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Abstract. In this paper, we consider the population models with resource-dependent dispersal
for single-species and two-species with competition. For the single-species model, it is well-
known that the total population supported by the environment is always greater than the
environmental carrying capacity if the dispersal is simply random diffusion. However, we find
that the total population supported can be equal or smaller than the environmental carrying
capacity when the dispersal depends on the resource distribution. This analytical finding not
only well agrees with the yeast experiment observation of [49], but also indicates that resource-
dependent dispersal may produce different outcomes compared to the random dispersal. For
the two-species competition model, when two competing species use the same dispersal strategy
up to a multiplicative constant (i.e. their dispersal strategies are proportional) or both diffusion
coefficients are large, we give a classification of global dynamics. We also show, along with
numerical simulations, that if the dispersal strategies are resource-dependent, even one species
has slower diffusion, coexistence is possible though competitive exclusion may occur under
different conditions. This is distinct from the prominent result that with random dispersal
the slower diffuser always wipes out its fast competitor. Our analytical results, supported by
the numerical simulations, show that the resource-dependent dispersal strategy has profound
impact on the population dynamics and evolutionary processes.
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1. Introduction

Dispersal is a vital life-history strategy used for gene flow, resource competition, population
dynamics, and the distribution of species [10]. It is one of the hardest parameters to estimate
despite its importance and hence dispersal processes are often poorly understood [14]. There
are many approaches that have been adopted to model the dispersal process and its ecological
effects. Among them are reaction-diffusion models which are widely used to describe dispersal
in terms of diffusion. Let u(x, t) represent a population density at location x at time t, where
(x, t) ∈ Ω×(0,∞) and Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary representing
the species habitat. Then one of the prototypical models for a single species dispersing through
a closed environment takes the following form{

ut = µ∆u+ u(r(x)− u), x ∈ Ω, t > 0,

∇u · n = 0, x ∈ ∂Ω, t > 0
(1.1)

where the non-negative function r(x) denotes the environmental resource available to the species,
µ is the diffusion coefficient (dispersal rate) and n is the unit outer normal vector on the boundary
∂Ω. The homogeneous Neumann (or zero-flux) boundary conditions means no individuals cross
the habitat boundary. When r(x) is a constant, the first equation of (1.1) is well-known as the
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Fisher-KPP equation originally proposed in [15, 31]. It was shown in [6] that if r(x) ≥ 0 is
a bounded measurable positive function, then for every µ > 0 the problem (1.1) has a unique
positive steady state, denoted by ur,µ, which is globally asymptotically stable, where ur,µ = a if
r(x) = a > 0 is a constant and ur,µ is non-constant if r(x) is so. It was further observed in [36]
that if r(x) is non-constant, then ur,µ satisfies∫

Ω
ur,µ(x)dx = µ

∫
Ω

|∇ur,µ|2

u2r,µ
dx+

∫
Ω
r(x)dx >

∫
Ω
r(x)dx (1.2)

for all µ > 0. Usually
∫
Ω r(x)dx is defined as the environmental (or resource) carrying capacity.

Then (1.2) says that with dispersal the total population is always greater than the environmental
carrying capacity in a spatially heterogeneous environment. If there is no diffusion (µ = 0), the
equilibrium is just r(x). Hence dispersal increases population abundance in a single-species
community. In a multi-species community, dispersal has even more profound ecological effects.
Let us consider the following two-species Lotka-Volterra competition-diffusion system in a closed
habitat Ω ⊂ RN (N ≥ 2)

ut = µ1∆u+ u(r(x)− b1u− c1v), x ∈ Ω, t > 0,

vt = µ2∆v + v(r(x)− b2u− c2v), x ∈ Ω, t > 0,

∇u · n = ∇v · n = 0, x ∈ ∂Ω, t > 0,

(1.3)

where u(x, t) and v(x, t) denote the densities of two competing species with dispersal rates µ1 > 0
and µ2 > 0, respectively. The parameters bi, ci (i = 1, 2) are all positive constants, and r(x) is
the environmental resource shared by two species.

When the resource is spatially homogeneous, namely r(x) is a constant say r(x) = a > 0,
(1.3) is called the classical Lotka-Volterra competition system, which has four equilibria A =
(uA, 0) , B = (0, vB) , C = (u∗, v∗), and O = (0, 0), where

uA =
a

b1
, vB =

a

c2
, u∗ =

a(c2 − c1)

b1c2 − b2c1
, v∗ =

a(b1 − b2)

b1c2 − b2c1
.

The global stability of the above equilibria crucially depends on the ecological reaction coef-
ficients (e.g. see [40]). Set b = b1/b2, c = c1/c2. Then the positive coexistence equilibrium
(u∗, v∗) is globally asymptotically stable if c < 1 < b (weak competition) while competitive
exclusion equilibrium (uA, 0) (resp. (0, vB) is globally asymptotically stable if 1 > max{b, c}
(resp. 1 < min{b, c}). If b < 1 < c (strong competition), the coexistence steady state is unstable
and the two exclusion steady states are locally stable where which species survives in compe-
tition depends on the initial data. When the resource is spatially heterogeneous (i.e. r(x) is
non-constant), the global dynamics of (1.3) may be quite different from the case of spatially
homogeneous resource. The most prominent consequence resulting from (1.3) with non-constant
r(x) is the phenomenon “slower diffuser always prevails” (namely the slower diffuser wipes out
its fast competitor regardless of the initial value), which was first observed in [13] for the case
b1 = c1 = b2 = c2 = 1 (two species are ecologically identical except their dispersal rates) and was
further extended in [36] to the case of weak competition. A complete classification of the global
dynamics of (1.3) in the parameter regime 0 < bc ≤ 1 has been given in a series of essential
works [21–23] and we omit the details here for brevity.

We underline that in the afore-mentioned typical one- and two-species population models,
the species dispersal was described by random diffusion. However, due to biological complexity,
dispersal of biological species may depend on many factors such as local population size, resource
competition, habitat quality/size, inbreeding avoidance and so on (cf. [4, 39, 42, 44]). In this
scenario, density-dependent dispersal will be more appropriate. Among many ways modeling
density-dependent dispersal (cf. [5, 11] and references therein), in this paper, we will explore
the effects of resource-dependent dispersal on the population dynamics. In a single-species
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community, we shall consider a variant of (1.1) with Fokker-Planck type diffusion as follows
wt = µ∆(d(r)w) + w(r(x)− w), x ∈ Ω, t > 0,

∇(d(r)w) · n = 0, x ∈ ∂Ω, t > 0,

w(x, 0) = w0(x) 	 0, x ∈ Ω,

(1.4)

where the dispersal of the species depends on the resource distribution r(x) via a dispersal rate
function d(r). We assume the resource function r(x) satisfies

(H0) r(x) ∈ C2(Ω) and r(x) ≥ 0 is not constant in Ω

and d(r) satisfies

(H1) d(r) ∈ C2([0,∞)), d(r) > 0 and d′(r) ≤ 0 on [0,∞).

The model (1.4) can be regarded as a special case of models considered in [32] and we refer
to [43] for a mathematical derivation of such kind model with Fokker-Planck type diffusion
(see also [11]). The assumption d′(r) ≤ 0 describes the fact that the dispersal rate of species
will be slower in the area with more abundant resources, which seems to be universal and
appears widely in other biological processes such as preytaxis [29], bacterial movement [26, 35],
starvation-driven diffusion [9] and chemotaxis [28, 30]. It was shown in [32] that the problem
(1.4) admits a unique positive steady state wµ,d(x) which is globally asymptotically stable and in
particular, if d(r)r = constant, then wµ,d(x) = r(x) is the ideal free distribution (i.e., the species
can perfectly match the environmental resource and hence optimize its fitness). However, the
effect of resource-dependent dispersal on the population size, like whether the total population∫
Ωwµ,d(x)dx increases or decreases, was not examined in [32]. The answer is clear when d(r)r
is constant as mentioned above, but remains obscure when d(r)r is non-constant. This becomes
the first goal of this paper and the main result obtained on (1.4) can be described as follows.

• If d(r) = e−kr or d(r) = (1 + r)−k with k > 0 , then the total population
∫
Ωwµ,d(x)dx

may be greater than the environmental carrying capacity m0 :=
∫
Ω r(x)dx if k is small,

while it may be smaller than m0 if both k and µ are large (see Theorem 2.1).

When the resource-dependent dispersal rate d(r) is a constant, the well-known results (cf. [36]
or (1.2)) assert that the total population supported is always greater than the environmental
carrying capacity. On the contrary, when d(r) is non-constant, we show that there is d(r) such
that the total population supported can be equal or smaller than the environmental carrying
capacity (see Theorem 2.1 and numerical simulations in Fig.1). Our result adds a theoretical
support to the yeast experiment observation in [49] that a consumer diffusing in a region with
a heterogeneously distributed input of exploitable renewed limiting resources can have smaller
total population abundance at equilibrium than a population diffusing in a space with the same
total amount of resources distributed homogeneously. This in turn implies that the resource-
dependent dispersal may play a role in regulating the population size.

Next we turn to consider the following two-species competition-diffusion model with resource-
dependent dispersal rates

∂tu1 = µ1∆(d1(r)u1) + u1(r(x)− u1 − u2), x ∈ Ω, t > 0,

∂tu2 = µ2∆(d2(r)u2) + u2(r(x)− u1 − u2), x ∈ Ω, t > 0,

∇(d1(r)u1) · n = ∇(d2(r)u2) · n = 0, x ∈ ∂Ω, t > 0,

u1(x, 0) = u1,0(x) 	 0, u2(x, 0) = u2,0(x) 	 0, x ∈ Ω,

(1.5)

where di(r)(i = 1, 2) satisfies

(H2) di(r) ∈ C2([0,∞)), di(r) > 0 and d′i(r) ≤ 0 on [0,∞).

The main purpose of this paper is to explore how the resource-dependent dispersal affects the
global (or local) dynamics of populations compared to the resource-independent dispersal (i.e.
random diffusion) like the model (1.3). The resource-dependent dispersal rate functions di(r)(i =
1, 2) will bring considerable difficulties to analysis and analyzing the model (1.5) directly is very
inconvenient. In this paper, we shall develop an idea by changing the variables

u = d1(r)u1 and v = d2(r)u2 (1.6)
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and transforming (1.5) to equations for (u, v) as follows

ut = µ1d1(r)∆u+ u
(
r(x)− u

d1(r)
− v

d2(r)

)
, x ∈ Ω, t > 0,

vt = µ2d2(r)∆v + v
(
r(x)− u

d1(r)
− v

d2(r)

)
, x ∈ Ω, t > 0,

∇u · n = ∇v · n = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u1,0(x)d1(r(x)) 	 0, x ∈ Ω,

v(x, 0) = u2,0(x)d2(r(x)) 	 0, x ∈ Ω.

(1.7)

The transformed system (1.7) generates a monotone dynamical system (cf. [51, Theorem 7])
and the local qualitative properties of its steady states may determine the global dynamics by
the well-known results for monotone dynamical systems. Hence we turn to study the steady
state problem of (1.7), where the steady state solution, denoted by (U, V )(x), satisfies

µ1d1(r)∆U + U
(
r(x)− U

d1(r)
− V

d2(r)

)
= 0, x ∈ Ω,

µ2d2(r)∆V + V
(
r(x)− U

d1(r)
− V

d2(r)

)
= 0, x ∈ Ω,

∇U · n = ∇V · n = 0, x ∈ ∂Ω.

(1.8)

Since di(r) > 0 on Ω for i = 1, 2, it follows from (1.6) that

(u1, u2) =

(
u

d1(r)
,

v

d2(r)

)
, (U1, U2) =

(
U

d1(r)
,
V

d2(r)

)
where (U1, U2)(x) denotes the steady state solution of (1.5). Therefore all qualitative behaviors
of the solution to (1.5) can be recovered by the solution (u, v) of (1.7) through (1.6). Hereafter,
our analysis will be focused on the transformed system (1.7) and (1.8) only. However, the
numerical simulations will be directly performed to (1.5) for illustration when doing so. The
main results of this paper on (1.7) or (1.8) are described as follows.

• If d1(r) = ϑd2(r) for some constant ϑ > 0, namely two competing species have the same
resource-dependent dispersal strategies up to a positive multiplicative constant, then
the semi-trivial (exclusion) steady state (θµ1,d1 , 0) (resp. (0, θµ2,d2)) of system (1.7) is
globally asymptotically stable for any ϑµ1 < µ2 (resp. ϑµ1 > µ2) provided that d2(r)r
is not constant (see Theorem 3.1), where θµi,di is the unique positive solution of{

µidi(r)∆θµi,di + θµi,di
(
r(x)− θµi,di

di(r)

)
= 0, x ∈ Ω,

∇θµi,di · n = 0, x ∈ ∂Ω.

If d2(r)r is constant, then system (1.7) has a global attractor consisting of a continuum
of constant steady states, see Remark 3.1-(b).

• If d1(r) ̸= Cd2(r) for any constant C > 0, when µ1 and µ2 are large, both globally
asymptotically stable semi-trivial and coexistence steady states are possible (see Theo-
rem 3.2). In particular, we can construct some di(r) such that the coexistence steady
state exist if one species has slower diffusion than the other (see Proposition 3.2 and
Remark 3.3), which implies the prominent phenomenon “slower diffuser prevails” may
not occur for populations with resource-dependent dispersal.

• Consider specific dispersal strategies di(r) = e−kir or di(r) = (1 + r)−ki with ki > 0
for i = 1, 2 and k1 ̸= k2 in Ω = [0, L]. If the resource r(x) is monotone in [0, L], then
we can find some parameter regimes in which semi-trivial or positive steady states are
globally asymptotically stable (see Theorem 3.3). We also use numerical simulations
to illustrate that the competitive outcomes could be generic despite of the dispersal
strength in certain parameter regimes (see Remark 3.5 and Fig.3).

Before concluding this section, we shall mention a few related works. In [5], the authors have
considered a general competition-diffusion model with resource-dependent dispersal and explore
the effects of competition and different dispersal strategies. But their study was mainly focused
on the case of weak competition or competitive exclusion. However, this paper primarily aims
to study the effect of resource-dependent dispersal by assuming that two competing species are
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ecologically identical, namely b1 = b2 = c1 = c2 = 1 in (1.3). The result in [5] regarding this
case states that if d1(r)r is constant and d2(r)r is not constant, then the steady state (r(x), 0)
is globally asymptotically stable, namely the species u1 attains the ideal free distribution. We
remark it was previously shown in [3, 8, 16] that the ideal free distribution can be achieved
in the competition-diffusion-advection model with constant diffusion if one species employs the
logarithmic advective strategy and the other does not. In the case d1(r) = ϑd2(r) for some
constant ϑ > 0, the problem (1.8) falls into the model class considered in [18]. Here we obtain
the same results as in [18] with a different approach, see Theorem 3.1 and Remark 3.1-(a).
Recently the global existence and stability of solutions to a special competition-diffusion model
with dynamical resource and resource-dependent dispersal was studied in [48]. The system
(1.7) can be regarded as a competition system with inhomogeneous competition coefficients
and inhomogeneous dispersal rates. In this case, we refer to [41] for the global stability of
inhomogeneous equilibrium solutions (if they exist) under certain conditions.

The rest of this paper is arranged as follows. In section 2, we focus on the single-species
model (1.4) and study the effect of resource-dependent dispersal on the population size. Then
we study the effect of resource-dependent dispersals for the two-species model (1.5) by studying
the transformed system (1.7) in section 3. In section 4, we summarize our results and discuss
some open questions.

2. Single-species model

In this section, we study the global dynamics of the single species model (1.4) with resource-
dependent dispersal, where d(r) satisfies the assumption (H1) with r fulfilling the assumption
(H0). The steady state solution of (1.4), denoted by W (x), satisfies the following equations{

µ∆(d(r)W ) +W (r(x)−W ) = 0, x ∈ Ω,

∇(d(r)W ) · n = 0, x ∈ ∂Ω.
(2.1)

Below we shall investigate the existence and properties of solutions to (2.1) for the non-constant
dispersal rate d(r) and compare the results with those for the constant d(r). In the sequel,
we write the positive solution of (2.1) as Wµ,d to indicate the dependencies of solutions on µ
and non-constant d(r). When d(r) is constant, we shall assume that d(r) = 1 without loss of
generality and denote the solution by Wµ,1. The following results on Wµ,1 are well-known (cf.
[36]).

Proposition 2.1. Let r satisfy the condition (H0). Then the problem (1.4) with d(r) = 1
admits a unique positive steady state Wµ,1 which is globally asymptotically stable and satisfies
the following properties:

(1) lim
µ→0

Wµ,1 = r and lim
µ→∞

Wµ,1 =
1

|Ω|

∫
Ω
rdx in L∞(Ω).

(2)

∫
Ω
Wµ,1dx >

∫
Ω
rdx for every µ > 0.

Next, we shall explore whether the problem (1.4) with non-constant dispersal rate d(r) has
similar/different results as/from those in Proposition 2.1 for the constant d(r). The typical
examples of decreasing function d(r) satisfying the hypothesis (H1) include d(r) = e−kr or
d(r) = (1 + r)−k with a constant k > 0. We shall prove the following theorem.

Theorem 2.1. Let d(r) satisfy condition (H1) with r fulfilling (H0). Then the problem (1.4)
admits a unique positive steady state Wµ,d which is globally asymptotically stable and satisfies

(1) lim
µ→0

Wµ,d = r and lim
µ→∞

Wµ,d =

∫
Ω rd(r)

−1dx∫
Ω d(r)

−2dx
d(r)−1 in L∞(Ω).

(2) If d(r)r = c0 (c0 > 0 is a constant), then Wµ,d(x) = r and

∫
Ω
Wµ,ddx =

∫
Ω
rdx.
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(3) Let d(r) = e−kr or d(r) = (1 + r)−k with k > 0. Then for small k > 0 and any µ > 0, it
holds that ∫

Ω
Wµ,ddx >

∫
Ω
rdx.

While if k > 0 is sufficiently large, there exist µ > 0 large enough such that∫
Ω
Wµ,ddx <

∫
Ω
rdx.

Remark 2.1. We give two remarks to highlight some new findings in Theorem 2.1.

(a) Comparing the results between Proposition 2.1 and Theorem 2.1, we find that although
solutionsWµ,1 andWµ,d share some similar properties, there exist significant differences.
When d(r) is constant, Proposition 2.1-(2) asserts that the total population of unique
positive solution is always greater than the total carrying capacity. However Theorem
2.1-(2) says that if d(r) is proportional to 1

r , the total population is equal to the envi-
ronmental carrying capacity. Furthermore Theorem 2.1-(3) asserts that there exist some
decreasing dispersal rate function d(r) such that the total population can even be smaller
than the environmental carrying capacity, which is confirmed by numerical simulations
shown in Fig.1.

(b) In the yeasts experiment of [49], it was found that a consumer diffusing in a region
with a heterogeneously distributed input of exploitable renewed limiting resources can
have smaller total population abundance at equilibrium than a population diffusing in a
space with the same total amount of resources distributed homogeneously. This is exactly
supported by our results of Theorem 2.1-(3) since total population at equilibrium is the
same as the total amount of resources in the case of homogeneously distributed resources
(r is constant). This observation has been supported by the theoretical models in [12,
20] where both intrinsic growth of the species and environmental carrying capacity are
spatially heterogenous. Our analytical results here add another support to this important
experimental finding using different mechanism (i.e. density-dependent dispersal).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x

 

 
r
W

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x

 

 
r
W

(a) r(x) = 1 + cos(πx/L) (b) r(x) = 1− cos(4πx/L)

Figure 1. Numerical simulations of spatial profile of solutions to (2.1) with
d(r) = (1 + r)−k in [0, L], showing that the supported total population is less
than the total carrying capacity of the resource r, where r(x) is indicated in the
figure and L = 1, k = 10, µ = 105.

Next we proceed to prove Theorem 2.1. Studying (2.1) directly appears to be inconvenient

due to the resource-dependent dispersal rate. Hence we make a change of variable: W (x) = θ(x)
d(r)

and transform (2.1) to the Neumann problem for θ(x){
µd(r)∆θ + θ(r(x)− θ

d(r)) = 0, x ∈ Ω,

∇θ · n = 0, x ∈ ∂Ω.
(2.2)
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In the following, we shall denote the positive solution of (2.2) by θµ,d to indicate the dependencies
of solutions on µ and d. Note that if d(r) depends on k, then θµ,d also depends on k. With

Wµ,d =
θµ,d
d(r) , it suffices to investigate (2.2) for the steady state problem (2.1). To this end, we

consider the following linear eigenvalue problem{
D(x)∆ϕ+m(x)ϕ = λϕ, x ∈ Ω,

∇ϕ · n = 0, x ∈ ∂Ω,
(2.3)

where D(x) and m(x) satisfy

D(x) ∈ C(Ω̄; (0,∞)), m(x) ∈ C(Ω̄;R).

Based on the celebrated Krein-Rutman Theorem [33], problem (2.3) admits a principal eigen-
value, denoted by λ1(D(x),m), which has a strictly positive eigenfunction ϕ1(D(x),m) in Ω
with ∥ϕ1(D(x),m)∥L∞(Ω) = 1. Moreover, by the variational approach, λ1(D(x),m) can be
represented as

λ1(D(x),m) = sup
0 ̸=ϕ∈H1(Ω)

∫
Ω(−|∇ϕ|2 + m

D(x)ϕ
2)dx∫

Ω
ϕ2

D(x)dx
. (2.4)

If D(x) ∈ C1(Ω̄; (0,∞)), by the change of variable ϕ = ψ
√
D(x), one can characterize the

principal eigenvalue by the following expression

λ1(D(x),m) = sup
0 ̸=ψ∈H1(Ω)

∫
Ω

(
− |∇(ψ

√
D(x))|2 +mψ2

)
dx∫

Ω ψ
2dx

. (2.5)

The existence and uniqueness of solutions of (2.2) is established in the following Lemma.

Lemma 2.1. Let d(r) satisfy assumption (H1) with r fulfilling assumption (H0). Then the
problem (2.2) admits a unique positive solution θµ,d which is globally asymptotically stable for
the corresponding parabolic equations.

Proof. Since the nonlinear reaction term of problem (2.2) is of logistic type, it is well-known
that the existence of a positive solution of (2.2) is determined by the linear instability of the
zero solution. As we know that the zero solution is linearly stable (resp. linearly unstable)
provided λ1(µd(r), r) < 0 (resp. λ1(µd(r), r) > 0). Furthermore, if problem (2.2) admits a
positive solution, it must be unique and globally asymptotically stable (cf. [6]).

By the variational characterization (2.4), choosing 1 as a test function, one can deduce that

λ1(µd(r), r) ≥

∫
Ω

r
d(r)dx∫

Ω
1
d(r)dx

> 0,

where we have used the hypotheses (H1) and (H0). This fact suggests that zero solution is
linearly unstable, which completes this proof. �

Next, we provide some prior estimates for the upper bound of the unique positive solution
θµ,d of problem (2.2).

Lemma 2.2. If d(r) satisfies (H1) with r fulfilling (H0), then the unique positive solution θµ,d
of problem (2.2) satisfies

θµ,d ≤ max
x∈Ω̄

(d(r)r), on Ω̄.

Proof. Let x0 ∈ Ω̄ be such that θµ,d(x0) = max
x∈Ω̄

θµ,d. Then by the Hopf boundary lemma, x0 ∈ Ω

and hence ∆θµ,d(x0) ≤ 0, which combined with the first equation of (2.2) suggests that

θµ,d(x0) = max
x∈Ω̄

(θµ,d) ≤ d(r)r|x=x0 ≤ max
x∈Ω̄

(d(r)r),

which completes the proof. �
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Remark 2.2. If d(r)r ≡ C(C is a positive constant), then θµ,d ≡ C; while if d(r)r ̸≡ C for any
positive constant number C, by the strong maximum principle, one can deduce that

θµ,d < max
x∈Ω̄

(d(r)r), on Ω̄.

Then, we describe the limiting profile of the unique positive solution of problem (2.2) as µ→ 0
(or ∞).

Lemma 2.3. If d(r) satisfies (H1) with r fulfilling (H0), then the unique positive solution θµ,d
of problem (2.2) satisfies

∥θµ,d − rd(r)∥L∞(Ω) → 0 as µ→ 0 and ∥θµ,d − cr∥C1(Ω) → 0 as µ→ ∞,

where cr =
∫
Ω rd(r)

−1dx∫
Ω d(r)

−2dx
. Moreover, if ∇r · n = 0 on ∂Ω, min

x∈Ω̄
r > 0 and d(r) = e−kr or d(r) =

(1 + r)−k, then the unique positive solution θµ,d of problem (2.2) satisfies

∥θµ,d − rd(r)∥L∞(Ω) → 0 as k → ∞.

Proof. By Lemma A.1 in [25], we have

∥θµ,d − rd(r)∥L∞(Ω) → 0 as µ→ 0.

Following the approach in Lemma 2.2 of [47], one can deduce

∥θµ,d − cr∥C1(Ω) → 0 as µ→ ∞,

where cr =
∫
Ω rd(r)

−1dx∫
Ω d(r)

−2dx
.

Furthermore, if ∇r · n = 0 on ∂Ω, we only consider the case d(r) = e−kr, and the case

d(r) = (1 + r)−k can be treated in the same manner. let Uk =
θ
µ,e−kr

e−kr on Ω̄. Then, Uk satisfies{
µ∆(e−krUk) + Uk(r − Uk) = 0, x ∈ Ω,

∇Uk · n = 0, x ∈ ∂Ω

where we have used the fact ∇r · n = 0 on ∂Ω. The above equations can be rewritten as{
µe−kr∆Uk − 2µke−kr∇r · ∇Uk + Uk(rk − Uk) = 0, x ∈ Ω,

∇Uk · n = 0, x ∈ ∂Ω
(2.6)

where rk = r + µk2e−kr|∇r|2 − µke−kr∆r. For any ϵ > 0, by assumption (H0), min
x∈Ω̄

r > 0, and

∇r · n = 0 on ∂Ω, we can directly verify that Û = r + ϵ and Ǔ = r − min

{
ϵ,

min
x∈Ω̄

r

2

}
are the

super-solution and sub-solution of problem (2.6) for large k, respectively. Then by the method
of super and sub solutions, one finds a constant k∗(ϵ) > 0 such that

r −min

ϵ,
min
x∈Ω̄

r

2

 ≤ Uk ≤ r + ϵ, k ≥ k∗(ϵ).

Noting that ϵ > 0 is arbitrary, one obtains

r ≤
θµ,d
d(r)

≤ r, as k → ∞,

which completes the proof. �

In the following we shall study whether the total population supported by the environment can
exceed the environmental carrying capacity. Below we shall prove a general results that will be
used later in several places. For the convenience of presentation, we shall assume d(r) =: d(k; r)
sometimes, where d(k; r) satisfies

(H3) d(k; r) depends smoothly on k ≥ 0 satisfying lim
k→0

d(k; r) = 1.
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The typical examples are d(k; r) = e−kr or d(k; r) = (1 + r)−k with k > 0. But note that the
hypothesis (H3) covers more general form of d(k; r) where k is not necessarily the exact decay

rate of d(k; r), for instance d(k; r) = e−
k

1+k
r or d(k; r) = 1 + k

1+r .

We first prove some useful results for the principal eigenvalue λ1(µd(k; r),m) of problem (2.3),
where m(x) ∈ C(Ω̄;R).

Lemma 2.4. Assume that m(x) ∈ C(Ω̄;R) is non-constant, d(r) = d(k; r) satisfies (H1) with
d(k; r) fulfilling (H3) and r satisfying (H0). Then the following results for the principal eigen-
value λ1(µd(k; r),m) of problem (2.3) with corresponding eigenfunction ϕ1(µd(k; r),m) hold.

(i) λ1(µd(k; r),m) and ϕ1(µd(k; r),m) depend smoothly on parameter k ∈ [0,∞) and on
parameter µ ∈ (0,∞), respectively.

(ii) The derivatives of λ1(µd(k; r),m) with respect to k and µ are, respectively, given by

∂λ1(µd(k; r),m)

∂k
=
µ
∫
Ω

ϕ1
d(k;r) ·

∂d(k;r)
∂k ∆ϕ1dx∫

Ω
ϕ21

d(k;r)dx
, (2.7)

and
∂λ1(µd(k; r),m)

∂µ
=

∫
Ω ϕ1∆ϕ1dx∫
Ω

ϕ21
d(k;r)dx

= −
∫
Ω |∇ϕ1|2dx∫
Ω

ϕ21
d(k;r)dx

, (2.8)

where ϕ1 = ϕ1(µd(k; r),m). Moreover, λ1(µd(k; r),m) is strictly decreasing with respect
to parameter µ ∈ (0,∞) such that

lim
µ→0

λ1(µd(k; r),m) = max
x∈Ω̄

m(x), lim
µ→∞

λ1(µd(k; r),m) =

∫
Ω

m
d(k;r)dx∫

Ω
1

d(k;r)dx
,

and
lim
k→0

λ1(µd(k; r), r) = λ1(µ, r).

Furthermore, if d(k; r) = e−kr or d(k; r) = (1 + r)−k, and sup
x∈Ωm

r(x) > 0, then

lim
k→∞

λ1(µd(k; r),m) = max
x∈Ω̄

m(x),

where Ωm = {x ∈ Ω̄|m(x) = max
x∈Ω̄

m(x)}.

Proof. The proof of assertion (i) is standard and we refer to [6, p.163] for details. For asser-
tion (ii), we prove (2.7) only and (2.8) can be shown similarly. For simplicity, we abbreviate
(λ1(µd(k; r),m), ϕ1(µd(k; r),m)) as (λ1, ϕ1). Recall that (λ1, ϕ1) satisfies{

µd(k; r)∆ϕ1 +mϕ1 = λ1ϕ1, x ∈ Ω,

∇ϕ1 · n = 0, x ∈ ∂Ω.
(2.9)

Differentiating (2.9) with respect to k, we get{
µd(k; r)∆ϕ′1 + µ∂d(k;r)∂k ∆ϕ1 +mϕ′1 = λ1ϕ

′
1 + λ′1ϕ1, x ∈ Ω,

∇ϕ′1 · n = 0, x ∈ ∂Ω
(2.10)

where we use ′ to denote ∂
∂k . Multiplying the first equation of (2.9) by

ϕ′1
d(k;r) , and then integrating

the resulting equation on Ω, one obtains∫
Ω

(
µϕ′1∆ϕ1 +

mϕ1ϕ
′
1

d(k; r)

)
dx = λ1

∫
Ω

ϕ1ϕ
′
1

d(k; r)
dx.

Similarly, multiplying the first equation of (2.10) by ϕ1
d(k;r) , and integrating the resulting equation

on Ω, we get∫
Ω

(
µϕ1∆ϕ

′
1 + µ

ϕ1
d(k; r)

· ∂d(k; r)
∂k

∆ϕ1 +
mϕ1ϕ

′
1

d(k; r)

)
dx = λ1

∫
Ω

ϕ1ϕ
′
1

d(k; r)
dx+ λ′1

∫
Ω

ϕ21
d(k; r)

dx.
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Subtracting the above two equations and applying the integration by parts immediately give
(2.7). Next, we will show that ϕ1 is not constant in Ω. Indeed, if ϕ1 is constant in Ω, then
m = λ1 is constant in Ω by (2.9), which contradicts our assumption that m is non-constant.
Therefore, it follows that

∂λ1(µd(k; r),m)

∂µ
= −

∫
Ω |∇ϕ1|2dx∫
Ω

ϕ21
d(k;r)dx

< 0,

which entails that the principal eigenvalue λ1 is strictly decreasing with respect to parameter
µ ∈ (0,∞). Multiplying the first equation of (2.9) with 1

d(k;r) , and then integrating the resulting

equation on Ω, one obtains

λ1

∫
Ω

ϕ1
d(k; r)

dx =

∫
Ω

mϕ1
d(k; r)

dx. (2.11)

To proceed, we Claim that ϕ1 → 1 in C1(Ω̄) as µ → ∞. Indeed from the variational charac-
terization (2.4), it follows that

λ1(µd(k; r),m) = sup
0 ̸=ϕ∈H1(Ω)

∫
Ω(−µ|∇ϕ|

2 + mϕ2

d(k;r))dx∫
Ω

ϕ2

d(k;r)dx

≤ sup
0 ̸=ϕ∈H1(Ω)

∫
Ω

mϕ2

d(k;r)dx∫
Ω

ϕ2

d(k;r)dx

≤ max
x∈Ω̄

m(x), (2.12)

and

λ1(µd(k; r),m) = sup
0 ̸=ϕ∈H1(Ω)

∫
Ω(−µ|∇ϕ|

2 + mϕ2

d(k;r))dx∫
Ω

ϕ2

d(k;r)dx
≥

∫
Ω

m
d(k;r)dx∫

Ω
1

d(k;r)dx
. (2.13)

Based on the facts that ∥ϕ1(µd(k; r),m)∥L∞(Ω) = 1 for any µ > 0, (2.12), (2.13),m(x) ∈ C(Ω̄;R),
(H1) and Lp estimates, one can derive that ∥ϕ1(µd(k; r),m)∥W 2,p(Ω) is bounded uniformly for
any p ≥ 1 as µ → ∞ (cf. [17]). From the Sobolev imbedding theorem, one can deduce from
(2.3) along with D(x) = µd(r) that ϕ1(µd(k; r),m) converges to some function ϕ∗ in C1(Ω̄) as
µ→ ∞, where ϕ∗ ≥ 0 in Ω satisfies (in the weak sense){

∆ϕ∗ = 0, x ∈ Ω,

∇ϕ∗ · n = 0, x ∈ ∂Ω,

and ∥ϕ∗∥L∞(Ω) = 1. Hence the claim holds, which combined with (2.11) implies

lim
µ→∞

λ1(µd(k; r),m) =

∫
Ω

m
d(k;r)dx∫

Ω
1

d(k;r)dx
.

Next, we estimate the principal eigenvalue λ1(µd(k; r),m) as µ→ 0. Since m(x) ∈ C(Ω̄;R), for
any ϵ > 0, there exists some ϕϵ ∈ H1(Ω) such that

supp(ϕϵ) ⊆ {x ∈ Ω|m(x) ≥ max
x∈Ω̄

m(x)− ϵ} and

∫
Ω

ϕ2ϵ
d(k; r)

dx = 1,
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where supp(ϕϵ) = {x ∈ Ω|ϕϵ(x) > 0}. Taking ϕϵ as a test function, by the variational charac-
terization (2.4), we have

λ1(µd(k; r),m) = sup
0 ̸=ϕ∈H1(Ω)

∫
Ω(−µ|∇ϕ|

2 + mϕ2

d(k;r))dx∫
Ω

ϕ2

d(k;r)dx

≥

∫
Ω(−µ|∇ϕϵ|

2 + mϕ2ϵ
d(k;r))dx∫

Ω
ϕ2ϵ

d(k;r)dx

≥ max
x∈Ω̄

m(x)− ϵ− µ

∫
Ω
|∇ϕϵ|2dx. (2.14)

Combining (2.12), (2.14) and noticing that ϵ is arbitrarily small, one finds

lim
µ→0

λ1(µd(k; r),m) = max
x∈Ω̄

m(x).

From assertion (i) and (H3), one arrives at

lim
k→0

λ1(µd(k; r), r) = λ1(µ, r).

Finally, we calculate lim
k→∞

λ1(µe
−kr,m) and lim

k→∞
λ1(µ(1+r)

−k,m) can be obtained similarly. We

note that (2.12) always holds. Since sup
x∈Ωm

r(x) > 0, for any ϵ1 > 0, we can choose ϕϵ1 ∈ H1(Ω)

such that
m(x) ≥ max

x∈Ω̄
m(x)− ϵ1 and r(x) > 0, for x ∈ supp(ϕϵ1).

By the variational characterization (2.4), taking ϕϵ1 as a test function, we find that

lim
k→∞

λ1(µe
−kr,m) = lim

k→∞
sup

0̸=ϕ∈H1(Ω)

∫
Ω(−µ|∇ϕ|

2 +mϕ2ekr)dx∫
Ω ϕ

2ekrdx

≥ lim
k→∞

∫
supp(ϕϵ1)

(−µ|∇ϕϵ1 |2 +mϕ2ϵ1e
kr)dx∫

supp(ϕϵ1 )
ϕ2ϵ1e

krdx

≥ max
x∈Ω̄

m(x)− ϵ1, (2.15)

which, with the help of (2.12) and the arbitrariness of ϵ1, implies that

lim
k→∞

λ1(µe
−kr,m) = max

x∈Ω̄
m(x).

�
Applying the implicit function theorem, one can obtain the following result (for example, see

Theorem 3.5 and Proposition 3.6 in [6]).

Proposition 2.2. If d(r) = d(k; r) satisfies (H1) with d(k; r) fulfilling (H3) and r satisfying
(H0), then the unique positive solution θµ,d of problem (2.2) depends smoothly on µ in (0,∞)
and smoothly on k in [0,∞), respectively. Moreover, θµ,d depends continuously on r.

Lemma 2.5. If d(r) = d(k; r) satisfies (H1) with d(k; r) fulfilling (H3) and r fulfilling (H0),
then the followings results hold.

(i) If d(r)r ≡ c0(where c0 is a positive constant), then θµ,d = c0.

(ii) If d(r)r is not constant in Ω, then
∫
Ω
θµ,d
d(r)dx >

∫
Ω rdx as k is small enough. If d(k; r) =

e−kr or d(k; r) = (1 + r)−k, then for any ϵ > 0, there exists kϵ > 0 such that for any
k ≥ kϵ, we have ∣∣∣∣ ∫

Ω

θµ,d
d(r)

dx− rmax|Ωr|
∣∣∣∣ < ϵ

as µ→ ∞, where rmax = max
x∈Ω̄

r(x) and Ωr = {x ∈ Ω|r(x) = rmax}.
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Proof. If d(r)r ≡ c0, one can verify that θµ,d = c0 by the uniqueness of solutions, yielding the
assertion (i) holds. Next we prove the assertion (ii). If d(r)r is not constant in Ω, then it is
direct to show that ∫

Ω
θµ,1dx =

∫
Ω
rdx+ µ

∫
Ω

|∇θµ,1|2

θ2µ,1
dx >

∫
Ω
rdx, (2.16)

due to the fact that θµ,1 is not constant in Ω by the assumption that r is not constant in Ω.
From the Proposition 2.2, and (H3), it follows that

lim
k→0

θµ,d
d(r)

= θµ,1,

which along with (2.16) yields the first part of assertion (ii).
For the second part of assertion (ii), we only consider the case d(k; r) = e−kr while d(k; r) =

(1 + r)−k can be treated similarly. By Lemma 2.3, if d(r) = e−kr, one obtains

lim
µ→∞

θµ,d =

∫
Ω re

krdx∫
Ω e

2krdx
,

which suggests that

lim
µ→∞

∫
Ω

θµ,d
d(r)

dx =

∫
Ω e

krdx ·
∫
Ω re

krdx∫
Ω e

2krdx
.

To complete the proof of assertion (ii), we are left to show lim
k→∞

∫
Ω e

krdx·
∫
Ω re

krdx∫
Ω e

2krdx
= rmax|Ωr|. For

any ϵ > 0, define

Ωϵ = {x ∈ Ω|r(x) ≥ rmax − ϵ}.
Since r ∈ C(Ω̄), one has |Ωϵ| > 0. Obviously,∫
Ω
ekr ·

∫
Ω
rekr =

∫
Ωϵ

ekr ·
∫
Ωϵ

rekr +

∫
Ωc

ϵ

ekr ·
∫
Ωc

ϵ

rekr +

∫
Ωϵ

ekr ·
∫
Ωc

ϵ

rekr +

∫
Ωc

ϵ

ekr ·
∫
Ωϵ

rekr

=: A1 +A2 +A3 +A4.

We only show that lim
k→∞

A3∫
Ω e

2kr = 0 and lim
k→∞

Ai∫
Ω e

2kr = 0(i = 2, 4) can be proved similarly. Indeed,

0 ≤ lim
k→∞

A3∫
Ω e

2kr
≤ lim

k→∞

A3∫
Ω ϵ

3

e2kr
≤ lim

k→∞

rmax|Ω|2e2krmax−kϵ

|Ω ϵ
3
|e2krmax− 2kϵ

3

= 0.

It is straightforward to check that

0 ≤ lim
k→∞

∫
Ωc

ϵ
e2krdx∫

Ωϵ
ekrdx ·

∫
Ωϵ
rekrdx

≤ lim
k→∞

|Ω|e2k(rmax−ϵ)

|Ω ϵ
2
|2(rmax − ϵ

2)e
2k(rmax− ϵ

2
)
= 0.

Since ϵ > 0 is arbitrary and noting that Ω0 = Ωr, from the above results, we have

lim
k→∞

∫
Ω e

krdx ·
∫
Ω re

krdx∫
Ω e

2krdx
= lim

k→∞

∫
Ωϵ
ekrdx ·

∫
Ωϵ
rekrdx∫

Ω e
2krdx

= lim
k→∞

∫
Ωϵ
ekrdx ·

∫
Ωϵ
rekrdx∫

Ωϵ
e2krdx+

∫
Ωc

ϵ
e2krdx

= lim
k→∞

∫
Ωϵ
ekrdx ·

∫
Ωϵ
rekrdx∫

Ωϵ
e2krdx

= rmax|Ωr|.

We proceed to prove the last equality above. If |Ωr| = 0, for any δ > 0, then

0 ≤ lim
k→∞

∫
Ωϵ
ekrdx ·

∫
Ωϵ
rekrdx∫

Ωϵ
e2krdx

≤ lim
k→∞

|Ωϵ|
1
2 ∥r∥L2(Ωϵ)

∫
Ωϵ
e2krdx∫

Ωϵ
e2krdx

≤ |Ωϵ|
1
2 ∥r∥L2(Ω) ≤ δ,
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due to the fact that ϵ > 0 is arbitrary, |Ωϵ| → |Ωr| as ϵ→ 0, and |Ωr| = 0. Therefore,

lim
k→∞

∫
Ω e

krdx ·
∫
Ω re

krdx∫
Ω e

2krdx
= 0 = rmax|Ωr|.

If |Ωr| > 0, similarly, for ε > 0 arbitrarily small, one can conclude that

lim
k→∞

∫
Ω e

krdx ·
∫
Ω re

krdx∫
Ω e

2krdx

= lim
k→∞

∫
Ωϵ
ekrdx ·

∫
Ωϵ
rekrdx∫

Ωϵ
e2krdx

= lim
k→∞

(
∫
Ωϵ\Ωr e

krdx+
∫
Ωr e

krdx) · (
∫
Ωϵ\Ωr re

krdx+
∫
Ωr re

krdx)∫
Ωϵ\Ωr e2krdx+

∫
Ωr e2krdx

= lim
k→∞

(
∫
Ωϵ\Ωr e

k(r−rmax)dx+ |Ωr|) · (
∫
Ωϵ\Ωr re

k(r−rmax)dx+ rmax|Ωr|)∫
Ωϵ\Ωr e2k(r−rmax)dx+ |Ωr|

= rmax|Ωr|.
Therefore, the proof is completed.

�
Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. With the transformationW (x) =
θµ,d
d(r) , the existence of unique positive

steady stateWµ,d of (1.4) and its global stability follows from Lemma 2.1 directly. The assertions
of Theorem 2.1-(1) are given by Lemma 2.3, while the results of Theorem 2.1-(2) are consequences
of Lemma 2.5-(i). The first part of Theorem 2.1-(3) results from the first part of Lemma 2.5-(ii)
directly. We shall use the second of Lemma 2.5-(ii) to prove the second part of Theorem 2.1-(3).
Indeed since r is non-constant, it can be easily shown that∫

Ω
r(x)dx > rmax|Ωr|.

Define a constant ω =
∫
Ω r(x)dx−rmax|Ωr| > 0 and take ε = ω. Then it follows from the results

of Lemma 2.5-(ii) that∫
Ω
Wµ,d dx =

∫
Ω

θµ,d
d(r)

dx < rmax|Ωr|+ ε =

∫
Ω
r(x)dx

which completes the proof.

3. Two species competitive model

In this section, we investigate the global dynamics of two species Lotka-Volterra competition
model (1.7) with resource-dependent dispersals. It is known that the system (1.7) generates
a monotone dynamical system and the local qualitative properties of its steady states may
determine the global dynamics (cf. [24, 45]). In particular, we have the following results (cf.
[51, Theorem 7]).

Proposition 3.1. With the hypotheses (H2) and (H0), the following results hold.

(i) If a steady state of system (1.7) is linearly stable (resp. linearly unstable), then it is
locally asymptotically stable (resp. unstable);

(ii) If system (1.7) admits two semi-trivial steady states (U, 0) and (0, V ), and does not
admit any coexistence steady state, then one of the semi-trivial steady states is globally
asymptotically stable and the other one is unstable;

(iii) If system (1.7) admits two linearly unstable(resp. stable) semi-trivial steady states, then
it admits at least one locally asymptotically stable(resp. unstable) coexistence steady
state;
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(iv) If every coexistence steady state of system (1.7) is linearly stable, then either there are no
coexistence steady states and one of the two semi-trivial steady state is globally asymp-
totically stable while the other one is unstable, or there is a unique coexistence steady
state which is globally asymptotically stable .

We recall that Wµi,di =
θµi,di
di(r)

and θµi,di(i = 1, 2) satisfies (see (2.2)){
µidi(r)∆θµi,di + θµi,di

(
r(x)− θµi,di

di(r)

)
= 0, x ∈ Ω,

∇θµi,di · n = 0, x ∈ ∂Ω.
(3.1)

Note that the existence of unique positive solution of (3.1) has been established in Lemma 2.1.
By similar argument as in [34, Lemma 2.9], one can show that the sign of λ1(µ2d2(r), r−Wµ1,d1)
and λ1(µ1d1(r), r−Wµ2,d2) determine the linear stability of (θµ1,d1 , 0) and (0, θµ2,d2), respectively.
More precisely, if λ1(µ2d2(r), r−Wµ1,d1) > 0 (resp. λ1(µ2d2(r), r−Wµ1,d1) < 0), then (θµ1,d1 , 0)
is linearly unstable (resp. linearly stable). In particular if λ1(µ2d2(r), r−Wµ1,d1) = 0, (θµ1,d1 , 0)
is said to be neutrally stable. The linear stability of (0, θµ2,d2) can be characterized in a similar
way. We proceed with several different cases.

3.1. Same dispersal strategies. In this subsection, we shall show that if two competing
species have the same dispersal strategies up to a multiplicative constant, then phenomenon
“slower diffuser prevails” will occur, as described in the following Theorem.

Theorem 3.1. If d1(r) and d2(r) satisfy (H2) with r fulfilling (H0). If d1(r) = ϑd2(r) for some
constant ϑ > 0 and d2(r)r is not constant in Ω, then the semi-trivial steady state (θµ1,d1 , 0) (resp.
(0, θµ2,d2) of system (1.7) is globally asymptotically stable for any ϑµ1 < µ2 (resp. ϑµ1 > µ2).

Proof. First notice that if d1(r) = ϑd2(r) := ϑd(r) for some constant ϑ > 0, then it follows from
(1.8) that 

µ1ϑd(r)∆U + U
(
r(x)− U

ϑd(r) −
V
d(r)

)
= 0, x ∈ Ω,

µ2d(r)∆V + V
(
r(x)− U

ϑd(r) −
V
d(r)

)
= 0, x ∈ Ω,

∇U · n = ∇V · n = 0, x ∈ ∂Ω.

(3.2)

Let Ũ = U
ϑ . Then Ũ and V satisfy

µ̃1d(r)∆Ũ + Ũ
(
r(x)− Ũ

d(r) −
V
d(r)

)
= 0, x ∈ Ω,

µ2d(r)∆V + V
(
r(x)− Ũ

d(r) −
V
d(r)

)
= 0, x ∈ Ω,

∇U · n = ∇V · n = 0, x ∈ ∂Ω,

(3.3)

with µ̃1 = ϑµ1.
If d(r) is constant, it is well-known that “slower diffuser prevails”, see [19]. If d(r) is not

constant in Ω, we first establish two claims.
Claim 1: system (1.7) doesn’t admit any positive steady state. If not, we assume that system

(1.7) admits a positive steady state (U, V ) which satisfies (3.2). Therefore, (Ũ , V ) satisfies (3.3).
Consider an auxiliary linear eigenvalue problem{

µd(r)∆ϕ+mϕ = τϕ, x ∈ Ω,

∇ϕ · n = 0, x ∈ ∂Ω,
(3.4)

where m = r(x)− Ũ
d(r) −

V
d(r) in Ω. Denote the principal eigen-pair of problem (3.4) by (τµ, ϕµ)

where ϕµ satisfies that ϕµ > 0 on Ω and ∥ϕµ∥L∞(Ω) = 1. Recalling assertion (ii) of Lemma 2.4,
one finds that

∂τµ
∂µ

= −
∫
Ω |∇ϕµ|2dx∫
Ω

ϕ2µ
d(r)dx

≤ 0.
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Next, we will show that
∂τµ
∂µ < 0. If

∂τµ
∂µ = 0, then ϕµ ≡ 1 due to ϕµ > 0 and ∥ϕµ∥L∞(Ω) = 1.

Substituting ϕµ ≡ 1 into problem (3.4), one obtains

m ≡ τµ. (3.5)

Multiplying the first equation of system (3.3) by 1
d(r) and integrating the resulting equation on

Ω, one can deduce that
∫
Ω
Ũm
d(r)dx = 0, which along with (3.5) and Ũ > 0 in Ω implies that

m ≡ 0. This together with equations in (3.3) yields some positive constants C1 > 0 and C2 > 0

such that Ũ ≡ C1 and V ≡ C2, which suggests that d(r)r ≡ C1 + C2 due to m ≡ 0. This
contradicts the assumption that rd(r) is not constant in Ω. Therefore, we have

∂τµ
∂µ

< 0. (3.6)

However, by (3.3), one finds τµ̃1 = τµ2 = 0, which contradicts (3.6) due to µ̃1 < µ2. So, Claim 1
is proved.

Claim 2: (θµ1,d1 , 0) is linearly stable and (0, θµ2,d2) is linearly unstable. It suffices to show
that

λ1(µ2d(r), r −Wµ̃1,d) < 0 and λ1(µ̃1d(r), r −Wµ2,d) > 0. (3.7)

Employing the above arguments as in Claim 1, one can deduce that

∂λ1(µd(r), r −Wµ̃1,d)

∂µ
< 0 and

∂λ1(µd(r), r −Wµ2,d)

∂µ
< 0. (3.8)

Recall that (3.1), which combined with the Krein-Rutman Theorem [33], implies

λ1(µ̃1d(r), r −Wµ̃1,d) = λ1(µ2d(r), r −Wµ2,d) = 0,

which along with (3.8) and µ̃1 < µ2 yields (3.7). Thus, Claim 2 is proved.
Finally, combining Claim 1, Claim 2 and Proposition 3.1 (ii), one obtains that (θµ1,d1 , 0) is

globally asymptotically stable, which completes the proof. �

Remark 3.1. We give several remarks on the result.

(a) Theorem 3.1 indicates that “slower diffuser prevails”, which is consistent with the well-
known result in [19]. Therefore, our results generalize the results of [19] to the competi-
tion system with resource-dependent dispersal. We also remark the results of Theorem
3.1 are also consequences of general results in [18, Theorem 1.2 (i)-(ii)]. Here we use a
different approach (mainly in Claim 1) to obtain the same results.

(b) If di(r)r ≡ ci for i = 1, 2, where c1 and c2 are positive constants, then it is straightforward
to show that system (1.7) admits a continuum of steady states given by

S =
{
(U, V ) = (η1, η2) | η1, η2 ≥ 0 and

η1
c1

+
η2
c2

= 1
}
.

Then by the result of [18, Theorem 1.2 (iv)], this continuum of steady states indeed
comprises a global attractor.

3.2. Different dispersal strategies with large diffusion coefficients. In this subsection,
we shall investigate possible (global) dynamics of system (1.7) as µ1 → 0,∞ and/or µ2 → 0,∞.
We first characterize the limiting profile of the coexistence steady state (if it exists) of system
(1.7).

Lemma 3.1. Let di(r) satisfy (H2) (i = 1, 2) for i = 1, 2 with r fulfilling (H0). Then we have
the following results.

(i) If system (1.7) admits a coexistence steady state denoted by (Uµi , Vµi) as µi → 0, then
there exists some constant C ≥ 0 where “=” holds if min

x∈Ω̄
r(x) = 0 such that

(Uµi , Vµi) →

{(
(r − C

d2(r)
)d1(r), C

)
, if i = 1,(

C, (r − C
d1(r)

)d2(r)
)
, if i = 2,

as µi → 0,
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where C ≤ min
x∈Ω

(rd2(r)) if i = 1 and C ≤ min
x∈Ω

(rd1(r)) if i = 2.

(ii) If system (1.7) admits a coexistence steady state denoted by (Uµi , Vµi) as µi → ∞, then

(Uµ1 , Vµ1) → (0, θµ2,d2) or (U⊥, V∞) in C1(Ω) as µ1 → ∞,

and

(Uµ2 , Vµ2) → (θµ1,d1 , 0) or (U∞, V⊥) in C
1(Ω) as µ2 → ∞,

where U⊥ =
∫
Ω(r−V∞d−1

2 (r))d−1
1 (r)dx∫

Ω d
−2
1 (r)dx

, V⊥ =
∫
Ω(r−U∞d−1

1 (r))d−1
2 (r)dx∫

Ω d
−2
2 (r)dx

and (U∞, V∞) satisfies
µ1d1(r)∆U∞ + U∞

(
r − U∞

d1(r)
− V⊥

d2(r)

)
= 0, x ∈ Ω,

µ2d2(r)∆V∞ + V∞(r − U⊥
d1(r)

− V∞
d2(r)

) = 0, x ∈ Ω,

∇U∞ · n = ∇V∞ · n = 0, x ∈ ∂Ω.

Proof. We only prove the case µ2 → 0 in (i) and µ2 → ∞ in (ii), while the proofs for cases
µ1 → 0 and µ1 → ∞ are the same. We first prove (i) for µ2 → 0. Recall that (Uµ2 , Vµ2) satisfies

µ1d1(r)∆Uµ2 + Uµ2
(
r(x)− Uµ2

d1(r)
− Vµ2

d2(r)

)
= 0, x ∈ Ω,

µ2d2(r)∆Vµ2 + Vµ2
(
r(x)− Uµ2

d1(r)
− Vµ2

d2(r)

)
= 0, x ∈ Ω,

∇Uµ2 · n = ∇Vµ2 · n = 0, x ∈ ∂Ω.

(3.9)

The maximum and comparison principles directly yield that

∥Uµ2∥L∞(Ω) ≤ ∥rd1(r)∥L∞(Ω) and ∥Vµ2∥L∞(Ω) ≤ ∥rd2(r)∥L∞(Ω).

From the elliptic regularity [1, 2], it follows that ∥Uµ2∥W 2,p(Ω) and ∥Vµ2∥Lp(Ω) are uniformly
bounded as µ2 → 0 for any 1 ≤ p < ∞. By the Sobolev imbedding theorem, one can deduce
that Uµ2(resp. Vµ2), passing to a subsequence if necessary, converges to some nonnegative
function U0(resp. V0) in C1(Ω)(resp. weakly in Lp(Ω)) as µ2 → 0. Following the approach as

that in the proof of [34, Proposition 2.5], one can derive that Vµ2 → (r− U0
d1(r)

)+d2(r) in L
∞(Ω)

as µ2 → 0, where (
r − U0

d1(r)

)+

= max

{
0, r − U0

d1(r)

}
.

Then, U0 satisfies (in the weak sense){
µ1d1(r)∆U0 + U0

(
r(x)− U0

d1(r)
− (r − U0

d1(r)
)+

)
= 0, x ∈ Ω,

∇U0 · n = 0, x ∈ ∂Ω.
(3.10)

We proceed to show that

r(x)− U0

d1(r)
≥ 0 in Ω. (3.11)

By the argument of contradiction, we assume that r(x) − U0
d1(r)

< 0 in some open subset Ω∗ of

Ω. Multiplying the first equation of (3.10) by 1
d1(r)

and integrating the resulting equation on Ω,

one obtains ∫
Ω

U0

d1(r)

[
r(x)− U0

d1(r)
−
(
r − U0

d1(r)

)+
]
dx = 0,

which combined with the fact U0 ≥ 0 yields that U0(x) = 0 in Ω∗. This together with the

maximum principle implies that U0 ≡ 0 in Ω, which further indicates that r(x)− U0
d1(r)

≥ 0 in Ω,

due to r ≥ 0 in Ω. This contradict our assumption and hence we have (3.11). Therefore

r(x)− U0

d1(r)
−

(
r − U0

d1(r)

)+
≡ 0 in Ω.

So, U0 satisfies

∆U0 = 0 in Ω and ∇U0 · n = 0 on ∂Ω,
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which along with U0 ≥ 0 in Ω and (3.11) suggests that U0 ≡ C for some C ∈ [0,min
x∈Ω̄

(rd1(r))]

and hence Vµ2 → (r− C
d1(r)

)d2(r) in L
∞(Ω) as µ2 → 0. These facts together with the definitions

of (Uµ2 , Vµ2) give that

(Uµ2 , Vµ2) →
(
C, (r − C

d1(r)
)d2(r)

)
in L∞(Ω) as µ2 → 0.

Next, we prove (ii) with µ2 → ∞. Similar to the above analysis, without loss of generality,
one can deduce from (3.9) that (Uµ2 , Vµ2) converges to some nonnegative function (U∞, V∞) in
C1(Ω) as µ2 → ∞, which satisfies

Vµ2 → C0 ≥ 0 in C1(Ω) as µ2 → ∞

and {
µ1d1(r)∆U∞ + U∞(r − U∞

d1(r)
− C

d2(r)
) = 0, x ∈ Ω,

∇U∞ · n = 0, x ∈ ∂Ω.
(3.12)

We proceed to consider two separate cases: C0 = 0 and C0 > 0.
For the case C0 = 0, one directly obtains from (3.12) and Lemma 2.1 that (Uµ2 , Vµ2) →

(θµ1,d1 , 0) in C
1(Ω) as µ2 → ∞.

For the case C0 > 0, multiplying the second equation of (3.9) by 1
d2(r)

and integrating the

resulting equation on Ω, one finds
∫
Ω

Vµ2
d2(r)

(r(x)− Uµ2
d1(r)

− Vµ2
d2(r)

)dx = 0, which along with the fact

(Uµ2 , Vµ2) → (U∞, C0) in C
1(Ω) as µ2 → ∞ suggests that

C0 =

∫
Ω(r − U∞d

−1
1 (r))d−1

2 (r)dx∫
Ω d

−2
2 (r)dx

.

This completes the proof. �

Next, we investigate the global dynamics of system (1.7) as µ1, µ2 → ∞. To this end, we
define several quantities as follows

δ1 :=

∫
Ω
rd2(r)

−1dx

∫
Ω
d1(r)

−2dx−
∫
Ω
rd1(r)

−1dx

∫
Ω
[d1(r)d2(r)]

−1dx,

δ2 :=

∫
Ω
rd1(r)

−1dx

∫
Ω
d2(r)

−2dx−
∫
Ω
rd2(r)

−1dx

∫
Ω
[d1(r)d2(r)]

−1dx,

c0 =

∫
Ω
d1(r)

−2dx

∫
Ω
d2(r)

−2dx−
(∫

Ω
[d1(r)d2(r)]

−1dx

)2

.

(3.13)

We note that c0 ≥ 0 by Hölder’s inequality and in particular c0 > 0 if d1(r) and d2(r) are not
proportional. Then we can show the following results.

Theorem 3.2. Let δ1, δ2 and c0 be defined in (3.13). If di(r)(i = 1, 2) satisfies (H2) with r
fulfilling (H0), and d1(r) ̸≡ Cd2(r) for any constant C > 0, then the following results hold.

(i) (Competitive exclusion) If δ1 < 0 < δ2 (resp. δ2 < 0 < δ1), then the system (1.7) has a
globally asymptotically stable steady state (θµ1,d1 , 0) (resp. (0, θµ2,d2)) for large µ1, µ2.

(ii) (Coexistence) If δ1, δ2 > 0, then the system (1.7) admits a globally asymptotically stable
coexistence steady state (U∗, V∗) for large µ1, µ2. Furthermore, the coexistence steady

state (U∗, V∗) converges to ( δ1c0 ,
δ2
c0
) in C1(Ω) as µ1, µ2 → ∞.

Proof. We only prove the case δ1 < 0 < δ2 in (i) and the proof for the case δ2 < 0 < δ1 is similar.
We first show two claims.

Claim A: system (1.7) doesn’t admit any positive steady state for large µ1 and µ2. Arguing by
contradiction, we assume that there exist sequences {µi,1}i≥1 and {µi,2}i≥1 satisfying µi,1, µi,2 →
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∞ as i → ∞ such that system (1.7) admits a positive steady state denoted by (Ui, Vi). Then,
(Ui, Vi) satisfies 

µi,1d1(r)∆Ui + Ui
(
r(x)− Ui

d1(r)
− Vi

d2(r)

)
= 0, x ∈ Ω,

µi,2d2(r)∆Vi + Vi
(
r(x)− Ui

d1(r)
− Vi

d2(r)

)
= 0, x ∈ Ω,

∇Ui · n = ∇Vi · n = 0, x ∈ ∂Ω.

(3.14)

Applying the comparison principle, for any i ≥ 1, one can show that

∥Ui∥L∞(Ω) ≤ ∥rd1(r)∥L∞(Ω) and ∥Vi∥L∞(Ω) ≤ ∥rd2(r)∥L∞(Ω). (3.15)

From the elliptic regularity (cf. [17]), it follows that ∥Ui∥W 2,p(Ω) and ∥Vi∥W 2,p(Ω) are uniformly
bounded in i for any 1 ≤ p < ∞. By the Sobolev imbedding theorem, one can deduce from
(3.14) that (Ui, Vi), passing to a subsequence if necessary, converges to some nonnegative function
(U∞, V∞) in C1(Ω) as i→ ∞, where (U∞, V∞) satisfies (in the weak sense){

∆U∞ = ∆V∞ = 0, x ∈ Ω,

∇U∞ · n = ∇V∞ · n = 0, x ∈ ∂Ω.

Therefore, there exist some constants C1, C2 ≥ 0 such that (U∞, V∞) = (C1, C2). Then, there
are four possible cases to consider:

(1) C1 = C2 = 0; (2) C1 > C2 = 0; (3) C2 > C1 = 0; (4) C1, C2 > 0.

For case (1): C1 = C2 = 0. Multiplying the first equation of (3.14) by 1
d1(r)

and integrating

the resulting equation on Ω, one has∫
Ω

Ui
d1(r)

(
r − Ui

d1(r)
− Vi
d2(r)

)
dx = 0,

which contradicts the facts that Ui > 0, r 	 0, di(r) > 0(i = 1, 2), and (Ui, Vi) → (0, 0) in C1(Ω)
as i→ ∞.

For case (2): C1 > C2 = 0. By Lemma 2.3, one further obtains C1 =
∫
Ω rd

−1
1 (r)dx∫

Ω d
−2
1 (r)dx

. Setting

V̂i =
Vi

∥Vi∥L∞(Ω)
, similar to the above analysis in the proof of Lemma 3.1, one can conclude that

(Ui, V̂i) →
(∫

Ω rd
−1
1 (r)dx∫

Ω d
−2
1 (r)dx

, 1

)
in C1(Ω) as i→ ∞. (3.16)

Multiplying the second equation of (3.14) by d2(r) and integrating the resulting equation on Ω
yield that ∫

Ω

V̂i
d2(r)

(
r − Ui

d1(r)
−
V̂i∥Vi∥L∞(Ω)

d2(r)

)
dx = 0,

which together with (3.16) implies that δ1 = 0, contradicting the fact δ1 < 0.
Case (3) can be treated similarly. We omits the details.
For case (4): C1, C2 > 0, similar to the arguments as in the proof of Lemma 3.1, one can

deduce that

C1 =
δ2
c0
, C2 =

δ1
c0

with c0 =

∫
Ω

1

d21(r)
dx

∫
Ω

1

d22(r)
dx−

(∫
Ω

1

d1(r)d2(r)
dx

)2

(3.17)

which contradicts δ1 < 0 and
∫
Ω

1
d21(r)

dx
∫
Ω

1
d22(r)

dx > (
∫
Ω

1
d1(r)d2(r)

dx)2 due to the assumption

that d1(r) ̸≡ Cd2(r) for any C > 0. Thus Claim A is proved.
Claim B: the semi-trivial steady state (θµ1,d1 , 0) is linearly stable and (0, θµ2,d2) is linearly

unstable for large µ1, µ2. By Lemma 2.3 and Lemma 2.4 (ii), one can derive that

lim
µ1,µ2→∞

λ1(µ2d2(r), r −Wµ1,d1) =

∫
Ω

(
r − cr1

d1(r)

)
d−1
2 (r)dx∫

Ω d
−1
2 (r)dx

=
δ1∫

Ω d
−2
1 (r)dx

∫
Ω d

−1
2 (r)dx
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and

lim
µ1,µ2→∞

λ1(µ1d1(r), r −Wµ2,d2) =

∫
Ω

(
r − cr2

d2(r)

)
d−1
1 (r)dx∫

Ω d
−1
1 (r)dx

=
δ2∫

Ω d
−2
2 (r)dx

∫
Ω d

−1
1 (r)dx

where cri =
∫
Ω rd

−1
i (r)dx∫

Ω d
−2
i (r)dx

(i = 1, 2). These facts together with δ1 < 0 < δ2 imply that Claim B

holds. Then, combining Claim A, Claim B, and Proposition 3.1 (ii), we prove assertion (i).
For assertion (ii): δ1, δ2 > 0, similar to the analysis in the proof of Claim B above, one

can deduce that (θµ1,d1 , 0) and (0, θµ2,d2) are linearly unstable for large µ1, µ2, which upon the
application of Proposition 3.1-(iii) entails that system (1.7) admits a locally asymptotically
stable coexistence steady state (U∗, V∗) for large µ1, µ2. Furthermore, by the arguments in the
proof of Lemma 3.1, one can derive that, as µ1, µ2 → ∞,

the coexistence steady state of system (1.7)(if it exits) converges to (C1, C2) in C
1(Ω), (3.18)

where C1 and C2 are given in (3.17). Finally, we show that the coexistence steady state (U∗, V∗)
is globally asymptotically stable for large µ1, µ2.

Claim C: every coexistence steady state of system (1.7) is not neutrally stable for large
µ1, µ2. Suppose the claim is false, and we assume that, as µ1, µ2 → ∞, system (1.7) admits a
coexistence steady state (Uµ1,µ2 , Vµ1,µ2), which is neutrally stable. Linearizing system (1.8) at
(U, V ) = (Uµ1,µ2 , Vµ1,µ2), one has

µ1d1(r)∆ϕ1 + ϕ1
(
r(x)− Uµ1,µ2

d1(r)
− Vµ1,µ2

d2(r)

)
− Uµ1,µ2ϕ1

d1(r)
− Uµ1,µ2ψ1

d2(r)
= 0, x ∈ Ω,

µ2d2(r)∆ψ1 + ψ1

(
r(x)− Uµ1,µ2

d1(r)
− Vµ1,µ2

d2(r)

)
− Vµ1,µ2ψ1

d2(r)
− Vµ1,µ2ϕ1

d1(r)
= 0, x ∈ Ω,

∇ϕ1 · n = ∇ψ1 · n = 0, x ∈ ∂Ω,

(3.19)

where (ϕ1, ψ1) is the corresponding principal eigenfunction satisfying ∥ϕ1∥2L2(Ω)+ ∥ψ1∥2L2(Ω) = 1

and ϕ1 > 0 > ψ1 on Ω̄. Similar to (3.15), for any µ1, µ2 > 0, one obtains

∥Uµ1,µ2∥L∞(Ω) ≤ ∥rd1(r)∥L∞(Ω) and ∥Vµ1,µ2∥L∞(Ω) ≤ ∥rd2(r)∥L∞(Ω).

Employing similar arguments as those in Claim A, one can deduce that

(ϕ1, ψ1) → (ĉ1, ĉ2) in H
1(Ω) as µ1, µ2 → ∞ and hence (ĉ21 + ĉ22)|Ω| = 1. (3.20)

It is clear that ĉ1 ≥ 0 ≥ ĉ2 since ϕ1 > 0 > ψ1 on Ω̄. Next we will show that

ĉ1 > 0 > ĉ2. (3.21)

Then it suffices to show that ĉ1 ̸= 0 and ĉ2 ̸= 0. Since the proof is similar, we only prove ĉ1 ̸= 0.
Using the argument of contradiction, we assume ĉ1 = 0, which combined with (3.20) gives that

ĉ2 = |Ω|−
1
2 > 0. Multiplying the second equations of system (3.19) by 1

d2(r)
, integrating the

resulting equation in Ω, and sending µ1, µ2 → ∞, one concludes that∫
Ω

C2

d22(r)
dx = 0,

where we have used (3.18), (3.20) and ĉ2 > ĉ1 = 0. This is impossible due to the fact that
C2 > 0. Therefore, (3.21) holds. We next multiply the first and second equations of system
(3.19) by 1

d1(r)
and 1

d2(r)
, respectively, integrate the resulting equations in Ω with a substraction.

Then sending µ1, µ2 → ∞, one obtains from (3.18) and (3.20)∫
Ω

( ĉ1
d21(r)

+
ĉ2

d1(r)d2(r)

)
dx =

∫
Ω

( ĉ1
d1(r)d2(r)

+
ĉ2

d22(r)

)
dx = 0,

which along with (3.21) gives that∫
Ω

1

d21(r)
dx

∫
Ω

1

d22(r)
dx−

(∫
Ω

1

d1(r)d2(r)
dx

)2

= 0.

This is impossible due to the assumption that d1(r) ̸≡ Cd2(r) for any C > 0. Thus, Claim
C holds. From (3.18), Claim C and the fact that system (1.7) admits a locally asymptotically
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stable coexistence steady state for large µ1, µ2, it follows that every coexistence steady state of
system (1.7) is linearly stable for large µ1, µ2. Then, Proposition 3.1 (iv) proves that assertion
(ii) holds, which completes the proof. �

Remark 3.2. We add several remarks for the results in Theorem 3.2.

(a) Under the conditions of Theorem 3.2, one can deduce that δ1, δ2 < 0 can not occur
by the argument of contradiction. For readers’ convenience, we sketch the proof in the
following two steps. Step 1, following the approaches as in the proof of Claim A for
Theorem 3.2, one can deduce that system (1.7) doesn’t admit any positive steady state
as µ1, µ2 → ∞; Step 2, with similar arguments as in the proof of Claim B for Theorem
3.2, one can derive that (θµ1,d1 , 0) and (0, θµ2,d2) are linearly stable as µ1, µ2 → ∞,
which together with Proposition 3.1-(iii) implies that system (1.7) admits an unstable
coexistence steady state as µ1, µ2 → ∞. Then, the results in step 1 and step 2 yield a
contradiction, which confirms our claimed result.

(b) The following examples show that all situations (i) and (ii) of Theorem 3.2 may occur.
(i) If d1(r) = e−kr and d2(r) = 1, then δ1 < 0 < δ2 provided k is small enough.

Conversely if d1(r) = 1 and d2(r) = e−kr, then δ2 < 0 < δ1 provided k is small
enough;

(ii) If d1(r) = e−kr and d2(r) =
1
2rmax, then δ1, δ2 > 0 provided k is large enough.

(c) If d1(r)r is constant and d2(r)r is not constant, it was shown in [5, Theorem 1] that (r, 0)
is globally asymptotically stable for system (1.5), namely the species u1 wipes out the
species u2 and achieves the ideal free distribution. In this case δ1 = 0 and δ2 > 0. But
for general di(r) with δi = 0, i ∈ {1, 2}, we are unable to determine the global dynamics.

(d) The numerical simulations of steady state profile (U1, U2) of (1.5) with d1(r) = e−kr and
d2(r) = 1 are plotted in Fig.2 with large µi > 0(i = 1, 2) and small k in (a) and large k
in (b), where we see the results of Theorem 3.2 are perfectly verified by our numerical
results. One open question left in Theorem 3.2 is the global dynamics when µ1 and/or
µ2 are not large. For this scenario, we also perform numerical simulations for moderate
values of µi(i = 1, 2): µ1 = µ2 = 1 and small values µi(i = 1, 2): µ1 = µ2 = 0.1, we
surprisingly find the steady profile (U1, U2) of (1.5) will remain the same as those for
large µi(i = 1, 2) and fixed value of k. Hence we do not show the numerical simulations
here for small or moderate values of µi(i = 1, 2). This indicates that the criteria used in
Theorem 3.2 determining the global stability of competitive exclusion and coexistence
steady states through the sign of δi(i = 1, 2) possibly hold for any µi > 0(i = 1, 2).
However we are unable to prove this and have to leave it out for the future.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

x

 

 
U

1

U
2

0 0.5 1
0.8

0.9

1

1.1

x

 

 
d

1
(r)

d
2
(r)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

 

 
U

1

U
2

0 0.5 1

0

0.5

1

x

 

 

d
1
(r)

d
2
(r)

(a) k1 = 0.1 (b) k1 = 20

Figure 2. Numerical simulations of stead state profile of the competition system
(1.5) with d1(r) = e−k1r and d2(r) = 1 in [0, 1] with resource r(x) = 1+cos(4πx),
where k1 = 0.1 in (a) and k1 = 20 in (b), where µ1 = µ2 = 10.
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The results of Theorem 3.2-(ii) provide a strategy to reach a coexistence steady state for
competing species, which requires both µ1 and µ2 are large. We refer to a result in [7] where
the coexistence steady state in a competition-diffusion-advection model with inhomogeneous
diffusion rates can also be achieved when the advection along the resource gradient is large. The
following proposition will offer another possible mechanism for coexistence by requiring µ2 be
large only but d2(r) is close to a constant.

Proposition 3.2. (Coexistence) If d2(r) ≡ 1, d1(r) satisfies (H2) with r fulfilling (H0) such that∫
ΩWµ1,d1dx <

∫
Ω rdx where Wµ1,d1 =

θµ1,d1(r)
d1(r)

, then system (1.7) admits a locally asymptotically

stable coexistence steady state (Uµ2 , Vµ2) for large µ2. Furthermore, the coexistence steady state
(Uµ2 , Vµ2) converges to (U∗, V∗) in C

1(Ω) as µ2 → ∞, where (U∗, V∗) satisfies{
µ1d1(r)∆U∗ + U∗

(
r − U∗

d1(r)
− V∗

)
= 0, x ∈ Ω,

∇U∗ · n = 0, x ∈ ∂Ω,
(3.22)

and

V∗ =

∫
Ω

(
r − U∗

d1(r)

)
dx

|Ω|
> 0. (3.23)

Proof. By the assumption
∫
ΩWµ1,d1dx <

∫
Ω rdx and Lemma 2.4 (ii), one can deduce that

lim
µ2→∞

λ1(µ2, r −Wµ1,d1) =
1

|Ω|

∫
Ω
(r −Wµ1,d1)dx > 0, (3.24)

which suggests that (θµ1,d1(r), 0) is linearly unstable. Since λ1(D(x),m) continuously depends

on m and θµ2,1 → r̄ with r̄ = 1
|Ω|

∫
Ω r(x)dx as µ2 → ∞ (see Lemma 2.3), then it follows that

lim
µ2→∞

λ1(d1(r), r − θµ2,1) = λ1(d1(r), r − r̄).

By the variational characterization (2.4), choosing 1 as a test function, one obtains

λ1(d1(r), r − r̄) = sup
0̸=ϕ∈H1(Ω)

∫
Ω(−|∇ϕ|2 + (r−r̄)ϕ2

d1(r)
)dx∫

Ω
ϕ2

d1(r)
dx

≥

∫
Ω

r−r̄
d1(r)

dx∫
Ω

1
d1(r)

dx
.

We proceed to show that ∫
Ω

r − r̄

d1(r)
dx > 0. (3.25)

Since
∫
ΩWµ1,d1dx <

∫
Ω rdx, it is easy to show that d1(r) is not constant in Ω, which together

with (H2) and the assumption that r is not constant in Ω implies∫
Ω

r − r̄

d1(r)
dx =

∫
r≥r̄

r − r̄

d1(r)
dx+

∫
r<r̄

r − r̄

d1(r)
dx

>

∫
r≥r̄

r − r̄

d1(r̄)
dx+

∫
r<r̄

r − r̄

d1(r̄)
dx

= 0.

So, (3.25) holds and consequently we have

lim
µ2→∞

λ1(d1(r), r − θµ2,1) = λ1(d1(r), r − r̄) > 0, (3.26)

which indicates that (0, θµ2,1) is linearly unstable.
From (3.24), (3.26) and Proposition 3.1 (iii), it follows that the system (1.7) admits a lo-

cally asymptotically stable coexistence steady state for large µ2. Finally, since (θµ1,d1(r), 0) and
(0, θµ2,1) are linearly unstable, by the arguments in the proof of Lemma 3.1, one can derive that
the coexistence steady state (Uµ2 , Vµ2) converges to (U∗, V∗) in C

1(Ω) as µ2 → ∞, where (U∗, V∗)
satisfies (3.22) and (3.23). �
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Remark 3.3. By Lemma 2.5, one can find some d1(r) such that
∫
ΩWµ1,d1dx <

∫
Ω rdx.

Moreover, if d1(r) satisfies the condition in Proposition 3.2 and d2(r) is constant, then sys-
tem (1.7) admits a locally asymptotically stable coexistence steady state for large µ2 even
µ1d1(r) < µ2d2(r). This implies that the “slower diffuser prevails” phenomenon may not hap-
pen if the resource-dependent dispersal strategy is employed. Instead the competing species with
resource-dependent dispersal rates may coexist even if they have different diffusion strength (i.e.
µ1d1(r) ̸= µ2d2(r) in Ω). Therefore the resource-dependent dispersal does provide a strategy for
competing species to coexist.

Remark 3.4. Proposition 3.2 raises an interesting question: whether the problem (3.22)-(3.23)
admit a unique positive solution? If so, then one can further derive that, under the conditions
of Proposition 3.2, system (1.7) admits a globally asymptotically stable coexistence steady state
for large µ2.

3.3. Case studies for any µi > 0. Theorem 3.2 gives conditions for the global stability of
competitive exclusion steady states and the existence of coexistence steady states for large diffu-
sion rates µi(i = 1, 2) when d1(r) and d2(r) are not proportional. Whether similar results hold
true for diffusion rates that are not large remain unknown. In this section, we shall attempt
this question by considering two types of specialized resource-dependent diffusion rate function
di(r) = e−kir and di(r) = (1 + r)−ki for i = 1, 2 and monotone resource r(x) in an interval
Ω = (0, L).

The main results for di(r) = e−kir(i = 1, 2) are the following.

Theorem 3.3. Let di(r) = e−kir(i = 1, 2) and kr be such that 4krrmaxe
krrmax = 1. If rx > 0 or

rx < 0 on [0, L], 0 ≤ k2 < k1 ≤ kr and µ1 > 0, then we have the following results.

(i) (Competitive exclusion) If µ2 ∈ [µ1e
(k2−k1)rmin ,∞), then (θµ1,d1 , 0) is globally asymptot-

ically stable ;
(ii) (Coexistence) There exists some µ2 ∈

(
0, µ1e

(k2−k1)rmin
)
such that system (1.7) admits a

positive steady state.

Remark 3.5. Noticing that µ2 ∈ [µ1e
(k2−k1)rmin ,∞) means that µ1e

−k1r < µ2e
−k2r for all

x ∈ (0, L), Theorem 3.3-(i) basically asserts that the slower diffuser prevails in the competition,
same as the classical competition model with resource-independent dispersals. This is verified by
the numerical simulation shown in Fig.3(a). The result of Theorem 3.3-(ii) seems not as decisive
as that of Theorem 3.3-(i). It turns out from numerical simulations that the dynamics of (1.7)

are much more complex when µ2 ∈
(
0, µ1e

(k2−k1)rmin
)
as shown in Fig.3(b)-(d) where we see

that when µ2 increases from 0 to µ1e
(k2−k1)rmin , the winner of the competition changes from U1

to U2. In particular coexistence appears in the period of transition even for µ1e
−k1r > µ2e

−k2r

as shown in Fig.3(c), which not only verifies the result of Theorem 3.3-(ii) but also implies that
slower diffuser does not necessarily wipe out its faster competitor. Therefore the dynamics for
µ2 ∈

(
0, µ1e

(k2−k1)rmin
)
is expected to be complicates and how to sharpen this interval so that

more decisive conclusions can be drawn becomes an interesting open question.

We remark that the upper bound kr defined in Theorem 3.3 is not optimal, which is a
technical assumption. To prove Theorem 3.3, we first establish some technical lemmas. For any
coexistence steady state (U, V ) (if it exists) of system (1.7), it satisfies

µ1e
−k1rUxx + U(r(x)− Uek1r − V ek2r) = 0, x ∈ (0, L),

µ2e
−k2rVxx + V (r(x)− Uek1r − V ek2r) = 0, x ∈ (0, L),

Ux = Vx = 0, x = 0, L.

(3.27)

Let

T =
Ux
U

and S =
Vx
V

for x ∈ [0, L]. (3.28)
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Figure 3. Numerical simulations of steady state profile of the competition
system (1.5) with di(r) = e−kir in [0, 1] with monotone decreasing resource
r(x) = 1 + 0.5 cos(πx), where k1 = 0.15, k2 = 0.1. The profile of steady state
solution (U1, V1) are plotted in (a) for µ2 = 1.2, (b) for µ2 = 0.2, (c) for µ2 = 0.6

and (d) for µ2 = 0.95, where µ1 = 1, kr = 0.2039 and e(k2−k1)rmin = 0.9753.

A direct computation produces µ1Txx + 2µ1TTx +Arxe
k1r − TUe2k1r − SV e(k1+k2)r = 0, x ∈ (0, L),

µ2Sxx + 2µ2SSx +Brxe
k2r − SV e2k2r − TUe(k1+k2)r = 0, x ∈ (0, L),

T (0) = T (L) = S(0) = S(L) = 0,

(3.29)

where

A = 1 + k1r − 2k1Ue
k1r − (k1 + k2)V e

k2r and B = 1 + k2r − 2k2V e
k2r − (k1 + k2)Ue

k1r.

The following results can be proved in a similar way as in [38, Lemma 3.5].

Lemma 3.2. Let T and S be defined in (3.28). For any interval (x1, x2) on [0, L], if 0 ≤
k1, k2 ≤ kr, then the following results hold.

(i) If rx < 0 on [0, L], then T (resp. S) can not achieve a positive local maximum in (x1, x2)
with S ≥ 0(resp. T ≥ 0) in (x1, x2)

(ii) If rx > 0 on [0, L], then T (resp. S) can not achieve a negative local minimum in (x1, x2)
with S ≤ 0(resp. T ≤ 0) in (x1, x2).

Proof. Inspired by [38, Lemma 3.5], it suffices to show that A,B > 0 on [0, L]. For any coexis-
tence steady state (U, V ) of system (1.7), by Corollary 9 of [51], one obtains that

U ≤ θµ1,d1 and V ≤ θµ2,d2 on [0, L]. (3.30)
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By Lemma 2.2, one has

U ≤ max
x∈Ω̄

(re−k1r) < rmax and V ≤ max
x∈Ω̄

(re−k2r) < rmax on [0, L]. (3.31)

From (3.30), (3.31), and r ≥ 0 on [0, L], it follows that

A,B > 0 on [0, L], for k1, k2 ≤ kr, (3.32)

where kr satisfies 4krrmaxe
krrmax = 1. This completes the proof. �

Similar to [50, Lemma 3.2], one can derive the following result.

Lemma 3.3. If (U, V ) is a coexistence steady state of system (3.27), then for any 0 ≤ y1 ≤
y2 ≤ L, we have ∫ y2

y1

UV S
{
T
(
1− µ2

µ1
e(k1−k2)r

)
− µ2
µ1

(k1 − k2)rxe
(k1−k2)r

}
dx

= TUV |y2y1 −
µ2
µ1
SUV e(k1−k2)r

∣∣∣y2
y1
,

(3.33)

and ∫ y2

y1

UV T
{
S
(
1− µ1

µ2
e(k2−k1)r

)
− µ1
µ2

(k2 − k1)rxe
(k2−k1)r

}
dx

= SUV |y2y1 −
µ1
µ2
TUV e(k2−k1)r

∣∣∣y2
y1
.

(3.34)

Moreover, if k1 > k2 and µ1 ≤ µ2e
(k1−k2)rmin, the following results hold.

(i) If rx > 0 on [0, L], then there do not exist T and S satisfying T (y), S(y) ≥ 0 on [y1, y2],
S(y1) ≥ S(y2) = 0, and T (y2) ≥ T (y1) = 0 such that any of the following conditions
hold:

(1) T ̸≡ 0 on [y1, y2]; (2) S ̸≡ 0 on [y1, y2]; (3) T (y2) > 0; (4) S(y1) > 0.

(ii) If rx < 0 on [0, L], then there do not exist T and S satisfying T (y), S(y) ≤ 0 on [y1, y2],
S(y2) ≤ S(y1) = 0, and T (y1) ≤ T (y2) = 0 such that any of the following conditions
hold:

(1) T ̸≡ 0 on [y1, y2]; (2) S ̸≡ 0 on [y1, y2]; (3) T (y1) < 0; (4) S(y2) < 0.

Proof. Multiplying the first equation and the second equation of system (3.27) by ek1rV and
ek1rU , respectively, integrating the resulting equations in (y1, y2) and making a substraction,
one obtains

µ1

∫ y2

y1

V Uxxdx = µ2

∫ y2

y1

Ue(k1−k2)rVxxdx.

Then the integration by part yields

µ1V Ux|y2y1 − µ2Ue
(k1−k2)rVx|y2y1 =

∫ y2

y1

{µ1UxVx − µ2[Ue
(k1−k2)r]xVx}dx,

which combined with (3.28) gives (3.33). The same argument will yield (3.34). Assertions (i)
and (ii) follow directly from (3.33) and (3.34), which completes the proof. �

Now, we are ready to establish the non-existence of coexistence steady state for the system
(3.27).

Lemma 3.4. Assume 0 ≤ k2 < k1 ≤ kr and µ2 ≥ µ1e
(k2−k1)rmin. If rx > 0 or rx < 0 on [0, L],

then system (3.27) does not admit any coexistence steady state.

Proof. We first consider the case rx > 0 on [0, L]. By contradiction, we suppose that the system
(3.27) has a coexistence steady state (U, V ). To get a contradiction, we prove four claims first.

Claim 1: Uxx and Vxx have the same sign on [0, L]. This result follows directly from (3.27)
and U, V > 0 on [0, L].
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Claim 2: there exists ϱ > 0 such that T (x) > 0 and S(x) > 0 in (0, ϱ). It suffices to show
that Tx(0) > 0 and Sx(0) > 0 as T (0) = S(0) = 0. We shall show Tx(0) > 0 only since the proof
of Sx(0) > 0 is the same.

Suppose that Tx(0) > 0 is false. Then either Tx(0) < 0 or Tx(0) = 0.
If Tx(0) < 0, then there exists ϱ1 > 0 such that T (x) < 0 in (0, ϱ1) as T (0) = 0. Moreover,

by the definition of T and Ux(0) = 0, one finds that

Tx(0) =
Uxx(0)U(0)− U2

x(0)

U2(0)
=
Uxx(0)

U(0)
< 0, (3.35)

which implies Uxx(0) < 0 and hence Vxx(0) < 0 by Claim 1. From Vxx(0) < 0, Vx(0) = 0 and
the definition of S, it follows that Sx(0) < 0. This along with S(0) = 0 implies that there exists
ϱ2 > 0 such that S(x) < 0 in (0, ϱ2). These facts combined with T (L) = S(L) = 0 yields that
there exist x1 ∈ [ϱ1, L] and x2 ∈ [ϱ2, L] such that

T (x) < 0 in (0, x1) and T (x1) = T (0) = 0 (3.36)

and

S(x) < 0 in (0, x2) and S(x2) = S(0) = 0. (3.37)

Without loss of generality, we assume that x1 ≤ x2. Then (3.36) implies that T achieves a
negative local minimum at x3 ∈ (0, x1). Moreover, S(x3) < 0 due to x3 < x1 ≤ x2 and (3.37).
This is impossible by Lemma 3.2 (ii).

If Tx(0) = 0, then Uxx(0) = 0 by (3.35). Therefore, Vxx(0) = 0 by Claim 1, which suggests
that Sx(0) = 0. Then, estimating the first and second equation of system (3.29) at x = 0,
by T (0) = S(0) = Tx(0) = Sx(0) = 0, rx(0) > 0 and A,B > 0 due to (3.32), one obtains
Txx(0) < 0 and Sxx(0) < 0. Combining the facts that S(0) = T (0) = Tx(0) = Sx(0) = 0,
Txx(0) < 0, Sxx(0) < 0, and T (L) = S(L) = 0, one can easily see that there exist x1, x2 ∈ (0, L]
such that (3.36) and (3.37) are satisfied. Hence a contradiction arises. Thus Claim 2 is proved.
Similarly, one can derive the following result in Claim 3 below.

Claim 3: there exists ϱ∗ ∈ (0, L) such that T (x) > 0 and S(x) > 0 in (L− ϱ∗, L).
We proceed to prove the following result.
Claim 4: S must change sign in (0, L). Suppose that the claim is not true. Then it follows

from Claim 2 or Claim 3 that

S 	 0, in (0, L). (3.38)

Letting (y1, y2) = (0, L) in (3.33), we have∫ L

0
UV S

{
T
(
1− µ2

µ1
e(k1−k2)r

)
− µ2
µ1

(k1 − k2)rxe
(k1−k2)r

}
dx = 0.

With the assistance of this, k1 > k2, µ2 ≥ µ1e
(k2−k1)rmin , U, V > 0 on [0, L], rx > 0 on [0, L],

r 	 0 in (0, L), (3.38), and Claim 2, we can deduce that

T must change sign in (0, L). (3.39)

By Claim 2, Claim 3, and (3.39), there exists x4 ∈ (0, L) such that

T (x) > 0 in (x4, L) and T (x4) = 0. (3.40)

Then, (3.38), (3.40), T (L) = S(L) = 0, Claim 3 and Lemma 3.3 (i) yield a contradiction with
choosing (y1, y2) = (x4, L). Therefore, Claim 4 is proved.

According to Claim 2, Claim 3, and Claim 4, we see that S must have a negative local
minimum in (0, L). Define

x∗ = inf{x ∈ [0, L] : S(x) < 0, Sx(x) = 0 and Sxx(x) ≥ 0}.
Obviously, x∗ ∈ (0, L) and S(x∗) ≤ 0. We will get a contradiction for each of the two cases,
S(x∗) < 0 and S(x∗) = 0.

Case a: S(x∗) < 0.
Claim a.1: There exists x5 ∈ (0, x∗) such that S(x5) = 0, Sx(x) ≤ 0 on [x5, x

∗], and S(x) ≥ 0
on [0, x5].
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By Claim 2, and S(x∗) < 0, we know that S has a zero in (0, x∗). Denote

x5 = sup{x ∈ (0, x∗) : S(x) = 0}.
Clearly, S(x5) = 0 and S(x) < 0 for x ∈ (x5, x

∗]. By the definition of x∗, we see that S(x) ≥ 0
on [0, x5] otherwise there is a negative local minimum in (0, x5) (contradicting the definition of
x∗). Moreover, Sx(x) ≤ 0 on [x5, x

∗]. If this is not true, then there exists x̂ ∈ (x5, x
∗) such that

Sx(x̂) > 0. As S(x) < 0 for x ∈ (x5, x̂), there exists x̃ ∈ [x5, x̂) such that Sx(x̃) < 0. Then
there exists a negative local minimum of S in (x̃, x̂), a contradiction to the definition of x∗. This
proves Claim a.1.

Claim a.2: T (x5) < 0.
Suppose by contradiction that T (x5) ≥ 0. If T ≥ 0 in (0, x5), then by Claim a.1, Claim 2,

and Lemma 3.3 (i) with (y1, y2) = (0, x5), one can derive a contradiction. So, there exists some
point x∗5 in (0, x5) such that T (x∗5) < 0. Then, we shall consider two cases:

(1) T (x5) > 0, (2) T (x5) = 0.

If T (x5) > 0, then there exits some x∗∗5 ∈ (x∗5, x5) such that

T (x∗∗5 ) = 0, and T (x) > 0 in (x∗∗5 , x5). (3.41)

Combining Claim a.1, (3.41) and Lemma 3.3 (i) with (y1, y2) = (x∗∗5 , x5), one can derive a
contradiction.

Next, we consider case 2: T (x5) = 0. By Claim a.1, one obtains Vxx(x5) ≤ 0. If Vxx(x5) = 0,
then Sx(x5) = 0, which together with the facts that T (x5) = S(x5) = 0, rx > 0 on [0, L], B > 0
on [0, L] due to k1, k2 < kr, and the second equation of system (3.29), implies Sxx(x5) < 0.
Then, by S(x5) = Sx(x5) = 0 and Sxx(x5) < 0, one obtains that there exists some δ > 0 such
that

S(x) < 0 in (x5 − δ, x5 + δ)\{x5},
which contradicts Claim a.1. Therefore, Vxx(x5) < 0, which indicates that Uxx(x5) < 0 due to
Claim 1. This further yields that

Tx(x5) < 0,

which suggests that there exits some x∗∗5 ∈ (x∗5, x5) such that (3.41) holds. Then, one can also
obtain a contradiction by Lemma 3.3 (i) with (y1, y2) = (x∗∗5 , x5). Therefore, Claim a.2 holds.

Claim a.3: There exists x6 ∈ (x5, x
∗) such that T (x6) = 0 and T (x) < 0 in (x5, x6). It follows

from the definition of x∗ and the second equation in (3.29) that T (x∗) > 0. This along with
Claim a.2 immediately confirms Claim a.3.

Recall from Claim a.1 that S(x5) = 0 and Sx(x5) ≤ 0. So, one gets Vx(x5) = 0 and Vxx(x5) ≤
0. As V satisfies (3.27), evaluating it at x = x5 produces

r(x5)− U(x5)e
k1r(x5) − V (x5)e

k2r(x5) ≥ 0. (3.42)

Let g(x) = r(x)− U(x)ek1r(x) − V (x)ek2r(x) on [0, L]. Then

gx(x) = rx(1− k1Ue
k1r − k2V e

k2r)− TUek1r − SV ek2r.

With the facts that rx(x) > 0 on [0, L], T (x) < 0 and S(x) < 0 in (x5, x6), 0 < U, V < rmax

on [0, L] by (3.31), and k1, k2 < kr, one obtains that gx(x) > 0 in (x5, x6), which along with
(3.42) implies that g(x6) > 0. Then, estimating the first equation of system (3.27), one finds
Uxx(x6) < 0, which further yields that

Tx(x6) < 0. (3.43)

However, by Claim a.3, we have

Tx(x6) ≥ 0,

which contradicts (3.43). This proves that S(x∗) < 0 can not occur.
Case b: S(x∗) = 0.
First, with similar arguments as those in the proof of Claim a.1, one can obtain

S(x) ≥ 0 for x ∈ (0, x∗). (3.44)
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Next, it follows from the definition of x∗ that Sx(x
∗) = 0 and Sxx(x

∗) ≥ 0. We claim that
Sxx(x

∗) > 0 cannot occur. Otherwise, if Sxx(x
∗) > 0, then there exists ϱ4 > 0 small enough

such that
S(x) > 0 for x ∈ (x∗ − ϱ4, x

∗ + ϱ4)\{x∗}.
This contradicts the definition of x∗. Thus Sx(x

∗) = Sxx(x
∗) = 0. Finally, evaluating the second

equation of (3.29) at x = x∗, one easily sees

T (x∗) =
rx(x

∗)B(x∗)

U(x∗)ek1r(x∗)
> 0,

where B(x∗) > 0 due to k1, k2 < kr. This along with T (0) = 0 implies that there exists some
x7 ∈ [0, x∗) such that

T (x7) = 0, and T (x) > 0 in (x7, x
∗). (3.45)

Then the combination of S(x∗) = 0, (3.44) and (3.45) yields the results contradicting Lemma
3.3 (i) with (y1, y2) = (x∗7, x

∗). So, S(x∗) = 0 can not happen, which shows that system (3.27)
does not admit any coexistence steady state when rx > 0 on [0, L].

On the other hand, if rx < 0 on [0, L], by the argument of contradiction, we assume sys-

tem (3.27) admits a coexistence steady state (U, V ). Let Ũ(x) = U(L − x), Ṽ (x) = V (L − x),

and r̃(x) = r(L− x). Then, (Ũ , Ṽ ) and r̃ satisfy
µ1e

−k1r̃Ũxx + Ũ(r̃(x)− Ũek1r̃ − Ṽ ek2r̃) = 0, x ∈ (0, L),

µ2e
−k2r̃Ṽxx + Ṽ (r̃(x)− Ũek1r̃ − Ṽ ek2r̃) = 0, x ∈ (0, L),

Ũx = Ṽx = 0, x = 0, L,

where r̃x = −rx > 0 on [0, L]. This contradicts the first part of the Theorem, and hence
completes the proof. �

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. We first prove assertion (i). Given all the parameters except µ1,

it suffices to show that (θµ1,d1 , 0) is globally asymptotically stable for µ1 ∈
(
0, µ2e

(k1−k2)rmin
]
.

From Lemma 2.4 (ii), it follows that

lim
µ1→0

λ1(µ1d1(r), r −Wµ2,d2) = max
x∈Ω

(r −Wµ2,d2).

Multiplying the equation (3.1) with i = 2 by 1
d2(r)

and integrating the resulting equation on Ω,

one obtains ∫
Ω
Wµ2,d2(r −Wµ2,d2)dx = 0. (3.46)

Since re−k2r is not constant in Ω, similar to the analysis in the Claim 1 in the proof of Theorem
3.1, one can derive that

r −Wµ2,d2 ̸≡ 0,

which along with (3.46) implies
max
x∈Ω

(r −Wµ2,d2) > 0.

This further yields that

lim
µ1→0

λ1(µ1d1(r), r −Wµ2,d2) = max
x∈Ω

(r −Wµ2,d2) > 0,

which means that (0, θµ2,d2) is linearly unstable when µ1 is small enough. This thanks to
Lemma 3.4, and Proposition 3.1 (ii), shows that (θµ1,d1 , 0) is globally asymptotically stable
when µ1 is small enough. Following the approaches as those in the proof of [37, Theorem
1.3] or [46, Theorem 1.3], one can prove that (θµ1,d1 , 0) is globally asymptotically stable for

µ1 ∈
(
0, µ2e

(k1−k2)rmin
]
.

Next, we prove the assertion (ii) by the argument of contradiction. Given all the parameters
except µ2, we assume that system (1.7) doesn’t admit any positive steady state for any µ2 ∈(
0, µ1e

(k2−k1)rmin
)
. Similarly, one can prove that (0, θµ2,d2) is globally asymptotically stable when
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µ2 is small enough. On the other hand, from assertion (i), it follows that (θµ1,d1 , 0) is globally

asymptotically stable when µ2 = µ1e
(k2−k1)rmin . Following the approaches as those in the proof

of [50, Theorem 1.1], one can derive a contradiction. This completes the proof.
�

By the same arguments as for the case di(r) = e−kir(i = 1, 2), we can show the following
results for di(r) = (1 + r)−ki (i = 1, 2).

Theorem 3.4. Assume di(r) = (1+r)−ki (i = 1, 2). Let k̃r be such that 4k̃rrmax(1+rmax)
k̃r = 1.

If rx > 0 or rx < 0 on [0, L], 0 ≤ k2 < k1 ≤ k̃r and µ1 > 0, then we have the following results.

(i) (Competitive exclusion) If µ2 ∈ [µ1e
(k2−k1)rmin ,∞), then (θµ1,d1 , 0) is globally asymptot-

ically stable;
(ii) (Coexistence) There exists some µ2 ∈

(
0, µ1e

(k2−k1)rmin
)
such that system (1.7) admits a

positive steady state.

4. Summary and discussion

This paper investigates the effects of resource-dependent dispersal on the evolutionary dynam-
ics by studying the single and two-species population models. In a single-species community, we
can construct some resource-dependent dispersal strategies such that the total population sup-
ported may be smaller than the environmental carrying capacity (see the second part of Theorem
2.1-(3)), which is in contrast to the case of random dispersal with which the total population
supported is always larger than its carrying capacity [36], despite that some resource-dependent
dispersal strategies may still enjoy the same properties as the random dispersal (see the first
part of Theorem 2.1-(3)). In particular, if the dispersal strategy function d(r) is 1

r up to a
multiplicative constant, the idea free distribution will be achieved (see Theorem 2.1-(2) or [32]).
However for resource-dependent dispersal strategies other than those constructed in Theorem
2.1-(3), how to determine the total population size supported remains unknown. This amounts
to ask the following question:

(1) How does the total population
∫
ΩWµ,d(x)dx change with respect to the diffusion coeffi-

cient µ for a given dispersal strategy d(r) ?

Though the assertions in Theorem 2.1-(3) have partially addressed the above question, a full
picture is still missing in this paper and deserves further studies in the future.

For the two-species competition model (1.5) where two competing species are ecologically
identical, the resource-dependent dispersal strategies have more complicated and profound effects
on the population dynamics. First if two competing species employ the same dispersal strategies
in the sense that d1(r) = ϑd2(r) for some constant ϑ > 0, then the species with slower diffusion
will win the competition if d2(r)r is not constant (see Theorem 3.1). While if d2(r)r is constant,
there is a global attractor consisting of a continuum of steady states (see Remark 3.1-(b)). If
two competing species employ different dispersal strategies (i.e. d1(r) ̸= Cd2(r) for any C > 0),
the global dynamics is much harder to quantify. In this case, we resort to two quantities δ1
and δ2 associated with r, d1(r), d2(r) as defined in (3.13). Noticing that the case δ1 < 0, δ2 <
0 is impossible (see Remark 3.2-(a)), we can classify the global dynamics for large diffusion
coefficients µ1, µ2 (see Theorem 3.2) as follows: the two competing species are mutually excluded
if δ1δ2 < 0 and coexist if δ1 > 0, δ2 > 0. This classification seems to hold when µi(i = 1, 2) is
not large (see Remark 3.2-(d)), but it is not justified in this paper. Hence the second interesting
open question would be

(2) What is the global dynamics of (1.5) if µ1 or µ2 is not large when d1(r) ̸= Cd2(r) for
any C > 0 ? Does the criterion in Theorem 3.2 still hold ?

When δ1 = 0 or δ2 = 0, the neutral stability will arise and further analysis/effrots are needed
to draw a more decisive conclusion (see Remark 3.2-(c)), but we do not pursue this direction
in the paper and leave it for future. The classical two-species competition-diffusion system
(1.3) with random dispersal leads to a celebrated result: slower diffuser always prevails. Our
third result is to investigate whether the two-species competition model (1.5) with resource-
dependent dispersal will yield similar behaviors. It turns out there is not an affirmative answer
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to this question. When µ1 and µ2 are large, we construct a dispersal strategy in Proposition 3.2
to show that the coexistence exists if one species has slower diffusion than the other (see Remark
3.3). When µ1 and µ2 are not large, our results shown in Theorem 3.3 alongside Remark 3.5
and numerical simulations indicate the phenomenon “slower diffuser prevails” may occur (see
Theorem 3.3-(i) and Fig.3-(a) or Fig.3-(b)) but may not occur either (see Theorem 3.3-(ii)
and Fig.3-(c)) depending on the specific dispersal strategies. On the other hand, competitive
exclusion may also happen without requiring slower diffusion as numerical shown in Fig.3-(d).
Our results imply the prominent phenomenon “slower diffuser always prevails” may occur under
some simple biological circumstances, and does not necessarily happen in more complicated
situations where the population dynamics are much harder to classify. For the competition
model with resource-dependent dispersal, it seems hopeful to classify the dynamics to some
extend for given dispersal strategies. Among other things, the following question is worthwhile
to explore

(3) In the case stated in Theorem 3.3-(ii), are there some threshold values in (0, µ1e
(k2−k1)rmin)

for µ2 which can classify the coexistence and exclusion steady states ?

Interesting open questions arising from the current work are not limited to those mentioned
above. Nevertheless, we hope these questions can stimulate further works to gain a more com-
plete picture for the effects of resource-dependent dispersal on population dynamics.

Acknowledgement. We are deeply grateful to the referees for carefully reading our paper and
giving us various corrections and insightful suggestions/comments, which greatly improve the
precision of our results and exposition of our manuscript.
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