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Problem definition: Shared micromobility vehicles provide an eco-friendly form of short-distance travel within

an urban area. Since customers pick up and drop off vehicles in any service region at any time, such conve-

nience often leads to a severe imbalance between vehicle supply and demand in different service regions. To

overcome this, a micromobility operator can crowdsource individual riders with reward incentives in addition

to engaging a third-party logistics provider (3PL) to relocate the vehicles.

Methodology/results: We construct a time-space network with multiple service regions and formulate a two-

stage stochastic mixed-integer program considering uncertain customer demands. In the first stage, the opera-

tor decides the initial vehicle allocation for the regions, whereas in the second stage, he determines subsequent

vehicle relocation across the regions over an operational horizon. We develop an efficient solution approach

that incorporates scenario-based and time-based decomposition techniques. Our approach outperforms a

commercial solver in solution quality and computational time for solving large-scale problem instances based

on real data.

Managerial implications: The budgets for acquiring vehicles and for rider crowdsourcing significantly impact

the vehicle initial allocation and subsequent relocation. Introducing rider crowdsourcing in addition to the

3PL can significantly increase profit, reduce demand loss, and improve the vehicle utilization rate of the sys-

tem without affecting any existing commitment with the 3PL. The 3PL is more efficient for mass relocation

than rider crowdsourcing, while the latter is more efficient in handling sporadic relocation needs. To serve a

region, the 3PL often relocates vehicles in batches from faraway, low-demand regions around peak hours of

a day, whereas rider crowdsourcing relocates a few vehicles each time from neighboring regions throughout

the day. Furthermore, rider crowdsourcing relocates more vehicles under a unimodal customer arrival pattern

than a bimodal pattern, whereas the reverse holds for the 3PL.

Key words : Shared Micromobility; Crowdsourcing; Allocation and Relocation; Two-stage Stochastic

Mixed-integer Programming; Decomposition Algorithm

1. Introduction

A shared micromobility system consists of lightweight vehicles such as bikes, e-bikes, e-scooters, or

e-mopeds. It offers an eco-friendly form of short-distance travel such as last-mile transportation

and helps alleviate city traffic congestion, achieving a sustainable urban transportation system

(Simlett and Møller 2020, McKinsey 2021). During the COVID-19 pandemic, the shared micro-
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mobility system becomes even more popular as some people avoid taking crowded public trans-

portation. In the U.S., around 60% of car trips are within 8 kilometers, making the shared micro-

mobility system an excellent alternative. It is estimated that the micromobility market in the U.S.

alone will reach 200 to 300 billion dollars by 2030 (McKinsey 2019).

A shared micromobility system differs from ride hailing systems mainly because of the follow-

ing three features. First, the shared micromobility system is asset heavy and its operator often

bears high investment and operational costs of its physical assets (e.g., bikes) (Hasija et al. 2020).

In a competitive market, these high costs cannot be covered by simply increasing rental prices

because customers can easily switch to other mobility services such as public transportation or

car sharing. Thus, it is important for the operator to properly determine a total number of vehi-

cles and allocate them to each service region to satisfy demand and generate profitability. Second,

as there is no self-regulated owner for each micromobility vehicle, shared micromobility services

are not provided on an on-demand basis like ride hailing because drivers do not ride a micromo-

bility vehicle to search for customers. Third, customers of the shared micromobility system can

pick up and drop off vehicles in any service region at any time. Such convenience often leads to a

severe imbalance between the vehicle supply and demand in different regions. As shown in our

detailed analyses in Appendix B, such imbalance results in an oversupply of vehicles with few

pick-ups in some service regions and insufficient vehicles in others. This can substantially under-

mine the system’s operational efficiency, service quality, and profitability. As a result, the shared

micromobility system requires efficient relocation of its vehicles across the service regions.

The above three features draw special attention to the initial allocation and subsequent relocation

of vehicles to help the shared micromobility system achieve economic viability and sustainability.

In contrast to the ride hailing systems that adopt instruments such as increasing drivers’ salaries

or dynamic pricing to control the vehicle supply and demand, the operator of the shared micro-

mobility system can first allocate and then relocate vehicles to balance their supply and demand

for each service region. This allows the operator to boost profitability given the low profit margin

of micromobility services.

Currently, many shared micromobility operators outsource the vehicle relocation to third-party

logistics providers (3PLs). Each 3PL rebalances micromobility vehicles across service regions in

batches of vehicles primarily by trucks to enjoy the economies of scale (Dell’Amico et al. 2014).

Such 3PL relocation is often executed according to a certain schedule, for example, in the early

morning or late night, and may not meet all vehicle-relocation requirements. Each request for

the 3PL relocation incurs a fixed setup cost and no additional fees are required if the 3PL takes

multiple time periods to fulfill this request. If the 3PL relocates many vehicles for each request,

then its relocation cost per vehicle is low. In fact, due to the high setup cost incurred in each request,
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it is too costly to frequently engage the 3PL for vehicle relocation across the service regions to

rebalance the supply and demand.

To overcome this challenge, some shared micromobility firms adopt a crowdsourcing strategy

to hire individual riders to relocate vehicles. Each crowdsourced rider relocates one vehicle at a time

and receives a reward from the operator upon completing the task. In addition to the financial

rewards, the riders are motivated because the relocation trips may be close to the riders’ original

travel routes or they may simply use this opportunity to exercise. For example, Mobike rewards

riders with coupons or cash to relocate bikes (Horwitz 2017) and Bird pays riders to charge and

relocate e-scooters (Bird 2020). Such rider crowdsourcing can help relocate vehicles in a more

flexible manner. In contrast to the 3PL relocation, rider crowdsourcing offers more flexibility by

providing sporadic relocation — relocating a small number of vehicles that is not justifiable for

the 3PL. In this situation, the relocation cost per vehicle by rider crowdsourcing is lower, resulting

in a lower total relocation cost. The vehicles relocated by crowdsourcing can be used to serve

customer demands across service regions in each period, improving the revenue and reducing

demand loss. Thus, the resulting benefit from rider crowdsourcing can be significant.

To the best of our understanding, our paper is the first to study the effectiveness and impli-

cations of combining rider crowdsourcing with a 3PL’s service for an integrated allocation and

relocation problem of a shared micromobility system over multiple periods under demand uncer-

tainty. In particular, we are interested in the following research questions: How should a shared

micromobility operator integrate the vehicle allocation and relocation decisions to match his finite

supply with uncertain demand such that his profit is maximized? Given a limited budget for

acquiring vehicles, how does the budget affect the initial vehicle allocation? How does this initial

allocation affect the subsequent vehicle relocation across the regions? Similarly, how does a bud-

get for crowdsourcing individual riders affect the vehicle allocation and relocation? What is the

best strategy for vehicle relocation (i.e., rider crowdsourcing only, 3PL only, both of them, or none

of them)? Under each relocation strategy, are there any interesting temporal or spatial features of

the shared micromobility system? How do system parameters affect the system performance?

In this paper, we consider an operator that provides a fleet of micromobility vehicles to satisfy

customer demands in a service area over an operational horizon with multiple periods. Due to

government regulations, the entire service area is divided into multiple regions with different

vehicle allocation capacities (He et al. 2017, Qi et al. 2018). The customer demands in each period

are uncertain. At the start of the horizon, the operator first decides the initial vehicle allocation for

the different service regions without knowing the actual demands in each period. Subsequently,

in each period, after the demands are realized, the operator determines and executes the vehicle

relocation across the regions (using rider crowdsourcing and the 3PL) to match the vehicles with
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customer demands. Unsatisfied demands in each period are lost. The operator’s objective is to

maximize his expected profit over the operational horizon.

We make the following contributions in this paper:

(i) We formulate the operator’s integrated vehicle allocation and relocation problem as a two-stage

stochastic mixed-integer program (Birge and Louveaux 2011) on a time-space network. In the first

stage, we decide the initial vehicle allocation for the service regions, whereas in the second stage

we determine the subsequent vehicle relocation across the regions over the horizon. The vehicle

relocation is modeled as recourse decisions after the demands are realized in each period.

(ii) We develop an efficient algorithmic approach that incorporates scenario-based and time-based

(temporal) decomposition ideas to obtain high-quality solutions to the problem. Our numerical

experiments based on data collected from Citi Bike (2021) in New York City (NYC) suggest that

our approach yields better solutions in a much shorter time than a commercial solver.

(iii) We obtain the following managerial insights for the micromobility operator. The budget for

acquiring vehicles and the budget for rider crowdsourcing have significant impact on the initial

vehicle allocation and the subsequent vehicle relocation. We find that introducing rider crowd-

sourcing in addition to the 3PL can significantly increase profit, reduce demand loss, and improve

the vehicle utilization rate of the system without affecting the existing commitment with the 3PL.

The 3PL is more efficient in mass relocation than rider crowdsourcing, whereas the latter is more

efficient in handling sporadic relocation needs. The 3PL often conducts relocation around peak

hours of a day by moving vehicles in batches from faraway, low-demand regions. In contrast,

rider crowdsourcing is engaged throughout the day to relocate a few vehicles each time from

neighboring regions. Furthermore, rider crowdsourcing relocates more vehicles under a unimodal

customer arrival pattern than a bimodal pattern, whereas the reverse holds for the 3PL.

After reviewing the related literature in Section 2, we formulate the problem in Section 3. Sec-

tion 4 studies structural results for the two-region case. Section 5 develops a solution approach

for the general case with multiple regions. Section 6 performs extensive numerical experiments

to examine the two vehicle-relocation methods based on the data from Citi Bike (2021). Section 7

concludes the paper. All proofs are presented in Online Supplement.

2. Literature Review

Our paper is closely related to the Operations Management (OM) studies on shared mobility, a

component of smart cities (Qi and Shen 2019, Mak 2022). Most papers on shared mobility focus

on vehicle-sharing systems, where people rent or hail cars from individual car owners or drivers

for trips (e.g., Nair and Miller-Hooks 2014, Boyacı et al. 2015, and Feng et al. 2021). He et al. (2017)

consider a service region design problem by incorporating fleet operations and the customer
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adoption rate for electric vehicles under uncertainty. Chang et al. (2017) optimize the car fleet

location, size, and type via integer programming by considering a carbon emission constraint.

Lu et al. (2018) optimize vehicle allocation under demand uncertainty and address the impact of

one-way and round-way trips on the system’s profit and service quality.

Shared micromobility, a type of shared mobility, further brings challenges and opportunities to

OM researchers (Hasija et al. 2020). Recent work by Kabra et al. (2020) empirically investigates the

impact of bike accessibility and availability on bike-share ridership by using a structural demand

model. Our work is more related to Shu et al. (2013). Specifically, they build linear programming

models with proportionality constraints to optimize the bicycle flows when the initial allocation

of bicycles is given at each dock station and to examine the impact of bicycle operations on the

dock size. However, the decisions on initial allocation and fleet operations are inherently inter-

dependent. Therefore, we consider an integrated allocation and relocation model in which an

operator decides the initial allocation and subsequent relocation of vehicles.

Our paper also contributes to the literature on fleet operations of shared mobility. Existing stud-

ies extend the broader scope of inventory redistribution or transshipment (Benjaafar et al. 2022),

which has been widely investigated especially for the optimal stocking policy (Tagaras and Cohen

1992, Grahovac and Chakravarty 2001). Different approaches have been proposed to facilitate

fleet operations for vehicle-sharing systems. Nair and Miller-Hooks (2011) minimize the cost of

fleet redistribution by mixed-integer programming with chance constraints to ensure a service

level. Lu et al. (2018) implement dynamic vehicle relocation via a rolling-horizon method. He et al.

(2020) derive an optimal relocation policy for a two-region system and use a linear decision rule

to solve a distributionally robust model for a multi-region system.

Our work is more related to micromobility vehicle operations such as fleet operations of bicycle-

sharing systems. Dell’Amico et al. (2014) model bike relocation by trucks as a capacitated pickup-

and-delivery vehicle routing problem and use a branch-and-cut algorithm to find solutions. Fre-

und et al. (2020) consider truck- and trike-based rebalancing approaches for a bike-sharing sys-

tem, and formulate the underlying routing problems using integer programming to minimize

expected customer dissatisfaction. Li and Liu (2021) consider a bike rebalancing problem over a

single period with deterministic demand and derive a static operation policy that employs trucks

and users to relocate bikes. Fu et al. (2022) build a two-stage robust model to optimize bike alloca-

tion in the first stage and fleet operations in the second stage. The above studies often ignore the

system operator’s capacity design (e.g., bike allocation), which is more critical in shared micro-

mobility than in vehicle-sharing as mentioned in Section 1. Furthermore, the above papers mostly

consider bike relocation in batches and the corresponding route design problem. In contrast,
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our paper considers different relocation strategies using rider crowdsourcing and a 3PL under

demand uncertainty.

Finally, our paper is related to crowdsourcing in the OM literature. Crowdsourcing is widely

studied in last-mile delivery operations, where independent car drivers (Qi et al. 2018, Fatehi and

Wagner 2022) or cyclists (Kafle et al. 2017) are incentivized to serve customers with fast and on-

time delivery. Unlike goods that exit the system once they are delivered, shared micromobility

vehicles stay in the system after they are relocated. Such a difference inspires further studies to

establish foundations for using crowdsourcing in micromobility vehicle relocation. According to

a survey by Singla et al. (2015), customers are willing to alter their routes to help relocate bikes

given monetary incentives. Fricker and Gast (2016) analyze the steady-state performance of a

bicycle-sharing system and show that incentivizing users to the least-loaded station leads to fewer

problematic stations. He et al. (2021) study a two-sided matching platform, such as a free-float

bike-sharing platform, that determines both parking space allocation and the design of incentive

instruments (e.g., price and rewards to customers) to control the supply in each region. Huang

et al. (2021) find that a sparse structure of a transshipment network can guide bike repositioning

by crowdsourced volunteers and help reduce workload rebalancing without much demand loss.

Stokkink and Geroliminis (2021) consider a station-based one-way car-sharing system and incen-

tivize customers to perform car relocation. Cheng et al. (2021) consider a free-floating bike-sharing

system and propose a bidding model to incentivize users to relocate bikes. Unlike the above stud-

ies, our paper offers new managerial insights by incorporating rider crowdsourcing and a 3PL’s

service into an integrated micromobility vehicle allocation and relocation model under different

temporal demand patterns.

3. Problem Formulation

Consider an operator that provides shared micromobility service for a set of regions V =

{1, 2, . . . , V} in each period t ∈ T = {0, 1, . . . , T − 1}. We first study the movements of micromo-

bility vehicles across the service regions and then construct an optimization model.

3.1. Vehicle Movements: A Time-Space Network

We model the vehicle movements across regions and periods as flows in a time-space network

G = (N ,A), where N is a set of nodes and A is a set of directed arcs on the network as shown

in Figure 1. Each node nis ∈ N represents service region i ∈ V in period s ∈ T . The flow on the

directed arc (nis, njt) ∈ A with s ≤ t− 1 represents the number of vehicles moving from node nis

to node njt. At the start of period 0, each node ni0 is allocated with an initial number of vehicles

xi for i ∈ V . At the end of the operational horizon (period T − 1), the number of vehicles in each

node ni,T−1 is denoted as x̃i for i ∈ V .
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We assume that a rider takes lij(≥ 1) periods to ride a micromobility vehicle from region i to

region j for i, j ∈ V . For convenience, we set lii = 1 for i ∈ V . In contrast, we assume the 3PL takes

a fixed number of periods lr(≥ 1) to relocate vehicles from region i to region j. This assumption

is reasonable for a relatively compact geographical area in which the regions in V are near each

other. To ensure that a micromobility vehicle rider has enough time to move from region i to

region j before the end of the operational horizon, we consider the demands from region i to

region j that occur only in period t ∈ T (lij) = {0, 1, . . . , T− lij− 1}. Similarly, to ensure that the 3PL

can finish all the relocations before the end of the operational horizon, we consider 3PL relocations

that begin only in period t ∈ T (lr) = {0, 1, . . . , T − lr − 1}.

ynV0,nV1

xV

x3

x2

x1

x̃V

x̃3

x̃2

x̃1
yn10 ,n32

γn21,n13

γn31 ,nV3

γn21 ,n33

γ
n
21 ,n

V3

nV,0 nV,1 nV,2 nV,3

n3,0 n3,1 n3,2 n3,3

n2,0 n2,1 n2,2 n2,3

n1,0 n1,1 n1,2 n1,3

n3,T−1

n2,T−1

n1,T−1

nV,T−1

Trip arc (allows crowdsourcing) Idle arc 3PL relocation arc

Figure 1 Time-space Network G

Based on how micromobility vehicles are moved between two nodes, there are three types of

arcs in A in the time-space network: (i) Trip arcs: The flow of each trip arc (nis, njt) ∈At represents

the number of trips from region i in period s ∈ T (lij) to region j in period t = s + lij, for i ̸= j, i, j ∈
V . Each arc in At may contain two types of trips: one corresponds to the customer demand and

the other is induced by crowdsourced riders. (ii) Idle arcs: The flow of each idle arc (njt, nj,t+1) ∈Ai,

represents the number of idling vehicles in region j ∈ V from period t ∈ T \{T− 1} to period t+ 1.

(iii) 3PL relocation arcs: The flow of each 3PL relocation arc (nis, nj,s+lr) ∈Ar represents the number

of vehicles relocated by the 3PL from region i in period s ∈ T (lr) to region j, for i ̸= j, i, j ∈ V .

Define I = {t, i, r}. Thus, we have A= ∪∀e∈IAe and Ae1 ∩Ae2 = ∅, for e1 ̸= e2, e1, e2 ∈ I .

Figure 2 illustrates the sequence of events regarding vehicle movements and demand arrivals

at each node i ∈ V : (i) At the start of period t ∈ T \ {T − 1}, the numbers of idling vehicles in

region i from period t − 1 and incoming vehicles from region j ∈ V \ {i} are realized. (ii) Cus-

tomer demands arrive. (iii) Knowing the realized demands, the operator determines and executes

the numbers of vehicles relocated by crowdsourced riders and the 3PL. (iv) Any demand loss is

observed and the system is updated for period t + 1.
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We formulate the problem as a two-stage stochastic program. In the first stage, we decide the initial

number of vehicles allocated to each region. In the second stage, we decide the vehicle relocation

in each period for the entire operational horizon as a recourse.

Numbers of idling vehi-
cles from period t − 1 and

incoming vehicles from
region j ∈ V\{i} are realized

Customer
demands arrive

Operator decides the relocation
by crowdsourcing and 3PL

System is updated
for period t + 1

time
Period t Period t + 1

Figure 2 The sequence of events

3.2. Mathematical Formulation

The shared micromobility operator is endowed with a budget that can afford at most N micromo-

bility vehicles. In the first stage, the operator makes the vehicle allocation decisions x = (xi, i ∈
V)⊤ so that ∑j∈V xj ≤ N. A cost cj(≥ 0) is incurred for allocating a micromobility vehicle to region

j ∈ V . Due to government regulations on the parking space, we have xj ≤ Bj for each region j ∈ V .

In the second stage, time-dependent demands arrive at each region i ∈ V at the start of each

period t ∈ T \{T − 1}. For each arc (nit, nj,t+lij) ∈ At, let λnit ,nj,t+lij
denote the demand (number of

customers) from region i in period t to region j with travel time lij. The operator receives a revenue

R(≥ 0) for serving a customer per period. If the number of vehicles available in region i cannot

meet the demands of the region in period t, the unsatisfied demand for (nit, nj,t+lij) ∈At, denoted

by ηnit ,nj,t+lij
, is lost and the operator pays a penalty cost Cp(≥ 0) per customer lost.

Facing uncertain demands, the operator makes his initial vehicle allocation decisions and sub-

sequent relocation decisions to maximize his expected profit. The profit equals the total revenue

minus the total cost. The total cost includes the initial vehicle allocation cost ∑j∈V cjxj in the first

stage and the demand-loss penalty and vehicle relocation cost in the second stage. Given the ini-

tial vehicle allocation x, let Θ(x) denote the optimal expected net cost of the second stage (i.e., the

total cost minus the total revenue of the second stage). Thus, maximizing the operator’s expected

profit is equivalent to minimizing the summation of ∑j∈V cjxj and Θ(x). The operator optimizes

his vehicle allocation decisions by solving the following problem:

Γ = min
x ∑

j∈V
cjxj + Θ(x) s.t. x∈ X =

{
x∈Z

|V|
+

∣∣∣∣∣ xj ≤ Bj, j ∈ V , ∑
j∈V

xj ≤ N

}
, (M)

where Θ(x) is realized in the second stage as the operator optimizes the vehicle relocation using

rider crowdsourcing and the 3PL. Problem (M) is an integrated vehicle allocation and relocation

problem. We discuss the vehicle relocation problem in the second stage in detail below.
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Vehicle Relocation by Crowdsourced Riders: For each trip arc (nit, nj,t+lij) ∈ At, we introduce

a continuous decision variable Λnit ,nj,t+lij
to represent the number of crowdsourced riders from

region i in period t to region j. The operator provides an incentive ϕnit ,nj,t+lij
to motivate the riders

to relocate the vehicles along arc (nit, nj,t+lij). We assume rider crowdsourcing follows the sem-

inal law of diminishing returns (Shephard and Färe 1974): The marginal reward for the crowd-

sourced riders increases with the number of crowdsourced riders. Specifically, we define a con-

cave increasing incentive function g(·) such that

Λnit ,nj,t+lij
= g

(
ϕnit ,nj,t+lij

)
= Λ̄ij ×

(
1− e

−βijϕnit ,nj,t+lij

)
, t ∈ T (lij), i ̸= j, i, j ∈ V , (1a)

where Λ̄ij ≥ 0 represents the maximum number of riders that can be crowdsourced in region i to

travel to region j, and βij ≥ 0 denotes the rate of diminishing return on rewards. Both Λ̄ij and βij

can be estimated from historical data. We adopt the nonlinear crowdsourcing supply curve in (1a)

to align with the literature where the law of diminishing returns has been widely applied in many

fields (Cannan 1892, Rosenberg 1992, Averbakh and Berman 1996, Chung et al. 1997, Srinivasan

and Moorman 2005, Homburg et al. 2015, Ravichandran et al. 2017).

As mentioned in Section 1, the shared micromobility system is asset heavy with a low profit

margin. To reflect the practice that the operator is often financially constrained, we require that

the total incentive to crowdsource riders is capped by a budget Bc(≥ 0):

∑
i∈V

∑
j∈V ,j ̸=i

∑
t∈T (lij)

ϕnit ,nj,t+lij
≤ Bc. (1b)

For each arc (nit, nj,t+lij) ∈Ai ∪At, let ynit ,nj,t+lij
denote its realized flow. We have

ynit ,nj,t+lij
= λnit ,nj,t+lij

+ Λnit ,nj,t+lij
− ηnit ,nj,t+lij

, t ∈ T (lij), i ̸= j, i, j ∈ V . (1c)

Vehicle Relocation by the 3PL: For each period t ∈ T (lr), we define a decision variable zt such

that zt = 1 if the 3PL is requested to start relocating vehicles from period t onward, and zt = 0

otherwise. In practice, due to the 3PL’s capacity limitation, the operator can only request the 3PL

for vehicle relocation for no more than z̄ times over the entire operational horizon:

∑
t∈T (lr)

zt ≤ z̄. (2a)

For each request, the 3PL charges the operator a fixed fee Cr(≥ 0) to relocate vehicles across

regions. No additional fees are required if it takes multiple periods to relocate the vehicles. Define

a binary variable z̃t to represent the 3PL’s status: z̃t = 1 if the 3PL provides its service in period t,

and z̃t = 0 otherwise. Since the 3PL provides service only if the operator has requested it, we have

zt − z̃t ≤ 0, t ∈ T (lr). (2b)
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EXAMPLE 1. This example illustrates the difference between zt and z̃t. Suppose the 3PL is first

requested to start relocating vehicles from period s1 (i.e., zs1 = 1) as shown in Figure 3. The 3PL

provides its service for two consecutive periods (i.e., z̃s1 = z̃s1+1 = 1, corresponding to filled cir-

cles). The 3PL then stops its service from period s1 + 2 until period s2− 1 (i.e., z̃s1+2 = · · ·= z̃s2−1 =

0, corresponding to empty circles). The 3PL is requested again to start relocation from period s2

(i.e., zs2 = 1) and provides its service for three consecutive periods (i.e., z̃s2 = z̃s2+1 = z̃s2+2 = 1).

time
Period s1 − 1 s1 s1 + 1 s1 + 2 · · · s2 − 1 s2 s2 + 1 s2 + 2 s2 + 3

zt

z̃t 0 1 1 0 · · · 0 1 1 1 0
0 1 0 0 · · · 0 1 0 0 0

Figure 3 Service Status of the 3PL

As illustrated in Example 1, zt and z̃t can have different values for each period t, while their

logical relationship is described by constraints (2b)–(2d) and (2g). Note that the variable z̃t is

necessary to indicate whether the 3PL provides its service (i.e., its service status) in period t, while

the variable zt indicates whether the 3PL is requested to start relocating vehicles from period t.
If the operator makes a request for the 3PL’s service in period t (i.e., zt = 1), then it implies that

no 3PL relocation service is provided in period t− 1 (i.e., z̃t−1 = 0). We have

zt + z̃t−1 − 1≤ 0, t ∈ T (lr)\{0}. (2c)

If a 3PL relocation service is provided in period t (i.e., z̃t = 1) but not in period t− 1 (i.e., z̃t−1 = 0),

then clearly the relocation service is initiated in period t (i.e., zt = 1). This can be represented by

zt − z̃t + z̃t−1 ≥ 0, t ∈ T (lr)\{0}. (2d)

Due to its capacity limitation, the 3PL can serve for at most ¯̄z periods in any interval of lf periods:
t+lf−1

∑
i=t

z̃i ≤ ¯̄z, t ∈ {0, 1, . . . , T − lr − lf}. (2e)

For each arc (nit, nj,t+lr) ∈Ar, define a continuous decision variable γnit ,nj,t+lr
to represent the num-

ber of vehicles relocated by the 3PL from region i in period t to region j. The total number of

relocated vehicles in period t is constrained between a lower limit q and an upper limit q̄:

qz̃t ≤ ∑
i∈V

∑
j∈V ,j ̸=i

γnit ,nj,t+lr
≤ q̄z̃t, t ∈ T (lr). (2f)

At the start of period 0, we assume that the 3PL is requested if it provides relocation service:

z0 − z̃0 ≥ 0. (2g)

Finally, we restrict z̃t to be binary:

z̃t ∈ {0, 1}, t ∈ T (lr), (2h)
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which, together with constraints (2b)–(2d) and (2g), guarantee zt to be binary for t ∈ T (lr).

Flow Balance: For each node nit ∈N , i ∈ V , the number of vehicles flowing into this node should

equal the number of vehicles flowing out from this node:[
ynit ,ni,t+1 + ∑

j∈V ,j ̸=i

(
ynit ,nj,t+lij

+ γnit ,nj,t+lr

)]
−
[

yni,t−1,nit + ∑
j∈V ,j ̸=i

(
ynj,t−lji

,nit + γnj,t−lr ,nit

)]

=


xi, if t = 0;
0, if t = 1, . . . , T − 2;
−x̃i, if t = T − 1.

(3)

Note that the above constraints may contain some undefined arcs (nis, njt) with s < 0 or t≥ T for

i ̸= j, i, j ∈ V (see Figure 19 in Appendix C.1). For consistency, we set the realized flow ynis ,njt = 0

and the number of vehicles relocated by the 3PL γnis ,njt = 0 on such arcs.

When crowdsourced riders relocate a small number of vehicles not justifiable for the 3PL, the

relocation cost per vehicle is low by the incentive curve in (1a), leading to a low total relocation

cost. However, as the number of crowdsourced riders increases, the relocation cost per vehicle

becomes larger because of the concave increasing function in (1a). In contrast, if the 3PL relocates

many vehicles for each request by the operator, then its relocation cost per vehicle is low. Thus, the

relocation cost per vehicle by rider crowdsourcing can be smaller or larger than that by the 3PL.

The operator needs to optimize the vehicle relocation in each period by considering the relocation

cost per vehicle of each method.

In the second stage, given an initial vehicle allocation x, the operator relocates the vehicles to

maximize his expected profit subject to uncertain demands λnit ,nj,t+lij
. We assume that there is a

finite support for the joint distribution of the uncertain demands in all the service regions across

all the periods. We use a set K to include scenarios of uncertain demands in all the service regions

across all the periods. Each scenario k ∈ K has a probability pk(≥ 0) with ∑k∈K pk = 1. For each

scenario k ∈K, the operator makes recourse decisions for all the periods in T . We reuse the above

notation for the second-stage problem and add a superscript k to each decision variable for each

scenario k. We use bold symbols to represent vectors. For example, x̃k = (x̃k
j , j ∈ V)⊤ (see Appendix

C.2 for details). For each k ∈K, let Yk = (x̃k, ηk, yk, γk, Λk, ϕk, zk, z̃k) denote all the decision variables,

Yk∗ be the optimal solution, and Y(x, λk) := {Yk ∈R
(|V|+4|At|+|Ar|+2|T (lr)|)
+ | (1a)− (1c), (2a)− (2h), (3)}

denote the feasible region. Given the initial vehicle allocation x, the expected net cost Θ(x) in the

second stage can be determined by solving the following network flow optimization problem:

Θ(x) = min
Yk∈Y(x,λk), k∈K

∑
k∈K

pk

 ∑
a∈At

(
Cpηk

a + ϕk
a − Rla

(
yk

a −Λk
a

))
+ ∑

t∈T (lr)
Crzk

t

 . (P)

Note that the flows on the idle arcs do not incur any costs and the flows corresponding to the 3PL

and crowdsourcing relocation do not generate revenue.
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4. Analysis of Two-region Case

We consider a special case of problem (M) with two service regions. To obtain structural results,

we focus on a scenario in K with demands λnit ,n3−i,t+L . We assume that the initial vehicle allocation

x = (x1, x2)⊤ is given so that we can study the optimal relocation strategy in detail. We focus on

the following problem setting: (i) The travel time and the 3PL relocation time between the two

regions are a constant L. (ii) To relocate vehicles from region i in period t to the other region by

crowdsourcing, the total reward provided increases linearly with the number of crowdsourced

riders: ϕnit ,n3−i,t+L = αΛnit ,n3−i,t+L + b, where α(≥ 0) represents a variable cost of crowdsourcing an

additional rider and b(≥ 0) represents a fixed cost of crowdsourcing. (iii) We set q = 0 and q̄ =

max
{

λnit ,n3−i,t+L

∣∣ i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}
}

. Problem (P) becomes

Θ(x1, x2) = min
(Λ,y,η,z,γ)∈Y(x1,x2,λ)

{
T−L−1

∑
t=0

[ 2

∑
i=1

(
Cpηnit ,n3−i,t+L + αΛnit ,n3−i,t+L + b (4)

− RL
(
ynit ,n3−i,t+L −Λnit ,n3−i,t+L

))
+ Crzt

]}
,

where Y(x1, x2, λ) is described in Appendix D.1. Note that there are no incoming vehicles for any

region in the first L periods and no demands in the last L periods. Thus, it is sufficient to consider

periods t ∈ {0, 1, . . . , T − L− 1} in the objective.

PROPOSITION 1. Given any i ∈ {1, 2} and t ∈ {0, 1, . . . , T − L − 1}, the optimal relocation strategy

satisfies the following three conditions: (a) Λ∗nit ,n3−i,t+L
γ∗nit ,n3−i,t+L

= 0; (b) Cr ≥ αΛ∗nit ,n3−i,t+L
; and (c) if z∗t = 1

and γ∗nit ,n3−i,t+L
> 0, then Cr ≤ αγ∗nit ,n3−i,t+L

.

Part (a) of Proposition 1 shows that under the optimal relocation strategy, the 3PL and crowd-

sourcing are not used simultaneously in any region i and period t. Part (b) shows that if crowd-

sourcing is used (i.e., Λ∗nit ,n3−i,t+L
> 0), then its relocation cost per vehicle is less than that by the

3PL (i.e., α≤ Cr/Λ∗nit ,n3−i,t+L
). Similarly, Part (c) shows that if the 3PL is used in period t (i.e., z∗t = 1

and γ∗nit ,n3−i,t+L
> 0), then its relocation cost per vehicle is less than that by crowdsourcing (i.e.,

Cr/γ∗nit ,n3−i,t+L
≤ α). Such insights imply that the relocation cost per vehicle of each method serves

as a critical instrument for the operator to choose a method for each arc. Section 6 considers a more

practical setting in industry by solving the general problem (M). We first introduce a solution

approach to problem (M) in the following section.

5. Solution Approach for Multiple Regions

To solve problem (M), we first propose a piecewise-linear approximation of the crowdsourcing

incentive function g(·) in (1a) and then develop a decomposition-based algorithm to solve it.
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5.1. Piecewise-Linear Approximation of the Incentive Function

In (1a), given any scenario k ∈ K and arc (nit, ni,t+lij) ∈ At, the number of crowdsourced riders

is Λk
nit ,ni,t+lij

= g(ϕk
nit ,ni,t+lij

) = Λ̄ij(1 − e
−βijϕ

k
nit ,nj,t+lij ), which is a concave increasing function of the

reward amount ϕk
nit ,ni,t+lij

. To make problem (M) tractable, we approximate g(·) with a piecewise-

linear function (see Figure 4) such that the nonlinear constraints (1a) can be replaced by linear

constraints. Since the approximation is applicable for all i, j, t, and k, we drop the superscript and

subscripts such that Λ = g(ϕ) = Λ̄(1− e−βϕ), where ϕ ∈ [0, ∞).

ϕ

Λ

δ δ δ

u1 u2 uh

k̄h

k̄1

k̄2

ϕ̃h

g(b1)

g(b2)

g(bh−1)
g(bh)

g(bH) = Λ̄ij − ϵ

b0 = 0 b1 b2 bh−1 bh bH = ϕ̄

Figure 4 Piecewise-Linear Approximation of the Incentive Function

Given an arbitrarily small ϵ(> 0), define ϕ̄ = g−1 (Λ̄− ϵ). We divide the interval [0, ϕ̄] into H

segments, each with length δ = ϕ̄/H. For any h ∈ H = {1, 2, . . . , H}, we approximate g(·) in the

hth segment [(h− 1)δ, hδ] (denoted as [bh−1, bh] in Figure 4) with a linear function passing through

points ((h− 1)δ, g((h− 1)δ)) and (hδ, g(hδ)). Let k̄h = (g(hδ)− g((h− 1)δ))/δ denote the slope

of this linear function. For ϕ in [ϕ̄, ∞), we approximate g(·) with a constant Λ̄− ϵ. For each h ∈H,

the number of crowdsourced riders Λ linearly increases with ϕ, while the slope k̄h is decreasing

in h and becomes 0 as ϕ reaches ϕ̄. Clearly, a larger H leads to a more accurate approximation.
For each h ∈ H, define a binary decision variable uh such that uh = 1 if the optimal reward ϕ

falls in the hth segment, and uh = 0 otherwise. Since we minimize the objective of problem (M)
and no additional crowdsourced riders will be attracted when ϕ ≥ ϕ̄ (i.e., the optimal ϕ will not
exceed ϕ̄), no binary variables are needed for [ϕ̄, ∞). We thus restrict ϕ ∈ [0, ϕ̄]. For each h ∈ H,
define a continuous decision variable ϕ̃h ∈ [0, δ] such that the optimal reward ϕ = (h − 1)δ + ϕ̃h

and the optimal number of crowdsourced riders Λ = g((h− 1)δ) + k̄hϕ̃h in the hth segment. Thus,
the constraint Λ = g(ϕ) can be approximated by the following set of constraints:

ϕ =
H

∑
h=1

uh
(
(h− 1)δ + ϕ̃h

)
, (5a)

Λ =
H

∑
h=1

uh

(
h−1

∑
m=1

k̄mδ + k̄hϕ̃h

)
, (5b)

H

∑
h=1

uh = 1, (5c)

0≤ ϕ̃h ≤ δ, h ∈H, (5d)

uh ∈ {0, 1}, h ∈H. (5e)

Since uh is binary, we can exactly reformulate the bilinear terms uhϕ̃h in (5a) and (5b) by replac-
ing them with ωh in the following linear constraints:

ϕ =
H

∑
h=1

(
(h− 1)uhδ + ωh

)
, Λ =

H

∑
h=1

uh

h−1

∑
m=1

k̄mδ +
H

∑
h=1

k̄hωh,
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uhδ−ωh ≥ 0, ϕ̃h −ωh ≥ 0, δ− uhδ− ϕ̃h + ωh ≥ 0, ωh ≥ 0, h ∈H. (6)

Based on (5c)–(5e) and (6), we are ready to reformulate the relocation problem (P) by approx-

imating nonlinear constraints (1a) for each scenario k ∈ K. For each arc a = (nit, nj,t+lij) ∈ At, we

add a subscript a to the decision variables ϕ, uh, ϕ̃h, and ωh, and add subscripts ij to the parameters

δ and k̄h in (5c)–(5e) and (6). Given an initial allocation x, problem (P) can be decomposed into

|K| independent problems P k, k ∈K. The net cost of P k equals

Ψ
(

Ỹk
)
= ∑

a∈At

[
Cpηk

a + ϕk
a − Rla

(
yk

a −Λk
a

)]
+ ∑

t∈T (lr)
Crzk

t , (7)

where Ỹk = (x̃k, ηk, yk, γk, Λk, uk, ϕk, ϕ̃k, zk, z̃k, ωk) ∈ R
(|V|+(4+3H)|At|+|Ar|+2|T (lr)|)
+ , uk = ((uk

1,a, . . . , uk
H,a),

a ∈At)⊤, ϕ̃k = ((ϕ̃k
1,a, . . . , ϕ̃k

H,a), a ∈At)⊤, and ωk = ((ωk
1,a, . . . , ωk

H,a), a ∈At)⊤. We obtain the approx-

imate formulation of the relocation problem (P) as follows:

Θ′(x) = min
Ỹk , k∈K

{
(7)
∣∣∣∣ (1b), (1c), (2a)− (2h), (3),

(
(5c)− (5e), (6), a ∈At) , k ∈K

}
. (Q0)

By relaxing uk
h,a to be continuous for k ∈K, h ∈H, and a ∈At, the above problem becomes

Θ′′(x) = min
Ỹk , k∈K

{
(7)
∣∣∣∣ (1b), (1c), (2a)− (2h), (3),(

(5c)− (5d), (6),
(

uk
h,a ∈ [0, 1], h ∈H

)
, a ∈At

)
, k ∈K

}
. (Q)

PROPOSITION 2. Given any initial vehicle allocation x∈ X , we have Θ′(x) = Θ′′(x).

Proposition 2 shows that for each scenario k ∈ K, the optimal objective value of problem (Q0) is

not affected if we relax uk
h,a (h ∈H, a ∈At) to continuous variables. Thus, we can use problem (Q)

to approximate the second-stage problem (P) to reduce the computational burden. We denote the

two-stage problem (M) under the piecewise-linear approximation as problem (MH). We provide

the abstract forms of problem (M) and its resulting approximation (MH) (with an objective value

ΓH) in Appendix E.2. The following proposition shows that when the number of pieces H in

problem (MH) goes to infinity, ΓH converges to the original objective value Γ.

PROPOSITION 3. If there exists Ĥ > 0 such that problems (M) and (MH) share the same optimal integer

solution (x∗, z̃∗) for any H > Ĥ, and problem (M) has a feasible solution (·)† such that x† = x∗, z̃† = z̃∗,

and ∑a∈At ϕk
a(Λk†

a )< Bc for any k ∈K, then limH→∞ ΓH = Γ.

We also present an alternative asymptotic convergence result in Appendix E.4. Hereafter, we

replace problem (P) with the reformulated relocation problem (Q) in the integrated allocation

and relocation problem (M).
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5.2. Solution Algorithm

We propose an algorithm that can efficiently solve large-scale instances of problem (M). The algo-

rithm consists of three steps: First, we reduce the number of binary variables in the relocation

problem (Q). Second, as the entire time-space network G is too large, we develop a temporal

decomposition approach by iteratively solving a series of subproblems. Each subproblem consid-

ers only a part of the time-space network covering several consecutive periods. Third, based on

initial vehicle allocations obtained in the second step, we design a heuristic to further improve

the solution quality. To facilitate the algorithm description, we first refine our notation.

Algorithm Notation. Recall from Section 3.2 that the starting periods of trip arcs and 3PL reloca-

tion arcs are in the sets T (lij) and T (lr), where lij and lr represent the trip and relocation durations,

respectively. For recording purposes, we rename the sets as T (lij, 0, T) = {0, 1, . . . , T − lij − 1}
and T (lr, 0, T) = {0, 1, . . . , T− lr − 1}. Likewise, we rename the relocation problem (Q) as Q(0, T)

and the integrated allocation and relocation problem (M) asM(0, T). Generally, given a starting

period s ∈ T , an ending period e ∈ T ∪ {T} (e ≥ s + 1), and a time duration l ∈ {1, 2, . . . , e− s},
define T (l, s, e) = {s, s + 1, . . . , e − l − 1}. For a part of the time-space network with a starting

period s and an ending period e, let Q(s, e) denote the corresponding relocation problem with

variables Ỹk
(s,e) and a feasible region Y(s,e)(x, λk) := {(26a)− (26q)} for k ∈K (see Appendix E.5 for

details). Let M(s, e) denote the integrated allocation and relocation problem with Q(s, e) as the

relocation problem in its second stage.

When we relax the binary variables z̃k, k ∈ K, to continuous ones, we denote the resulting fea-

sible region in the second stage as YLP(s,e)(x, λk) :=
{

(26a)− (26p), z̃k
t ∈ [0, 1], t ∈ T (lr, s, e)

}
, k ∈K.

The relaxed relocation problem is QLP(s, e) := {Θ′′(x)| Ỹk
(s,e) ∈ YLP(s,e)(x, λk), k ∈ K} and the corre-

sponding two-stage problem is denoted byMLP(s, e). Note thatQLP(s, e) is a linear programming

(LP) relaxation ofQ(s, e). For any starting period s, let xs = (xs
i , i ∈ V)⊤ denote the first-stage solu-

tion and vs denote the corresponding objective value ofMLP(s, e). Similarly, we add a superscript

s to the second-stage decision variables to denote the second-stage solution.

Step 1: Reducing The Number of Binary Variables. Due to (2a)–(2e), in an optimal solution,

only a limited number of z̃k
t , k ∈K, t ∈ T , will be 1, and the others equal 0. This means that the 3PL

relocation service is provided only in several periods. To reduce the number of binary variables,

we design Algorithm 1 (see Appendix E.6) with some z̃k
t fixed at 0, while the others are optimized.

Specifically, for any s ∈ T and e ∈ T ∪ {T} such that e− s ≥ 3, we solveMLP(s, e) to find z̃ks
t for

each scenario k ∈K. If the values of z̃ks
t and z̃ks

t + z̃ks
t+1 are almost zero, then we fix z̃k

t = 0 in Q(s, e).

Step 2: Temporal Decomposition. The original relocation problem Q(0, T) may have a huge

number of variables and constraints. By splitting the time-space network into M sub-networks
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along the operational horizon, each sub-network m ∈ {1, 2, . . . , M} has a shorter time horizon

with Tsub = ⌊T/M⌋ periods. Solving problem Q(s, e) with s = (m− 1)Tsub and e = mTsub, which

corresponds to the mth sub-network, is more computationally efficient. Thus, we will solve a

sequence of smaller two-stage stochastic programs, each corresponding to a sub-network, in a

backward manner from sub-network M to sub-network 1.

For each sub-network m, we follow a four-step solution procedure. First, we apply Algorithm

1 to reduce the number of binary variables. Second, based on the initial vehicle allocation of sub-

network m + 1, we add new constraints to balance the vehicle flows between sub-networks m

and m + 1, and obtain the initial vehicle allocation of sub-network m. Third, we perturb the initial

vehicle allocation of sub-network m and re-solve MLP(s, e) several times to yield several candi-

date allocations. Fourth, if m≥ 2, then we choose the vehicle allocation with the best objective of

MLP(s, e) as the vehicle allocation of sub-network m. If m = 1, then given an initial vehicle allo-

cation of sub-network m, we solve the two-stage problem M(0, T) over the original time-space

network with the first-stage decisions fixed at this initial vehicle allocation and the number of

binary variables reduced. We choose the vehicle allocation with the best objective ofM(0, T) as

the initial vehicle allocation of the entire network. Algorithm 2 in Appendix E.7 presents the above

decomposition approach in detail to solve problem (M).

Step 3: Heuristic Search. With several initial vehicle allocations of sub-network 1 obtained

from the above temporal decomposition approach, we introduce Algorithm 3 in Appendix E.8 to

further search for better solutions. Algorithm 3 is based on the following intuition: If the objective

value under a vehicle allocation monotonically decreases as the total number of allocated vehicles

increases (resp. decreases), then likely a smaller objective can be found by further increasing (resp.

decreasing) the total number of allocated vehicles. We observe this phenomenon in Section 6.

6. Numerical Experiments: A Case Study

We conduct numerical experiments using real data from Citi Bike (2021). We first discuss parame-

ter settings and then obtain managerial insights from various experiments based on these settings.

6.1. Parameter Settings

We have collected data from Citi Bike (2021) in NYC from January 1, 2018 to December 31, 2019.

Figure 5 illustrates the daily demands of different locations of Manhattan in 2018. We focus on

Midtown Manhattan between the 20th and 57th Streets, and divide the area into |V| = 9 service

regions. Each region covers a rectangular area of about 1 km2 as shown in Figure 6.1 The travel

distance between any two regions is measured by the Manhattan distance (L1 norm) between

their centers. Based on the data in 2018, the average riding speed is 9 km/hour.2 The average trip

duration from one region to a neighboring region is 6.7 minutes. We assume the traveling speed
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between any two regions is constant and set each period as 6 minutes (leading to T = 240 periods

per day). The longest trip (e.g. from region 1 to region 9) takes four periods. This is evidenced in

the data as 96.5% of the trips in the studied area finish within 24 minutes.

(a) Minimum Daily Demands (b) Average Daily Demands (c) Maximum Daily Demands
Figure 5 Daily Demands of Manhattan in 2018
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Figure 6 Service Regions in Midtown Manhattan

The upper bound N of the total number of vehicles allocated to the studied area is not avail-

able in the data set. We estimate such an upper bound as N = number of all the trips in the studied area
number of all the trips in NYC ×

number of vehicles in NYC, where the number of vehicles in NYC is obtained by counting

unique bike IDs in the data set. Based on the above calculation, we have N = 1, 206. Simi-

larly, we estimate the upper bound of the number of vehicles allocated to region j as Bj =
number of all the trips from region j

number of all the trips in the studied area × N, j ∈ V . Note that the total number of vehicles allocated by our

model is much smaller than N, indicating that many redundant bikes are allocated to the studied

area — a phenomenon commonly seen in practice. Having redundant bikes creates traffic conges-

tion on the streets and leads to more complicated vehicle relocation operations. Thus, we reduce

N from 1,206 to 500. The upper bound Bj, j ∈ V , is also scaled down by multiplying 500/1, 206.

The cost parameters are estimated in USD. The vehicle allocation cost is cj = 0.5 for j ∈ V .3 The

revenue per bike trip per period is R = 0.2 and the penalty cost Cp = 0.5 for an unfulfilled trip

demand.4 We set Cr = 15 for each request of 3PL relocation with volume lower capacity q = 0 and

upper capacity q̄ = 100.5 The 3PL can be requested at most z̄ = 10 times per day. In any given

lf = 10 consecutive periods, the 3PL can operate at most ¯̄z = 2 periods.
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We now obtain the parameters of rider crowdsourcing. Given any regions i, j ∈ V , we construct

the piecewise-linear approximation of the incentive function in (5a)–(5e) using three parameters

Λ̄ij, k̄hij, and ϕ̄ij. We estimate these parameters as follows. (i) We first solve the two-stage problem

(M) over the entire network G without any relocations. Denote its solution with superscript “†”,

and set Λ̄ij = max{η†
nit ,nj,t+lij

| t ∈ T (lij)}. (ii) We generate H slopes k̄hij, h ∈ {1, 2, . . . , H}, of the

piecewise-linear function by obtaining the corresponding unit reward 1/k̄hij. The H unit rewards

are sampled from a uniform distribution U(uij, ūij), where uij = 0.1 + 0.1lij and ūij = 0.2 + 0.1lij

are estimated using the data of the Citi Bike’s Bike Angels Rewards Program.6 We then sort the

H slopes in decreasing order to fit the incentive function in Figure 4. (iii) We derive the length of

each segment in Figure 4 as δij = (Λ̄ij − ϵ)/ ∑H
h=1 k̄hij and the reward threshold as ϕ̄ij = Hδij. The

trip duration between any two regions i, j ∈ V ranges from 1 to 4 periods. The maximum reward

for crowdsourcing one rider is 0.6 dollar (i.e., max{ū}= max{0.2 + 0.1lij | lij ∈ {1, . . . , 4}}= 0.6).

We set the crowdsourcing budget Bc = 500 as the actual crowdsourcing costs in our experiments

are always lower than this value.

The data reveals that the hourly total demand of the studied area exhibits different patterns

on weekdays and weekends. The former has a bimodal pattern with morning and evening peak

hours, while the latter has a unimodal pattern with afternoon peak hours. Thus, we conduct the

case study for the weekdays and weekends separately. In the experiments, we use the 2018 data

for training to compute the first-stage allocation x by solving problem (M). Given x, we use the

2019 data to perform out-of-sample tests by solving problem (Q). We use 350 days of trip records

each year as 350 different scenarios (i.e., one day corresponds to one scenario) to capture the

demand uncertainty, where 250 scenarios correspond to the weekday demands and 100 scenarios

correspond to the weekend demands. We set the number of sub-networks M = 8. An efficient

system should have a low total demand loss ∑a∈At ηa and a high expected vehicle utilization rate

∑a∈At(ya −Λa)/ ∑i∈V xi. We use these two measures to evaluate the service quality.

6.2. Computational Performance of Our Solution Approach

We demonstrate the computational efficiency of our solution approach in Section 5.2 for solv-

ing problem (M) by benchmarking it against CPLEX 12.71 with C++ API.7 We implement our

solution approach in parallel on 24 threads with C++ OpenMP and perform computational exper-

iments on a computing node with 24 2.3-GHz Intel Xeon E5-2670 processors and 32 GB of memory

in a high performance computing cluster.

Note that more scenarios lead to a higher solution quality but require more computational time.

Figure 7 shows how the relative error of the total allocation8 and the computational time vary

with the number of scenarios |K| under our solution algorithm. Both approaches above cannot
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handle 250 scenarios for weekday training instances because of out of memory. However, as |K|
decreases, the computational time decreases whereas the relative error first decreases and then

increases. To strike a balance between the computational time and the relative error, we randomly

select 80 out of the 250 scenarios and observe that the resulting relative error is only 1.18% on

average. Note that the benchmark CPLEX approach cannot even solve any weekday training

instance with 80 scenarios.

We do not reduce the number of scenarios for

the weekend training instances because our solu-

tion approach can efficiently solve all of them. In

contrast, the benchmark CPLEX approach strug-

gles to get a high-quality solution. We set 180

minutes as the computational time limit for all

the instances in our experiments if not specified.

We demonstrate the computational efficacy of
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Figure 7 The Trade-off between the Computational

Time and the Relative Error

our solution approach by varying several parameters. We consider (i) the vehicle allocation cost

cj ∈ {0.5, 0.8, 1.0} for j ∈ V ;9 (ii) the logistics market fluctuation such that the 3PL relocation cost

is Cr ∈ {13, 15, 17};10 (iii) different market competition levels such that the penalty cost Cp ∈
{0.1, 0.3, 0.5, 0.7}. This results in 36 (= 3× 3× 4) problem instances for a given weekday or week-

end demand setting. For each instance, we run three random experiments with different demand

scenarios and report the average result in Table F2 in Appendix F.1.

Our solution approach significantly outperforms the benchmark CPLEX approach for solving

problem (M) in terms of the profit and computational time for all the instances (see Table F2). The

CPLEX approach cannot provide any feasible solution within the time limit of 180 minutes for

the weekday instances, and can only provide a solution xj = 0, j ∈ V , for the weekend instances.

In contrast, our solution approach produces high-quality solutions within 37.7 minutes on aver-

age for each weekday instance, and within 45.9 minutes on average for each weekend instance.

Furthermore, we find that the optimality gap between the profits of our solution approach and

the original problem (M) is around 4% (see Tables F3–F5). These results suggest that our solu-

tion approach is promising to support urban shared micromobility operations. We investigate its

out-of-sample performance and obtain managerial insights in the following sections.

6.3. Impact of Initial Vehicle Allocation

We examine the impact of the initial vehicle allocation on the system performance under the

parameter settings in Section 6.1. We first vary the allocation upper bound (UB) N between 120

and 720, while keeping other parameters unchanged. We focus on the weekday demands as sim-

ilar insights are obtained from the weekends. Specifically, we examine how N affects the initial
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vehicle allocation in Figure 8 and the average number of relocated vehicles in Figure 9. Figure 8

suggests that when N is large (i.e., N > 210), it is economical to allocate fewer vehicles to each

region than its upper bound. There is no need to allocate too many vehicles if demands can be

well satisfied. It is interesting to see that more vehicles are allocated to regions 1 to 5, where public

transportation and commercial blocks are denser than other regions (see Figure 6).11
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Figure 9 The Impact of Allocation

UB on Vehicle Relocation

Figure 9 suggests that as N increases, both the average number of relocated vehicles and the

average relocation cost first increase and then decrease. When the UB is low (i.e., N ≤ 240), the

initially allocated vehicles are not enough to satisfy the demands. Raising the UB increases the

initial allocation (see Figure 8) and leads to more relocated vehicles. Thus, the number of relo-

cated vehicles increases as the initial allocation increases. When the allocation UB is moderate

(i.e., 240 < N ≤ 480), a larger N decreases both the average number of relocated vehicles and the

average relocation cost. This is because a larger N leads to a higher initial allocation (see Figure 8)

and the allocated vehicles are sufficient to satisfy most of the demands, which requires less vehi-

cle relocation subsequently. This suggests that a higher initial allocation can reduce the need for

subsequent relocation. When the allocation UB is large (i.e., N > 480), both the initial allocation

and subsequent relocation stabilize and are less affected by the UB. Therefore, we choose a suffi-

ciently large N = 500 for the training instances. The optimal initial vehicle allocation x∗ results in

338 vehicles in total for the weekdays and 253 for the weekends. Such initial vehicle allocations

will be used for later experiments.

We further examine the impact of the initial allocation by multiplying x∗ with 1+ α, where α rep-

resents a variation ratio. For each α, we solve the relocation problem (Q) through an out-of-sample

test. The profit gap in the last column of Table 1 is defined as (profit with α=0)−(profit with α ̸=0)

profit with α=0
×

100%. Table 1 shows that it is crucial to optimize the initial allocation as it has great impact on

the system performance. The profit drops when the initial allocation deviates from the optimal

allocation x∗. Specifically, if the initial allocation decreases by 75%, the profit drops by 52.20% on
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Table 1 Impact of Initial Vehicle Allocation

Variation
Ratio α

Crowdsourcing 3PL
Demand

Loss
Utilization

Rate
Profit

($)
Profit

Gap (%)No. of Vehicles
Relocated

Cost
($)

No. of Vehicles
Relocated

Cost
($)

Weekdays

-0.75 689.06 178.17 17.14 3.78 1,448.56 65.32 1,186.72 52.20
-0.50 877.40 222.64 256.14 36.00 295.64 39.21 2,204.52 11.21
-0.25 732.79 181.58 518.62 55.86 31.02 27.44 2,432.84 2.01

0 491.50 114.80 673.20 57.30 0 20.71 2,482.73 -
0.25 353.75 80.19 674.99 51.00 0 16.55 2,481.09 0.07
0.50 248.39 54.45 669.24 47.28 0 13.75 2,467.55 0.61
0.75 186.58 40.20 618.89 42.18 0 11.83 2,445.40 1.50

Weekends

-0.75 588.94 157.93 0.63 0.15 249.13 48.08 961.86 18.31
-0.50 479.76 129.82 155.95 26.70 0.76 26.15 1,168.89 0.73
-0.25 336.59 85.44 249.97 30.30 0 17.76 1,177.13 0.03

0 246.90 58.80 302.30 27.80 0 13.34 1,177.50 -
0.25 184.20 43.49 306.74 23.40 0 10.61 1,164.70 1.09
0.50 135.27 31.43 311.10 21.60 0 8.83 1,146.56 2.63
0.75 105.09 24.30 296.83 21.00 0 7.62 1,123.79 4.56

weekdays and by 18.31% on weekends because of insufficient vehicles. Furthermore, as the ini-

tial allocation varies, the relocation by crowdsourcing and the 3PL also changes. For instance, as

α increases on weekdays, the vehicle relocation by crowdsourcing first increases then decreases.

This is because when the initial number of vehicles is small, not many vehicles are available for

relocation. As the initial number of vehicles increases, more vehicles are available for relocation by

crowdsourcing. However, as the initial allocation further increases, it becomes justifiable for mass

relocation, which raises the vehicle relocation by the 3PL and reduces that by crowdsourcing. As

the initial allocation further increases, sufficient vehicles are available in the system to serve the

demands, reducing the needs for relocation by both crowdsourcing and the 3PL.

6.4. Impact of Relocation Strategies

We examine four different relocation strategies for problem (Q): (i) No vehicle relocation, i.e.,

ϕnit ,nj,t+lij
= Λnit ,nj,t+lij

= 0 for (nit, nj,t+lij) ∈ At, and zt = 0 for t ∈ T (lr); (ii) relocation only by rider

crowdsourcing, i.e., zt = 0 for t ∈ T (lr); (iii) relocation only by the 3PL, i.e., ϕnit ,nj,t+lij
= Λnit ,nj,t+lij

= 0

for (nit, nj,t+lij) ∈ At; and (vi) relocation by both rider crowdsourcing and the 3PL. We conduct

experiments over various instances to assess their performance. Table 2 shows that demand loss

can be effectively reduced by vehicle relocation. Compared to the case without any relocation, the

demand loss can be significantly reduced by 98% through crowdsourcing relocation alone and

50% through 3PL relocation alone, and can be further reduced when both relocation methods are

used. Furthermore, relocation only by crowdsourcing yields a higher utilization rate and profit

compared to relocation only by the 3PL. A more detailed observation reveals that crowdsourcing

alone relocates more vehicles than the 3PL alone. Thus, compared to the 3PL alone, rider crowdsourc-

ing alone is more effective to match supply with demand for the shared micromobility system.
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Table 2 Impact of Relocation Strategies and Penalty Cost

Cp
Relocation
Strategies

Crowdsourcing 3PL Demand
Loss

Utilization
Rate

Profit
($)No. of Vehicles

Relocated
Cost
($)

No. of Vehicles
Relocated

Cost
($)

Weekdays

0.1

No relocation – – – – 953.0 17.892 2,209.9
Crowdsourcing 928.8 238.6 – – 24.2 20.640 2,407.8

3PL – – 650.7 63.5 473.3 19.311 2,398.2
Combination 484.0 111.7 660.1 57.0 14.8 20.668 2,481.4

0.3

No relocation – – – – 947.2 17.909 2,019.9
Crowdsourcing 960.6 247.8 – – 1.9 20.706 2,406.1

3PL – – 665.1 66.7 457.0 19.359 2,309.5
Combination 492.1 115.2 673.2 56.9 0.3 20.711 2,482.5

0.5

No relocation – – – – 942.8 17.922 1,830.9
Crowdsourcing 964.2 248.7 – – 0.1 20.711 2,405.9

3PL – – 673.3 67.6 455.3 19.364 2,217.1
Combination 491.5 114.8 673.2 57.3 0 20.711 2,482.7

0.7

No relocation – – – – 942.7 17.922 1,642.3
Crowdsourcing 964.2 248.8 – – 0.1 20.711 2,405.9

3PL – – 677.6 69.1 451.1 19.377 2,129.9
Combination 489.4 113.9 674.1 57.6 0 20.711 2,483.3

Weekends

0.1

No relocation – – – – 494.5 11.383 1,008.7
Crowdsourcing 492.0 133.9 – – 0.4 13.336 1,130.0

3PL – – 318.5 33.8 218.1 12.475 1,128.4
Combination 228.5 53.9 320.2 30.2 0.8 13.334 1,179.8

0.3

No relocation – – – – 492.7 11.390 910.0
Crowdsourcing 492.4 134.1 – – 0.1 13.337 1,130.0

3PL – – 319.8 34.5 219.2 12.471 1,082.8
Combination 235.3 56.3 305.6 29.1 0 13.337 1,178.6

0.5

No relocation – – – – 491.2 11.396 811.6
Crowdsourcing 492.5 134.1 – – 0 13.337 1,130.0

3PL – – 309.3 34.8 228.5 12.434 1,030.4
Combination 246.9 58.8 302.3 27.8 0 13.337 1,177.5

0.7

No relocation – – – – 491.2 11.396 713.4
Crowdsourcing 492.5 134.1 – – 0 13.337 1,130.0

3PL – – 301.1 34.5 227.1 12.440 985.0
Combination 245.6 59.1 302.9 27.9 0 13.337 1,177.0

To understand the above results, it is helpful to distinguish two types of relocation needs: mass

relocation needs (i.e., many vehicles to be relocated, such as in rush hours) and sporadic relocation

needs (i.e., only a few vehicles to be relocated, such as in non-rush hours). Note that rider crowd-

sourcing serves both the mass and sporadic relocation needs, while the 3PL generally only serves

the mass relocation needs. The 3PL is not cost effective for the sporadic relocation because its aver-

age cost per relocated vehicle is much higher than the cost of losing a customer. The 3PL achieves a

lower average cost per relocated vehicle for the mass relocation because of the economies of scale

in relocating vehicles in batches. Furthermore, Table 2 shows that when both relocation methods

are used, the 3PL relocates more vehicles with a lower cost than rider crowdsourcing. The number

of vehicles relocated by the 3PL is similar to that when only 3PL relocation is used. This suggests

that when both methods are employed, the 3PL satisfies mostly the mass relocation needs, while

rider crowdsourcing mainly serves the sporadic relocation needs.

In general, as the penalty cost per customer lost Cp increases, it becomes more likely to relocate

vehicles to avoid demand losses. However, Table 2 shows an opposite effect for relocation only



23

by the 3PL on weekends: Raising Cp may decrease the relocation by the 3PL.12 Figure 10 shows a

typical scenario on weekends: If the penalty cost is low (Cp = 0.1), the 3PL relocates some vehi-

cles (47 in this example) around 5pm. Surprisingly, if the penalty cost is high (Cp = 0.5), it does

not relocate any vehicles. This counter-intuitive situation only happens on weekends when the

demands and the need for relocation are lower. The unimodal pattern of customer arrivals over

a day in Figure 10 shows fewer rush hours, reducing the need for mass relocation. For example,

if Cp = 0.5, the 3PL is requested 4.5 times on a weekday (≈ total relocation cost by the 3PL/Cr =

67.6/15) and is requested only 2.3 times on a weekend (≈ 34.8/15). As Cp increases, the profit

gain from region j may be less than the penalty cost incurred in region i, reducing the relocation

by the 3PL from region i to region j. Furthermore, Table 2 shows that as Cp increases on weekends,

the profit gap between 3PL relocation alone and the other two strategies (“Crowdsourcing” and

“Combination”) increases. Therefore, the operator should use either rider crowdsourcing alone or

the combination of both methods instead of using the 3PL alone to relocate vehicles on weekends.
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Figure 10 Customer Arrivals and Vehicles Relocated by The 3PL in A Day during Weekends

6.5. Impact of Rider Crowdsourcing Budget

Table 3 Impact of Rider Crowdsourcing Budget

Bc

Crowdsourcing 3PL Demand
Loss

Utilization
Rate

Profit
($)No. of Vehicles

Relocated
Cost
($)

No. of Vehicles
Relocated

Cost
($)

Weekdays

0 0 0 673.3 67.6 455.3 19.365 2,217.1
30 140.0 29.0 693.4 67.0 315.7 19.777 2,310.5
50 223.4 46.9 689.5 66.2 234.4 20.018 2,357.9
80 323.5 69.8 694.2 64.4 140.6 20.296 2,409.3
100 373.7 82.1 685.8 62.9 95.2 20.430 2,433.4
∞ 491.5 114.8 673.2 57.3 0 20.711 2,482.7

Weekends

0 0 0 309.3 34.8 228.5 12.435 1,030.4
10 47.7 9.7 316.0 34.2 181.4 12.621 1,064.6
20 89.4 18.4 312.4 33.8 140.9 12.780 1,091.6
30 125.4 26.4 313.3 32.4 108.2 12.910 1,112.5
50 176.6 38.7 307.3 30.8 61.8 13.093 1,140.7
∞ 246.9 58.8 302.3 27.8 0 13.337 1,177.5

The shared micromobility operator often contracts with the 3PL for its relocation service with a

stable relocation budget. In contrast, the operator pays a crowdsourced rider per trip and has a

more flexible budget for rider crowdsourcing. The operator can experiment and adjust the crowd-

sourcing budget Bc to learn its effect. Table 3 shows the impact of Bc on the system performance.

As Bc increases, more riders are crowdsourced and the relocation by these riders significantly



24

increases. Meanwhile, the demand loss decreases and the vehicle utilization rate increases, lead-

ing to a higher profit. In contrast, as Bc increases, the relocation by the 3PL first increases and then

decreases in general. The above results can be summarized as follows: If the crowdsourcing budget

is low, rider crowdsourcing complements (benefits) the 3PL. On the other hand, if the budget is high, rider

crowdsourcing substitutes the 3PL.

Figure 11 illustrates how rider crowdsourcing can complement the 3PL. The demand from

region j in period t to region m is large. If no crowdsourcing is offered in region m due to an

insufficient budget, the 3PL may not relocate vehicles from region i in period t− lr to region j

because the demand in region i later (in period t +

ljm + lmi) is also large. Conversely, if rider crowd-

sourcing is provided in region m, then the 3PL

can relocate vehicles from region i in period t− lr

to region j so that these vehicles can satisfy the

large demand from region j in period t to region m.

Crowdsourced riders can help relocate these vehi-

cles back to region i to meet its demand in period

t + ljm + lmi. Thus, rider crowdsourcing can com-

plement the 3PL.
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Figure 11 Rider Crowdsourcing Benefits The 3PL

As the crowdsourcing budget becomes larger, the 3PL relocation with a relatively high aver-

age cost per relocated vehicle can be substituted by the cheaper rider crowdsourcing, manifesting

the substitutional effect. Although the above complementary and substitutional effects can poten-

tially exist, Table 3 shows that as Bc increases, the relocation by the 3PL fluctuates only within

3.1% on weekdays and 4.5% on weekends. This suggests that introducing rider crowdsourcing to

the micromobility system with 3PL relocation may significantly increase the system’s profit without much

affecting the existing commitment with the 3PL.

6.6. Operational Features of Relocation

Table 2 shows that the micromobility system generates more profit if both relocation methods are

adopted. Here, we examine the operational features of relocation in detail on three representative

scenarios for weekdays: the daily demand is low (4,744 trips), medium (7,967 trips), and high

(12,294 trips). We observe similar relocation results on weekends.

Temporal Features of Relocation. Figure 12 shows the vehicle relocation compared to the num-

ber of customer arrivals over the operational horizon. Clearly, the 3PL often relocates vehicles in

batches during 8am-10am, 11am-1pm, and 3pm-5pm (i.e., around peak hours). As the 3PL relo-

cates vehicles to adjust the supply across multiple regions to match potential demands in the
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upcoming periods, the number of relocated vehicles can be larger than the demand per period.

Note that the 3PL is usually not engaged after the evening demand peak because of fewer cus-

tomer arrivals that do not need batch relocation. In contrast, rider crowdsourcing is conducted

throughout the day to relocate a much smaller number of vehicles per period.
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Figure 12 Customer Arrivals and Vehicles Relocated by The 3PL and Rider Crowdsourcing during A Weekday
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(b) Medium demand, 8am-10am

1 2 3 4 5 6 7 8 9
Destination

1
2

3
4

5
6

7
8

9
Or

ig
in

0

10

20

30

40

50

60

70

80

90

(c) High demand, 8am-10am
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(f) High demand, 5pm-7pm

Figure 13 Spatial Features of Demands in Rush Hours

Spatial Features of Relocation. Figure 13 displays the weekday demands during rush hours

in the morning (top row) and evening (bottom row). Specifically, regions 2, 4, 5, 6, and 8 repre-

sent Midtown South, West, Center, East, and North, respectively, whereas regions 1, 3, 7, and 9

represent Midtown Southwest, Southeast, Northwest, and Northeast, respectively (see Figure 6).

A ridership report of subway traffic in Manhattan (MTA 2020) indicates that region 5 (Mid-

town Center) is the busiest region with the largest passenger flow. It covers Times Square, Herald



26

Square, and the north part of Broadway, and has multiple subway lines passing through. Region 6

(Midtown East) has an important transportation hub, the Grand Central Terminal. Region 2 (Mid-

town South) has high-traffic subway stations, 34St Herald and 34St Penn Station, and is slightly

busier than region 8 (Midtown North) where Rockefeller Center is located. Region 1 (Midtown

Southwest) covers a few entrances of 34St Penn Station and hence can be a busy region. Region 9

(Midtown Northeast) has one high-traffic station, Lexington Av/53St. Figure 13 suggests that the

shared micromobility demand is closely related to the ridership of subway traffic. The demand

for short-range trips (lij ≤ 2) is higher than that for long-range trips (lij ≥ 3).

Figures 14 and 15 show the relocation by the 3PL and rider crowdsourcing, respectively. We

focus on the demand features in two clusters of regions and the corresponding relocation fea-

tures. In the first cluster, the busiest pick-up regions are regions 1, 2, and 3 (respectively, Mid-

town Southwest, South, and Southeast) during both 8am-10am and 5pm-7pm (see Figure 13), as

most customers travel from one of these regions to a neighboring one. Thus, they are also among

the busiest destinations. To maintain the vehicle supply, the operator relocates many vehicles to

regions 1, 2, and 3 rather than from them. In particular, the 3PL may relocate vehicles from a

faraway region (e.g., from region 9 to region 2 in Figure 14(b)). In contrast, rider crowdsourcing

relocates from nearby regions (e.g., from region 5 to region 2 in Figure 15(f)).
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(c) High demand, 8am-10am
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Figure 14 Spatial Features of 3PL Relocation

In the second cluster, many customers pick up vehicles from region 5 (Midtown Center) and

travel to regions 6 and 8 (respectively, Midtown East and North) in the morning (see Figures 13(b)

and (c)). Thus, many vehicles are relocated to region 5 from other regions before the customers

arrive. In particular, the 3PL relocates batches of vehicles mostly from the low-demand region

9 (Midtown Northeast) to region 5 (see Figures 14(b) and (c)). In contrast, rider crowdsourcing

relocates only a few vehicles from each neighboring region to region 5 (see Figures 15(b) and (c)).
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These observations suggest that the destinations of relocation by the 3PL and crowdsourcing

are similar, indicating their common goal to match supply with demand. The 3PL relocates many

vehicles per request from faraway regions, whereas crowdsourcing often incentivizes a few riders

each time from neighboring regions. Thus, the two methods are often mutually exclusive at the

origins of relocation. This is consistent with Proposition 1, which generally still holds for the case

with multiple regions (see Appendix F.2 for details).
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Figure 15 Spatial Features of Rider Crowdsourcing Relocation

6.7. Impact of The Temporal Demand Pattern

Table 4 Impact of The Temporal Demand Pattern

Demand
Pattern Cp

Crowdsourcing 3PL Demand
Loss

Utilization
Rate

Profit
($)No. of Vehicles

Relocated
Cost
($)

No. of Vehicles
Relocated

Cost
($)

Bimodal
(Weekdays)

0.05 254.8 60.4 130.4 17.1 8.4 29.861 1,590.2
0.1 271.8 65.5 113.5 14.8 3.8 29.888 1,588.4
0.3 274.1 65.9 113.3 15.0 0.2 29.901 1,588.9
0.5 264.5 63.3 127.1 17.5 0 29.911 1,589.1

Unimodal
(Weekends)

0.05 279.5 64.7 93.7 11.9 9.1 31.879 1,594.9
0.1 278.6 64.5 101.0 12.8 6.0 31.898 1,594.8
0.3 291.5 67.9 82.4 10.6 2.8 31.918 1,593.8
0.5 293.3 68.2 81.9 10.8 2.0 31.923 1,593.4

We now investigate the impact of the temporal demand pattern on vehicle relocation by compar-

ing the bimodal and unimodal customer arrival patterns on weekdays and weekends respectively.

Note that weekends have a lower daily demand than weekdays. To see the impact caused only by

the demand pattern, we process our data using ARIMA models (Hamilton 2020) so that the daily

demand of weekends is on the same scale as the daily demand of weekdays (see Appendix F.3 for

details). After training with the new data by solving problem (M), the optimal total number of

vehicles allocated under the bimodal pattern is 170, and that under the unimodal pattern is 159.

We then solve problem (Q) using testing data to obtain out-of-sample results. Table 4 presents the

optimal vehicle relocation under the two demand patterns. We obtain the following insights.
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First, the combined number of vehicles relocated by the two methods remains similar under the

two demand patterns. However, the 3PL relocates more vehicles under the bimodal pattern than

under the unimodal pattern. This is because the two demand peaks of the bimodal pattern require

more batch relocations from the 3PL than the unimodal case. In contrast, rider crowdsourcing

relocates more vehicles under the unimodal pattern than under the bimodal pattern. Second, the

system has more vehicles allocated initially for the bimodal demand pattern (i.e., 170) than that for

the unimodal pattern (i.e., 159). However, the profit under the bimodal pattern is lower than that

under the unimodal pattern, indicating that the operations under the bimodal demand pattern

are more challenging to manage. Since the total costs under the two demand patterns are similar,

the higher utilization rate (higher revenue) under the unimodal pattern leads to a higher profit.

7. Conclusion

The operator of a shared micromobility system often bears the cost of physical assets – micromo-

bility vehicles. Thus, it is especially crucial to properly set the initial vehicle allocation for different

service regions to satisfy customer demands. In addition, as customers can pick up and drop off

vehicles in any region, the system may experience a severe mismatch between vehicle supply

and demand under uncertain customer arrivals. To better match supply with demand, the opera-

tor needs to constantly relocate the micromobility vehicles across the regions. When the operator

plans for the initial vehicle allocation, he needs to take the future relocation decisions into con-

sideration. Thus, it is critical to integrate the initial vehicle allocation and subsequent relocation

decisions to maximize the operator’s profitability. The problem becomes especially complex when

the operator employs both rider crowdsourcing and 3PL for vehicle relocation.

We formulate an integrated vehicle allocation and relocation problem under demand uncer-

tainty as a two-stage stochastic integer program on a time-space network. The operator’s objective

is to maximize his expected profit. In the first stage, the operator decides the initial vehicle alloca-

tion before the demands are realized. In the second stage where demand realizations are observed,

the operator decides the relocation of vehicles across the regions to match supply with demand

over multiple time periods. For a special case with two service regions, we find that under the

optimal relocation strategy, rider crowdsourcing and the 3PL are not used simultaneously in any

region and period. Instead, the optimal relocation strategy will choose a method with a lower relo-

cation cost per vehicle (see Proposition 1). For a more general case with multiple service regions,

we first approximate the rider incentive function using a piecewise-linear function. The approx-

imation introduces some binary variables, which can be relaxed to continuous variables without

affecting the optimal objective value of the second-stage relocation problem (see Proposition 2).

We show that the approximation is asymptotically tight (see Proposition 3). We then propose an
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algorithmic approach that incorporates both scenario-based and time-based (temporal) decom-

position ideas to efficiently solve the two-stage problem. Numerical experiments suggest that our

approach significantly outperforms the CPLEX solver in both solution quality and computational

time (see Section 6.2).

Based on a data set from Citi Bike in NYC, we investigate the roles of rider crowdsourcing and

the 3PL in micromobility vehicle relocation for different parameter settings and demand patterns.

We first solve the integrated vehicle allocation and relocation problem to obtain an initial vehicle

allocation. Based on this initial allocation, we then solve the second-stage relocation problem to

determine out-of-sample relocation decisions. We uncover the following insights that may shed

light on the successful operations of shared micromobility systems.

(i) If the vehicle allocation budget is tight, the number of relocated vehicles in the second stage

increases as the initial vehicle allocation increases. In contrast, if the vehicle allocation budget

is sufficiently large, the number of relocated vehicles decreases as the initial vehicle allocation

becomes larger. This is because if there are sufficiently many vehicles available initially, the need

to relocate them to match supply with demand subsequently becomes smaller (see Section 6.3).

(ii) If both relocation methods are used, the number of vehicles relocated by the 3PL dominates

that by rider crowdsourcing because of the 3PL’s lower relocation cost per vehicle. The 3PL sat-

isfies mostly mass relocation needs, while rider crowdsourcing mainly serves sporadic relocation

needs. We find that investing in rider crowdsourcing can increase the profit, reduce the demand

loss, and improve the vehicle utilization rate of the system with an existing 3PL relocation method.

Therefore, in high-traffic areas, combining the two relocation methods leads to a higher profit.

(iii) As the rider crowdsourcing budget increases, the vehicle relocation by rider crowdsourcing

increases, while the vehicle relocation by the 3PL first increases and then decreases. This suggests

that rider crowdsourcing complements (benefits) the 3PL when the crowdsourcing budget is low,

but substitutes the 3PL when the budget is high. Overall, introducing rider crowdsourcing to the

micromobility system with 3PL relocation may significantly increase the system’s profit without

affecting the existing commitment with the 3PL (see Section 6.5).

(iv) Through studying the temporal and spatial relocation features, we find that the 3PL

often conducts relocation around demand peak hours, while rider crowdsourcing is conducted

throughout the day. To increase the supply in high-demand pick-up regions, the 3PL may relo-

cate vehicles in batches from faraway, low-demand regions, while rider crowdsourcing tends to

relocate a few vehicles each time from neighboring regions (see Section 6.6).

(v) The temporal demand pattern also has significant impact on vehicle allocation and relo-

cation. The operator should allocate more vehicles initially under a bimodal customer arrival
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pattern. Besides, rider crowdsourcing relocates more vehicles under a unimodal customer arrival

pattern than a bimodal pattern, whereas the reverse holds for the 3PL (see Section 6.7).

Our model and solution approach are sufficiently general for any typical shared micromobility

systems. As the data from Citi Bike (2021) is quite representative, we believe the above insights

shall hold for other micromobility systems with similar operational features as well. Our frame-

work can also be potentially applied to car sharing systems where a single operator owns vehicles.

Note that the 3PL uses only one truck with capacity q̄ to perform its service in our paper. This

assumption is supported by our numerical experiments. For all the periods and scenarios, the per-

centage of cases in which the load of the 3PL hits its capacity q̄ is 0.84% on a weekday and 0.18%

on a weekend. This is equivalent to 240× 0.84%≈ 2 periods on a weekday and 240× 0.18%≈ 0.4

periods on a weekend, which are negligible. The system operator can handle these cases sepa-

rately when extra capacity is needed (e.g., by recruiting crowdsourced riders). In case one truck is

not enough for the 3PL to cover the demand of the entire service area, we can split the service area

into smaller parts and each part is served by one truck. We acknowledge this limitation of our

model. We also simplify the cost structure of the shared micromobility system because of limited

information available. The results may be improved with more information provided. In addition,

besides the two temporal demand patterns studied, we can explore other demand distributions

and customer behaviors to enrich the insights. We leave these for future research.

We believe that crowdsourcing can help address many other OM problems (Allon and Babich

2020) besides sustainable transportation. For example, independent car drivers (Qi et al. 2018,

Fatehi and Wagner 2022) or cyclists (Kafle et al. 2017, Tu et al. 2019) are crowdsourced to perform

last-mile delivery, labor is crowdsourced to contribute innovative ideas via completing a set of

tasks on a virtual platform (Bayus 2013, Karger et al. 2014, Hu and Wang 2021), and volunteers

are crowdsourced by non-profit organizations to complete tasks such as food recovery (Manshadi

and Rodilitz 2022). More studies can be conducted to show the power of crowdsourcing.
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Appendix A: Table of Notation

Table A1 Summary of Notation

Notation Description

Sets:
V set of service regions V = {1, 2, . . . , V}
T operational horizon T = {0, 1, . . . , T − 1}

T (l, s, e) {s, s + 1, . . . , e− l − 1}
G time-space network G = (N ,A), where N is the set of nodes and A is the set of directed arcs

At,Ai,Ar trip arcs, idle arcs, 3PL relocation arcs
K set of scenarios of uncertain demands in all the service regions across all the periods.
H set of segments on the interval [0, ϕ̄] used to approximate the incentive function g(·),H= {1, 2, . . . , H}

Parameters:
lij duration for a rider trip from region i ∈ V to region j ∈ V
lr duration for the 3PL to relocate vehicles from region i ∈ V to region j ∈ V
N upper bound for the total number of allocated vehicles
Bj upper bound for the number of vehicles allocated to region j ∈ V
cj cost incurred for allocating a micromobility vehicle to region j ∈ V
λa customer demand (the number of customers) from region i in period t to region j with travel time lij for

each arc a = (nit, nj,t+lij ) ∈A
t

R, Cp revenue for serving a customer per period and penalty cost per customer lost, respectively
Λ̄ij maximum number of riders that can be crowdsourced from region i to conduct trips to region j
βij the rate of diminishing return on rewards in the incentive function g(·)
Bc upper bound for the total incentive used by the operator to crowdsource riders
Cr fixed fee paid to the 3PL for relocating vehicles per request
z̄ maximum number of times that the 3PL can relocate vehicles per day
¯̄z maximum number of periods that the 3PL operates during any time interval of lf periods

q, q̄ lower and upper bounds for the total number of relocated vehicles by the 3PL in each period
pk probability of each scenario k ∈K
ϕ̄ Given an arbitrarily small number ϵ > 0, ϕ̄ = g−1 (Λ̄− ϵ)
k̄h slope of a linear function passing through points ((h − 1)δ, g((h − 1)δ)) and (hδ, g(hδ)), k̄h = (g(hδ) −

g((h− 1)δ))/δ with δ = ϕ̄/H
M number of sub-networks for temporal decomposition

Tsub number of periods in each sub-network m ∈ {1, 2, . . . , M}
Dm dictionary to record the pair of initial vehicle allocation and the corresponding objective value of the two-

stage problem over sub-network m
N̄1, N̄2 step sizes for heuristic search

Variables:
xi number of vehicle allocated to region i ∈ V
x̃i number of vehicles in the ending period T − 1 in region i ∈ V
ηa unsatisfied demand on arc a = (nit, nj,t+lij ) ∈A

t

Λa number of crowdsourced riders from region i in period t to region j for a given arc a = (nit, nj,t+lij ) ∈A
t

ϕa incentive used to motivate the riders to relocate the vehicles along arc a = (nit, nj,t+lij ) ∈A
t

ya realized flow on arc a = (nit, nj,t+lij ) ∈A
i ∪At

γa number of vehicles relocated by the 3PL from region i in period t to region j for each arc a = (nit, nj,t+lr ) ∈Ar

zt zt = 1 if the 3PL is requested by the operator in period t to relocate vehicles and zt = 0 otherwise
z̃t the status of the 3PL such that z̃t = 1 if the 3PL provides service in period t and z̃t = 0 otherwise
uh uh = 1 if the optimal reward ϕ falls in the hth segment for each h ∈H, and uh = 0 otherwise
ϕ̃h ϕ̃h ∈ [0, δ] such that the optimal reward ϕ = (h− 1)δ + ϕ̃h for each h ∈H
ωh variable to approximate uhϕ̃h for each segment h ∈H

Appendix B: Data Analyses Showing Vehicle Supply-Demand Imbalance
Since (i) the customers use the micromobility vehicles for mostly one-way trips, (ii) many customers have
similar travel patterns, and (iii) the demands may be uncertain with respect to time and space, the vehicles
are depleted in some regions but are cluttered in the others. This leads to an imbalance of vehicle supply
and demand. We use the data from Citi Bike (2021) in New York City (NYC) to illustrate this imbalance.

We track the numbers of bikes arriving at and leaving from each region, corresponding to its in-flow
and out-flow respectively, in each period. For each period, define net-flow as the in-flow minus the out-flow.
Intuitively, a zero net-flow in a region reflects a balance of vehicle supply and demand. Otherwise, a positive
net-flow indicates an oversupply of vehicles and a negative net-flow may cause a shortage. Figure 16(a)
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shows a negative net-flow for an extended duration in the morning and a positive net-flow for an extended
duration in the afternoon in region 5. In contrast, Figure 16(b) shows an opposite phenomenon in region
9: a consistent positive net-flow in the morning and a consistent negative net-flow in the afternoon. By
comparing the net-flow of these two regions, we observe: (i) In the morning, the net-flow of bikes leaving
from region 5 is larger than the net-flow of bikes going to region 9. (ii) In the evening, the net-flow going to
region 5 is smaller than the net-flow leaving from region 9. This example demonstrates that an imbalance
of supply and demand can occur in opposite manners simultaneously in different regions of a service area.
This motivates the operator to rebalance the vehicles across different regions over the operational horizon.
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Figure 16 Supply-Demand Imbalance at the Region Level

Figure 17(a) shows the cumulative net-flow of each region over a year. The figure shows that the cumu-
lative net-flow of region 5 is always negative, and it has an overall decreasing trend. This suggests that
region 5 is loosing bikes over time and may eventually face shortages. In contrast, the cumulative net-flow
of region 9 is always positive, and it has an overall increasing trend. This suggests that region 9 is gaining
bikes over time and may have an oversupply of bikes. Figure 17(b) shows the cumulative net-flow of each
region within a day. Both Figures 17(a) and (b) show that the loss of bikes in region 5 is greater than the
growth of bikes in region 9, which implies that there are bikes traveling out from these two regions and not
coming back. This demonstrates that these two regions cannot naturally balance themselves.
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Therefore, this suffices to show that if the demand for bikes in each region is recurrent and consistent
every day, then region 5 will run out of bikes and incur lost sales at some point in time without vehicle
relocation. Figure 18 shows the net-flow of each region over a day. The gray curves correspond to 50 sample
paths from the data of Citi Bike (2021). The blue curve represents the mean net-flow of all the sample paths
in the data set. Both the gray and the blue curves suggest that the demand pattern of each region over the
periods is quite consistent. Thus, if we do not relocate bikes from other regions to region 5, we can foresee
that region 5 will run out of bikes and incur lost sales.

Finally, our numerical results in Section 6.4 also demonstrate the existence of vehicle supply-demand
imbalance. Table 2 shows that compared to a system without any relocation operations, introducing relocation
operations increases the total profit, reduces demand loss, and raises vehicle utilization significantly. Furthermore,
Section 6.6 suggests that the optimal relocation by the 3PL and crowdsourcing is mostly performed during
demand-peak hours, in which the supply-demand imbalance is most severe. This clearly indicates a need
to address the vehicle supply-demand imbalance, and there is a significant value to solve the problem that
occurs in the real world.

Appendix C: Supplement to Section 3

C.1. Undefined Arcs
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Figure 19 The Example of Undefined Arcs

C.2. Vector Definition
For each k ∈ K, we let λk denote the demand vector and define x̃k = (x̃k

j , j ∈ V)⊤ as the idle vehicle flows
after period T − 1. Similarly, for each k ∈ K, we let ηk = (ηk

a , a ∈ At)⊤ represent the vector of unsatisfied
demands, yk = (yk

a, a ∈ At)⊤ the vector of realized flows, γk = (γk
a, a ∈ Ar)⊤ the vector of 3PL relocation

flows, Λk = (Λk
a, a ∈ At)⊤ the vector of rider crowdsourcing relocation flows, ϕk = (ϕk

a , a ∈ At)⊤ the
vector of rewards to crowdsource riders, zk = (zk

t , t ∈ T (lr))⊤ the vector of 3PL relocation requests, and
z̃k = (z̃k

t , t ∈ T (lr))⊤ the vector of the 3PL relocation operation status (i.e., whether or not it is active).
Moreover, for each k ∈K, let vk = (x̃k, ηk, yk, γk). We let x̃ = (x̃k, t ∈K)⊤, η= (ηk, t ∈K)⊤, y = (yk, t ∈K)⊤,
γ = (γk, t ∈ K)⊤, Λ = (Λk, t ∈ K)⊤, ϕ = (ϕk, t ∈ K)⊤, z = (zk, t ∈ K)⊤, and z̃ = (z̃k, t ∈ K)⊤. In addition,
we let c = (ci, i ∈ V)⊤ and ρ = (x, z̃, z, v, Λ).

Appendix D: Supplement to Section 4

D.1. Constraints
The constraint set Y(x1, x2, λ) is defined by the following constraints:

ynit ,ni,t+1 + ynit ,n3−i,t+L + γnit ,n3−i,t+L =
xi, t = 0,
yni,t−1,nit , t = 1, 2, . . . , L− 1,
yni,t−1,nit + yn3−i,t−L ,nit + γn3−i,t−L ,nit , t = L, . . . , T − 1,

i ∈ {1, 2}, (8a)

ynit ,n3−i,t+L =

{
λnit ,n3−i,t+L + Λnit ,n3−i,t+L − ηnit ,n3−i,t+L , t = 0, 1, . . . , T − L− 1,
0, t = T − L, . . . , T − 1,

i ∈ {1, 2}, (8b)

γnit ,n3−i,t+L ≤ q̄zt, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}, (8c)

Λnit ,n3−i,t+L , ynit ,n3−i,t+L , ηnit ,n3−i,t+L , γnit ,n3−i,t+L ≥ 0, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1},
zt ∈ {0, 1}, t ∈ {0, 1, . . . , T − L− 1}; ynit ,ni,t+1 ≥ 0, i ∈ {1, 2}, t ∈ T \ {T − 1}. (8d)
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D.2. Proof of Proposition 1
Proof. By substituting constraints (8b) to the objective for all t ∈ {0, 1, . . . , T − L− 1} and removing the

constant term, we can equivalently replace the objective in (4) by the following one:
T−L−1

∑
t=0

(
2

∑
i=1

((
Cp + RL

)
ηnit ,n3−i,t+L + αΛnit ,n3−i,t+L

)
+ Crzt

)
. (9)

We denote the optimal solution of problem (4) by Y∗ = (Λ∗nit ,n3−i,t+L
, y∗nit ,n3−i,t+L

, η∗nit ,n3−i,t+L
, γ∗nit ,n3−i,t+L

, i ∈
{1, 2}, t ∈ {0, 1, . . . , T − L − 1}, y∗nit ,ni,t+1

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − 1}, z∗t , t ∈ {0, 1, . . . , T − L − 1}). We
then prove the proposition by contradiction and we first focus on Part (b) and Part (c) and then Part (a).

For Part (b), suppose, on the contrary, that there exists some ĩ ∈ {1, 2} or t̃ ∈ {0, 1, . . . , T − L − 1}
such that one of the following three cases happen: (i) αΛ∗nĩt̃ ,n3−ĩ,t̃+L

> Cr, (ii) αΛ∗nĩt ,n3−ĩ,t+L
> Cr for any t ∈

{0, 1, . . . , T − L − 1}, and (iii) αΛ∗nit̃ ,n3−i,t̃+L
> Cr for any i ∈ {1, 2}. For case (i), we construct a new solu-

tion Y† = (Λ†
nit ,n3−i,t+L

, y†
nit ,n3−i,t+L

, η†
nit ,n3−i,t+L

, γ†
nit ,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L − 1}, y†
nit ,ni,t+1

, i ∈
{1, 2}, t ∈ {0, 1, . . . , T − 1}, z†

t , t ∈ {0, 1, . . . , T − L− 1}) such that

Λ†
nĩ,t̃ ,n3−ĩ,t̃+L

= 0, γ†
nĩt̃ ,n3−ĩ,t̃+L

= γ∗nĩt̃ ,n3−ĩ,t̃+L
+ Λ∗nĩt̃ ,n3−ĩ,t̃+L

, z†
t̃ = 1, y†

nĩt̃ ,n3−ĩ,t̃+L
= y∗nĩt̃ ,n3−ĩ,t̃+L

−Λ∗nĩ,t̃ ,n3−ĩ,t̃+L
, (10a)

Λ†
nit̃ ,n3−i,t̃+L

= Λ∗nit̃ ,n3−i,t̃+L
, y†

nit̃ ,n3−i,t̃+L
= y∗nit̃ ,n3−i,t̃+L

, γ†
nit̃ ,n3−i,t̃+L

= γ∗nit̃ ,n3−i,t̃+L
, i ∈ {1, 2}\{ĩ}, (10b)

Λ†
nit ,n3−i,t+L

= Λ∗nit ,n3−i,t+L
, y†

nit ,n3−i,t+L
= y∗nit ,n3−i,t+L

, γ†
nit ,n3−i,t+L

= γ∗nit ,n3−i,t+L
, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}\{t̃}, (10c)

z†
t = z∗t , t ∈ {0, 1, . . . , T − L− 1}\{t̃}; η†

nit ,n3−i,t+L
= η∗nit ,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}, (10d)

y†
nit ,ni,t+1

= y∗nit ,ni,t+1
, i ∈ {1, 2}, t ∈ T . (10e)

It is easy to verify that Y† is feasible for problem (4). It follows that the objective (9) with respect to Y† minus
that with respect to Y∗ equals−αΛ∗nĩt̃ ,n3−ĩ,t̃+L

+Cr(1− z∗t̃ )≤−αΛ∗nĩt̃ ,n3−ĩ,t̃+L
+Cr < 0, where the first inequality

holds because Cr ≥ 0 and z∗t̃ ≥ 0 and the second inequality holds because of the case (i) assumption. Thus, a
lower objective is achieved with respect to the solution Y†, contradicting that Y∗ is the optimal solution. For
both cases (ii) and (iii), we can similarly construct such a new solution Y† and lead to the contradiction. We
omit the details for brevity. Therefore, αΛ∗nit ,n3−i,t+L

≤ Cr holds for any i ∈ {1, 2} and t ∈ {0, 1, . . . , T− L− 1}.
For Part (c), suppose, on the contrary, that there exists some ĩ ∈ {1, 2} or t̃ ∈ {0, 1, . . . , T− L− 1} such that

one of the following cases happen: (i) Cr > αγ∗nĩt̃ ,n3−ĩ,t̃+L
if z∗t̃ = 1 and γ∗nĩt̃ ,n3−ĩ,t̃+L

> 0, (ii) Cr > αγ∗nĩt ,n3−ĩ,t+L
if z∗t = 1 and γ∗nĩt ,n3−ĩ,t+L

> 0 for any t ∈ {0, 1, . . . , T − L − 1}, and (iii) Cr > αγ∗nit̃ ,n3−i,t̃+L
if z∗t̃ = 1 and

γ∗nit̃ ,n3−i,t̃+L
> 0 for any i ∈ {1, 2}. For case (i), we construct a new solution Y† = (Λ†

nit ,n3−i,t+L
, y†

nit ,n3−i,t+L
,

η†
nit ,n3−i,t+L

, γ†
nit ,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L − 1}, y†
nit ,ni,t+1

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − 1}, z†
t , t ∈

{0, 1, . . . , T − L− 1}) such that

Λ†
nĩ,t̃ ,n3−ĩ,t̃+L

= γ∗nĩt̃ ,n3−ĩ,t̃+L
, (11a)

γ†
nĩt̃ ,n3−ĩ,t̃+L

= 0, z†
t̃ = 0, y†

nĩt̃ ,n3−ĩ,t̃+L
= y∗nĩt̃ ,n3−ĩ,t̃+L

+ γ∗nĩt̃ ,n3−ĩ,t̃+L
, (11b)

Λ†
nit̃ ,n3−i,t̃+L

= Λ∗nit̃ ,n3−i,t̃+L
, y†

nit̃ ,n3−i,t̃+L
= y∗nit̃ ,n3−i,t̃+L

, γ†
nit̃ ,n3−i,t̃+L

= γ∗nit̃ ,n3−i,t̃+L
, i ∈ {1, 2}\{ĩ}, (11c)

Λ†
nit ,n3−i,t+L

= Λ∗nit ,n3−i,t+L
, y†

nit ,n3−i,t+L
= y∗nit ,n3−i,t+L

, γ†
nit ,n3−i,t+L

= γ∗nit ,n3−i,t+L
, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}\{t̃}, (11d)

z†
t = z∗t , t ∈ {0, 1, . . . , T − L− 1}\{t̃}; η†

nit ,n3−i,t+L
= η∗nit ,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L− 1}, (11e)

y†
nit ,ni,t+1

= y∗nit ,ni,t+1
, i ∈ {1, 2}, t ∈ T . (11f)

It is easy to verify that Y† is feasible for problem (4). Then, the objective (9) with respect to Y† minus that
with respect to Y∗ equals αγ∗nĩt̃ ,n3−ĩ,t̃+L

− Cr < 0 due to the case (i) assumption. Thus, a lower objective is
achieved with respect to Y†, contradicting that Y∗ is the optimal solution. For both cases (ii) and (iii), we
can similarly construct such a new solution Y† and lead to the contradiction. We omit the details for brevity.
Thus, Cr ≤ αγ∗nit ,n3−i,t+L

holds for any i ∈ {1, 2} and t ∈ {0, 1, . . . , T − L− 1} if z∗t = 1 and γ∗nit ,n3−i,t+L
> 0.

For Part (a), suppose, on the contrary, that there exists some ĩ ∈ {1, 2} or t̃ ∈ {0, 1, . . . , T− L− 1} such that
one of the following cases happen: (i) Λ∗nĩt̃ ,n3−ĩ,t̃+L

> 0 and γ∗nĩt̃ ,n3−ĩ,t̃+L
> 0, (ii) Λ∗nĩt ,n3−ĩ,t+L

> 0 and γ∗nĩt ,n3−ĩ,t+L
>

0 for any t ∈ {0, 1, . . . , T − L− 1}, and (iii) Λ∗nit̃ ,n3−i,t̃+L
> 0 and γ∗nit̃ ,n3−i,t̃+L

> 0 for any i ∈ {1, 2}. For case (i),
we further consider two subcases. Subcase 1): Λ∗nĩt̃ ,n3−ĩ,t̃+L

+ γ∗nĩt̃ ,n3−ĩ,t̃+L
≤ Cr/α. We construct a new solu-

tion Y† = (Λ†
nit ,n3−i,t+L

, y†
nit ,n3−i,t+L

, η†
nit ,n3−i,t+L

, γ†
nit ,n3−i,t+L

, i ∈ {1, 2}, t ∈ {0, 1, . . . , T − L − 1}, y†
nit ,ni,t+1

, i ∈
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{1, 2}, t ∈ {0, 1, . . . , T − 1}, z†
t , t ∈ {0, 1, . . . , T − L− 1}) such that Λ†

nĩ,t̃ ,n3−ĩ,t̃+L
= Λ∗nĩt̃ ,n3−ĩ,t̃+L

+ γ∗nĩt̃ ,n3−ĩ,t̃+L
and

(11b)–(11f) hold. Subcase 2): Λ∗nĩt̃ ,n3−ĩ,t̃+L
+ γ∗nĩt̃ ,n3−ĩ,t̃+L

> Cr/α. We construct a new solution Y† such that
(10a)–(10e) hold. The objective (9) with respect to Y† in either subcase is strictly lower as shown before,
which contradicts that Y∗ is the optimal solution of problem (4). For both cases (ii) and (iii), we can similarly
construct such a new solution Y† and lead to the contradiction. We omit the details for brevity. Therefore,
Λ∗nit ,n3−i,t+L

γ∗nit ,n3−i,t+L
= 0 holds for any i ∈ {1, 2} and t ∈ {0, 1, . . . , T − L− 1}. □

Appendix E: Supplement to Section 5

E.1. Proof of Proposition 2
Proof. Note that given the allocation solution x, the solution to the second-stage problem (Q0) (or (Q))

with respect to any scenario k ∈K is independent from that with respect to any other scenario k′ ∈K. Thus,
it suffices to consider only one scenario in K for both problems (Q0) and (Q). To that end, we omit the
superscript k in both problems (Q0) and (Q) and denote by Ỹ = (x̃, η, y, γ, z, z̃, Λ, ϕ, u, ϕ̃, ω) the second-stage
variables of problem (Q0) or (Q) with respect to any scenario in K. For ease of notation, we also split Ỹ
into three parts: Ỹ1 = (x̃, η, y, γ, z, z̃), Ỹ2 = (Λ, ϕ) and Ỹ3 = (u, ϕ̃, ω). Moreover, to differentiate the notation
in problems (Q0) and (Q), we denote the variables of problem (Q0) by Ỹb and the corresponding feasible
region by Yb = {Ỹb | (2a)− (2h), (1b), (1c), (3), ((5c)− (5e), (6), a ∈ At)}. Similarly, we denote the variables
of problem (Q) by Ỹr and the corresponding feasible region by Y r = {Ỹr | (2a)− (2h), (1b), (1c), (3), ((5c)−
(5d), (6), (uh,a ∈ [0, 1], h ∈ H), a ∈ At)}. The optimal solutions of both (Q0) and (Q) are specified with
superscript ·∗. The optimal objective values of both problems are denoted by Θ′(x) = Ψ(Ỹb∗) and Θ′′(x) =
Ψ(Ỹr∗). Because Yb ⊆ Y r and both problems (Q0) and (Q) are minimization problems sharing the same
objective function (7), we have

Θ′(x)≥Θ′′(x). (12)

In the following, we will show that Θ′(x)≤Θ′′(x). We claim that(
Ỹr∗

1 , Ỹr∗
2

)
∈ Proj(Ỹb

1 ,Ỹb
2)

(
Yb
)

=
{(

Ỹb
1 , Ỹb

2

)
∈R

(|V|+4|At|+|Ar|+2|T (lr)|)
+

∣∣∣ ∃Ỹb
3 ∈R

3H|At|
+ such that Ỹb ∈ Yb

}
. (13)

Note that (Ỹr∗
1 , Ỹr∗

2 ) satisfies constraints (2a)–(2h), (1b), (1c), and (3) because these constraints are shared by
Yb and Y r and Ỹ3 is involved in none of these constraints. Thus, to show that our claim holds, it suffices
to show that there exists Ỹr′

3 ∈R
3H|At|
+ such that (Ỹr∗

2 , Ỹr′
3 ) satisfies (5c)–(5e) and (6) for any a ∈ At, thereby

leading to (Ỹr∗
1 , Ỹr∗

2 , Ỹr′
3 ) ∈ Yb. We will prove this by contradiction.

Note that for any given a ∈ At, if (Ỹr∗
2 , Ỹr′

3 ) satisfies (5c)–(5e) and (6), then Ỹr∗
2,a = (ϕr∗, Λr∗) amounts to

a point in the projection space ProjỸb
2,a
(Yb) = {Ỹb

2,a ∈R2
+ | ∃(Ỹb

1 , Ỹb
3) and (Ỹb

2,e, e ∈ At, e ̸= a) such that Ỹb ∈
Yb}. This projection space can be represented by a piece-wise linear curve with H segment and ϕ runs in
[0, ϕ̄], as illustrated in Figure 20, and such a point can be illustrated by point B in this figure. Now, for the
contradiction, we suppose that there exists some a′ ∈ At such that Ỹr∗

2,a′ = (ϕr∗
a′ , Λr∗

a′ ) does not amount to a
point in the projection space ProjỸb

2,a
(Yb). More specifically, by the feasibility of Ỹr∗

2,a′ from (Q), it will amount

to a point in the projection space ProjỸr
2,a
(Y r) = {Ỹr

2,a ∈R2
+ | ∃(Ỹr

1, Ỹr
3) and (Ỹr

2,e, e ∈At, e ̸= a) such that Ỹr ∈
Y r}, which is the convex hull of ProjỸb

2,a
(Yb) and can be illustrated by the gray region Ω in Figure 20. Also,

Ỹr∗
2,a′ can be illustrated by point P.
Now, we construct a solution (Ỹb′

1 , Ỹb′
2 , Ỹb′

3 ). We let Ỹb′
1 = Ỹr∗

1 . For Ỹb′
2 = (ϕb′, Λb′), we let (ϕb′

e , Λb′
e ) =

(ϕr∗
e , Λr∗

e ) for any e ∈ At and e ̸= a′, Λb′
a′ = Λr∗

a′ , and ϕb′
a′ = (h′ − 1)δ + (Λr∗ − ∑h′−1

m=1 k̄mδ)/k̄h′ , where h′ =
arg min{h ∈ {1, 2, . . . , H}|∑h−1

m=1 k̄mδ ≤ Λr∗
a′ < ∑h

m=1 k̄mδ}. For Ỹb′
3 = (ub′, ϕ̃b′, ωb′), we let (ub′

e , ϕ̃b′
e , ωb′

e ) =
(ur∗

e , ϕ̃r∗
e , ωr∗

e ) for any e ∈ At and e ̸= a′. For (ub′
a′ , ϕ̃b′

a′ , ωb′
a′ ), we let ub′

a′ ,h′ = 1 and ub′
a′ ,h = 0 for any h ∈

{1, 2, . . . , H} and h ̸= h′, and ωa′ ,h = ϕ̃a′ ,h = (Λr∗ − ∑h′−1
m=1 k̄mδ)/k̄h′ and ωa′ ,h′ = 0 for any h ∈ {1, 2, . . . , H}

and h ̸= h′. Based on the construction, we have (Ỹb′
1 , Ỹb′

2 , Ỹb′
3 ) ∈ Yb and the corresponding objective value is

Θ′′(x) + (ϕb′
a′ − ϕr∗

a′ ) by the formulation of (7). Because (Ỹb′
1 , Ỹb′

2 , Ỹb′
3 ) ∈ Yb, we also have

Θ′′(x) + (ϕb′
a′ − ϕr∗

a′ )≥Θ′(x). (14)
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Figure 20 A Geometric Illustration of (ϕ, Λ)

because the objective value with respect to a feasible solution for a minimization problem is no greater than
the optimal objective value.

Note that (ϕb′
a′ , Λb′

a′ ) amounts to a point in the projection space ProjỸb
2,a
(Yb) and can be illustrated by point

P′ in Figure 20. For simplicity, we denote the projection space ProjỸb
2,a
(Yb), i.e., a piece-wise linear function,

by Λ = Ξ(ϕ), which is also an increasing and concave function. Thus, we have Λb′
a′ = Λr∗

a′ = Ξ(ϕb′
a′ ). Also,

there exists Λb′′ ∈ [0, Λ̄ − ϵ] such that Λb′′
a′ = Ξ(ϕr∗

a′ ), as illustrated by point P′′ in Figure 20. Because the
function Λ = Ξ(ϕ) is concave and (ϕr∗

a′ , Λr∗
a′ ) is an interior point of ProjỸr

2,a
(Y r), we have Λr∗

a′ < Λb′′
a′ = Ξ(ϕr∗

a′ ).

It follows that Ξ(ϕb′
a′ ) < Ξ(ϕr∗

a′ ). Because the function Λ = Ξ(ϕ) is increasing, we have ϕb′
a′ < ϕr∗

a′ . It further
indicates that

Θ′′(x) + (ϕb′
a′ − ϕr∗

a′ )< Θ′′(x). (15)

From (14) and (15), we obtain Θ′′(x) > Θ′(x), which contradicts with (12). Thus, we have (13) holds and
(Ỹr∗

1 , Ỹr∗
2 , Ỹr′

3 ) ∈ Yb. It follows that Ψ(Ỹr∗
1 , Ỹr∗

2 , Ỹr′
3 )≥Θ′(x) because of the same reason for (14) to hold. More-

over, by the formulation of (7), where Ỹ3 is not involved, we have Ψ(Ỹr∗
1 , Ỹr∗

2 , Ỹr′
3 ) = Ψ(Ỹr∗) = Θ′′(x). Thus,

we have Θ′′(x)≥Θ′(x), which together with (12) imply that Θ′′(x) = Θ′(x). This completes the proof. □

E.2. Abstract Forms
By (1a), we define ϕk

a(Λk
a) = (−1/βij) ln (1−Λk

a/Λ̄ij) for any a = (nit, nj,t+lij) ∈ A
t and k ∈ K. Since g(·) is

bijective, continuous, and concave, we have ϕk
a(·) is bijective, continuous, and convex. We can then replace

ϕk
a in (1b) and (P) with ϕk

a(Λk
a) and remove constraints (1a), leading to the following abstract form of (M):

Γ = min c⊤x + ∑
k∈K

pk
(

f (vk) + q(Λk) + ∑
a∈At

ϕk
a(Λ

k
a) + ψ(zk)

)
(M)

s.t. Fx≤ S, (16a)

∑
a∈At

ϕk
a(Λ

k
a)≤ Bc, k ∈K, (16b)

Avk + DΛk = Ck, k ∈K, (16c)

Gzk + Pz̃k + Lvk ≤Q, k ∈K, (16d)

Mvk + Ux = 0, k ∈K, (16e)

where f (·), q(·), and ψ(·) are linear functions, (16a) represents the first-stage constraints in (M), (16b)–
(16c) represent constraints (1b)–(1c) in (M), (16d) represents constraints (2a)–(2g), and (16e) represents
constraints (3). We let ρ∗ = (x∗, z̃∗, z∗, v∗, Λ∗) denote the optimal solution of (M).

For any a ∈ At, k ∈ K, let ϕH,k
a (·) denote the piecewise-linear (PWL) function with H > 0 segments that

approximates ϕk
a(·), where ϕH,k

a (·) is continuous and convex and for any Λk
a ≥ 0,

ϕH,k
a (Λk

a)≥ ϕk
a(Λ

k
a), lim

H→∞
ϕH,k

a (Λk
a) = ϕk

a(Λ
k
a). (17)

Thus, by replacing ϕk
a(·) with ϕH,k

a (·) for any a ∈At, k ∈K in (16b), we have the following abstract form of
our PWL approximation model:

ΓH = min c⊤x + ∑
k∈K

pk
(

f (vk) + q(Λk) + ∑
a∈At

ϕH,k
a (Λk

a) + ψ(zk)
)

(MH)



39

s.t. (16a), (16c)− (16e),

∑
a∈At

ϕH,k
a (Λk

a)≤ Bc, k ∈K. (18)

E.3. Proof of Proposition 3

Proof. Given any a ∈At, k ∈K, and ϵk
1,a > 0, since ϕk

a(·) is continuous, there exists δ̂k
a ∈ (0,∥Λk†

a −Λk∗
a ∥)

such that |ϕk
a(Λk

a)− ϕk
a(Λk∗

a )|< ϵk
1,a whenever ∥Λk

a−Λk∗
a ∥ ≤ δ̂k

a . By the continuity of q(·) and f (·), given any
k ∈ K, ϵk

2 > 0, and ϵk
3 > 0, there also exist σ̂k ∈ (0,∥Λk† −Λk∗∥) and θ̂k ∈ (0,∥vk† − vk∗∥) such that |q(Λk)−

q(Λk∗)|< ϵk
2 and | f (vk)− f (vk∗)|< ϵk

3 whenever ∥Λk −Λk∗∥< σ̂k and ∥vk − vk∗∥< θ̂k, respectively.
First, we construct a feasible solution ρ̂ = (x̂, ˆ̃z, ẑ, v̂, Λ̂) to model (MH). For any k ∈ K, we define

α̂k := min{σ̂k, θ̂k, δ̂k
a , a ∈ At} and τk := (∥Λk† − Λk∗∥2 + ∥vk† − vk∗∥2)

1
2 , and let Λ̂k = (α̂k/τk)Λk†

+ (1 −
(α̂k/τk))Λk∗ , and v̂k = (α̂k/τk)vk†

+ (1− (α̂k/τk))vk∗ . Clearly, Λ̂k (resp. v̂k) is a convex combination of Λk†

and Λk∗ (resp. vk†
and vk∗ ) for any k ∈K. It follows that for any k ∈K, ∥Λ̂k−Λk∗∥= α̂k∥Λk† −Λk∗∥/τk ≤ α̂k

and ∥v̂k − vk∗∥= α̂k∥vk† − vk∗∥/τk ≤ α̂k. By the continuity of ϕk
a(·), q(·), and f (·), we have∣∣∣ϕk

a(Λ̂
k
a)− ϕk

a(Λ
k∗
a )
∣∣∣< ϵk

1,a, a ∈At,
∣∣∣q(Λ̂k)− q(Λk∗ )

∣∣∣< ϵk
2,
∣∣∣ f (v̂k)− f (vk∗ )

∣∣∣< ϵk
3, k ∈K. (19)

We also let x̂ = x† = x∗ and ˆ̃z = z̃† = z̃∗. Note that, by (2b)–(2d) and (2g), z̃ uniquely determines z. Thus,
z† = z∗, and we let ẑ = z† = z∗. It is easy to check that ρ̂ satisfies constraints (16a) and (16c)–(16e) in (MH).

In addition, by convexity of ϕk
a(·), we have ∑a∈At ϕk

a(Λ̂k
a) ≤ ∑a∈At [(α̂k/τk)ϕk

a(Λk†
a ) + (1 −

(α̂k/τk))ϕk
a(Λk∗

a )] = (α̂k/τk)∑a∈At ϕk
a(Λk†

a )+ (1− (α̂k/τk))∑a∈At ϕk
a(Λk∗

a )< Bc for any k ∈K, where the last
inequality holds because ∑a∈At ϕk

a(Λk†
a ) < Bc and ∑a∈At ϕk

a(Λk∗
a ) ≤ Bc. Meanwhile, by (17), there exists H̃

such that ∑a∈At ϕk
a(Λ̂k

a)≤∑a∈At ϕH,k
a (Λ̂k

a)≤ Bc for any H > H̃. Thus, ρ̂ also satisfies constraints (18) in (MH)
and ρ̂ is feasible to model (MH) for any H > H̃.

Second, we prove lim supH→∞ ΓH ≤ Γ in the following. We let ρH∗ = (xH∗, z̃H∗, zH∗, vH∗, ΛH∗) denote the
optimal solution of (MH) for any H > H̃. Since ρ̂ is feasible to model (MH), we have

ΓH ≤ c⊤x̂ + ∑
k∈K

pk
(

f (v̂k) + q(Λ̂k) + ∑
a∈At

ϕH,k
a (Λ̂k

a) + ψ(ẑk)
)

. (20)

By the proposition condition, for any H > max{Ĥ, H̃}, we have xH∗ = x∗ = x̂, z̃H∗ = z̃∗ = ˆ̃z, and zH∗ = z∗ =
ẑ. Thus, for any H > max{Ĥ, H̃}, (20) becomes

∑
k∈K

pk
(

f (vH,k∗ ) + q(ΛH,k∗ ) + ∑
a∈At

ϕH,k
a (ΛH,k∗

a )
)
≤ ∑

k∈K
pk
(

f (v̂k) + q(Λ̂k) + ∑
a∈At

ϕH,k
a (Λ̂k

a)
)

. (21)

Now, for any H > max{Ĥ, H̃}, we have

ΓH − Γ = ∑
k∈K

pk
(

f (vH,k∗ ) + q(ΛH,k∗ ) + ∑
a∈At

ϕH,k
a (ΛH,k∗

a )
)
− ∑

k∈K
pk
(

f (vk∗ ) + q(Λk∗ ) + ∑
a∈At

ϕk
a(Λ

k∗
a )
)

≤ ∑
k∈K

pk
(

f (v̂k) + q(Λ̂k) + ∑
a∈At

ϕH,k
a (Λ̂k

a)
)
− ∑

k∈K
pk
(

f (vk∗ ) + q(Λk∗ ) + ∑
a∈At

ϕk
a(Λ

k∗
a )
)

≤ ∑
k∈K

pk
(

f (v̂k) + q(Λ̂k) + ∑
a∈At

ϕk
a(Λ̂

k
a)
)
− ∑

k∈K
pk
(

f (vk∗ ) + q(Λk∗ ) + ∑
a∈At

ϕk
a(Λ

k∗
a )
)
+ ϵ0

≤ ∑
k∈K

pk
(

∑
a∈At

ϵk
1,a + ϵk

2 + ϵk
3

)
+ ϵ0,

where ϵ0 > 0 is an arbitrary small number, the first inequality holds by (21), the second inequality holds by
(17), and the last inequality holds by (19). Thus, lim supH→∞ ΓH ≤ Γ.

Third, for any H > max{Ĥ, H̃}, ρH∗ satisfies constraints (16a) and (16c)–(16e) in (M), and
∑a∈At ϕk

a(Λ
H,k∗
a )≤∑a∈At ϕH,k

a (ΛH,k∗
a )≤ Bc for any k ∈K by (17). It follows that ρH∗ is feasible to model (M)

for any H > max{Ĥ, H̃}. Thus, we have

Γ≤ c⊤xH∗ + ∑
k∈K

pk
(

f (vH,k∗ ) + q(ΛH,k∗ ) + ∑
a∈At

ϕk
a(Λ

H,k∗
a ) + ψ(zH,k∗ )

)
. (22)

As ∑a∈At ϕk
a(Λ

H,k∗
a ) ≤ ∑a∈At ϕH,k

a (ΛH,k∗
a ) for any H > max{Ĥ, H̃}, (22) further leads to Γ ≤ ΓH , which,

together with lim supH→∞ ΓH ≤ Γ, guarantees limH→∞ ΓH = Γ. □
The condition of Proposition 3 easily holds in general. To show this, we compare the inner approxima-

tion (MH) with a PWL outer approximation of (M), denoted by (MO
H). We find that when H = 20, the

optimality gap between (MH) and (MO
H) is 0.016% and their optimal integer solution of (x, z̃) is the same;

when H is further increased, this integer solution does not change.
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E.4. An Alternative Asymptotic Convergence Result
PROPOSITION 4. If (i) Bc =+∞ or (ii) yk∗ > 0 and x̃k∗ > 0 for any k ∈K, then limH→∞ ΓH = Γ.

Proof. For the case Bc = +∞, constraints (16b) and (18) can be removed from models (M) and (MH),
which both then share the same set of constraints. We let ρH∗ = (xH∗, z̃H∗, zH∗, vH∗, ΛH∗) denote the opti-
mal solution of (MH). By (17), we have ΓH ≥ c⊤xH∗ + ∑k∈K pk( f (vH,k∗) + q(ΛH,k∗) + ∑a∈At ϕk

a(Λ
H,k∗
a ) +

ψ(zH,k∗))≥ Γ, where the second inequality holds because ρH∗ is feasible to (M).
In addition, we have ΓH − Γ ≤ c⊤x∗ + ∑k∈K pk( f (vk∗) + q(Λk∗) + ∑a∈At ϕH,k

a (Λk∗
a ) + ψ(zk∗)) − Γ =

∑k∈K pk(∑a∈At(ϕH,k
a (Λk∗

a ) − ϕk
a(Λk∗

a ))), where the inequality holds because ρ∗ is feasible to model (MH).
By (17), for any ϵk

H > 0, there exists H̃ such that |ϕH,k
a (Λk∗

a )− ϕk
a(Λk∗

a )| < ϵk
H for any H > H̃. Thus, for any

H > H̃, ΓH − Γ ≤ ∑k∈K pk|At|ϵk
H , which, together with ΓH ≥ Γ, guarantees limH→∞ ΓH = Γ because K is

finite and pk, k ∈K and |At| are bounded.
For the case yk∗ > 0 and x̃k∗ > 0 for any k ∈ K, given H > H̃ and based on the optimal solution ρ∗ to

model (M), we construct a feasible solution ρH = (xH , z̃H , zH , vH , ΛH) to model (MH) such that xH = x∗,
z̃H = z̃∗, zH = z∗, and

ϕH,k
a (ΛH,k

a ) = ϕk
a(Λ

k∗
a ), a ∈At, k ∈K. (23)

By (17), we have Λk∗
a ≥ΛH,k

a , a ∈At, k ∈K, by which we define δ̄H,k
a := Λk∗

a −ΛH,k
a ≥ 0. If δ̄H,k

a > 0 for some
a = (nit, nj,t+lij) ∈A

t and k ∈ K, then by the mean value theorem, there exists Λ ∈ (ΛH,k
a , Λk∗

a ) such that the

derivative ϕk
a
′
(Λ)> 0 and ϕk

a
′
(Λ)(Λk∗

a −ΛH,k
a ) = ϕk

a(Λk∗
a )− ϕk

a(Λ
H,k
a ). Therefore,

Λk∗
a −ΛH,k

a =
1

ϕk
a
′
(Λ)

(
ϕk

a(Λ
k∗
a )− ϕk

a(Λ
H,k
a )

)
= βij(Λ̄ij −Λ)

(
ϕk

a(Λ
k∗
a )− ϕk

a(Λ
H,k
a )

)
= βij(Λ̄ij −Λ)

(
ϕH,k

a (ΛH,k
a )− ϕk

a(Λ
H,k
a )

)
, (24)

where the last equality holds by (23). By (24) and (17), we further have

δ̄H,k
a = Λk∗

a −ΛH,k
a ≤ βijΛ̄ijϵ

k
H := ϵ̄k

H , a = (nit, nj,t+lij
) ∈At, k ∈K, (25)

for any H > H̃, i.e., limH→∞ δ̄H,k
a = 0 because βij, Λ̄ij, j ̸= i, i, j ∈ V are bounded.

We further construct vH = (x̃H , ηH , yH , γH) as follows. First, we let γH = γ∗. Second, we let ηH,k
a = ηk∗

a −
ζH,k

a , a ∈ At, k ∈ K, where ζH,k
a = δ̄H,k

a if ηk∗
a > 0 and ζH,k

a = 0 otherwise. Here we define θH,k
a = δ̄H,k

a −
ζH,k

a , a ∈ At, k ∈ K. Third, for any a ∈ At, k ∈ K, we let yH,k
a = yk∗

a − θH,k
a , which is nonnegative by (1c).

Fourth, we let

yH,k
nit ,ni,t+1

:= yk∗
nit ,ni,t+1

+
t

∑
s=0

∑
j∈V ,j ̸=i

θH,k
nis ,nj,s+lij

−
t

∑
s=1

∑
j∈V ,j ̸=i

θH,k
nj,s−lji

,nis
, i ∈ V , t ∈ {0, · · · , T − 2}, k ∈K.

Since T and |V| are bounded, by the propsition condition and θH,k
a ≤ δ̄H,k

a ≤ ϵ̄k
H , a ∈ At, k ∈ K, we have

yH,k
nit ,ni,t+1 ≥ 0, i ∈ V , t ∈ {0, · · · , T − 2}, k ∈K. Fifth, we let

x̃H,k
i = x̃k∗

i +
T−2

∑
s=0

∑
j∈V ,j ̸=i

θH,k
nis ,nj,s+lij

−
T−1

∑
s=1

∑
j∈V ,j ̸=i

θH,k
nj,s−lji

,nis
, i ∈ V , k ∈K,

where we have x̃H,k
i ≥ 0 similarly.

It is easy to check that ρH is feasible to model (MH). Thus, for any H > H̃, we have

0≤ ΓH − Γ≤ c⊤xH + ∑
k∈K

pk( f (vH,k) + q(ΛH,k) + ∑
a∈At

ϕH,k
a (ΛH,k

a ) + ψ(zH,k))− Γ

= ∑
k∈K

pk

(
∑

a∈At

(
Cp(η

H,k
a − ηk∗

a )− Rla(yH,k
a − yk∗

a ) + Rla(ΛH,k
a −Λk∗

a )
))
≤ ∑

k∈K
pk
(

∑
a∈At

Rla(yk∗
a − yH,k

a )
)
= ∑

k∈K
pk
(

∑
a∈At

RlaθH,k
a

)
≤ ∑

k∈K
pk
(

∑
a∈At

Rla δ̄H,k
a

)
≤ ∑

k∈K
pk
(

∑
i∈V

∑
j ̸=i, j∈V

∑
t∈T (lij)

Rlij βijΛ̄ijϵ
k
H

)
,

where the first inequality holds because model (MH) is an inner approximation of model (M), the second
inequality holds because ρH is feasible to model (MH), the third inequality holds because ηH,k

a ≤ ηk∗
a and

ΛH,k
a ≤Λk∗

a , and the last inequality holds by (25). Thus, limH→∞ ΓH = Γ. □
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E.5. The Refined Model
Given a starting period s ∈ T and ending period e ∈ T ∪ {T}, we defineAt(s, e) as the subset ofAt in period
t ∈ T (lij, s, e) and denote the second-stage variables between the time range [s, e) in each scenario k ∈ K by
vector Ỹk

(s,e) = (x̃k, ηk, yk, γk, Λk, uk, ϕk, ϕ̃k, zk, z̃k, ωk)(s,e). Then, we can write Q(s, e) as follows:

Θ′′(s,e)(x) = min
Yk
(s,e) , k∈K

∑
k∈K

pk

(
∑

a∈At(s,e)

(
Cpηk

a + ϕk
a − Rla(yk

a −Λk
a)
)
+ ∑

t∈T (lr ,s,e)
Crzk

t

)
(Q(s, e))

s.t. Yk
(s,e) ∈ Y(s,e)(x, λk), k ∈K.

For ease of notation, we omit superscript k for variables and parameters in Y(s,e)(x, λk) for any k ∈K. Then,
the feasible region Y(s,e)(x, λ) with respect to each scenario is given by

Y(s,e)(x, λ) :=
{

Ỹ(s,e) ≥ 0
∣∣∣ (ynit ,ni,t+1 + ∑

j∈V ,j ̸=i

(
ynit ,nj,t+lij

+ γnit ,nj,t+lr

))
−
(

yni,t−1,ni,t (26a)

+ ∑
j∈V ,j ̸=i

(
ynj,t−lij ,ni,t + γnj,t−lr ,ni,t

))
=


xi, if t = s,
0, if t = s + 1, . . . , e− 2,
−x̃i, if t = e− 1,

i ∈ V , (26b)

λnit ,nj,t+lij
+ Λnit ,nj,t+lij

− ηnit ,nj,t+lij
= ynit ,nj,t+lij

, t ∈ T (lij, s, e), j ̸= i, i, j ∈ V , (26c)

ϕnit ,nj,t+lij
=

H

∑
h=1

(h− 1)uh,nit ,nj,t+lij
δij + ωh,nit ,nj,t+lij

, t ∈ T (lij, s, e), j ̸= i, i, j ∈ V , (26d)

Λnit ,nj,t+lij
=

H

∑
h=1

uh,nit ,nj,t+lij

h−1

∑
m=1

k̄mijδij +
H

∑
h=1

k̄h,nit ,nj,t+lij
ωh,nit ,nj,t+lij

, t ∈ T (lij, s, e), j ̸= i, i, j ∈ V , (26e)

uh,nit ,nj,t+lij
δij −ωh,nit ,nj,t+lij

≥ 0, h ∈H, t ∈ T (lij, s, e), j ̸= i, i, j ∈ V , (26f)

ϕ̃h,nit ,nj,t+lij
−ωh,nit ,nj,t+lij

≥ 0, h ∈H, t ∈ T (lij, s, e), j ̸= i, i, j ∈ V , (26g)

δij − uh,nit ,nj,t+lij
δij − ϕ̃h,nit ,nj,t+lij

+ ωh,nit ,nj,t+lij
≥ 0, h ∈H, t ∈ T (lij, s, e), j ̸= i, i, j ∈ V , (26h)

H

∑
h=1

uh,nit ,nj,t+lij
= 1, t ∈ T (lij, s, e), j ̸= i, i, j ∈ V , (26i)

ϕ̃h,nit ,nj,t+lij
≤ δij, h ∈H, t ∈ T (lij, s, e), j ̸= i, i, j ∈ V , (26j)

uh,nit ,nj,t+lij
≤ 1, h ∈H, t ∈ T (lij, s, e), j ̸= i, i, j ∈ V , (26k)

t+lf−1

∑
i=t

z̃i ≤ ¯̄z, t ∈ {s, . . . , e− lr − lf}, (26l)

∑
t∈T (lr,s,e)

zt ≤ z̄, (26m)

qz̃t ≤ ∑
i∈V

∑
j∈V ,j ̸=i

γnit ,nj,t+lr
≤ q̄z̃t, t ∈ T (lr, s, e), (26n)

zt − z̃t ≥ 0, t = s; zt − z̃t + z̃t−1 ≥ 0, t ∈ T (lr, s + 1, e), (26o)
zt + z̃t−1 − 1≤ 0, zt − z̃t ≤ 0, t ∈ T (lr, s, e), (26p)

z̃t ∈ {0, 1}, t ∈ T (lr, s, e)
}

. (26q)

Note that Ỹ(s,e) ≥ 0 indicates every variable in the vector Ỹ(s,e) is non-negative. Finally, the two-stage
stochastic programM(s, e) is given by

min
x ∑

j∈V
cjxj + Θ′′(x) s.t. x∈ X =

{
x∈Z

|V|
+

∣∣∣∣∣ xj − Bj ≤ 0, j ∈ V , ∑
j∈V

xj ≤ N

}
. (M(s, e))

E.6. Algorithm 1 Details
For any s ∈ T and e ∈ T ∪ {T} such that e− s ≥ 3, we fix some binary variables in problemM(s, e) to be
0 based on its LP relaxation solution. In Algorithm 1, we apply the following procedure for each scenario
k ∈ K. First, we construct two sets (i.e., T r1 and T r2) by, respectively, collecting the following two sets of
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values: (i) z̃ks
t , t ∈ T (lr, s, e) and (ii) ẑks

t = z̃ks
t + z̃ks

t+1, t ∈ T (lr, s, e − 1). Each of these two sets of values
are sorted in decreasing order in sets T r1 and T r2. Next, we collect the time indices (i.e., t) of the first
nI ≤ e − s − 1 elements of the ordered set T r1 in T̂ r1 and those of T r2 in T̂ r2. By increasing the value of
each element in T̂ r2 by 1, we collect these indices in T̂ r3. Note that for each scenario k ∈ K, the subset of
variables {z̃k

t , t ∈ T̂ r1 ∪ T̂ r2 ∪ T̂ r3} are most likely to take value 1. Thus, we reduce the binary variables z̃k
t in

the operational problemQLP(s, e) andQ(s, e) by restricting z̃k
t = 0 if t ∈ T (lr, s, e)\(T̂ r1 ∪ T̂ r2 ∪ T̂ r3) for any

scenario k ∈ K. By (2f), when z̃k
t = 0, the number of vehicles relocated by the 3PL γnit ,nj,t+lr

= 0 from region
i in period t to region j. Thus, the solution space is reduced and the solution process can be accelerated.

Algorithm 1 Reduction of the Binary Variables for 3PL Relocation (s, e)

1: Initialize: T r1 = T̂ r1 = T r2 = T̂ r2 = T̂ r3 := ∅
2: SolveMLP(s, e) to obtain z̃ks

t , t ∈ T (lr, s, e), k ∈K
3: for k ∈K do
4: T r1←{z̃ks

t | t ∈ T (lr, s, e)} such that z̃ks
(1) ≥ · · · ≥ z̃ks

(e−s−lr−1) and T r1 = {z̃ks
(t) | t ∈ T (lr, 1, e− s)}

5: ẑks
t ← z̃ks

t + z̃ks
t+1, t ∈ T (lr, s, e− 1)

6: T r2←{ẑks
t | t ∈ T (lr, s, e)} such that ẑks

(1) ≥ · · · ≥ ẑk∗
(e−s−lr−2) and T r2 = {ẑks

(t) | t ∈ T (lr, 1, e− s− 1)}
7: T̂ r1←{t ∈ T (lr, s, e) | z̃ks

t ≥ z̃ks
(nI )
}, T̂ r2←{t ∈ T (lr, s, e− 1) | ẑks

t ≥ ẑks
(nI )
}, T̂ r3←{t + 1 | t ∈ T̂ r2}

8: Set z̃k
t = 0, t ∈ T (lr, s, e)\(T̂ r1 ∪ T̂ r2 ∪ T̂ r3) in QLP(s, e) and Q(s, e)

9: T r1, T̂ r1,T r2, T̂ r2, T̂ r3←∅

E.7. Algorithm 2 Details

Algorithm 2 Temporal Decomposition
1: Initialize: x := 0, xsum := 0, Dm := ∅, m ∈ {1, 2, . . . , M}
2: for m = M, . . . , 1 do
3: s← (m− 1)Tsub, e←mTsub
4: Update problem QLP(s, e) and Q(s, e) to reduce binary variables by Algorithm 1
5: SolveMLP(s, e) with Ỹ(s,e) ∈ YLP(s,e)(x, λ) ∩ {Ỹ(s,e) | x̃i ≥ xi , i ∈ V} to obtain solution xs and objective vs

6: Dm←Dm ∪ {(xs, vs)}, xi← xs
i , xsum←∑i∈V xs

i
7: for σsum = σ, . . . , σ̄ do
8: X ′←X ∩ {x∈Z

|V|
+ | ∑i∈V xi = xsum + σsum, xi − σi ≤ xi ≤ xi + σi , i ∈ V}

9: ResolveMLP(s, e) where x∈ X ′ by Bender’s decomposition
10: Obtain solution xs and objective vs

11: Dm←Dm ∪ {(xs, vs)}, X ←∅
12: if m ̸= 1 then
13: Dm←{(xℓ, vℓ) ∈Dm, ℓ ∈ {1, 2, . . . , |Dm|}|v1 ≤ · · · ≤ v|Dm |}
14: xs←Dm[0].key, x← xs

15: else
16: for all (xs, vs) ∈D1 do
17: T̂ ← {(t, k) ∈ T (lr, 0, T)×K | z̃k

t = 0 in Q(s, e) with t ∈ T (lr, s, e) where s = (m− 1)Tsub, e = mTsub, m ∈ {1, 2, . . . , M}}
18: ResolveM(0, T) where x∈ X ∩ {x∈Z

|V|
+ | x = xs} and Ỹ∈ Y(x, λ) ∩ {Ỹ | z̃k

t = 0, (t, k) ∈ T̂ } to obtain v′
19: vs← v′, update (xs, vs) in D1

20: Return D1

In Algorithm 2, we solve smaller and thus simpler two-stage stochastic programs over each sub-network
m ∈ {1, 2, . . . , M} in a backward sequence, from the last sub-network m = M to the first m = 1. For each
sub-network, we follow a four-step solution procedure, with the first step to reduce the number of second-
stage binary variables by applying Algorithm 1. In the following, we detail the remaining three steps for
solving the two-stage stochastic programs (i.e.,M((m− 1)Tsub, mTsub)) over the sub-networks m ≥ 2 and
m = 1 separately. For any m≥ 2, we have the following detailed Steps 2 - 4:

• Step 2. When solving the two-stage problem MLP(s, e) over the sub-network m (i.e., s = (m −
1)Tsub, e = mTsub), we add the constraints x̃i ≥ xi, i ∈ V , in the second-stage problem, i.e., the outflow
x̃i of the sub-network m is lower bounded by xi. This lower bound takes the value of the first-stage
solution xs

i , i ∈ V , of the two-stage problem MLP(s, e) over the sub-network m + 1 if m < M (i.e.,
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s = mTsub, e = (m + 1)Tsub) and takes the value of 0 if m = M. The intuition behind such constraints is
that (i) the vehicle allocation solution of the two-stage problem over the sub-network m approximates
that over the sub-networks from m to M; (ii) the demand over sub-networks from m to M is no less
than that over the sub-networks from m+ 1 to M and the higher demand often leads to more allocated
vehicles. Then, we derive the first-stage allocation solution toMLP(s, e) over the sub-network m.

• Step 3. We refine and re-solve the problem MLP(s, e) several more times, where for each time, two
types of constraints are added, yielding several candidate allocations. One type of constraints are to
perturb the total number of allocated vehicles to take a different value. Particularly, we set the total
number of allocated vehicles ∑i∈V xi = xsum + σsum for each σsum ∈ {σ, . . . , σ̄}, where σsum denotes the
perturbed value. The others are box constraints xi ∈ [xi − σi, xi + σi], i ∈ V , where σi (with ∑i∈V σi ≤
σsum) is the maximum purterbed value for the regional vehicle allocation. Slightly perturbing the total
number of allocated vehicles to different potential values has two advantages. First, it can reduce the
feasible region of the vehicle allocation variables. Second, we observe that, when the total number of
allocated vehicles is fixed, a small perturbation of the total number of vehicles allocated to one or more
regions has a minor impact on the objective value of the integrated allocation and relocation problem.
The reason is intuitive: though regional vehicle allocation is perturbed, the vehicles can be relocated
to proper places at a low cost. However, when the total number of allocated vehicles changes, the
objective value of the two-stage problem changes significantly.

• Step 4. With several candidate solutions for allocating vehicles in sub-network m, we store each solu-
tion xs as the key and the objective value vs as the value in dictionary Dm, which stores data by the
key-value pairs and the subscript m represents the sub-network index. Then, the solution xs with the
smallest objective vs in Dm is chosen and for each i ∈ V , xs

i is taken as the lower bound xi for the
two-stage problem over sub-network m− 1.

When m = 1, a similar four-step solution procedure is applied as above except that in the final step, we
do not choose the xs

i with the smallest objective value in D1. Instead, for each candidate solution xs in D1, a
two-stage problemM(0, T) over the entire network is solved with the first-stage decisions fixed as xs and
the number of second-stage binary variables reduced. The resulting objective value is denoted by v′ and
used to update vs with respect to xs. We thus obtain several candidate solutions xs and the corresponding
objectives value vs in D1 for the two-stage problemM(0, T) over the original time-space network.

We note that the network split in Algorithm 2 will break some original arcs connecting the sub-networks.
However, there are periods when the shared micromobility system has a relatively low demand and thus a
low volume of traffic on the broken arcs. Thus, the temporal decomposition shall cause a minor error when
splitting the network in those low-demand periods.

Whenever solving a two-stage problem, we apply Bender’s decomposition such that the second-stage
problem is further decomposed into independent scenario-based subproblems, which is solved in parallel.
Our temporal decomposition algorithm can efficiently solve large-scale problems because (i) the problem
size at each iteration is reduced, so is the number of binary variables; (ii) the solution space of MLP(s, e)
is reduced by fixing ∑i∈V xi to different values, thereby enabling a quick search of better solutions; and
(iii) by employing Bender’s decomposition, we can leverage the parallel capacity to solve the second-stage
problem P k for each separate scenario k ∈K in parallel, further enhancing the computational efficiency.

Furthermore, we formulate the Bender’s cuts used in the above Algorithm 2. We note that our two-stage
problemMLP(s, e) over any sub-network has a complete recourse, and hence we only need to derive the
Bender’s optimality cuts. Given the operational horizon [s, e), denote the arc set At with t ∈ T (lij, s, e) by
At(s, e). Also, given the first-stage solution x, denote the multipliers for the first case of constraints (26b)
(with right-hand-side xi) by π1

i ∈R, i ∈ V , those for constraints (26l) by π2
t ≥ 0, t ∈ {s, . . . , e− lr − lf}, that

for constraint (26m) by π3 ≥ 0, those for constraints (26i) by π4
a , a ∈ At(s, e), those for constraints (26j) by

π5
h,a ≥ 0, h ∈ H, a ∈ At(s, e), those for constraints (26h) by π6

h,a ≥ 0, h ∈ H, a ∈ At(s, e), those for (26k) by
π7

h,a ≥ 0, h ∈ H, a ∈ At(s, e), those for constraints (26c) by π8
a ∈ R, a ∈ At(s, e), those for the first part of

constraints (26p) (zt + z̃t−1 − 1≤ 0) by π9
t ≥ 0, t ∈ T (lr, s + 1, e), those for z̃t ≤ 1 by π10

t ≥ 0, t ∈ T (lr, s, e),
and those for constraints x̃i ≥ xi (added in Algorithm 2) by π11

i ≥ 0, i ∈ V . We omit the dual variables
for other constraints because they do not appear in the optimality cuts. At a given iteration, a Bender’s
optimality cut takes the form θ−∑k∈K pkqk(x)≥ 0, where θ denotes the lower bound approximation of the
second-stage value function Θ′′(s,e)(x) and

qk(x) = ∑
i∈V

π1
i xi −

e−lr−lf

∑
t=s

π2
t ¯̄z− π3 z̄ + ∑

a∈At(s,e)
π4

a − ∑
h∈H,a∈At(s,e)

((
π5

h,a + π6
h,a

)
δij + π7

h,a

)
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− ∑
a∈At(s,e)

π8
a λa − ∑

t∈T (lr ,s+1,e)
π9

t − ∑
t∈T (lr ,s,e)

π10
t + ∑

i∈V
π11

i xi .

Note that only one cut is generated at each iteration. One can also use a multi-cut version, by which |K|
Bender’s optimality cuts are generated at each iteration (Birge and Louveaux 2011).

E.8. Algorithm 3 Details

Algorithm 3 Heuristic Search (D1)
1: Initialize vmin := ∞, xsum := ∞, xsum :=−∞, x̄sum := ∞, V ′←∅
2: D̂1←{(q, v) | (x, v) ∈D1, q = ∑i∈V xi}
3: D̂1←{(xl , vl) ∈ D̂1 | x1 ≤ · · · ≤ x|D̂1 |}, x̄sum← D̂1[|D̂1| − 1].key, xsum← D̂1[0].key
4: D1←{(xl , vl) ∈D1 | v1 ≤ · · · ≤ v|D1 |}, v0←D1[0].value, x0←D1[0].key, xsum←∑i∈V x0

i
5: I← 0
6: if xsum ≥ x̄sum then
7: while v0 < vmin and I ≤ 20 do
8: Randomly pick V ′ ⊆ V such that |V ′|= N̄1
9: x0

i ← x0
i + 1, i ∈ V ′, x̄sum←∑i∈V x0

i , vmin← v0

10: ResolveM(0, T) where x∈ X ∩ {x∈Z
|V|
+ | x = x0} to obtain v0

11: D1←D1 ∪ {(x0, v0)}, I← I + 1
12: if I ≤ 20 then x0

i ← x0
i − 1, i ∈ V ′, xsum←∑i∈V x0

i , v0← vmin, vmin←∞
13: while v0 < vmin and xsum + N̄2 < x̄sum do
14: Randomly pick V ′ ⊆ V such that |V ′|= N̄2
15: x0

i ← x0
i + 1, i ∈ V ′, xsum←∑i∈V x0

i , vmin← v0

16: ResolveM(0, T) where x∈ X ∩ {x∈Z
|V|
+ | x = x0} to obtain v0

17: D1←D1 ∪ {(x0, v0)}
18: if xsum + N̄2 < x̄sum then x0

i ← x0
i − 1, i ∈ V ′, v0← vmin

19: else
20: if xsum ≤ xsum then
21: while v0 < vmin and I ≤ 20 and x0

i > 0, i ∈ V do
22: Randomly pick V ′ ⊆ V such that |V ′|= N̄1
23: x0

i ← x0
i − 1, i ∈ V ′, xsum←∑i∈V x0

i , vmin← v0

24: ResolveM(0, T) where x∈ X ∩ {x∈Z
|V|
+ | x = x0} to obtain v0

25: D1←D1 ∪ {(x0, v0)}, I← I + 1
26: if I ≤ 20 then x0

i ← x0
i + 1, i ∈ V ′, xsum←∑i∈V x0

i , v0← vmin, vmin←∞
27: while v0 < vmin and xsum − N̄2 > xsum and x0

i > 0, i ∈ V do
28: Randomly pick V ′ ⊆ V such that |V ′|= N̄2
29: x0

i ← x0
i − 1, i ∈ V ′, xsum←∑i∈V x0

i , vmin← v0

30: ResolveM(0, T) where x∈ X ∩ {x∈Z
|V|
+ | x = x0} to obtain v0

31: D1←D1 ∪ {(x0, v0)}
32: if xsum − N̄2 > xsum then x0

i ← x0
i + 1, i ∈ V ′, v0← vmin

33: Return x0 and v0

Algorithm 3 mainly consists of two steps. First, we set the search step of the total number of allocated
vehicles xsum as a positive value N̄1 ≤ N. If the solution x0 in D1 with the smallest objective value (denoted
by vmin) has the largest (resp. smallest) total number of allocated vehicles xsum, we then generate a new
candidate solution by increasing (resp. decreasing) xsum by N̄1. This is done by randomly choosing xi, i ∈ V ,
for N̄1 times, where for each time the value of the chosen xi is increased (resp. decreased) by 1. Then,
we append this new solution and the corresponding objective value of the two-stage problemM(0, T) to
D1. If the newly added objective is the smallest in D1, then we similarly generate another new candidate
solution. Otherwise, the search in the first step terminates, and we denote by x̄sum (resp. xsum) the current
largest (resp. smallest) total number of allocated vehicles. The intuition of this step is as follows. Suppose
we observe the objective values in D1 monotonically decrease as the corresponding total number of allo-
cated vehicles increases (resp. decreases), then a smaller objective can be found highly possibly by further
increasing (resp. decreasing) total number of allocated vehicles (note that we do observe this phenomenon
in our numerical experiments, see Section 6). If such observation is not found, we immediately output the
solution with the smallest objective value in D1.

Second, we set the search step of xsum as a positive value N̄2 ≤ N̄1/2 and search within the range between
x̄sum − |N̄1| and x̄sum (resp. between xsum and xsum + |N̄1|). That is, we generate a new candidate solution
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by increasing xsum starting from x̄sum − |N̄1| (resp. decreasing xsum starting from xsum + |N̄1|) with a step
size N̄2. We append the new solution and the associated objective value of model M(0, T) to D1. If the
sequence of objective values stops decreasing during the search, then we end up with a locally optimal
solution x0 with the smallest objective in D1. We can also obtain the corresponding second-stage solution.
This second step is to refine the search with a smaller step size hoping that a smaller objective can be found.

In the numerical experiments, we set the perturbation for regional allocation σi = 1 for i ∈ V , σ = σ̄ = 1
for the total allocation, and the step sizes N̄1 = |V| and N̄2 = ⌊|V|/3⌋.

Appendix F: Supplement to Section 6

F.1. Performance of Solution Approaches
We compare the CPLEX approach with our solution approach, and report the results in Table F2.

Table F2 Performance of Solution Approaches

Cases Weekdays Weekends
The CPLEX Approach Our Solution Approach The CPLEX Approach Our Solution Approach

cj Cr Cp Profit ($) Time (s) Profit ($) Time(s) Profit ($) Time (s) Profit ($) Time (s)

0.5

13

0.1 – 10,800 2,177.6 3,216 -255.8 10,800 877.6 3,563
0.3 – 10,800 2,177.7 3,356 -767.4 10,800 878.6 3,248
0.5 – 10,800 2,182.7 2,845 -1,279.1 10,800 879.7 3,319
0.7 – 10,800 2,190.4 2,121 -1,790.7 10,800 879.2 3,282

15

0.1 – 10,800 2,169.9 3,037 -255.8 10,800 875.8 3,503
0.3 – 10,800 2,166.9 2,964 -767.4 10,800 876.6 2,581
0.5 – 10,800 2,172.6 2,885 -1,279.1 10,800 877.5 3,366
0.7 – 10,800 2,176.5 2,920 -1,790.7 10,800 877.9 2,322

17

0.1 – 10,800 2,159.4 3,039 -255.8 10,800 875.2 3,186
0.3 – 10,800 2,157.8 2,106 -767.4 10,800 875.8 2,977
0.5 – 10,800 2,165.0 2,229 -1,279.1 10,800 876.6 3,012
0.7 – 10,800 2,167.2 2,901 -1,790.7 10,800 876.8 2,113

0.8

13

0.1 – 10,800 2,116.4 2,172 -255.8 10,800 848.9 2,822
0.3 – 10,800 2,118.6 2,816 -767.4 10,800 849.6 2,063
0.5 – 10,800 2,120.1 1,639 -1,279.1 10,800 849.7 2,820
0.7 – 10,800 2,123.4 2,464 -1,790.7 10,800 849.7 2,089

15

0.1 – 10,800 2,107.7 2,065 -255.8 10,800 847.7 2,763
0.3 – 10,800 2,108.1 2,110 -767.4 10,800 848.0 2,804
0.5 – 10,800 2,110.2 2,348 -1,279.1 10,800 848.1 2,852
0.7 – 10,800 2,115.6 2,315 -1,790.7 10,800 848.0 2,485

17

0.1 – 10,800 2,099.9 2,136 -255.8 10,800 847.2 2,775
0.3 – 10,800 2,098.9 1,486 -767.4 10,800 847.4 2,854
0.5 – 10,800 2,100.9 2,467 -1,279.1 10,800 847.9 2,778
0.7 – 10,800 2,104.2 1,615 -1,790.7 10,800 848.0 2,603

1.0

13

0.1 – 10,800 2,078.3 1,489 -255.8 10,800 831.4 2,425
0.3 – 10,800 2,077.1 2,051 -767.4 10,800 830.9 2,616
0.5 – 10,800 2,082.9 2,027 -1,279.1 10,800 830.6 2,598
0.7 – 10,800 2,088.1 2,196 -1,790.7 10,800 831.2 2,610

15

0.1 – 10,800 2,063.3 2,156 -255.8 10,800 830.3 2,616
0.3 – 10,800 2,070.1 2,134 -767.4 10,800 829.5 2,626
0.5 – 10,800 2,061.6 2,190 -1,279.1 10,800 830.1 2,570
0.7 – 10,800 2,071.9 1,493 -1,790.7 10,800 829.6 1,804

17

0.1 – 10,800 2,063.7 2,185 -255.8 10,800 830.1 2,578
0.3 – 10,800 2,060.2 2,121 -767.4 10,800 828.9 2,572
0.5 – 10,800 2,053.3 1,470 -1,279.1 10,800 829.6 2,550
0.7 – 10,800 2,063.8 1,442 -1,790.7 10,800 828.9 2,648

We further perform experiments to assess the optimality gap between the profits obtained by our solution
approach and by the original model (M). We follow the setting in Section 6.1 (with cj = 0.5, Cp = 0.5, and
Cr = 15) and consider different instances by varying (i) demand data set, i.e., demands on weekdays and
weekends, (ii) the number of scenarios |K|, and (iii) operational horizon T . Tables F3 and F4 show the
results for the weekdays and weekends, respectively, where [a, b] denotes {a, a + 1, . . . , b} with b > a.

For each instance, we compare the performance of three approaches: (i) “CPLEX MIP:” solve the original
mixed-integer programming (MIP) model (M) via the CPLEX with its default setting and time limit as 24
hours; (ii) “CPLEX LP:” solve the linear programming (LP) relaxation of the model (M) via the CPLEX with
its default setting and time limit as two hours; (iii) “Our Solution Approach:” solve the original MIP model
(M) via our proposed solution approach in Section 5.2.

For each approach, we report the profit and computational time with respect to each given instance. For
“CPLEX MIP,” as no instance can be solved to the optimality within the time limit 24 hours, we report the
terminating gap provided by the CPLEX, which is defined as the relative gap between the best profit and
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the best upper bound of the profit that can be obtained when reaching the time limit. For “Our Solution
Approach,” we define

MIP Gap (%) =
(the profit by “CPLEX MIP”)− (the profit by “Our Solution Approach”)

(the profit by “CPLEX MIP”)
× 100%,

LP Gap (%) =
(the profit by “CPLEX LP”)− (the profit by “Our Solution Approach”)

(the profit by “CPLEX LP”)
× 100%

with respect to each given instance and report their values.
Table F3 Results with Weekday Demands

No. Scenarios
|K|

Horizon
T

CPLEX MIP CPLEX LP Our Solution Approach

Profit ($) Time (s) Terminating
Gap (%) Profit ($) Time (s) Profit ($) Time (s) MIP Gap (%) LP Gap (%)

20

[40, 140] 1,035.0 86,400 4.59 1,095.0 107.8 1,007.1 520.6 2.70 8.03
[30, 150] 1,136.6 86,400 5.06 1,207.2 136.0 1,107.4 281.7 2.57 8.27

[140, 240] 1,137.9 86,400 4.33 1,198.6 95.2 1,095.5 385.9 3.73 8.60
[120, 240] 1,348.3 86,400 4.45 1,421.1 121.3 1,298.7 320.9 3.68 8.61
[50, 210] 2,075.1 86,400 5.21 2,199.0 221.6 2,008.2 424.2 3.22 8.68
[40, 220] 2,109.9 86,400 5.66 2,248.3 276.6 2,050.6 520.8 2.81 8.79

40

[40, 140] 1,054.0 86,400 5.35 1,121.9 293.6 1,033.0 1,044.4 1.99 7.92
[30, 150] 1,157.9 86,400 5.38 1,233.1 555.7 1,123.6 683.4 2.96 8.88

[140, 240] 1,137.5 86,400 4.64 1,200.5 308.3 1,100.2 843.6 3.27 8.35
[120, 240] 1,339.2 86,400 4.96 1,416.7 397.5 1,289.3 647.0 3.73 9.00
[50, 210] 2,094.9 86,400 5.66 2,229.1 632.1 2,028.6 950.6 3.16 8.99
[40, 220] 2,119.4 86,400 6.76 2,279.3 908.3 2,085.3 1,165.7 1.61 8.51

60

[40, 140] 1,047.9 86,400 5.71 1,118.4 683.6 1,029.2 1,537.2 1.78 7.97
[30, 150] 1,149.8 86,400 5.74 1,227.4 842.9 1,121.5 1,124.3 2.46 8.63

[140, 240] 1,090.1 86,400 5.10 1,154.7 472.2 1,056.7 1,355.3 3.06 8.49
[120, 240] 1,289.4 86,400 5.46 1,369.5 724.9 1,250.1 903.6 3.05 8.72
[50, 210] 2,039.0 86,400 6.33 2,181.8 1,683.1 1,996.1 1,954.3 2.10 8.51
[40, 220] 2,074.4 86,400 6.84 2,230.8 2,787.3 2,040.2 1,817.0 1.65 8.54

80

[40, 140] 1,046.3 86,400 5.83 1,117.3 898.5 1,027.9 2,128.6 1.75 8.00
[30, 150] 1,147.7 86,400 5.89 1,226.4 1,558.4 1,120.1 1,494.8 2.40 8.66

[140, 240] 1,107.8 86,400 5.09 1,172.3 715.2 1,072.5 1,607.3 3.18 8.51
[120, 240] 1,308.7 86,400 5.29 1,387.0 1,399.9 1,262.0 1,279.3 3.57 9.01
[50, 210] 2,016.5 86,400 8.41 2,188.9 3,563.3 2,004.2 2,674.1 0.61 8.44
[40, 220] 2,076.6 86,400 7.63 2,238.3 3,499.8 2,052.5 2,607.7 1.16 8.30

Average - 1,464.2 86,400 5.64 1,560.9 953.5 1,427.5 1,178.0 2.59 8.52

Table F3 shows that the “CPLEX MIP” approach cannot solve any instances to the optimality, by which
the terminating gap is 5.64% on average. In contrast, our solution approach can solve all the instances within
around 20 minutes on average. The profit gap between the “CPLEX MIP” and “Our Solution Approach,”
i.e., the value of MIP Gap (%), is only 2.59% on average. Note that the profit by the “CPLEX MIP” may
not be the true optimal profit (which can be larger), we report the profit by the “CPLEX LP” as the upper
bound of the optimal profit. The profit gap between the “CPLEX LP” and “Our Solution Approach,” i.e., the
value of LP Gap (%), is 8.52% on average. Therefore, the optimality gap between the profit by our solution
approach and the optimal profit is between 2.59% and 8.52%.

We observe very similar results in Table F4. Note that the LP relaxation of model (M) may not be suc-
cessfully solved within the time limit two hours for two large instances with |K| = 100 and T = [50, 210]
and [40, 220]. In contrast, our solution approach can solve the original model (M) of these two instances
within around 3, 000 seconds and obtain a better (i.e., larger) profit than the “CPLEX MIP” approach, as
suggested by the negative value of MIP Gap (%).

Note that the “CPLEX MIP” cannot solve any instances to the optimality and the profit by the “CPLEX
LP” can be too larger than the optimal profit. Thus, we further consider smaller instances that can be solved
to the optimality by the “CPLEX MIP,” by which an exact value of MIP Gap (%) is obtained to assess
the opmality gap (see Table F5). When T ∈ {[40, 140], [140, 240]}, leading to smaller instances, we use the
default setting of the CPLEX, i.e., setting its optimality criterion as 0.01%. When T ∈ {[50, 210], [40, 220]},
leading to larger instances, we use the default setting of the CPLEX, while setting its optimality criterion as
0.5%. We do not set a time limit and allow the “CPLEX MIP” approach to solve the instances until reaching
the optimality criterion. Thus, the profit by the “CPLEX MIP” is considered the optimal profit. Table F5
shows that the value of MIP Gap (%) is 3.76% on average.

In summary, the optimality gap between the profit by our solution approach and the optimal profit is
around 4%. Thus, our solution approach significantly reduces the computational time while ensuring very
high-quality solutions.
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Table F4 Results with Weekend Demands

No. Scenarios
|K|

Horizon
T

CPLEX MIP CPLEX LP Our Solution Approach

Profit ($) Time (s) Terminating
Gap (%) Profit ($) Time (s) Profit ($) Time (s) MIP Gap (%) LP Gap (%)

40

[40, 140] 371.8 86,400 9.38 410.7 708.6 366.4 592.1 1.45 10.79
[30, 150] 446.5 86,400 11.02 500.2 934.7 434.4 416.4 2.70 13.15

[140, 240] 576.7 86,400 7.66 626.1 269.0 557.2 655.8 3.39 11.00
[120, 240] 727.6 86,400 8.51 795.0 574.2 703.1 706.4 3.37 11.56
[50, 210] 849.8 86,400 11.40 952.0 1,413.3 833.6 1,066.8 1.92 12.44
[40, 220] 890.0 86,400 10.87 992.6 1,935.3 867.0 1,140.0 2.59 12.66

60

[40, 140] 372.4 86,400 9.79 412.7 1,375.0 367.8 958.8 1.23 10.86
[30, 150] 450.3 86,400 10.43 501.4 1,688.7 440.2 1,037.3 2.24 12.20

[140, 240] 572.8 86,400 8.88 628.0 391.0 559.6 1,238.0 2.30 10.89
[120, 240] 716.5 86,400 10.65 797.3 485.6 709.6 1,310.9 0.96 11.00
[50, 210] 841.8 86,400 12.87 955.3 4,534.1 838.5 1,671.0 0.40 12.23
[40, 220] 876.3 86,400 13.00 996.2 3,766.4 872.8 1,884.9 0.40 12.39

80

[40, 140] 346.8 86,400 10.66 387.1 2,361.3 345.1 1,342.2 0.48 10.86
[30, 150] 418.8 86,400 11.86 472.3 3,252.7 413.6 1,510.1 1.24 12.43

[140, 240] 542.4 86,400 8.95 594.4 543.9 528.9 1,462.9 2.49 11.02
[120, 240] 680.9 86,400 10.31 755.3 706.6 673.1 1,820.1 1.14 10.88
[50, 210] 787.5 86,400 13.87 901.5 6,919.0 789.4 2,272.2 -0.23 12.44
[40, 220] 820.0 86,400 13.99 939.9 5,338.3 821.1 2,363.9 -0.13 12.64

100

[40, 140] 341.1 86,400 11.93 384.8 2,439.8 342.6 1,836.7 -0.45 10.98
[30, 150] 415.2 86,400 11.81 468.0 3,509.1 410.6 1,837.9 1.13 12.27

[140, 240] 524.9 86,400 10.42 583.1 866.0 519.8 2,012.1 0.97 10.84
[120, 240] 670.2 86,400 10.07 741.8 1,120.6 660.9 2,534.3 1.39 10.91
[50, 210] 774.0 86,400 14.29 - 7,200.0 779.9 3,011.1 -0.76 -
[40, 220] 805.0 86,400 14.53 - 7,200.0 810.8 2,912.2 -0.72 -

Average - 617.5 86,400 11.13 672.5 2,480.5 610.2 1,566.4 1.23 11.66

Table F5 Results with Weekday Demands and |K|= 1

Horizon
T

Demand
Level

CPLEX MIP Our Solution Approach

Profit ($) Time (s) Terminating
Gap (%) Profit ($) Time (s) MIP Gap (%)

[40, 140]
low 481.0 27.9 0.01 474.1 93.1 1.43

medium 953.9 139.7 0.01 929.6 88.2 2.56
high 1,322.2 33.8 0.01 1,262.3 46.6 4.53

[140, 240]
low 569.2 24.2 0.01 556.6 71.0 2.20

medium 1,014.4 42.3 0.01 966.5 90.4 4.72
high 1,407.6 32.1 0.01 1,327.0 52.2 5.72

[50, 210]
low 1,014.1 9,624.9 0.50 990.1 65.8 2.36

medium 1,903.9 38,122.5 0.50 1,859.4 188.3 2.34
high 2,611.3 18,808.2 0.50 2,468.6 26.4 5.47

[40, 220]
low 1,030.2 8,928.5 0.50 992.5 73.9 3.66

medium 1,942.6 96,833.5 0.50 1,850.0 64.8 4.77
high 2,673.5 47,991.0 0.50 2,529.6 39.2 5.38

Average - 1,410.3 18,384.0 - 1,350.5 75.0 3.76

F.2. Extending Proposition 1 to The General Case
We observe that Proposition 1 still holds for the general case with multiple regions. To show that Part (a)
of Proposition 1 holds, we consider each arc (nit, nj,t+lij) ∈ A

t and (nit, nj,t+lr) ∈ Ar sharing the same start
region i ∈ V , end region j ∈ V , j ̸= i, and start time t ∈ T , and find that Λk∗

nit ,nj,t+lij
γk∗

nit ,nj,t+lr
= 0 for any k ∈K

(i.e., Part (a) holds by 100%). To show Parts (b) and (c) of Proposition 1 hold for the general case, we need to
compare Cr/α with the optimal number of vehicles relocated by crowdsourcing (denoted by Λ̃k

t ) and that
by the 3PL (denoted by γ̃k

t ) in each period t ∈ T and scenario k ∈K. As the two-region case and the general
case have different settings, we compute the values of Cr/α, Λ̃k

t , and γ̃k
t in the general case as follows.

First, a fixed variable cost α of crowdsourcing is used in Proposition 1, while the incentive function g(·) is
nonlinear and concave in the general case. Thus, for each arc a ∈At, we obtain a simplified increasing rate
ϕ̄a/(Λ̄a − ϵ) of g(·). We further average this rate over all the arcs in At, i.e., (1/|At|)∑a∈At ϕ̄a/(Λ̄a − ϵ), to
represent the value of α in the general case. Second, the 3PL relocation operation is more complicated in the
general case. For instance, the relocation cost Cr is incurred whenever the 3PL is used in the two-region case,
while it is incurred only when the 3PL is requested in a period t in the general case. Once requested in t, the



48

3PL can be further used in the following ¯̄z periods without additional costs. Thus, for any t ∈ T and k ∈K,
we let Λ̃k

t = ∑
t+min{ ¯̄z−1, T−1−t}
s=t ∑i∈V ∑j∈V , j ̸=i Λk∗

nis ,nj,s+lij
and γ̃k

t = ∑
t+min{ ¯̄z−1, T−1−t}
s=t ∑i∈V ∑j∈V , j ̸=i γk∗

nis ,nj,s+lr
,

where Λk∗
nis ,nj,s+lij

and γk∗
nis ,nj,s+lr

are the optimal solutions to (M).

We then compare the values of Cr/α, Λ̃k
t , and γ̃k

t . For Part (c) of Proposition 1, we compare Cr/α with
γ̃k

t when zk∗
t = 1, γ̃k

t > 0 (i.e., the 3PL is used). We have Part (c) holds by 100% on both weekdays and
weekends. For Part (b), we compare Cr/α with Λ̃k

t when both the crowdsourcing and 3PL are available.
Note that, during any time interval of lf periods, the 3PL operates for at most ¯̄z periods (see (2e)). Thus, the
3PL may not be available for some periods. For example, if zk∗

t = 1 and γ̃k
s > 0, s ∈ [t, t+ ¯̄z− 1], then the 3PL

cannot be used since t + ¯̄z until t + lf. Thus, in a period t, if we see zk∗
t = 1, i.e., the 3PL is requested to serve

and hence crowdsourincg is not used by Part (a) of Proposition 1, we then move to period t + lf to continue
the comparisons. The result shows that Part (b) holds by 99.73% on weekdays and 100% on weekends.

F.3. Data Processing via ARIMA Models
In contrast to the previous experiments, we re-generate the training and testing samples separately, with
each having 120 samples of scenarios for both the weekday and weekend demands. To that end, the data in
2018 is fitted in seasonal ARIMA models. We use 20 weekdays (resp. 8 weekend days) of trip records in each
month to fit a time series model of the bimodal (resp. unimodal) pattern. Thus, we have 12 fitted time series
models for weekdays (resp. weekend days) in 12 months. Then, each model generates 20 new samples
for the corresponding month by forecasting: 10 for training and 10 for testing, leading to 120 scenarios of
demand for training and 120 scenarios of demand for testing. To keep the mean values of the weekday
and weekend samples the same in each given month, we follow the following three steps: (i) first, scale the
sample values; (ii) then, randomly select an arc in the network G and add one more demand to the sample
with a lower mean value; and (iii) do the above step until the mean values are the same.

Endnotes
1. Source: https://www.propertyshark.com/mason/ny/New-York-City/Maps?map=nyc2.
2. Similar user behavior for urban commuters in NYC can be found in NYC DOT (2019).
3. The vehicle allocation cost is estimated by dividing 150 dollars (the normal price of a bicycle at Amazon.com) over

300 operational days per year (we exclude some days due to vehicle maintenance and weather conditions).
4. Given that the annual membership costs 15 dollars per month, the revenue is estimated by assuming that each

customer has 30 rides per month with 2.5 periods (15 minutes) per ride, leading to R = 0.2.
5. According to American Transportation Research Institute (Murray and Glidewell 2019), the average service cost of

motor carriers from 2015 to 2018 is 1.67 dollars per mile. We assume that the 3PL relocation charges the same price and
covers 9 miles of a route through nine regions, which leads to about 15 dollars per relocation request.

6. This program has a hierarchical reward scheme. One can earn 1-6 points for one crowdsourcing trip depending on
the origin and destination. The value of 1 point also varies. When a rider has accumulated points less than 80 in one
month, every 20 points worth a one-week membership (i.e., 15 dollars per month). Thus we round the value of one
point as 0.2 dollar. When more points are collected, every 10 points worth 1.2 dollar and we simply take one point as 0.1
dollar. Thus, we assume that on average, a 6-minute trip (i.e., one period) will reward the rider 1-1.5 point (i.e., 0.2-0.3
dollar) and every additional 6-minute will increase the range bounds by 1 more point (i.e., 0.1 dollar). In summary, the
reward cost corresponding to trip duration lij is between uij = 0.1 + 0.1lij and ūij = 0.2 + 0.1lij for any i, j ∈ V .
7. We also implement the benchmark problems in the recent version CPLEX 12.10, but the solution performance only

slightly improved for our instances. Note that the presolver, the dynamic search, the various cuts, and heuristics are
turned on by default and decided by CPLEX internally.

8. The relative error is defined as (|xsum,|K|=k − xsum,|K|=250|)/xsum,|K|=250× 100%, where xsum,|K|=250 and xsum,|K|=k
represent the numbers of allocated vehicles under the 250 scenarios and k scenarios respectively. To compute
xsum,|K|=250, we implement our solution algorithm in a single thread by handling each scenario of the second-stage
problem (Q) sequentially (rather than in parallel), which requires much less memory.

9. For example, Mobike provides both the ‘Lite’ version bike (which incurs low cost) and the electric bike (which
incurs high cost). The corresponding yearly allocation costs are estimated as 150, 210, and 300, leading to cj ∈
{0.5, 0.8, 1.0} for all j ∈ V , respectively. Such costs are representative for most bikes, e-bikes and e-scooters according to
their prices listed on Amazon.com; see https://www.amazon.com/s?k=bike&ref=nb sb noss.
10. The average marginal cost (in US dollar) of trucking per mile ranges from 1.5-1.8 during 2010-2019 (Murray and
Glidewell 2019). We assume that the 3PL runs 9 miles per request and thus the total cost per request is 13.5-16.2. We
consider a slightly larger range 13-17.
11. The ridership ranking of the subway stations in NYC is referred to MTA (2020).
12. To leave out the numerical errors, we test with different values of Cp in a finer scale and a wider range from 0.1
to 1 with step length 0.1. We observe that the number of vehicles relocated by the 3PL remains decreasing while the
demand loss shows an increasing trend.

https://www.propertyshark.com/mason/ny/New-York-City/Maps?map=nyc2
https://www.amazon.com/s?k=bike&ref=nb_sb_noss
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