of at most 2T units [31]-[32]. Therefore, the 

maximum adjustment cost is to make 2T units with the highest 

operation cost switch from off-status to on-status and keep the 

on-status for T period. Therefore, v
LR 

2
 satisfy 

 
LR start min 2

2 max{ } 2 max{ ( ,1)} 2 ,g g gv C T f P T g      (96) 

Proposition 1 proves that v1
  v

LR 

1 . Therefore, we have 

 LR LR

1 1 2v v v   (97) 

Taking (96) into (97) gives 

 
start min 2

1 max{ } 2 max{ ( ,1)} 2 ,g g gv C T f P T g      (98) 

Then, for a system containing n units for the load D, the 

average output of the units P  can be expressed as  

  /P D n  (99) 

We approximate the generation cost function as a linear 

function hg(P) = ag+bgP (ag,bg represent the cost coefficient of 

unit g), and denote by hmin(P) the cost function with the lowest 

marginal cost bmin. The optimal value 
*
 is greater than the 

generation cost that all loads are satisfied by the units with the 

lowest marginal cost bmin. It follows that 

 
m* in ( )h Pn   (100) 

and then, 

 
start min 2

1

* min

max{ } 2 max{ ( ,1)} 2

( )

g g gC T f P Tv

n h P

  



 (101) 
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Given any positive number  (>0), take N = 

 min 2 minmax{ } 2 max{ ( ,1)} 2 ( )start

g g gC T f P T h P   
 

, we 

have  * * *    when n > N.  

Therefore, 
* *

1

* *
lim 0
n

v




  .                             (Q.E.D.) 

Proposition 1 proves that the proposed LP model can 

provide an initial solution that is at least as good as that of the 

LR model. In general, a better initial solution can deduce a 

better feasible solution under the same method of recovering a 

feasible solution. Therefore, we will generally have v2
  v

LR 

2 , 

which indicates that the feasible solution construction error of 

the LP model is always smaller than that of the LR model. 

Proposition 2 points out that the error of the LP model 

decreases with the increase of the number of units, especially 

when the number of units tends to infinity. Therefore, the LP 

model of the multi-UC is suitable for large-scale SCUC models. 

The numerical experiments in the next section will verify the 

aforementioned phenomena. 

IV. CASE STUDY 

In this section, we first verify the proposed strategy of 

embedding two types of convex hulls in the multi-UC using 

IEEE test systems. Then, we investigate the performance of the 

optimal solution of the proposed LP model of the single-UC 

with hydro units. Finally, comparable studies are done by 

applying the proposed LP model, the LR model, and the MILP 

model on provincial power systems to show the computational 

performance. Numerical results are conducted on a computer 

with 128 GB RAM and an Intel(R) Xeon(R) CPU E5-2650 

processor. 

A. The strategy of embedding two types of convex hulls in the 

multi-UC 

We first present the basic information of several IEEE test 

systems. TABLE I and Fig.3 show the numbers of the buses, 

the transmission lines, the original thermal units, the thermal 

units reformulated by -convex hulls, and the thermal units 

reformulated by -convex hulls. It can be found that most 

units use the -convex hull to reduce the scale of the model. 

This is because there are many units with small capacity and 

high ramping rate, while a small number of units with large 

capacity and minimum-up/-down time.  

TABLE I.  The information of IEEE standard systems 

Number 

of buses 

Number 

of lines 

Number of 

original units 

Number 

of  
Number 

of  

118 186 54 12 42 

300 411 69 11 58 

1354 1991 260 32 228 

2383 2896 327 56 271 

Case 2383
327 units

56

17%271

83%

Case 1354
260 units

32

12%228

88%

Case 300
69 units

11

15%58

85%

Case 118
54 units

12

22%42

78%

Number of Number of
number

percentage
Number

P

 
Fig.3  Percentage and number of units with two convex hulls 

We next compare the computational performance of four 

models. Specifically, the original MILP model, the model using 

-convex hull only (denoted as “  only”), the model using 

-convex hull only (denoted as “ only”), and the model 

using embedding strategy (denoted as “ES”) are compared in 

terms of computational time (in seconds), as shown in TABLE 

II, where the original MILP model is 1-2 orders of magnitude 

slower than the “ only”, “ only”, and “ES” models. 

Moreover, the computational time of the “ only” model is the 

slowest while that of the “ES” model is the fastest. Fig.4 

visually shows the acceleration ratio of “ only” and “ES”, 

with the “ only” model as the benchmark. The “ only” 

model is about 20% slower than the “ only” model because 

fewer units use the -convex hull, accounting for only about 

one-sixth of all units. Furthermore, the computational time of 

the “ES” model is 50%-60% of the “ only” model and 70%-

85% of the “ only” model. The computational efficiency 

improvement of the “ES” model relies on (74) to filter out 

extreme units (e.g., the unit with Ton=1 or R1<<Pmax-Pmin). 

These extreme units have a good performance under one 

convex hull but a poor performance under the other. Therefore, 

the effect of the proposed embedding strategy is reducing the 

model size and improving the computational performance by 

avoiding choosing the convex hull for the extreme units with 

poor computational performance. 

In addition, the relative errors v2/
 * (v2 is defined in (85)) of 

the IEEE 118-bus system, the IEEE 300-bus system, the 

IEEE1354-bus system, and the IEEE 2383-bus system are 

1.97%, 0.92%, 0.63%, and 0.58%, respectively. The relative 

errors of a specific system are the same under the “ only” 

model, “ only” model, and “ES” model. This is because the 

convex hull and the convex hull are equivalent under any 

piecewise linear objective. (i.e. the -convex hull and the -

convex hull have the same tightness). It suggested that the “ES” 

model that carefully chooses the correct convex hull 

formulations does perform better than any other formulations, 

and the strategy of embedding two types of convex hulls in a 

multi-UC can significantly improve computational efficiency. 

TABLE II.  The computational performance of four models 

Buses 
MILP only only ES 

Time(s) Time(s) Error Time(s) Error Time(s) Error 

118 15 2.77 1.97% 2.36 1.97% 1.52 1.97% 

300 127 3.86 0.92% 3.27 0.92% 2.33 0.92% 

1354 830 65 0.63% 48 0.63% 38 0.63% 

2383 4200 128 0.58% 96 0.58% 69 0.58% 

85% 84%

75%74%

55%
60% 58%

54%

ES

IEEE 118-

bus system

IEEE 2383-

bus system

100% 100% 100% 100%

20%

40%

60%

80%

100%

0%P
e
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e
n

ta
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th
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lc

u
la

ti
o
n

 t
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e

IEEE 300-

bus system

IEEE 1354-

bus system  
Fig.4  Percentage of the computational time  
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B. Test of the LP model of hydro single-UC 

 In this part, we investigate the relative error caused by the 

proposed LP model for hydro single-UC. We use the modified 

IEEE 300-bus system where 2, 4, 6, and 8 thermal units are 

replaced by the hydro units, respectively. Then, comparing the 

optimal values of the LP model and the MILP model, we can 

calculate the relative error v2/
 * (v2 is defined in (85)). The 

optimal values and the relative errors are shown in Fig.5. 

Because the hydro units work without fuel consumption, the 

optimal value is reduced from $9.02M to $8.31M with the 

increase in the number of hydropower units. Besides, the 

optimal value of the LP model becomes worse, and the relative 

error v2/
 *  increases from 1.73% to 1.82%. This is because the 

LP model of the single-UC with the hydro unit will introduce 

system constraints. For example, a normal hydro unit 

introduces T constraints, and a pump storage station introduces 

3T constraints. Thus, more hydropower units will introduce 

more system constraints and the error will become larger. 

According to the model (67)-(70), there are (|L|+2+3|H|)T 

system constraints, where 3|H|T system constraints are 

introduced by hydro units. Note that 3|H| is far less than (|L|+2), 

so the relaxation error resulting from the proposed LP model of 

hydro units is very small. When the number of hydro units in 

the IEEE 300-bus system increases from 0 to 2, 4, 6, and 8, the 

relative error of the LP model increases from 1.73% to 1.74%, 

1.76%, 1.79%, and 1.82%. Nevertheless, as the number of 

hydro units is increased from 0 to 8 (10% of the number of 

units), the error is increased by only 0.09%. It suggested that 

the relative error caused by the proposed LP model for hydro 

single-UC is small, which meets the engineering need.  

1.73%
1.74%

1.76%

1.79%

1.82%

0 2 4 6 8
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v/ *
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1.68%

1.70%
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1.78%

1.80%

1.82%

 
Fig.5 Optimal values and the relative error of multi-UC 

C. Large-scale provincial power systems in China 

We further apply the proposed LP model of the multi-UC 

to large-scale provincial power systems in China including 

Shaanxi, Ningxia, Qinghai, Gansu, Guangdong, and Guangxi, 

as well as regional power systems including Northwest China 

and Beijing-Tianjin-Tanggu (BTT), to demonstrate the 

effectiveness and efficiency of the proposed method. The 

dispatching periods are 24h(one day), 168h(one week), and 

720h(one month). The multi-UC with long time horizons is a 

meaningful and practical problem that power dispatching and 

operation departments face. This is because the monthly UC 

has the properties of a “better-dispatching economy”, “more 

detailed models for minimum-up/-down time limits and 

maintenance plans”, and “better matching of contract 

evaluation methods”. The information of the provincial 

systems is shown in TABLE III. Taking the MILP model as a 

benchmark which is solved by GUROBI commercial solver. 

The relative error and computational time of the MILP model, 

the LP model, and the LR model are compared.  

TABLE III   The information of provincial systems 

Cases Buses Units [thermal/hydro] Lines 

Guangxi(220kV) 297 74 [59/15] 413 

Ningxia 600 112 [110/2] 847 

BTT 1600 154 [144/10] 2005 

Guangdong 2350 181 [167/14] 2356 

Qinghai 987 202 [164/38] 1203 

Shaanxi 933 204 [200/4] 1256 

Gansu 1387 311 [280/31] 1756 

Xinjiang 3041 404 [378/26] 3457 

Northwest China 6918 1233 [1136/97] 8519 

We compare the above three models under three sets of 

optimality gaps (lengths of the operational horizon): 0.1% 

(T=24h), 0.5% (T=168h), and 1% (T=720h), respectively. The 

errors of the LR model v
LR 

2 and the LP model v2 are listed in 

TABLE IV. In terms of the optimal value, the MILP model 

(benchmark) is the best while the LR model is the worst. The 

LP model performs between the MILP and LR models. 

Comparing the LP model with the LR model, we can have the 

following two conclusions. (i) As the power system size 

increases, the relative error of both two models become smaller. 

For example, when T=24h and the number of units rises from 

74 in Guangxi to 1233 in Northwest China, the relative error v
LR 

2 /
LR*Z  (duality gaps) of the LR model decrease from 2.67% 

to 0.56%, and the relative error v2/
 *

 of the LP model 

decreases from 2.53% to 0.52%. This verifies the conclusion 

that the relative error of the LP model mainly depends on the 

unit numbers n. (ii) As the number of scheduling periods (i.e., 

T) increases, the optimal values and convergence performance 

of the LR model become worse, while those of the LP model 

are hardly affected by T. For example, when T increases from 

24h to 720h for Qinghai, the relative error of the LR model 

increase from 1.33% to 3.14%, but that of the LP model varies 

around 1%. It is suggested that the relative error of the proposed 

LP model for hydrothermal scheduling is small, meeting the 

engineering need. 

In terms of computational time, the LP model is the fastest, 

while the MILP model is the slowest. The results show that the 

computational time of the MILP model is 1~2 orders of 

magnitude longer than that of the LR model and LP model, and 

the computational time of the LR model is 1~4 times longer 

than that of the LP model. Moreover, it can be found that the 

computational time of the two models increases nearly linearly 

with the increase of T. This is because the time complexity of 

both the -convex hull and the subproblems of the LR model 

is O(T). However, the computational time of the LR model 

grows faster than that of the LP model. For example, when T 

increases from 24h, 168h to 720h for Shaanxi, the 

computational time of the LR model is 2.4, 2.7, and 2.9 times 

slower than that of the LP model. Most importantly, MILP may 

fail to obtain the optimal solution within the given time for 

some large-scale systems because the salability of MILP will 
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be challenged by the number of binary variables. The LR model 

may not be converged for long-term scheduling problems. The 

reason is that the LR model is solved iteratively, and the number 

of iterations increases with the increase of T. In contrast, the LP 

model can be easily solved by advanced and mature commercial 

solvers, without considering convergence issues. Therefore, the 

proposed LP model overperforms the LR model in both optimal 

solution and computational time. 

  

TABLE IV.  The computational time (seconds) and optimal solution error (%) of the three algorithms 

 24h 168h 720h 

 MILP LR LP model MILP LR LP model MILP LR LP model 

Guangxi(220kV) 43 13(2.67) 5.2(2.53) 817 78(4.25) 35.8(2.77) 1894 // 94.6(2.91) 

Ningxia 158 22(2.48) 12(2.45) 1648 185(3.74) 84(2.19) 9904 // 336(2.68) 

BTT 264 44(2.26) 18(2.08) 2762 369(2.94) 140(2.05) 16587 // 560(2.23) 

Guangdong 186 31(1.68) 16(1.66) 1911 256(2.38) 113(1.68) 11476 1064(4.57) 459(1.73) 

Qinghai 311 40(1.33) 18(0.96) 3278 340(1.66) 126(1.02) # 1431(3.14) 504(1.16) 

Shaanxi 332 43(1.57) 18(1.34) 3536 355(2.23) 133(1.54) # 1494(3.82) 504(1.68) 

Gansu 900 65(1.26) 39(1.12) 10708 520(1.78) 273(1.33) # 2241(2.43) 1092(1.41) 

Xinjiang 1580 82(0.91) 42(0.88) # 749(0.95) 294(0.93) # 2969(1.26) 1176(0.83) 

Northwest China 9230 266(0.56) 128(0.52) # 2758(0.63) 896(0.58) # 14435(0.87) 3612(0.61) 

Note: "#" indicates that the optimal solution cannot be obtained in 12 hours; "//" indicates that the duality gap cannot converge within 5%

V. CONCLUSION 

This paper proposes an LP model for solving large-scale 

hydro-thermal unit commitment, where the LP model of the 

hydro single-UC is derived and the strategy of embedding two 

types of convex hulls in the multi-UC are proposed. Simulation 

results on several large-scale provincial systems show that the 

LP model of the single-UC with hydro units has a small effect 

on the optimal solution. Besides, the proposed embedding 

strategy can significantly improve the computational 

performance, compared with embedding either one type of 

convex hull. Moreover, it is shown that the proposed method is 

faster than both Lagrangian relaxation and commercial solvers. 

Moreover, the error gap of the proposed method is less than the 

Lagrangian relaxation method and the gap decreases with the 

increasing system scales. Finally, it is suggested that the 

proposed method can be well applied to large-scale long-term 

unit commitment problems. 
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