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Abstract 4 

Hard-to-access health infrastructure is likely to lead to increased morbidity and 5 

mortality. The optimal layout of health facilities is undoubtedly of great significant for 6 

disease control and prevention. This study aims to propose a method to provide 7 

equitable access to capacitated preventive health facilities, which captures the key 8 

features of facility congestion in a competitive choice environment. The problem is 9 

formulated as a bilevel non-linear integer programming model. The upper level is a bi-10 

objective programming model subject to investment budget constraint, where the 11 

primary objective is to minimize the maximum probability of balking (i.e., denied to 12 

access service) and the secondary objective is to minimize the maximum queueing time. 13 

The lower level is a user equilibrium analogous model resulting from the user choice 14 

of facility location. It determines the allocation of users to facilities by a defined 15 

generalized cost. An efficient heuristic algorithm is designed according to the bilevel 16 

structure where the genetic algorithm (GA) with elite strategy is developed to solve the 17 

upper level problem and the method of successive averages (MSA) is adopted to solve 18 

the lower level problem. An illustrative case study is employed to validate the 19 

performance of the proposed methods, and a number of interesting results and 20 

managerial insights are provided with sensitivity analysis. 21 

Keywords: health services, queueing, facility location, bilevel programming, user 22 

equilibrium 23 

24 

1. Introduction25 

The health infrastructure planning is an essential part of urban planning. It usually26 

means the planning of hospitals while the planning of preventive health facilities is 27 
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usually neglected. However, preventive health service, such as screening, examination, 28 

isolation, and vaccination, is necessary for urban development. It is of utmost 29 

importance since it can make massive savings on health expenditure by early detection. 30 

This is a painful lesson from the raging COVID-19 pandemic. In fact, before the current 31 

COVID-19 pandemic, three historically important epidemics had occurred since 2000: 32 

severe acute respiratory syndrome (SARS) in 2003, Middle East respiratory syndrome 33 

(MERS) in 2013, and Ebola virus disease in 2014. The arising monkeypox virus has 34 

already attracted our attention. The health issue is a real problem disturbing urban 35 

development. If the diseases can be detected and controlled earlier, the society would 36 

not suffer from huge economic damage and life losses. Therefore, the authorities around 37 

the world begin to realize the importance of preventive health facilities. In fact, the 38 

users usually face barriers in accessing appropriate, timely, and affordable preventive 39 

health service so far. The planning of preventive health infrastructure for disease control 40 

and prevention is an urgent problem that has practical implication for urban planning 41 

community.  42 

A noticeable disparity in the accessibility to health facilities among different zones, 43 

however, is found in theory and practice. This paper tries to propose a method to design 44 

a health facility network for disease prevention, with the aim of improving service 45 

equity in terms of accessibility. The accessibility usually refers to a measure of the ease 46 

of reaching destinations or activities distributed in space. There are various ways to 47 

measure the spatial accessibility to facilities. Unlike the conventional definition of 48 

accessibility, the implication of accessibility here is straightforward and intuitive which 49 

is defined as the accessible demand. In fact, there are two sources of inaccessible 50 

demand: one is demand lost due to insufficient coverage and the other is demand lost 51 

due to congested facility (Abouee-Mehrizi et al., 2011; Berman et al., 2006). For the 52 

first source, demand is elastic with respect to cost and customers are usually assigned 53 

to the closest facilities to maximize system total demand (Berman and Drezner, 2006; 54 

Davari et al., 2016; Marianov, 2003; Zhang et al., 2010). For the second source, 55 

customers could be denied to access the service (i.e., occurrence of balking) upon their 56 

arrival, due to capable space. It is seldom explored in past studies because the 57 

incorporation of limited capacity is not easy. There are only two closely related 58 

references to the best of our knowledge. Marianov et al. (2008) studied the capacitated 59 

facility network design problem. They defined travel cost as the travel time and 60 

queueing delay but ignored the balking cost. This creates to the paradoxical situation 61 
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where customers will choose facilities with a greater likelihood of balking, because it 62 

will reduce their overall time spent in the system while ignore the inaccessible demand. 63 

Motivated by this, Dan and Marcotte (2019) defined user utility considering additional 64 

balking cost and formulated a model to maximize the overall accessible demands. 65 

However, although system accessibility is maximized, the probability of balking 66 

between different facilities could be disparate. This could result in serious service 67 

inequity issue. Therefore, this study tries to propose a method to deploy capacitated 68 

health facilities to alleviate accessibility-based service inequity arising from balking.   69 

The service equity issue is one of the critical problems concerned by the users, 70 

especially for public health services. Tao et al. (2014) and Zhang et al. (2016) proposed 71 

to locate health facilities by maximizing equity in accessibility. The disparity in 72 

accessibility to health facilities is noticed and optimized. They adopted a general 73 

definition of facility accessibility and minimized the variance of accessibility. 74 

Mousazadeh et al. (2018) suggested to design an accessible, stable, and equitable health 75 

service network where the equity is incorporated by maximizing the minimum service 76 

level of each residential zone. It is the well-known John Rawls's social justice approach 77 

where the welfare of the worst group is maximized. Filippi et al. (2021) found that the 78 

equitable treatment of users was usually neglected. They suggested a way to 79 

compromise between efficiency and equity. Pourrezaie-Khaligh et al. (2022) proposed 80 

a bi-objective approach for health facility location problem considering both equity and 81 

accessibility. The objective is to minimize system costs, maximize accessibility, and 82 

minimize inequality among all demand nodes. They employed the accessibility index 83 

introduced by Wang and Tang (2013). Different from conventional way of equity 84 

measured using the variance of individual accessibility, they defined equity based on a 85 

minimum envy criterion. All in all, although accessibility-based service equity has 86 

started few attention recently, the congestion effect and user choice behavior have not 87 

been incorporated yet.  88 

Service facility location problems have been widely studied because of numerous 89 

real-life applications. Most literature is concerned with various versions of the problem 90 

where users are simply assigned to closest facilities, while sidesteps the important issue 91 

of user choice behavior, as well as the effect of congestion. In fact, the users have 92 

freedom to choose facilities. In addition to the travel time, the waiting time of a user at 93 

a congested facility also has a significant influence on her/his choice (Marianov et al., 94 

2005; Marianov et al., 2008). It is a congestion game problem. From the perspective of 95 
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user choice behavior, previous studies could fall into two categories: (i) system optimal 96 

models, where users are directed by a central decision-maker to optimize system 97 

performances; and (ii) user choice models, where users are free to choose a facility. The 98 

congestion at a facility is beginning to be introduced both. Let us give a brief overview 99 

on them separately.  100 

The system optimal models accounts for the major part of facility location problems 101 

where the users are assigned to the closest facilities. They are also known as all-or-102 

nothing allocation, or winner-takes-all allocation. Verter and Lapierre (2002) 103 

investigated the problem of locating preventive health facilities using a system optimal 104 

model. The travel time was assumed to be the only determinant of facility choice and 105 

users would go to the closest facility without considering the congestion effect. 106 

Although the users from the same residential node can be directed to different facilities 107 

in theory, the optimization problems will have an optimal solution where all-or-nothing 108 

allocation is adopted (Castillo et al., 2009). Zhang et al. (2009) further incorporated 109 

congestion effect at a facility where the users are assumed to visit the facility with 110 

minimum total cost including travel time and queueing time. The queueing time can 111 

also be incorporated as a constraint (Davari et al., 2016). Multi-objective location 112 

problems are also proposed recently where multiple performances are evaluated (Dogan 113 

et al., 2020; Erdoğan et al., 2019). As the outbreak of COVID-19, Risanger et al. (2021) 114 

recently proposed a system optimal model to select pharmacies for COVID-19 testing 115 

to ensure accessibility. 116 

The user choice models are emerging ways of facility location problems. Most 117 

location models assume that all the demand originating at a particular node is served by 118 

the same closest facility. This is not so in competitive situations where the users are free 119 

to choose a facility. In this case, the users at each demand node may choose different 120 

facilities to patronize. The more attractive the facility for users at a certain demand node, 121 

the larger the percentage it captures the demand originating there. The formulation of 122 

user choice behavior is the foundation of facility network design. However, the user 123 

choice behaviors in facility location problems, are usually sidestepped intentionally or 124 

unintentionally. Although the literature concerning facility location is vast, few studies 125 

have incorporated user choice behaviors (Dan and Marcotte, 2019). Generally speaking, 126 

the user choice models can be classified into two categories: one is proportional 127 

allocation and the other is equilibrium allocation. The proportional allocation can be 128 

further classified into Huff-based allocation which can revert to a gravity model with 129 
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pre-specified parameters (Gu et al., 2010; Tao et al., 2016) and logit-based allocation 130 

where a multinomial logit function is used to model the probability that users choose 131 

facility (Abouee-Mehrizi et al., 2011; Filippi et al., 2021; Kucukyazici et al., 2020). 132 

However, the proportional allocation cannot account for congestion effect. It is well-133 

known that as a facility captures more users, it becomes more congested, resulting in 134 

longer queueing times. In fact, this effect makes the service facility less attractive and, 135 

consequently, user capture is reduced, leading to an eventual user equilibrium state 136 

where no user can further reduce his cost by unilaterally changing his behavior. 137 

Therefore, the equilibrium allocation was suggested recently which includes 138 

deterministic user equilibrium when utility is deterministic and stochastic user 139 

aquarium when stochastic utility is assumed (Dan and Marcotte, 2019; Zhang and 140 

Atkins, 2019). However, it is few incorporated due to the computation complexity. The 141 

facility location problem with equilibrium allocation is still a cutting-edge problem 142 

deserved to be explored. 143 

This study makes four main theoretical and practical contributions for urban planning 144 

community. (i) We propose a way to improve the accessibility-based service equity for 145 

capacitated preventive health infrastructure planning. The equitable accessible flow is 146 

achieved by minimizing the maximum probability of balking. (ii) A bilevel decision 147 

structure is adopted where the upper level is urban planners and the lower level is 148 

facility users. The congestion effect is incorporated in the user utility function including 149 

queueing time and probability of balking. (iii) The users competing with each other will 150 

lead to user equilibrium state. An equivalent mathematical programming model is 151 

proposed to predict facility demand volumes at equilibrium state. (iv) A generic 152 

efficient and effective solution algorithm is proposed and validated, which is also 153 

applicable for other public service facility planning problems. (v) Several interesting 154 

findings and managerial insights for urban planners are provided based on 155 

computational experiments. 156 

The remainder of this paper is organized as follows. Section 2 describes the problem 157 

and formulates it as a bi-objective bilevel programming model. Section 3 proposes a 158 

heuristic algorithm to solve the bilevel problem. Section 4 presents the computational 159 

results for the model with managerial insights. Finally, conclusions and future research 160 

directions are provide in section 5. 161 

2. Problem modeling 162 

Let ( , )H  N L  be a road network with a set of nodes N  and a set of links L . 163 
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The nodes represent either demand concentrations, facility locations, or road 164 

intersections, and links are main transportation arteries between nodes. We assume that 165 

the demand rate requiring preventive health service at population node ( )i iN  166 

follows the Poisson process with an average rate ih . The set of candidate locations for 167 

health facilities is M  , and S   is the set of chosen locations where S M  . The 168 

shortest path travel time from demand node ( )i iN  to facility location ( )j jM  is 169 

denoted by ijt  . The government has a limited budget B   that can be used to build 170 

facilities with associated servers. We assume that servers at all of the facilities are the 171 

same, and service time is exponentially distributed providing service to   clients per 172 

unit of time on average. We also assume that clients are homogenous, their arrivals to 173 

each facility follow poisson distributions and the queueing discipline is first-come first 174 

served (FCFS). These assumptions are reasonable for walk-in facilities, which applies 175 

to most routine health services in many countries or regions. Thus, facility ( )j jM  176 

here is assumed to behave as a / / /j jM M s K  queueing system, where M  denotes 177 

Markovian (or poisson) arrivals or departures distribution, or equivalently exponential 178 

interarrival or service time distribution, js  denotes the number of servers at facility 179 

j , and jK  is the capable number of clients at facility j  due to physical constraint. 180 

Whenever there are jK  clients at facility j , any arriving client is denied to access 181 

and leaves the system as a lost client. The value of jK   is predetermined for each 182 

facility location, depending on specific conditions. This assumption is not loss of 183 

generality since it could be extended to other queueing system based on estimation from 184 

available data. 185 

The problem is to make location and associated capacity decisions, with the aim of 186 

equitable probability of balking, subject to the budget constraint B  . Three sets of 187 

decision variables are defined as follows: 188 

1  if a facility is opened at location  , ,

0  otherwise,
j

j j
y

 
 


M
  189 

js = number of servers at facility location j , j M , 190 

ijx = number of clients from demand node i  to location j , i N , jM . 191 

Therefore, for a chosen set { : , 1}jj j y  S M , we have  192 

 = ,   .ij i

j

x h i


 
S

N   (1) 193 

Let j  denotes the arrival rate of clients at facility j , j M , then we have 194 
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 ,    .    j ij

i

x j


  
N

M   (2) 195 

It defines the demand at each facility as the sum of demands originating from all the 196 

demand nodes. Given the arrival rate j  and the number of servers js  at facility j , 197 

the probability that there are n  clients in the queue is 198 
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
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 
  



  (3) 199 

where /j j    is the intensity of the queueing process and the probability of no 200 

client is  201 

 
1

0

1 1

[1 ( ) ]
! !

jj j

j

j

sns K
n sj j j

j

n n sj j

p
n s s

    

  

    .  (4) 202 

Note that the probability njp   at each facility j   is a function of j   and js  . The 203 

notation Kjp   is the probability of balking owing to a limited space. It allows a 204 

facility’s arrival rate to exceed its service rate, without unbounded grow of queue length. 205 

The effective arrival rate, i.e., the number of clients who could access the service, is 206 

denoted by 
j . There is, 207 

 = (1 ),   j j Kjp j    M .  (5) 208 

2.1 The user utility function 209 

Clients are assumed to patronize a facility that maximizes their individual utility, i.e., 210 

minimizes their generalized costs. Therefore, it is critical to understand how clients 211 

make their choices. Let us now present our user choice modeling, which essentially 212 

establishes a utility function depending on the attractiveness of a facility that they are 213 

aware of. Let ijU  denote the observed utility of users from demand node i  receiving 214 

the service at facility location j  . It mainly comprises four components: (i) ju  , a 215 

constant attraction of location j , which might include intrinsic factors such as parking 216 

convenience, practitioner reputation, service quality, etc.; (ii) ijt , the shortest path travel 217 

time from origin node i  to destination facility j ; (iii) ( , )j j jw s , the average dwell 218 

time at location j  including queueing time and service time, which is a function of 219 

arrival rate j  and server number js ; and (iv) ( , )Kj j jp s , the probability of unmet 220 

service (i.e., balking) due to physical constraint. Note that jw   and Kjp   are 221 



 

 8 / 28 

continuous functions with respect to j  and js . 222 

As it is an / / /j jM M s K   queueing system at facility j  , for any 1js   , the 223 

average dwell time ( , )j j jw s   could be given by the following set of equations 224 

according to the classical queueing theory: 225 

 ( , ) ,    ,
j

j j j

j

L
w s j


  S   (6) 226 

 ( ) + (1 )     ,
j

j

K

j j nj j Kj

n s

L n s p p j


     S，   (7) 227 

where jL   is the average length of the queue in terms of client number, 
j   is the 228 

effective arrival rate according to Eq. (5), njp  is the probability of having n  clients 229 

at the facility according to Eq. (3), and j   is the intensity of service as defined 230 

previously. Eq. (6) is the famous Little’s formula in queueing theory.  231 

 The way of integrating utility could be various. Following the conventional way in 232 

the literature, we assume a linear additive functional form of ijU  to incorporate the 233 

above four components with different weights. It is a standard assumption in the utility 234 

theory. In addition, it is also reasonable to assume that ijU  is positively associated 235 

with benefit ju  but negatively associated with cost ijt , ( , )j j jw s , and ( , )Kj j jp s . 236 

In this framework, ijU  is given by (Dan and Marcotte, 2019): 237 

 1 2 3= ( , ) ( , ),        ,ij j ij j j j Kj j jU u t w s p s i j         N S，   (8) 238 

where 1   and 2   denote the coefficients of the travel time and queueing time 239 

respectively, and 3  is interpreted as the price of service inaccessibility. In practice, 240 

parameters 1 , 2 , and 3  can be estimated empirically using realistic surveys. The 241 

different weights on travel time and waiting time could be possible and are allowed, 242 

given the different perceptions of clients for them. The definition of real values for these 243 

parameters is outside the scope of this paper. Note that besides these specific parts, the 244 

utility function can also be extended to incorporate other observable attributes, such as 245 

the parking cost and service price, depending on available data.  246 

  The users interacts with each other until no one person could increase his utility by 247 

unilaterally changing his facility choice, which is known as Nash equilibrium state. 248 

Mathematically it is important to note the interdependency between the arrival rate j  249 

and the expected waiting time ( , )j j jw s  and the probability of balking ( , )Kj j jp s . 250 

According to our modelling framework, j  is the sum of ijx , which depends on ijU , 251 

which further depends on ( , )j j jw s   and ( , )Kj j jp s  . That is, the value of j  252 
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depends on itself indirectly. Since we consider a network of competitive facilities, it 253 

implies that we need address a Nash equilibrium problem to determine demand 254 

allocation ijx   given facility locations and associated capacities. Specifically, it is 255 

better known as user equilibrium problem.  256 

2.2 The user equilibrium model 257 

It is assumed that clients always choose the facility with the highest observed utility. 258 

The clients are assumed to re-evaluate their utilities after several times of visits. They 259 

could also learn from others by social network for example. Therefore, they are 260 

assumed to know about the queues and capacities of the facilities to make near-optimal 261 

decisions. The competition between clients will reach a user equilibrium state finally. 262 

Let iU  denote the highest utility of clients at demand node i , i.e., 263 

 = max ,     .i ij
j M

U U i


 N   (9) 264 

Given the determined location S   and capacities js  , j S  , no client wants to 265 

change her/his facility choice at user equilibria. Therefore, the equilibrium condition 266 

can be characterized by the following complementarity system 267 

 

* *

* * *

1 2 3 * *

    if 0
( , ) ( , ) ,   ,

    if 0

i ij

ij j ij j j j Kj j j

i ij

U x
U u t w s p s i j

U x
    

 
      

 

N S，  (10) 268 

where *

ijU   and 
*

iU   denote the utility of clients from demand node i   visiting 269 

preventive health facility j  and the highest utility of clients from demand node i  at 270 

user equilibrium state, respectively. Moreover, it should be noted that 271 

* * ,    
ijj

i

x j


  
N

S , 272 

where *

j  denotes the arrival rate of clients at facility j  at user equilibrium state, and 273 

*

ij
x  denotes the allocated number of clients from demand node i  to facility location 274 

j  at user equilibrium state.  275 

The equilibrium condition (10) means that if there is a client flow from demand node 276 

i  to facility location j , then *

ijU , the utility of users from node i  to facility j , must 277 

be equal to the highest utility 
*

iU ; otherwise, it is no more than the highest. It implies 278 

that each user patronizes the facility with the highest observed utility. Accordingly, at 279 

equilibrium state, users issued from a common origin node will experience identical 280 

utilities, thus achieving a well-known Nash equilibrium state. They cannot improve 281 
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their utility by changing facility choice.  282 

To find *

j  and implicit *

ij
x  in Eq. (10) given determined location S , we can solve 283 

the following equivalent nonlinear mathematical programming with symmetric Jacobin 284 

matrix of utility function: 285 

0
max  ( | ) ( , )

j

ij j

i j

Z U s d


 
 

x
N S

x S                     (11) 286 

subject to  287 

 ,     ,ij i

j

x h j


  
S

S   (12) 288 

 0,    ,  ,ijx i j   N S   (13) 289 

where 290 

,    ,  .j ij

i

x i j


   
N

N S                    (14) 291 

Theorem 1. Given the determined location S , the mathematical programming (11)292 

-(14) is equivalent to equilibrium condition (10). 293 

Proof. In order to prove that the mathematical programming is equivalent to Eq. (10), 294 

we reformulate the model as a Lagrange function with nonnegative constraints only, 295 

i.e., 296 

 

( | ) ( )

. .    0,   ,    ,

i ij i

i j

ij

F Z w x h

s t x i j

 

  

   

 
N S

x S

N S

  (15) 297 

where iw  is a Lagrange multiplier of constraint (12).  298 

 According to Karush–Kuhn–Tucker (KKT) conditions, the optimal conditions of 299 

this Lagrange function are given by 300 

 0,     , ,ij

ij

F
x i j

x


   


N S   (16) 301 

 0,     , ,
ij

F
i j

x


   


N S   (17) 302 

 0,     ,
i

F
i

w


  


N   (18) 303 
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 0,    ,  .ijx i j   N S   (19) 304 

It is straightforward to find that Eq. (18) is equivalent to Eq. (12). Eqs. (16) and 305 

(17) imply that 306 

 

if  0,  0,     , ,

if  0,  0,     , .

ij

ij

ij

ij

F
x i j

x

F
x i j

x


    




    



N S

N S

  (20) 307 

Note that since we have 308 

 0
[ ( , ) ] ( ( ))

       = ,

j j

ij j i ij i

i j i jij j ij ij

ij i

L
U s d w x h

x x x

U w

 
 

    

  
  

   



  
N S N S   (21) 309 

Eq. (20) can be further rewritten as follows: 310 

 
if  0,  0,     , ,

if  0,  0,     , .

ij ij i

ij ij i

x U w i j

x U w i j

     

     

N S

N S
  (22) 311 

It can be also reformulated in the following complementary form: 312 

 ( ) 0,     , ,ij i ijU w x i j    N S   (23) 313 

 0,     , ,ij iU w i j    N S   (24) 314 

 0,     , .ijx i j   N S   (25) 315 

It can be seen that Eq. (22) means that if there is client flow, i.e., 0ijx  , the utility 316 

ijU  will be equal to iw , and if there is no client flow, i.e., 0ijx  , the utility ijU  is 317 

no more than iw  . Therefore, the Lagrange multiplier iw   can be interpreted as the 318 

highest utility 
*

iU   incurred by clients at demand node i  . Hence, Eq. (22) is 319 

equivalent to Eq. (10). Therefore, we can conclude that the solution of the 320 

mathematical programming (11)-(14) satisfies the equilibrium condition (10). The 321 

proof of the theorem is complete.  322 
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2.3 The bilevel programming model  323 

The entire problem considered here is a bilevel decision structure where the upper 324 

level problem is the determination of facility locations and associated capacities by 325 

urban planners, and the lower level problem is the determination of equilibrium flows 326 

of users from demand nodes to facility locations given the upper level decisions. Note 327 

that the equilibrium flows ijx , as well as the arrival rate j  are not decision variables. 328 

They are determined endogenously by the lower level model. The decision variables 329 

are the location variables jy  and associated capacities js  in the upper level model. 330 

Once the values of these variables are fixed, all of the remaining auxiliary variables and 331 

parameters can be computed.  332 

There usually is a limited investment budget to support the establishment and 333 

operation of the preventive health facilities in practice. This budget constraint can be 334 

used to incorporate the cost differences of establishing and operating facilities at 335 

different locations of an urban area. The budget is set to be B . Let f

jc  be the fixed 336 

cost of establishing a facility at location jM  and 
vc  be the unit operation cost of 337 

adding a server to a facility that is identical for each location. In addition, for cost 338 

effectiveness, we assume that facilities cannot be operated unless the number of their 339 

clients exceeds a minimum threshold minR . Moreover, the number of servers at facility 340 

j   cannot exceed an upper bound ˆ
js   due to physical condition. The value of ˆ

js   is 341 

typically given by the urban planner on the basis of specific conditions and may differ 342 

from location to location. 343 

Bi-objective optimization is adopted in the upper level model where the upper level 344 

is urban planners and the lower level is facility users. In order to formulate service 345 

network design problem considering accessibility-based equity, the maximum 346 

probability of balking Kjp  , j M  , is minimized. It is regarded as the primary 347 

objective. As there are possible chances that the primary objective is always zero for 348 

unsaturated flows, a secondary objective is introduced to minimize the maximum 349 

waiting time at a facility in order to reach equitable queueing. Therefore, the upper level 350 

model of service network design problem can be formulated as follows: 351 

Primary Objective     1min  ( ) max ,KjE p j  S M   (26) 352 

Secondary Objective   2min  ( ) max ( , ),j j jE w s j  S M   (27) 353 

subject to 354 
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 ,    ,j js y j  M   (28) 355 

 ˆ ,    ,j j js s y j M   (29) 356 

 ,   ,ij j

i

x j


  
N

M   (30) 357 

 ,     ,    ,ij jx y i j   N M   (31) 358 

 = (1 ),     ,j j Kjp j    M   (32) 359 

 min ,    ,j jR y j   M   (33) 360 

 ,f v

j j j

j j

c y c s B
 

  
M M

  (34) 361 

 {0,1},   ,    .j jy s j   +
Z M   (35) 362 

where ijx  is determined by the following lower level model after the location variables 363 

jy  and associated capacity variables js  are determined: 364 

 
0

max  ( | ) ( , )
j

ij j

i j

Z U s d


 
 

x
N S

x S   (36) 365 

subject to 366 

 ,     ij i

j M

x h j


   S   (37) 367 

 0,    ,    ijx i j   N S . (38) 368 

The primary objective function (26) is to minimize the maximum probability of 369 

balking and the secondary objective function (27) is to minimize the maximum 370 

queueing time. They are both Min-Max optimization problems so as to reach service 371 

equity, which is robust for any level of demands. Constraints (28) ensure the 372 

assignment of at least one server to each open facility. Constraints (29) limit the 373 

number of servers not exceeding ˆ
js  . Constraints (30) define the arrival rate j  . 374 

Constraints (31) ensures that clients can only obtain the service from open facilities. 375 

Constraints (32) are the definition of effective arrival rates. Constraints (33) stipulate 376 

that the arrival rate at an open facility must satisfy the minimum workload requirement. 377 

Constraint (34) is the budget and Constraints (35) define the feasible domain of 378 

decision variables jy  and js . 379 

3. Solution method 380 

Since the bi-objective bilevel programming model is highly nonlinear and contains 381 
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integer decision variables, it poses big challenges to solve the model exactly. Therefore, 382 

the focus of this study is to adopt efficient and effective heuristic algorithms that have 383 

many successful applications for facility network design problem (Auerbach and Kim, 384 

2021; Chambari, et al, 2011; Ershadi and Shemirani, 2021; Zhang and Atkins, 2019). 385 

The bilevel framework is carefully followed by our solution method. For the upper level 386 

location problem, a meta-heuristic, generic algorithm (GA) with elite strategy, is 387 

proposed to find the optimal locations and associated capacities. However, we 388 

definitely believe that the more advanced heuristics will improve the computation 389 

efficiency. For the lower level allocation problem, we adopt method of successive 390 

averages (MSA) to solve the user equilibrium model. This demand allocation algorithm 391 

determines the equilibrium flows of users to facilities after the upper level decisions are 392 

confirmed. Thus, the demand allocation algorithm serves as an embedded module for 393 

the facility location algorithm. For the ease of easier understanding, we describe the 394 

demand allocation algorithm first.  395 

3.1 Demand allocation algorithm for the lower level model 396 

Given the upper level facility decisions S   and js  , j S  , the lower level 397 

problem of the user choice model is to find the equilibrium flows. The adopted 398 

algorithm is a kind of iterative method, known as MSA. Let k  be the iteration index 399 

and K  be a maximum iteration number. In addition, let   be a predetermined error 400 

tolerance parameter, and (0,1)k   , 1, ,k K   , be a step-length parameter at 401 

iteration k . The specific computation steps are listed below: 402 

Step 0 (Initialization): Set the values of    and K  ; initiate 0k   ; set initial 403 

allocation  404 

 
0 , ,

| |

i
ij

h
x i j   N S

S
. 405 

Step 1 (Calculation of utility): Update : 1k k  ; calculate j , j S , from Eq. 406 

(2); calculate the shortest path travel time ijt  , i N  , jS  , using Dijkstra's 407 

algorithm; calculate probability of balking ( , ) Kj j jp s from Eq. (3), effective arrival 408 

rate j  from Eq. (5), waiting time ( , )j j jw s  from Eq. (6); calculate ijU , i N , 409 

jS , from Eq. (8); find iU , i N , from Eq. (9).  410 

Step 2 (All-or-nothing allocation): Set flow ijx  by all-or-nothing rule as follows, 411 

i.e., allocate all clients from the same demand node to the most attractive facility, i.e., 412 
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,     , .
0     if   
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ij

ij i

h U U
x i j

U U

 
    



N S   413 

Step 3 (Generation of search direction): Define 1k

ij ij ijd x x   , i N , jS , as 414 

a search direction. 415 

Step 4 (Flow update): Update client flow 1k k

ij ij k ijx x d  , i N , jS , where 416 

k  is the step-length parameter given by, 417 

1
=

1
k

k



. 418 

Step 5 (Stopping criteria): If the relative difference between k

ijx  and 1k

ijx   is equal 419 

or less than  , or k K , set : k

ij ijx x  and stop; otherwise, go to Step 1. The relative 420 

error is defined as,  421 
1

1

|| ||
, ,

|| ||

k k

ij ij

k

ij

x x
i j

x







   N S . 422 

Step 6 (Return results): Return the incumbent solution to the upper level model, 423 

including equilibrium flows, balking probabilities, and waiting times. 424 

The suggested method in each iteration identifies a new search direction for ijx  in 425 

Step 3 and then updates ijx  by a step-length in Step 4. The procedure continues until 426 

one of the stopping conditions in Step 5 is met. The step-length k  in each iteration is 427 

determined in advance. There are a variety of ways to set k . To achieve convergence, 428 

k  should decrease with k  and locate between zero and one. Here we set k  as the 429 

reciprocal of the iteration number ( 1)k    as usual. It is worth noting that the k

ijx  430 

updated in Step 4 may result in an arrival rate at a facility exceeds the capable space 431 

allowed. At this situation, excess clients will be denied to access health services and 432 

become lost demand.  433 

3.2 Facility location algorithm for the upper level model 434 

We develop a genetic algorithm with elite strategy to solve the upper level problem, 435 

because it is one of the most popular meta-heuristics for addressing combinatorial 436 

optimization problems with many successful applications. It has the ability to explore 437 

other parts of the feasible space while avoiding local optima. Although it is time-438 

consuming and the global optima is not guaranteed mathematically, it is still widely 439 

used for nonlinear programming problems.   440 

In genetic algorithms, each chromosome represents a solution to the problem, and 441 

the quality of a solution is measured by a fitness value. Note that since it is a bi-objective 442 
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optimization problem, the primary objective works as the first fitness value, and the 443 

secondary objective is adopted when there are equal primary objectives. In this study, 444 

an integer coding technique is employed to define a chromosome. Each chromosome is 445 

made up of several genes that are nonnegative integer numbers. Each gene corresponds 446 

to a candidate location in M , and its value represents the number of servers. If there 447 

is no server at a location, the facility is not opened at that location. The following is 448 

how we implement the genetic algorithm with elite strategy:  449 

Step 0 (Initialization): Set the used parameters, including the population size P , the 450 

maximum number of generations G  , the crossover probability cp  , the mutation 451 

probability mp , the label of generation 1g  , and the fraction of elite ep .  452 

Step 1 (Generation of initial population): Randomly generate P  feasible solutions 453 

as an initial population of chromosomes, scattering the entire range of possible solutions. 454 

If one chromosome is not feasible according to the constraints, generate another one 455 

until a feasible solution is found. 456 

Step 2 (Calculation of fitness value): For each chromosome in the population, the 457 

value of fitness is generated that is the objective function value. It is used to evaluate 458 

the quality of each chromosome in the population. Note that there are two objective 459 

functions in the upper level model. One is primary objective and the other is secondary 460 

objective. Therefore, there are two fitness values in order.   461 

Step 3 (Generation of new population):  462 

Step 3.1 (Selection): According to the values of fitness evaluated in Step 2, the best 463 

fraction ep  is labeled for elites, and the worst fraction ep  is discarded. A stratified 464 

sequencing method is used here where the primary objective value is sorted first and 465 

the secondary objective value is sorted next.  466 

Step 3.2 (Crossover): The remaining (1- )ep P   chromosomes are used for 467 

crossover operation. These chromosomes are matched in pairs randomly. The 468 

probability of carrying out the crossover is cp . If the two parent chromosomes are 469 

chosen for crossover, a gene location is randomly identified to across over to generate 470 

two off-springs as new chromosomes. If newborn chromosomes are not feasible 471 

according to constraints in the upper level model, try another gene location until they 472 

are feasible. 473 

Step 3.3 (Mutation): A chromosome is determined for mutation with probability 474 

mp  . Randomly choose two genes with at least one positive, and interchange their 475 

values. If the new chromosome is not feasible, try another two gene locations until a 476 
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feasible off-spring is generated. 477 

Step 3.4 (Elitism): Form a new generation. After genetic operations, there are still 478 

(1- )ep P   feasible chromosomes. The labeled ep P   elites are added to ensure the 479 

population size P . This allows the best chromosomes from the current generation to 480 

carry over the next generation unaltered. It guarantees that the solution quality will not 481 

decrease from one generation to the next. Update the notation of generation be 482 

: 1g g  . 483 

Step 4 (Stopping criterion): If the maximum number of generations G  is achieved, 484 

i.e., g G , terminate the iteration process and output the results. Otherwise, turn to 485 

Step 2.  486 

4. Computational experiments 487 

4.1 An illustrative case 488 

We conduct a computational experiment to assess the performance of proposed 489 

model and algorithm with Sioux Falls network. This network has been widely used for 490 

validation in the network design problems. It is a medium sized network as depicted in 491 

Fig. 1. The network consists of 24 nodes and 76 links. In the computational experiments, 492 

it is assumed that there are 8 population nodes and 8 potential locations in the region. 493 

Therefore, there are a total number of 64 origin-destination (O-D) pairs. The travel time 494 

and length of each link are given in Table 1. The link length can be converted to the 495 

link travel time, by assuming a constant link travel speed of 30 miles/hour. Recognizing 496 

that clients are only a very small part of road travelers, the facility choice and route 497 

choice of clients is assumed not to affect road travel times. That is, the link travel times 498 

are constants. This is different with classical road network design problems as the 499 

congestions take place in facilities other than roads. The preventive health demand data, 500 

i.e., the number of clients per hour (clients/hr), are listed in Table 2. The demand for 501 

preventive health services is fixed at origin zones while the trip distribution is not fixed 502 

and it is determined by facility planning. The clients have freedom to choose their 503 

favorite facilities.   504 

 505 

Fig. 1. The Sioux Falls test network 506 

 507 

Insert Table 1 here 508 

 509 

Insert Table 2 here 510 
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 511 

Based on the proposed model and solution method, the following parameter values 512 

are used in the case study.  513 

Problem parameters 514 

 the service rate of each server 6   clients/hr; 515 

 the constant facility attraction 0ju  ; 516 

 the coefficient to travel time 1 1   and that to waiting time 2 1  ; 517 

 the price of service inaccessibility 3 1  ;  518 

 the maximum number of servers ˆ 10js  ; 519 

 the fixed establishment cost 0f

jc  ; 520 

 the unit cost of a server 1vc  ; 521 

 the budget 40B  ; 522 

 the minimum workload min =10R  clients/hr; 523 

Method of successive averages parameters 524 

 the maximum iteration number 100K  ; 525 

 the error tolerance 0.01  ; 526 

Genetic algorithm parameters 527 

 the population size 100P  ; 528 

 the maximum number of generations 20G  ; 529 

 the crossover probability 0.5cp  ; 530 

 the mutation probability 0.2mp  ; 531 

 the fraction of elite 0.1ep  . 532 

The algorithms are coded using a free open-source language R 3.6.3. All runs are 533 

performed at a personal computer with 3.6 gigahertz Intel i7-4790 CPU and 16 534 

gigabytes RAM. The genetic algorithm stopped after 1.42 hours for this case study. The 535 

evolutionary process begins to be stable after 19 generations as shown in Fig. 2. It can 536 

be concluded that the final results are satisfying solutions. The selected locations to set 537 

up preventive health facilities are nodes 3, 9, 16, 19, and 23. Their associated number 538 

of servers are 6, 9, 8, 7, and 10 correspondingly. The service quality of each facility is 539 

shown in Table 3. It shows that the maximum probability of balking is 0.132 in node 3 540 

and the maximum waiting time is 1.22 hours in node 23. It can be concluded that the 541 

service quality among all facilities is quasi-equal in terms of balking probability and 542 

waiting time. The accessibility-based service equity is achieved which is the policy goal.  543 

 544 
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Fig. 2. The evolutionary process of genetic algorithm 545 

 546 

Insert Table 3 here 547 

The demand allocation at equilibrium state is presented in Table 4. It shows that 548 

clients from the same demand node usually patronize the same facility such as nodes 1, 549 

2, 4, 5, 13, and 14, even if they are free to head for different facilities. However, the 550 

clients are possible to be assigned to more than one facility such as nodes 19 and 23 if 551 

their utilities are quasi-equal.  552 

 553 

Insert Table 4 here 554 

 555 

4.2 Sensitivity analysis 556 

It is always beneficial to do a sensitivity analysis which could provide valuable 557 

managerial insights. We conduct a sensitivity analysis with varying budget control here, 558 

which is also a cost-benefit analysis in economics. The budget is increased from 30 to 559 

60 at step-length 5. The results are shown in Fig. 3 where the horizontal axis is budget 560 

and the vertical axis is maximum probability of balking among all of facility locations. 561 

At the very beginning, the maximum probability of balking is 37.4% with budget 30. It 562 

is a low level of service that is difficult to accept. It is no doubt that the probability of 563 

balking decreases with budget. The maximum probability of balking is decreased to 564 

2.2% with budget 45. The maximum waiting time is 1.67 hours at this time. Whether 565 

the budget is good enough depends on the policy makers. The probability of balking 566 

will continue to decrease until zero. After budget 50, the customers will not be denied 567 

to access facilities, which are unsaturated flows. The service network is not that 568 

congested. There are enough vacancies for clients. Since then, the secondary objective, 569 

minimizing the maximum waiting time, will play an important role as the primary 570 

objective will not move forward and keep zero. Therefore, the proposed methods are 571 

robust for capacitated facility location problems.       572 

 573 

Fig. 3. A sensitivity analysis with varying budget 574 

 575 

It is also interesting to do a sensitivity analysis on demand with given infrastructure 576 

investment budget. The demand is fixed in the short run, but it can change with time in 577 
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the long run. In order to investigate the benefit of investment budget, a demand 578 

expansion coefficient is adopted varying from 0.7 to 1.3 at step-length 0.1. The budget 579 

is set to be 40. The results are shown in Fig. 4 where the horizontal axis is varying 580 

demand and the vertical axis is maximum probability of balking. At the very beginning, 581 

there is no balking and the clients will not be denied to access health service because 582 

demand is insufficient. The maximum waiting time is 0.546 hours when demand 583 

expansion coefficient is 0.7. If the demand becomes even less ,the probability of facility 584 

idleness will increase, which means there is a waste of investment. It is undoubted that 585 

the maximum probability of balking will increase with demand. When demand 586 

expansion coefficient is 1.3, the maximum probability of balking will increase to 35.3%. 587 

If the probability is unacceptable, more infrastructure investment is needed.  588 

 589 

Fig. 4. A sensitivity analysis with varying demand 590 

 591 

5. Conclusions 592 

Preventive health services can detect serious diseases at early stage and make a lot 593 

of savings on health expenditures. It is critical for urban sustainable development as 594 

shown by the current COVID-19 pandemic. The authorities realize to improve the level 595 

of preventive health services to avoid expensive social cost. Noticed the disparity in the 596 

accessibility to health facilities among different zones, this study proposes a bilevel 597 

programming model to improve the accessibility-based service equity for health 598 

infrastructure planning problems. The facilities are capacitated where a customer 599 

observes the queue on arrival and leaves if there are no vacancies. In the upper level 600 

model, a bi-objective programming model is adopted to descript the urban planner 601 

where the primary objective is to minimize the maximum probability of balking and 602 

the secondary objective is to minimize the maximum queueing time subject to an 603 

investment budget. In the lower level model, a deterministic user equilibrium model is 604 

adopted to descript facility users, which is formulated as an equivalent mathematical 605 

programming problem. The user utility is defined to include travel time, queueing time, 606 

and the probability of balking for capacitated health facilities. The solution method is 607 

designed to correspond to the bilevel decision framework where a genetic algorithm 608 

with elite strategy is adopted for the upper level model and the method of successive 609 

averages is used for the lower level model. Note that a stratified sequencing method is 610 

used in genetic algorithm where the primary objective value is sorted first and the 611 
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secondary objective value is sorted next. 612 

To validate the proposed methods, we conduct several computational experiments 613 

and derive some interesting managerial insights. We find that the proposed methods are 614 

efficient and effective. These methods can reach a satisfactory solution in a reasonable 615 

computation time. It is found that although the clients from the same demand node may 616 

visit more than one facility, they usually visit the same facility. This is caused by 617 

deterministic user equilibrium. The results also indicate that the service quality is quasi-618 

equal in terms of balking probability. The bi-objective method is robust for any level of 619 

budget and demand. The sensitivity analysis with varying budget shows that the 620 

maximum probability of balking decreases with budget. However, the marginal benefit 621 

is decreasing. There is an optimal budget beyond which further increment of investment 622 

will not offset its benefits. On the other hand, the sensitivity analysis with varying 623 

demand shows that more investment is desired for expanded demand in order to 624 

maintain a certain level of service.  625 

This study would be improved in several ways in the near future. First, we would 626 

like to find a more realistic case with empirical data to show how our methods can be 627 

applied in practice. Second, the user utility function will be extended to include other 628 

observable attributes, such as the parking time, the service quality, the service price, etc. 629 

The formulation of user choice behavior would be more realistic. Third, there are some 630 

other advanced heuristics used for similar problems, such as vibration damping 631 

optimization algorithm and cutting plane algorithm. It would be interesting to conduct 632 

a comparison of results across different heuristics. Last but not the least, the unobserved 633 

utility will be incorporated in terms of a random term. Then the stochastic user 634 

equilibrium can be adopted to substitute the deterministic user equilibrium.          635 
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 727 

Table 1 Network characteristics for the Sioux Falls network 728 

Link 
Length 

(mile) 

Travel time 

(hr)  
Link 

Length 

(mile) 

Travel time 

(hr)  

1,3 3.6 0.12 33,36 3.6 0.12 

2,5 2.4 0.08 34,40 2.4 0.08 

4,14 3.0 0.10 37,38 1.8 0.06 

6,8 2.4 0.08 39,74 2.4 0.08 

7,35 2.4 0.08 41,44 3.0 0.10 

9,11 1.2 0.04 42,71 2.4 0.08 

10,31 3.6 0.12 45,57 2.4 0.08 

12,15 2.4 0.08 46,67 2.4 0.08 

13,23 3.0 0.10 49,52 1.2 0.04 

16,19 1.2 0.04 50,55 1.8 0.06 

17,20 1.8 0.06 53,58 1.2 0.04 

18,54 1.2 0.04 56,60 2.4 0.08 

21,24 6.0 0.20 59,61 2.4 0.08 

22,47 3.0 0.10 62,64 3.6 0.12 

25,26 1.8 0.06 63,68 3.0 0.10 

27,32 3.0 0.10 65,69 1.2 0.04 

28,43 3.6 0.12 66,75 1.8 0.06 

29,48 3.0 0.10 70,72 2.4 0.08 
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30,51 4.8 0.16 73,76 1.2 0.04 

 729 

Table 2 Demand and facility data for the Sioux Falls network 730 

Population node i 
Demand ih  

(clients/hr)  
Facility location j 

Capable space jK  

(clients) 

1 41 3 50 

2 33 7 70 

4 23 9 60 

5 29 11 60 

13 41 16 80 

14 35 19 70 

15 43 21 50 

20 26 23 80 

 731 

Table 3 The network design scheme and their service level 732 

Facility location Server number Balking probability 
Effective arrival rate 

(clients/hr) 

Waiting time 

(hr) 

3 6 0.132  36  1.21  

9 9 0.096  54  1.12  

16 8 0.118  48  1.10  

19 7 0.091  42  1.20  

23 10 0.128  60  1.22  

 733 

Table 4 The demand allocation at equilibrium state 734 

  Selected facility location  

Population node 3 9 16 19 23 

1 31.10 3.77 1.94 1.34 2.55 

2 2.07 5.52 21.77 2.56 1.08 

4 2.48 16.96 1.45 1.10 1.10 

5 1.79 21.43 2.22 1.79 1.37 

13 3.16 1.94 1.34 2.55 31.71 

14 0.63 3.26 1.68 5.36 24.27 

15 0.13 5.89 11.01 21.90 3.97 

20 0.08 0.87 13.08 9.54 2.84 
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 737 

Fig. 1. The Sioux Falls test network 738 
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 739 

Fig. 2. The evolutionary process of genetic algorithm 740 

 741 

Fig. 3. A sensitivity analysis with varying budget 742 
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 743 

Fig. 4. A sensitivity analysis with varying demand 744 
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