Numerical investigation and design recommendation for thin-

walled octagonal concrete filled steel tubes

Hung Hom, Hong Kong

10 * Corresponding author: zhangyongping@shu.edu.cn

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

9

1

2

Abstract: With the growing applications of high strength steel in modern constructions, thin-walled steel tubes attract many attentions. Local buckling failure is the most typical failure mode in a thin-walled steel tube, and concrete filled steel tubes (CFSTs) are excellent composite members in which the occurrence of local buckling is mitigated by the infilled concrete. This paper aims to investigate the compressive strength of concrete filled thin-walled octagonal steel tubes, which have the advantages of confinement efficiency over rectangular CFSTs, and constructability over circular CFSTs. Finite element models are established and validated by the experimental results from existing literatures. A parametric study is subsequently conducted and the result shows that the buckling strength of octagonal tube is significantly improved by the infilled concrete and the enhancement percentage increases with the increase of section slenderness coefficient, and the local buckling behaviour has a minor influence to the effect of confinement. In addition, a database consisting of 37 experimental specimens and 37 FE models are developed and used to assess the design methods in current codes of practice. It is found that the design methods from ANSI/AISC 360-16 and GB 50936-2014 underestimate the load capacity of octagonal CFSTs while the design formula

- 29 from EN 1994-1-1 which considers the effect of confinement overestimates the capacity.
- Finally, a design model considering the buckling strength of octagonal steel tube, the
- 31 influence of infilled concrete core and the effect of confinement is proposed and this
- model can well capture the compressive strength of octagonal CFSTs.
- 33 **Keywords**: Thin-walled CFSTs; Octagonal sections; Local buckling; Confinement;
- 34 Design model.

1. Introduction

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

1.1 Research background

Concrete filled steel tubes (CFSTs) have proved to be excellent compressive structural members. The compressive strength can be enhanced from the effect of confinement. The cross-section shape significantly dominates the effectiveness of confinement in CFST. The effectiveness of confinement in circular CFSTs is much better than rectangular CFSTs[1-3], however, the rectangular section has advantages in constructability, in which the flat sides allow diverse beam-column connection types such as bolted connections and end plate connections. Recently, polygonal sections especially octagonal section have attracted many academic attentions as the section combines the merits of circular and rectangular sections, having considerable confinement effectiveness and flat sides for construction as well. The first experimental study on CFST with octagonal section was conducted in 1977 by Tomii[4], 148 CFSTs with circular, square and octagonal sections were tested and it was found that the strength enhancement from confinement in octagonal CFST is higher than square counterparts, but lower than that in circular CFSTs. From then on, a series of experimental investigations were conducted on octagonal CFSTs[3, 5-11]. Among them, Ding[7] tested eight octagonal CFSTs with compact sections, and based on their test results, a design formula of load bearing capacity was proposed. Zhu and Chan[10] tested 21 CFST specimens with circular, square and octagonal section and conducted a systematic comparison of the effectiveness of confinement between CFSTs with these three different cross-section shapes and proposed a confinement coefficient for

octagonal CFSTs. Fang et al.[8] conducted an experimental study on octagonal CFSTs with high strength steel tube, the yield strength of the external steel tube is 760 MPa and concrete cylinder strength ranges from 56.8 MPa to 89.6 MPa. Compressive behaviour of octagonal CFSTs with slender sections were also investigated[9, 12, 13]. Lim et al.[9] tested eight irregular octagonal CFSTs with thin-walled steel tubes, the width to thickness ratio ranges from 65 to 89, and in the tests, elastic local buckling was found in those octagonal CFSTs with large D/t ratio. Recently, Chen and Chan[12] tested 20 octagonal CFSTs which include both compact and slender sections, and the design methods in current design codes including EN 1994-1-1[14] and ANSI/AISC 360-16[15] were evaluated. It was found that the Eurocode overestimates the load capacity of octagonal CFSTs with slender section when confinement effect is considered. The local buckling behaviour of thin-walled CFSTs has been studied. Liang et al.[16] argued that the section slenderness of rectangular CFSTs affects both the strength and the ductility of the CFST columns under compression. Cheng et al.[17] tested nine square CFSTs and found that the buckling behaviour of steel tube also affects the confinement to the concrete core. Numerical investigations such as finite element analysis on thin-walled octagonal CFSTs were also conducted[13]. However, the elastic local buckling strength of thin-walled octagonal steel tubes in CFSTs has not been fully investigated and the current design formulas have not considered the reduction of the strength in slender steel tubes. Generally, the steel ratio in thin-walled CFSTs with normal grade steel is low leadsh lead to the strength reduction in the steel tube from local buckling have minon influence to the load capacity of the composite

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

section, however, when the high strength steel tube is adopted, the steel ratio increases and the strength reduction should be considered. Thus, to well capture the load capacity of thin-walled octagonal CFSTs, the local buckling behaviour of octagonal steel tube with infilled concrete should be understood.

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

The local buckling behaviour of octagonal hollow steel tubes has been investigated by many researchers. Cold-formed and welded octagonal hollow steel tubes were experimentally and numerically studied, and many prediction models of the buckling strength of octahollowollows steel tube were proposed[18-24]. Zhu and Chan[23] indicated the current cross-section slenderness limits in EN 1993-1-1[25] and ASCE/SEI 48-11[26] for rectangular section are not applicable for the octagonal section and a new limit was proposed. Fang et al.[20, 27] extended the studies of octagonal hollow steel tubes from normal strength steel to high strength steel with steel grade S690, and three types of section with different fabrication routines were considered including one welded section and two cold-formed sections. Recently, Chen et al.[24]proposed a design method for the octagonal hollow steel tubes with both normal strength and high strength steel, and it was indicated that in the design of cold-formed octagonal sections, the influence of the strength enhancement at corner region from the press-braking process should be considered in the calculation of cross-section capacity as the total corner area in the octagonal section is non-negligible. The existing research can well capture the cross-section slenderness limit and buckling strength of octagonal hollow steel tube, however, in CFSTs, the infilled concrete prevents the inward local buckling of steel tubes and influences the buckling behaviour. Thus, for thin-walled octagonal CFSTs, the effect of infilled concrete core to the buckling behaviour of the steel tube should be studied.

In current design provisions, the section slenderness is limited and only the design formulas of circular sections and rectangular section of CFSTs are specified except Chinese code GB 50936-2014[28] which considers octagonal CFSTs. Chen and Chan[12] suggested the design formula of cross-sectional capacity in Chinese code GB 50936-2014[28] for circular section could be used for octagonal section and the equivalent circumcircle method could be used in EN 1993-1-1[25] and ASCE/SEI 48-11[26]. However, the design formula for the load capacity of octagonal CFSTs with slender section is not specified in current design codes as well as the strength reduction due to the buckling of the external steel tube.

This paper focuses on the compressive strength of octagonal shaped CFSTs with slender cold-formed octagonal steel tube. Finite element analysis which considers the effects of cold-forming process and local imperfection of steel tube was conducted and validated by the experimental results. The validated FE model was then adopted to carry out a parametric study. Based on the numerical results, the buckling strength of thin-walled octagonal steel tubes in CFST was obtained, the influences of local buckling of steel tube to the compressive behaviour of octagonal CFST were discussed, and finally a new design formula was proposed for the thin-walled octagonal CFSTs. It should be noted that in this paper thin-walled CFST or CFST with slender section represent a CFST with steel tube having local buckling before yielding of steel.

1.2 Existing experimental database

Experimental results of octagonal CFSTs were collected from existing literatures of Chen and Chan[12], Zhu and Chan[10, 11] and Ding[7]. The database includes 37 test results of cold-formed octagonal CFST stub columns under monotonic axial compression. Detailed geometric properties and material properties are listed in Table 1, where B is nominal width of section, b is flat width which excluding the corner region, H is the inscribed diameter of the octagonal section, L is the length of the specimen, r_0 and r_1 are the outer radius and inner radius of corners respectively (see Figure 1), f_c is the cylinder strength of the infilled concrete, f_y is the 0.2% proof strength of the steel tube at flat region, ξ confinement ratio which is defined as in Eq. 1, where A_c and A_s are the cross-sectional area of concrete core and steel tube respectively. λ_c is the coefficient of section slenderness which is defined in Eq. 2, where E is the Young's modulus of steel.

$$\xi = A_{\rm s} f_{\rm v} / A_{\rm c} f_{\rm c} \tag{1}$$

$$\lambda_{\rm c} = (b/t)\sqrt{f_{\rm y}/E} \tag{2}$$

The current test database covers a range of b/t ratio from 11 to 52, both normal and high strength concrete whose cylinder strength ranges from 28 MPa to 101 MPa, and a range of steel grade with 0.2% proof strength from 311 MPa to 581 MPa. In Table 1, it could be found the section slenderness coefficients λ_c of the test specimens are mostly smaller than 1.4. In European standard EN 1994-1-1[14], the slenderness limit for CFSTs with rectangular sections is $b/t \le 52\sqrt{235/f_y}$, which is equivalent to the limit of $\lambda_c \le 1.75$,. According to this limit, only a few test specimens in the database are with

slender cross-sections. However, previous studies on octagonal hollow steel sections indicated that the limit should be relaxed due to the octagonal cross-section shape[20, 23, 24]. A well validated numerical model should be generated to extend the current database to cover more data of octagonal CFSTs with slender section, and the numerical results allow to further investigati the buckling behaviour of the thin-walled octagonal steel tube.

Table 1. Collected database of octagonal CFSTs

Reference	Specimens	В	b	L	t	ro	$r_{\rm i}$	f_{y}	$f_{\rm c}$	¥	1	N
Reference		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(MPa)	(MPa)	ξ	$\lambda_{\rm c}$	(kN)
	O60-3-30	61	55	433	3.1	7	3.5	547	32	1.79	0.92	1616
	O60-3-50	61	56	431	3.0	6.5	3.5	547	55	1.09	0.93	2053
	O60-3-50#	61	55	432	3.1	7	3.5	547	55	1.11	0.92	1982
	O60-3-90	61	55	432	3.0	7	3.5	547	92	0.66	0.93	2565
	O75-3-30	77	71	539	3.1	7	4	547	28	1.62	1.18	2033
	O75-3-50	76	71	540	3.1	7	4	547	55	0.87	1.18	2903
	O75-3-90	76	71	543	3.0	7	3.5	547	92	0.52	1.18	3702
	O75-3-90#	76	70	543	3.0	7	3.5	547	92	0.53	1.18	3753
Chen and	O75-6-30	78	68	544	5.9	11	5	581	28	3.40	0.61	3550
Chan[12]	O75-6-50	78	68	544	5.9	11	5	581	55	1.82	0.61	4211
Chan[12]	O75-6–90	77	68	543	5.8	11	5	581	92	1.09	0.62	5098
	O75-6-90#	77	68	543	5.8	11	5	581	92	1.10	0.62	5033
	O90-3-30	92	85	646	3.0	7.5	4	547	28	1.35	1.43	2532
	O90-3-50	91	86	647	3.1	7	3.5	547	55	0.72	1.43	3695
	O90-3-90	91	85	648	3.1	7	3.5	547	92	0.44	1.43	4891
	O90-3-90#	91	86	649	3.1	7	3.5	547	92	0.44	1.43	5116
	O105-3-30	107	101	755	3.0	7	4	547	32	0.98	1.70	3527
	O105-3-30#	106	101	753	3.0	7	4	547	32	0.99	1.69	3538
	O105-3-50	106	101	756	3.0	7	3.5	547	55	0.62	1.69	464
	O105-3-90	106	101	759	3.0	7	3.5	547	92	0.37	1.69	6317
	40O1-1	74	60	695	5.6	16.7	11.1	384	38	1.71	0.56	2733
	40O1-2	74	60	695	5.6	16.7	11.1	384	38	1.71	0.56	2680
Zhu and	60O1-1	74	60	695	5.6	16.7	11.1	384	72	0.93	0.56	3543
Chan[10]	60O1-2	74	60	695	5.6	16.7	11.1	384	72	0.93	0.56	3549
	80O1-1	74	60	695	5.6	16.7	11.1	384	101	0.67	0.56	4199
	8001-2	74	60	695	5.6	16.7	11.1	384	101	0.67	0.56	4153
	80O1-3	74	60	695	5.6	16.7	11.1	384	101	0.67	0.56	4203
Zhu and	O-CF-1	60	52	450	2.9	9.3	6.2	296	100	0.32	0.77	1970
Chan[11]	O-CF-2	60	52	450	2.9	9.3	6.2	296	100	0.32	0.77	2024
	OST1-A	201	201	1500	3.9	-	-	311	32	0.38	2.01	9297
	OST1-B	199	199	1500	4.0	-	-	311	32	0.40	1.92	9311
	OST2-A	200	200	1500	6.0	-	-	321	32	0.62	1.30	1050
Ding et	OST2-B	197	197	1500	5.9	-	-	321	32	0.62	1.31	1071
al.[7]	OST3-A	200	200	1500	3.9	-	-	311	46	0.28	1.96	1236
	OST3-B	199	199	1500	4.0	-	-	311	46	0.29	1.91	1235
	OST4-A	197	197	1500	5.9	-	-	321	46	0.45	1.31	1299
	OST4-B	198	198	1500	6.0	-	-	321	46	0.45	1.29	1326

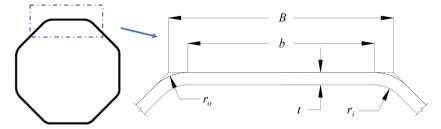


Figure 1. Geometrical information and definition of symbols of octagonal section

2. Numerical investigations

To extend current database of slender octagonal CFSTs, finite element analysis was conducted via the commercial software package ABAQUS[29], the following sections demonstrated the details of established finite element model, and the validation of the model against the experimental data of both compact and slender octagonal CFST specimens is presented. Based on the well validated model, parametric study was conducted to exam the influence of different parameters to the buckling strength of steel tube and to generate more data covering wider ranges of parameters.

2.1 Finite element models

2.1.1 Modeling of steel tube

In the finite element models, four-node shell element (S4R in ABAQUS) was selected for the external steel tube which have been widely adopted and validated by the existing literatures [8, 23]. In the validation of the FE models, the measured geometric and material properties reported in the literature were used to replicate the test results, and in the parametric studies, the cold-formed steel tube were considered. An outer corner radius of 3t and inner corner radius of 2t were used for the cold-formed corners. The material properties of flat and corner regions are both considered. The

cold-forming process enhances the yield strength at corner due to the strain hardening. As the corner region of the specimens in the database accounts for up to 30% of the cross-sectional gross area, the strength enhancement in corner region was considered. In validation, the stress-strain relationships of steel at flat and corner regions are used if the coupon test results are reported in details, otherwise, a three-stage nonlinear model from Chen et al.[30] was adopted, which was proposed on the basis of a large amount of coupon test data. To precisely capture the buckling strength and failure mode of the steel tube, in ABAQUS, the *imperfection option was used to replicate the imperfection profile. The lowest elastic buckling mode from elastic buckling analysis of octagonal hollow steel tube was used as the imperfection profile, and an amplitude of t/10 was used[23, 24]. Residual stresses from cold-forming and welding process are not considered in the FE models due to their minor influence to the local buckling behaviour of tubular steel stub columns under uniaxial compression[23, 30].

2.1.2 Modelling of concrete

Eight-node solid elements (C3D8R) were used for the modelling of concrete core. The constitutive model of confined concrete core inside the steel tube for circular section suggested by Tao et al.[31] was adopted. The stress-strain model is a three-stage curve as shown in Figure 2. The expressions of OA, AB and BC stages are shown in Eqs. 3-10, where σ and ε are the uniaxial stress and strain of concrete, f_c is the compressive cylinder strength of concrete, f_B is the confining stress at point B, f_T is the residual stress, ε_{co} and ε_{cc} are the strains at point A and point B respectively.

$$\sigma = \begin{cases} \frac{\sigma}{f_{c}'} = \frac{A \cdot X + B \cdot X^{2}}{1 + (A - 2)X + (B + 1)X^{2}} & 0 < \varepsilon \le \varepsilon_{c0} \\ f_{c}' & \varepsilon_{c0} < \varepsilon \le \varepsilon_{cc} \\ f_{r} + \left(f_{c}' - f_{r}\right) \exp\left[-\left(\frac{\varepsilon - \varepsilon_{cc}}{\alpha}\right)^{\beta}\right] & \varepsilon \ge \varepsilon_{cc} \end{cases}$$

$$(3)$$

$$X = \frac{\varepsilon}{\varepsilon_{\text{co}}}; \quad A = \frac{E_{\text{c}}\varepsilon_{\text{co}}}{f_{\text{c}}'}; \quad B = \frac{(A-1)^2}{0.55} - 1$$
(4)

$$\varepsilon_{co} = 0.00076 + \sqrt{(0.626 f_c' - 4.33) \times 10^{-7}}$$
 (5)

$$\frac{\varepsilon_{cc}}{\varepsilon_{c0}} = e^k, \quad k = \left(2.9224 - 0.00367 f_c'\right) \left(\frac{f_B}{f_c'}\right)^{0.3124 + 0.002 f_c}$$
(6)

$$f_B = \frac{\left(1 + 0.027 f_y\right) \cdot e^{-0.02 \frac{D}{t}}}{1 + 1.6 e^{-10} \cdot \left(f_c'\right)^{4.8}} \tag{7}$$

$$f_{\rm r} = 0.7 \left(1 - e^{-1.38 \xi_{\rm c}} \right) f_{\rm c}' \le 0.25 f_{\rm c}' \tag{8}$$

$$\alpha = 0.04 - \frac{0.036}{1 + e^{6.08\xi_c - 3.49}} \tag{9}$$

$$\beta = 1.2 \tag{10}$$

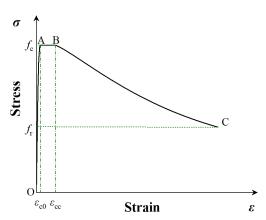


Figure 2. Constitutive model of concrete

The plastic parameters in Concrete damaged plastic (CPD) model for concrete are specified in Eqs.11-13. K_c is the ratio of the second stress invariant on the tensile meridian to that on the compressive meridian. K_c and the dilation angle φ are adopted

from the empirical equations proposed in Tao et al.[31]. $\frac{f_{b0}}{f_c}$ is the ratio between biaxial compression and uniaxial compression concrete strength, and the equation proposed in Papanikolaou and Kappos [32] was used. The flow potential eccentricity is 0.1, the viscosity is 0.

$$K_{c} = \frac{5.5}{5 + 2(f_{c}^{'})^{0.0075}}$$
 (11)

$$\frac{f_{b0}}{f_c'} = 1.5 \left(f_c'\right)^{-0.075} \tag{12}$$

$$\varphi = \begin{cases} 56.3(1 - \xi_{c}) & \xi_{c} \le 0.5\\ 6.672e \frac{7.4}{4.64 + \xi_{c}} & \xi_{c} > 0.5 \end{cases}$$
(13)

2.1.3 Boundary conditions and mesh convergence studies

The boundary condition of the FE models is fix-fix end constraint. Each end of the column was coupled with a reference point which is restrained in all degrees of freedom except the loading direction in top reference point where the axial displacement was applied. The interaction behaviour between concrete core and steel tube is surface to surface contact and "Hard" contact which allows the separation of the two surfaces after contact was used for the normal contact behaviour and Coulomb friction model was used for the tangential contact behaviour. The adopted coefficient of friction between concrete and steel is 0.3[11]. To achieve the balance between accuracy and computation efficiency, mesh convergence study was conducted. Based on the comparison of axial load to axial shortening curves, the mesh size of *B*/10 is adopted for all the FE models.

2.2 Validation of FE models

The experimental results of six specimens from Zhu and Chan[10], Chen and

Chan[12] and Ding et al.[7] were used to validate the FE models, among them the specimens 30O-1 and 50O-1 from Zhu and Chan[10] are with compact section and specimens O90-3-50 and O105-3-50 from Chen and Chan[12] as well as OST1-A and OST3-A from Ding et al.[7] are with slender section according to the section slenderness limit proposed for the octagonal hollow section[24]. Figure 3 shows the comparison of axial load-shortening curves between test and FE results. It could be found that the model can well capture the ultimate strength as well as the post-peak softening behaviour of the specimens with compact and slender section. Figure 4 shows the comparison of failure modes between experimental observation and FE results. It could be found the FE model can reasonably capture the failure mode of the compact and slender test specimens. Figure 5 shows the details of FE results for specimen OST1-A [7]. In Figure 5a, axial stress-strain curves of the external steel tubes with and without initial imperfection were presented. It could be found both the ultimate stresses are smaller than the yield strength and the reduction from the model with initial imperfection is lower than that without imperfection. According to the observations from the failure modes, local buckling occurred in both models but the buckling deformation is small in the model without imperfection. In addition, test results of two hollow octagonal steel tubes from Chen et al.[19] was adopted for the validation. Figure 6 shows the model can well capture both the stress-strain curves and failure mode of octagonal hollow steel tubes under compression. Figure 7 illustrated the predictions of load bearing capacity for all the specimens in database, the mean value of $N_{\rm FE}/N_{\rm test}$ is 0.95 and COV is 5.8%. In conclusion, the established FE models have the ability to

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

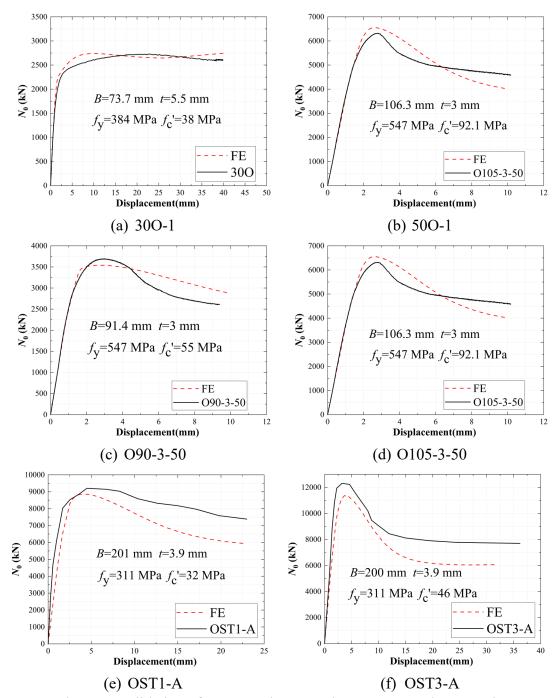


Figure 3. Validation of stress-strain curves between FE and test results

235

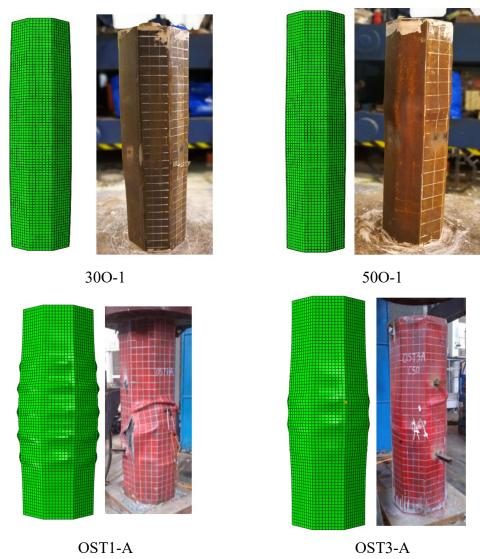


Figure 4. Comparison of failure modes between FE and test results

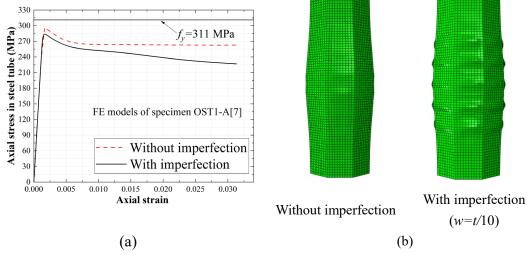
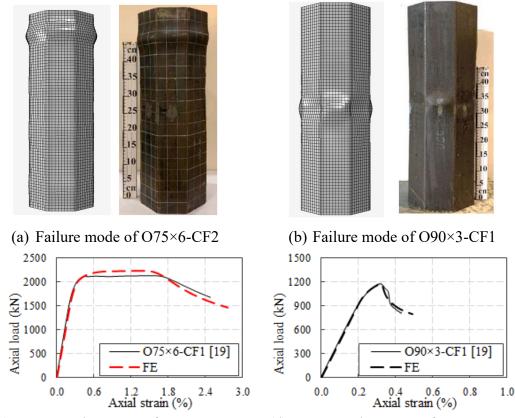



Figure 5. FE results of specimen OST1-A with and without imperfection: (a) Stress-strain curves of the external steel tubes; (b) Failure modes

(c) Stress-strain curves of O75×6-CF2 (d) Stress-strain curves of O90×3-CF1 Figure 6. Validation of octagonal hollow steel tubes

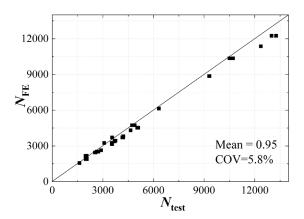


Figure 7. Prediction of load capacity from FE models

2.3 Parametric study

Based on the validated FE model, a parametric study was conducted to analyse the influence of relevant parameters to the buckling behaviour of the steel tube and generate additional data to extend the database. Totally 37 numerical models were established

and analyzed. The section slenderness coefficient λ_c ranges from 0.6 to 5.9 and most of them are slender section according to the section classification limits from Chen et al.[24] for octagonal hollow tubular section. Three steel grades (i.e S355, S460 and S690) were considered, and the yield strength and ultimate strength of the material are adopted from the Zhu and Chan[23], Fang et al.[27] and Chen et al.[30]. The effect of strain hardening at corner regions of steel tube is also considered. Three concrete strengths were adopted which are 30 MPa, 50 MPa and 80 MPa. Additionally, for each series of octagonal CFSTs with same steel section, a corresponding hollow section was also examined for comparison of local buckling strength. The details of FE models in parametric study is shown in Table 2 and the numerical results are shown in Table 3. The label system of FE models is defined as O-X-Y-Z where O indicates octagonal cross-section, X indicates thickness of steel tube, Y indicates concrete cylinder strength, Z stands for steel grades. In Table 3, $N_{\rm FE}$, $N_{\rm FE,s}$ and $N_{\rm FE,c}$ are the axial load on whole section, steel tube and concrete core at ultimate load respectively, $N_{\rm sy}$ is the nominal load capacity of steel tube which is equal to $A_s f_y$, $N_{FE,h}$ is the load capacity of steel tube without concrete core. Figure 8 shows the relationship of section slenderness coefficient and the normalised strength of steel tube in octagonal CFST (i.e. $N_{\rm FE,s}/N_{\rm sy}$). It could be found that the strength of the steel tube in CFST is lower than its yield strength. Even for those compact sections without local buckling behaviour, there are almost 5% reductions in their strengths. The interpretation is that the lateral expansion of concrete core generates lateral stress in the steel tube which reduce the axial stress after steel is yield. Another observation is that with the increase of the section slenderness coefficient,

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

the normalised strength of steel tube reduces to about 80% of yield strength due to the local buckling. To precisely capture the section slenderness limit for thin-walled octagonal CFST, the failure modes of the specimens with λ_c ranges from 1.5 to 2.0 was compared, and it was observed that the local buckling failure occurred after the peak load was reached when λ_c =1.69 (see Figure 9), Thus, a new slenderness limit (λ_c =1.69) is proposed for thin-walled octagonal CFST.

Table 2. Details of parametric study

Parameters	Details
Element type	C3D8R (Concrete), S4R (Steel)
Mesh density	<i>B</i> /10 mm
Yield stress (MPa)	379 (Flat region) + 548 (corner region), 541+655, 762+802
Imperfection profiles	Imperfection pattern from buckling analysis
Imperfection amplitude	<i>t</i> /10
Corner radius	3t (outer radius)
Concrete strength (MPa)	30, 50, 80
$\lambda_{\rm c}$	0.6 to 5.9

Table 3 Results of parametric study

Specimens \$\lambda_c\$ NFE kN NFE.s. kN NFE.s. kN NAISC1 kN NAISC2 kN NEC4-1 kN NEC4-2 kN NZ.&C NGB kN O-5-30-355 0.74 3582 1413 2169 2607 2740 2807 3870 3503 2947 O-4-30-355 0.96 3112 1132 1980 2338 2473 2541 3396 3101 2659 O-3-30-355 1.31 2620 844 1776 2066 2202 2272 2915 2694 2367 O-2-30-355 2.02 2164 559 1605 1791 1490 2001 2429 2281 2071 O-1-30-355 4.14 1770 271 1500 1155 1141 1726 1938 1865 1771 O-5-30-460 0.89 4489 1966 2523 3238 3371 3438 4905 4398 3721 O-4-30-460 1.14 3849 1585 2264											
Specimens See SN SN SN SN SN SN S	Specimens	λ_{c}									
O-4-30-355 0.96 3112 1132 1980 2338 2473 2541 3396 3101 2659 O-3-30-3555 1.31 2620 844 1776 2066 2202 2272 2915 2694 2367 O-2-30-3555 2.02 2164 559 1605 1791 1490 2001 2429 2281 2071 O-1-30-355 4.14 1770 271 1500 1155 1141 1726 1938 1865 1771 O-5-30-460 0.89 4489 1966 2523 3238 3371 3438 4905 4398 3721 O-4-30-460 1.14 3849 1585 2264 2846 2944 3049 4232 3823 3294 O-3-30-460 1.57 3192 1189 2004 2449 2243 2655 3549 3240 2854 O-2-30-690 1.06 5717 2760 3017 4099 3993			kN	kN	kN	kN	kN	kN			kN
O-3-30-355 1.31 2620 844 1776 2066 2202 2272 2915 2694 2367 O-2-30-3555 2.02 2164 559 1605 1791 1490 2001 2429 2281 2071 O-1-30-355 4.14 1770 271 1500 1155 1141 1726 1938 1865 1771 O-5-30-460 0.89 4489 1966 2523 3238 3371 3438 4905 4398 3721 O-4-30-460 1.14 3849 1585 2264 2846 2944 3049 4232 3823 3294 O-3-30-460 1.57 3192 1189 2004 2449 2243 2655 3549 3240 2854 O-2-30-460 2.41 2543 784 1760 2030 1619 2257 2856 2649 2402 O-1-30-690 1.36 4807 2192 2616 3538 3527 <	O-5-30-355			1413	2169	2607	2740	2807	3870	3503	2947
O-2-30-355 2.02 2164 559 1605 1791 1490 2001 2429 2281 2071 O-1-30-355 4.14 1770 271 1500 1155 1141 1726 1938 1865 1771 O-5-30-460 0.89 4489 1966 2523 3238 3371 3438 4905 4398 3721 O-4-30-460 1.14 3849 1585 2264 2846 2944 3049 4232 3823 3294 O-3-30-460 1.57 3192 1189 2004 2449 2243 2655 3549 3240 2854 O-2-30-460 2.41 2543 784 1760 2030 1619 2257 2856 2649 2402 O-1-30-460 4.95 1909 342 1568 1155 1173 1855 2154 2051 1939 O-5-30-690 1.36 4807 2192 2616 3538 3527 <t< td=""><td>O-4-30-355</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3101</td><td></td></t<>	O-4-30-355									3101	
O-1-30-355 4.14 1770 271 1500 1155 1141 1726 1938 1865 1771 O-5-30-460 0.89 4489 1966 2523 3238 3371 3438 4905 4398 3721 O-4-30-460 1.14 3849 1585 2264 2846 2944 3049 4232 3823 3294 O-3-30-460 1.57 3192 1189 2004 2449 2243 2655 3549 3240 2854 O-2-30-460 2.41 2543 784 1760 2030 1619 2257 2856 2649 2402 O-1-30-460 4.95 1909 342 1568 1155 1173 1855 2154 2051 1939 O-5-30-690 1.06 5717 2760 3017 4099 3993 4299 6279 5593 4912 O-4-30-690 1.86 3922 1650 2272 2971 2583 <	O-3-30-355	1.31	2620	844	1776	2066	2202	2272	2915	2694	2367
O-5-30-460 0.89 4489 1966 2523 3238 3371 3438 4905 4398 3721 O-4-30-460 1.14 3849 1585 2264 2846 2944 3049 4232 3823 3294 O-3-30-460 1.57 3192 1189 2004 2449 2243 2655 3549 3240 2854 O-2-30-460 2.41 2543 784 1760 2030 1619 2257 2856 2649 2402 O-1-30-460 4.95 1909 342 1568 1155 1173 1855 2154 2051 1939 O-5-30-690 1.06 5717 2760 3017 4099 3993 4299 6279 5593 4912 O-4-30-690 1.36 4807 2192 2616 3538 3527 3741 5346 4790 4280 O-3-30-690 1.86 3922 1650 2272 2971 2583	O-2-30-355		2164	559	1605	1791	1490	2001	2429	2281	2071
O-4-30-460 1.14 3849 1585 2264 2846 2944 3049 4232 3823 3294 O-3-30-460 1.57 3192 1189 2004 2449 2243 2655 3549 3240 2854 O-2-30-460 2.41 2543 784 1760 2030 1619 2257 2856 2649 2402 O-1-30-460 4.95 1909 342 1568 1155 1173 1855 2154 2051 1939 O-5-30-690 1.06 5717 2760 3017 4099 3993 4299 6279 5593 4912 O-4-30-690 1.86 3922 1650 2272 2971 2583 3177 4395 3974 3616 O-2-30-690 2.86 3132 1011 2121 2223 1767 2607 3428 3145 2925 O-1-30-690 5.87 2106 443 1663 1155 1209 <	O-1-30-355		1770	271	1500	1155	1141	1726	1938	1865	1771
O-3-30-460 1.57 3192 1189 2004 2449 2243 2655 3549 3240 2854 O-2-30-460 2.41 2543 784 1760 2030 1619 2257 2856 2649 2402 O-1-30-460 4.95 1909 342 1568 1155 1173 1855 2154 2051 1939 O-5-30-690 1.06 5717 2760 3017 4099 3993 4299 6279 5593 4912 O-4-30-690 1.36 4807 2192 2616 3538 3527 3741 5346 4790 4280 O-3-30-690 1.86 3922 1650 2272 2971 2583 3177 4395 3974 3616 O-2-30-690 2.86 3132 1011 2121 2223 1767 2607 3428 3145 2925 O-1-30-690 5.87 2106 443 1663 1155 1209 <	O-5-30-460	0.89	4489	1966	2523	3238	3371	3438	4905	4398	3721
O-2-30-460 2.41 2543 784 1760 2030 1619 2257 2856 2649 2402 O-1-30-460 4.95 1909 342 1568 1155 1173 1855 2154 2051 1939 O-5-30-690 1.06 5717 2760 3017 4099 3993 4299 6279 5593 4912 O-4-30-690 1.36 4807 2192 2616 3538 3527 3741 5346 4790 4280 O-3-30-690 1.86 3922 1650 2272 2971 2583 3177 4395 3974 3616 O-2-30-690 2.86 3132 1011 2121 2223 1767 2607 3428 3145 2925 O-1-30-690 5.87 2106 443 1663 1155 1209 2031 2446 2302 2208 O-5-50-355 0.74 4341 1426 2915 3361 3583 <	O-4-30-460	1.14	3849	1585	2264	2846	2944	3049	4232	3823	3294
O-1-30-460 4.95 1909 342 1568 1155 1173 1855 2154 2051 1939 O-5-30-690 1.06 5717 2760 3017 4099 3993 4299 6279 5593 4912 O-4-30-690 1.36 4807 2192 2616 3538 3527 3741 5346 4790 4280 O-3-30-690 1.86 3922 1650 2272 2971 2583 3177 4395 3974 3616 O-2-30-690 2.86 3132 1011 2121 2223 1767 2607 3428 3145 2925 O-1-30-690 5.87 2106 443 1663 1155 1209 2031 2446 2302 2208 O-5-50-355 0.74 4341 1426 2915 3361 3583 3694 4723 4367 3755 O-4-50-355 0.96 3866 1140 2726 3105 3331	O-3-30-460	1.57	3192	1189	2004	2449	2243	2655	3549	3240	2854
O-5-30-690 1.06 5717 2760 3017 4099 3993 4299 6279 5593 4912 O-4-30-690 1.36 4807 2192 2616 3538 3527 3741 5346 4790 4280 O-3-30-690 1.86 3922 1650 2272 2971 2583 3177 4395 3974 3616 O-2-30-690 2.86 3132 1011 2121 2223 1767 2607 3428 3145 2925 O-1-30-690 5.87 2106 443 1663 1155 1209 2031 2446 2302 2208 O-5-50-355 0.74 4341 1426 2915 3361 3583 3694 4723 4367 3755 O-4-50-355 0.96 3866 1140 2726 3105 3331 3444 4268 3983 3475 O-3-50-355 1.31 3403 850 2553 2846 3074	O-2-30-460	2.41	2543		1760	2030	1619	2257	2856	2649	2402
O-4-30-690 1.36 4807 2192 2616 3538 3527 3741 5346 4790 4280 O-3-30-690 1.86 3922 1650 2272 2971 2583 3177 4395 3974 3616 O-2-30-690 2.86 3132 1011 2121 2223 1767 2607 3428 3145 2925 O-1-30-690 5.87 2106 443 1663 1155 1209 2031 2446 2302 2208 O-5-50-355 0.74 4341 1426 2915 3361 3583 3694 4723 4367 3755 O-4-50-355 0.96 3866 1140 2726 3105 3331 3444 4268 3983 3475 O-3-50-355 1.31 3403 850 2553 2846 3074 3191 3808 3595 3188 O-2-50-355 2.02 3024 564 2460 2584 1634 <	O-1-30-460	4.95	1909		1568	1155	1173	1855	2154	2051	1939
O-3-30-690 1.86 3922 1650 2272 2971 2583 3177 4395 3974 3616 O-2-30-690 2.86 3132 1011 2121 2223 1767 2607 3428 3145 2925 O-1-30-690 5.87 2106 443 1663 1155 1209 2031 2446 2302 2208 O-5-50-355 0.74 4341 1426 2915 3361 3583 3694 4723 4367 3755 O-4-50-355 0.96 3866 1140 2726 3105 3331 3444 4268 3983 3475 O-3-50-355 1.31 3403 850 2553 2846 3074 3191 3808 3595 3188 O-2-50-355 2.02 3024 564 2460 2584 1634 2935 3344 3203 2896 O-1-50-355 4.14 2676 276 2400 1662 1662 <t< td=""><td></td><td>1.06</td><td>5717</td><td>2760</td><td>3017</td><td>4099</td><td>3993</td><td>4299</td><td>6279</td><td>5593</td><td>4912</td></t<>		1.06	5717	2760	3017	4099	3993	4299	6279	5593	4912
O-2-30-690 2.86 3132 1011 2121 2223 1767 2607 3428 3145 2925 O-1-30-690 5.87 2106 443 1663 1155 1209 2031 2446 2302 2208 O-5-50-355 0.74 4341 1426 2915 3361 3583 3694 4723 4367 3755 O-4-50-355 0.96 3866 1140 2726 3105 3331 3444 4268 3983 3475 O-3-50-355 1.31 3403 850 2553 2846 3074 3191 3808 3595 3188 O-2-50-355 2.02 3024 564 2460 2584 1634 2935 3344 3203 2896 O-1-50-355 4.14 2676 276 2400 1662 1662 2676 2878 2808 2598 O-5-50-460 0.89 5278 1996 3283 3992 4214 <t< td=""><td>O-4-30-690</td><td>1.36</td><td>4807</td><td>2192</td><td>2616</td><td>3538</td><td>3527</td><td>3741</td><td>5346</td><td>4790</td><td>4280</td></t<>	O-4-30-690	1.36	4807	2192	2616	3538	3527	3741	5346	4790	4280
O-1-30-690 5.87 2106 443 1663 1155 1209 2031 2446 2302 2208 O-5-50-355 0.74 4341 1426 2915 3361 3583 3694 4723 4367 3755 O-4-50-355 0.96 3866 1140 2726 3105 3331 3444 4268 3983 3475 O-3-50-355 1.31 3403 850 2553 2846 3074 3191 3808 3595 3188 O-2-50-355 2.02 3024 564 2460 2584 1634 2935 3344 3203 2896 O-1-50-355 4.14 2676 276 2400 1662 1662 2676 2878 2808 2598 O-5-50-460 0.89 5278 1996 3283 3992 4214 4325 5751 5257 4557 O-4-50-460 1.14 4614 1601 3013 3613 3776 <t< td=""><td>O-3-30-690</td><td></td><td></td><td>1650</td><td>2272</td><td></td><td>2583</td><td>3177</td><td></td><td>3974</td><td>3616</td></t<>	O-3-30-690			1650	2272		2583	3177		3974	3616
O-5-50-355 0.74 4341 1426 2915 3361 3583 3694 4723 4367 3755 O-4-50-355 0.96 3866 1140 2726 3105 3331 3444 4268 3983 3475 O-3-50-355 1.31 3403 850 2553 2846 3074 3191 3808 3595 3188 O-2-50-355 2.02 3024 564 2460 2584 1634 2935 3344 3203 2896 O-1-50-355 4.14 2676 276 2400 1662 1662 2676 2878 2808 2598 O-5-50-460 0.89 5278 1996 3283 3992 4214 4325 5751 5257 4557 O-4-50-460 1.14 4614 1601 3013 3613 3776 3951 5098 4701 4146 O-3-50-460 1.57 3942 1192 2751 3229 2886 <	O-2-30-690	2.86	3132	1011	2121	2223	1767	2607	3428	3145	2925
O-4-50-355 0.96 3866 1140 2726 3105 3331 3444 4268 3983 3475 O-3-50-355 1.31 3403 850 2553 2846 3074 3191 3808 3595 3188 O-2-50-355 2.02 3024 564 2460 2584 1634 2935 3344 3203 2896 O-1-50-355 4.14 2676 276 2400 1662 1662 2676 2878 2808 2598 O-5-50-460 0.89 5278 1996 3283 3992 4214 4325 5751 5257 4557 O-4-50-460 1.14 4614 1601 3013 3613 3776 3951 5098 4701 4146 O-3-50-460 1.57 3942 1192 2751 3229 2886 3573 4436 4138 3718 O-2-50-460 2.41 3360 757 2603 2812 2273 <t< td=""><td>O-1-30-690</td><td>5.87</td><td>2106</td><td>443</td><td>1663</td><td>1155</td><td>1209</td><td>2031</td><td>2446</td><td>2302</td><td>2208</td></t<>	O-1-30-690	5.87	2106	443	1663	1155	1209	2031	2446	2302	2208
O-3-50-355 1.31 3403 850 2553 2846 3074 3191 3808 3595 3188 O-2-50-355 2.02 3024 564 2460 2584 1634 2935 3344 3203 2896 O-1-50-355 4.14 2676 276 2400 1662 1662 2676 2878 2808 2598 O-5-50-460 0.89 5278 1996 3283 3992 4214 4325 5751 5257 4557 O-4-50-460 1.14 4614 1601 3013 3613 3776 3951 5098 4701 4146 O-3-50-460 1.57 3942 1192 2751 3229 2886 3573 4436 4138 3718 O-2-50-460 2.41 3360 757 2603 2812 2273 3191 3766 3567 3275 O-1-50-460 4.95 2836 359 2478 1819 1837 2805 3091 2992 2817 O-5-50-690 1.06 6499	O-5-50-355	0.74	4341	1426	2915	3361	3583	3694	4723	4367	3755
O-2-50-355 2.02 3024 564 2460 2584 1634 2935 3344 3203 2896 O-1-50-355 4.14 2676 276 2400 1662 1662 2676 2878 2808 2598 O-5-50-460 0.89 5278 1996 3283 3992 4214 4325 5751 5257 4557 O-4-50-460 1.14 4614 1601 3013 3613 3776 3951 5098 4701 4146 O-3-50-460 1.57 3942 1192 2751 3229 2886 3573 4436 4138 3718 O-2-50-460 2.41 3360 757 2603 2812 2273 3191 3766 3567 3275 O-1-50-460 4.95 2836 359 2478 1819 1837 2805 3091 2992 2817 O-5-50-690 1.06 6499 2747 3752 4853 4675 5186 7121 6450 5659	O-4-50-355	0.96	3866	1140	2726	3105	3331	3444	4268	3983	3475
O-1-50-355 4.14 2676 276 2400 1662 1662 2676 2878 2808 2598 O-5-50-460 0.89 5278 1996 3283 3992 4214 4325 5751 5257 4557 O-4-50-460 1.14 4614 1601 3013 3613 3776 3951 5098 4701 4146 O-3-50-460 1.57 3942 1192 2751 3229 2886 3573 4436 4138 3718 O-2-50-460 2.41 3360 757 2603 2812 2273 3191 3766 3567 3275 O-1-50-460 4.95 2836 359 2478 1819 1837 2805 3091 2992 2817 O-5-50-690 1.06 6499 2747 3752 4853 4675 5186 7121 6450 5659	O-3-50-355		3403	850	2553	2846	3074	3191	3808	3595	3188
O-5-50-460 0.89 5278 1996 3283 3992 4214 4325 5751 5257 4557 O-4-50-460 1.14 4614 1601 3013 3613 3776 3951 5098 4701 4146 O-3-50-460 1.57 3942 1192 2751 3229 2886 3573 4436 4138 3718 O-2-50-460 2.41 3360 757 2603 2812 2273 3191 3766 3567 3275 O-1-50-460 4.95 2836 359 2478 1819 1837 2805 3091 2992 2817 O-5-50-690 1.06 6499 2747 3752 4853 4675 5186 7121 6450 5659	O-2-50-355										
O-4-50-460 1.14 4614 1601 3013 3613 3776 3951 5098 4701 4146 O-3-50-460 1.57 3942 1192 2751 3229 2886 3573 4436 4138 3718 O-2-50-460 2.41 3360 757 2603 2812 2273 3191 3766 3567 3275 O-1-50-460 4.95 2836 359 2478 1819 1837 2805 3091 2992 2817 O-5-50-690 1.06 6499 2747 3752 4853 4675 5186 7121 6450 5659	O-1-50-355		2676	276	2400	1662	1662	2676	2878	2808	2598
O-3-50-460 1.57 3942 1192 2751 3229 2886 3573 4436 4138 3718 O-2-50-460 2.41 3360 757 2603 2812 2273 3191 3766 3567 3275 O-1-50-460 4.95 2836 359 2478 1819 1837 2805 3091 2992 2817 O-5-50-690 1.06 6499 2747 3752 4853 4675 5186 7121 6450 5659	O-5-50-460		5278	1996	3283	3992	4214	4325	5751	5257	4557
O-2-50-460 2.41 3360 757 2603 2812 2273 3191 3766 3567 3275 O-1-50-460 4.95 2836 359 2478 1819 1837 2805 3091 2992 2817 O-5-50-690 1.06 6499 2747 3752 4853 4675 5186 7121 6450 5659	O-4-50-460						3776		5098	4701	
O-1-50-460 4.95 2836 359 2478 1819 1837 2805 3091 2992 2817 O-5-50-690 1.06 6499 2747 3752 4853 4675 5186 7121 6450 5659	O-3-50-460	1.57	3942	1192	2751	3229	2886	3573	4436	4138	3718
O-5-50-690 1.06 6499 2747 3752 4853 4675 5186 7121 6450 5659	O-2-50-460					2812		3191	3766	3567	
	O-1-50-460	4.95	2836	359	2478	1819	1837	2805	3091	2992	2817
O-4-50-690 1.36 5642 2218 3424 4305 4158 4644 6207 5665 5057	O-5-50-690	1.06	6499	2747	3752	4853	4675	5186	7121	6450	5659
	O-4-50-690	1.36	5642	2218	3424	4305	4158	4644	6207	5665	5057

O-3-50-690	1.86	4749	1658	3091	3751	3225	4095	5278	4868	4417
O-2-50-690	2.86	3885	1054	2831	2901	2421	3541	4334	4060	3741
O-1-50-690	5.87	2956	439	2517	1819	1874	2981	3378	3241	3033
O-5-80-355	0.74	5358	1427	3931	4492	4847	5024	6010	5669	5118
O-4-80-355	0.96	4989	1146	3843	4256	4617	4797	5586	5312	4843
O-3-80-355	1.31	4637	854	3783	4017	4380	4568	5156	4952	4561
O-2-80-355	2.02	4369	566	3803	3775	3124	4335	4724	4590	4271
O-5-80-460	1.02	6273	2018	4255	5123	5478	5655	7029	6552	5857
O-4-80-460	1.27	5679	1621	4058	4763	5025	5305	6406	6024	5456
O-3-80-460	1.69	5142	1210	3932	4400	3850	4950	5776	5490	5036
O-2-80-460	2.54	4702	805	3898	3986	3253	4592	5140	4950	4597
O-5-80-690	1.20	7584	2791	4793	5984	5699	6516	8390	7739	6400
O-4-80-690	1.51	6698	2231	4467	5456	5106	5997	7506	6982	5775
O-3-80-690	2.01	5834	1603	4230	4922	4189	5472	6609	6215	5110
O-2-80-690	3.01	5097	1001	4095	3918	3401	4942	5701	5438	4409
O-1.3-50-460	3.90	2990	468	2522	2004	1942	2921	3294	3165	2956
O-1.4-50-460	3.63	3039	504	2534	2091	1983	2960	3361	3222	3002
O-1.5-50-460	3.38	3085	541	2544	2192	2026	2998	3429	3280	3048
O-6-50-460	0.85	5936	2380	3556	4367	4585	4694	6393	5805	4949
O-6-80-690	1.00	8490	3319	5171	6506	6849	7029	9259	8484	7516
O-7-50-460	0.73	6603	2761	3842	4738	4952	5059	7025	6344	5321
O-7-80-690	0.86	9376	3834	5543	7022	7365	7536	10112	9217	7999
O-8-50-460	0.63	7292	3146	4147	5105	5315	5420	7645	6873	5670
O-8-80-690	0.75	10282	4348	5934	7532	7869	8037	10950	9937	8426
		•								

276

277

278

279

280

281

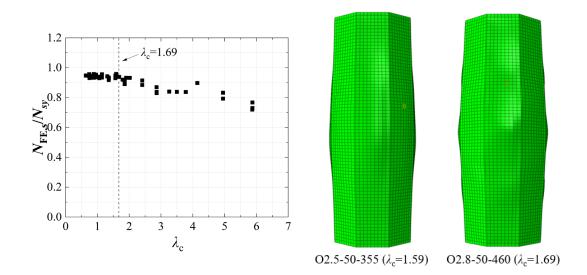


Figure 8. Reduction of strength in steel tube

Figure 9. Comparison of failure modes of octagonal CFSTs

2.3.1 Influence of infilled concrete to the buckling behaviour of steel tube

Figure 8 and Figure 9 have shown that the local buckling failure occurred in the octagonal steel tube in CFST and the strength of steel tube is reduced, but the influence of concrete core to the buckling strength is still unclear. To investigate the influence of concrete core, a companion model with hollow section was established with same

geometric properties, same material properties and same imperfection profile for each series of octagonal CFSTs. Figure 10 shows the deformation and axial stress distribution nephogram of octagonal steel tube with and without concrete core at peak load. The comparison shows the infilled concrete core significantly suppress the developing of local buckling and the strength reduction due to the buckling. The comparison between the buckling strength of steel tube with and without concrete core (i.e. $N_{\text{FE},s}/N_{\text{FE},h}$) is shown in Figure 11. It could be found that when the section slenderness coefficient λ_c is less than 1.2 (i.e. the slenderness limit for hollow octagonal steel tubes), the ratio of $N_{\text{FE},s}/N_{\text{FE},h}$ is around 0.95, and as the λ_c value increases, the ratio increases rapidly which means the buckling strength of steel tube with infilled concrete is larger than the hollow tube when $\lambda_c>1.2$ and the difference increases as the section slenderness coefficient increases. Another observation from Figure 11 is that the increment is independent from the steel grade and concrete grade.

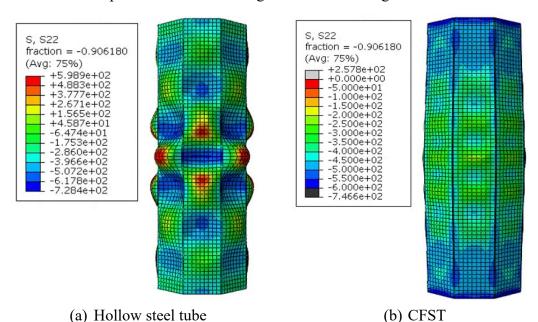


Figure 10. Axial stress distribution nephogram of octagonal steel tube with and without concrete core at peak load

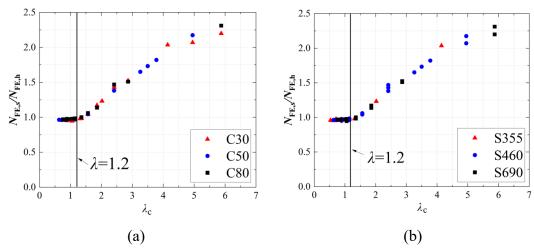


Figure 11. Reduction factors between steel tube with and without infilled concrete (a) with different concrete strength (b) with different steel grade

2.3.2 Influence of local buckling to the concrete confinement

Effect of confinement is crucial to the load capacity of CFSTs, and the steel tube provides the lateral confining pressure to the concrete core. Thus, to investigate how the local buckling behaviour of steel tube influences the confinement, concrete strength enhancement ratio is defined as follows:

$$CI = N_{CFST,c} / A_c f_c'$$
 (14)

where $N_{\text{CFST,c}}$ is the axial load bearing by concrete core at ultimate condition. It is well known that the effect of confinement is related to the confinement ratio ξ , thus, the influence of section slenderness to the effect of confinement could be investigated by comparing the relationships between concrete strength enhancement and confinement ratio of CFSTs with different section slenderness coefficients. Figure 12 illustrated the relationships between strength enhancement of concrete and confinement ratio of CFSTs with slender and compact section are almost the same. Figure 13 shows the stress-strain curves of concrete from two series of octagonal CFSTs with same confinement ratio. It could be found that the stress-strain relationship of CFST with

different slenderness coefficient are close under the same confinement ratio. In addition, the axial stress distributions of the composite sections with section slenderness coefficient of 2.86 and 0.96 are compared (see Figure 14), it could be found that the axial stress distributions in concrete core with buckled and not buckled steel tubes are similar, this is because the local buckling occurred at the middle portion of the flat sides, where the concrete is not efficiently confined, while in those CFST without local buckling, due to the non-uniform confinement the concrete near the middle portion of the flat sides are not effectively confined either, thus the local buckling has minor impact to the effect of confinement. Based on these observations, it could be concluded that the section slenderness coefficient has minor influence to the confinement effectiveness in octagonal CFSTs.

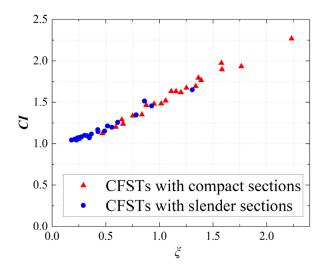


Figure 12. Relationship between strength enhancement of concrete and confinement ratio of CFSTs with slender and compact section

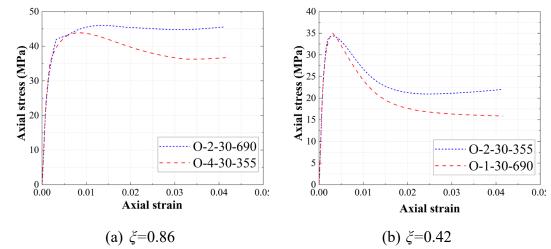


Figure 13. Comparison of stress-strain curves of infilled concrete with different section slenderness ratio

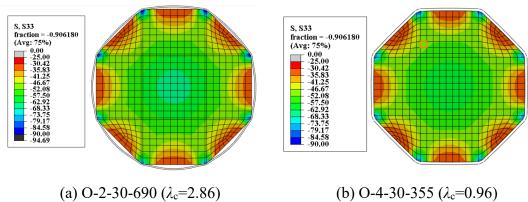


Figure 14. Comparison of axial stress distribution of infilled concrete with different section slenderness ratio

3. Design recommendations

The design provisions such as Eurocode EN 1994-1-1[14], American standard ANSI/AISC 360-16[15] and Chinese code GB 50936-2014[28] provide the design formulas for the load bearing capacity of CFSTs. Among them, only Chinese code GB 50936-2014 covers the octagonal section, while in Eurocode and American standard, only the design formulas of circular and rectangular CFSTs are specified. In all these

standards, limitations of diameter to thickness ratio (D/t) for circular section and width to thickness ratio (b/t) for rectangular section are recommended to avoid local buckling of steel tube. The limitations of each standards are shown as follows:

EN 1994-1-1
$$\begin{cases} D/t \le 90 \frac{235}{f_y} & \text{(cirular section)} \\ b/t \le 52 \sqrt{\frac{235}{f_y}} & \text{(rectagunlar section)} \end{cases}$$

$$\begin{cases} D/t \le 0.31 \frac{E}{f_y} & \text{(cirular section)} \end{cases}$$

ANSI/AISC 360-16
$$\begin{cases} D/t \le 0.31 \frac{E}{f_y} & \text{(cirular section)} \\ b/t \le 5.0 \sqrt{\frac{E}{f_y}} & \text{(rectaguillar section)} \end{cases}$$

$$(16)$$

GB 50936-2014
$$\begin{cases} D/t \le 135 \frac{235}{f_y} & \text{(cirular section)} \\ b/t \le 60 \sqrt{\frac{235}{f_y}} & \text{(rectagunlar section)} \end{cases}$$
 (17)

As the application of thin-walled tube and high strength steel become popular, the design of CFST with larger D/t or b/t ratio which exceeds the current limitations may be required. Thus, in following sections, the applicability of current design formulas for the thin-walled octagonal CFST whose section slenderness coefficient exceeds the design limitations was assessed by the experimental and numerical results.

3.1 Existing design formulas and assessment

3.1.1 ANSI/AISC 360-16

American standard ANSI/AISC 360-16 classified the cross section into three categories: compact section, non-compact section and slender section, according to the section slenderness ratio (i.e. D/t or b/t). For round sections, sections with D/t value lower than $\lambda_p = 0.15E/f_y$ are classified as compact section, and those sections with D/t value ranges from $0.15E/f_y$ to $0.19E/f_y$ are classified as noncompact section and those

sections with D/t ratio larger than $0.19E/f_y$ but less than the maximum permitted value $0.31E/f_y$ are classified as slender section. Similar classification is also suggested for the rectangular section and the boundaries for compact, noncompact and slender section are $\lambda_p = 2.26(E/f_y)^{1/2}$, $3.0(E/f_y)^{1/2}$ and $5.0(E/f_y)^{1/2}$ respectively. For the compressive strength of noncompact section, ANSI/AISC 360-16 considers the effect of section slenderness and suggests the following equation:

$$N_{\text{AISC}} = N_{\text{p}} - \left(\frac{\lambda_{\text{s}} - \lambda_{\text{p}}}{\lambda_{\text{r}} - \lambda_{\text{p}}}\right)^{2} \left(N_{\text{p}} - N_{\text{y}}\right)$$
(18)

- where λ_s is D/t and b/t values of the circular sections and rectangular sections. N_p is the
- load capacity of compact section and N_y is given as follows:

$$N_{\rm v} = A_{\rm s} f_{\rm v} + 0.7 A_{\rm c} f_{\rm c}^{'} \tag{19}$$

- For slender sections, ANSI/AISC 360-16 suggests the following equation to calculate
- 354 the load capacity of the composite section:

$$N_{\rm v} = A_{\rm s} f_{\rm cr} + 0.7 A_{\rm c} f_{\rm c}^{'} \tag{20}$$

where f_{cr} is the buckling stress of the steel section. As the octagonal section is not 355 covered in ANSI/AISC 360-16, two design approaches could be used. One is directly 356 using the equations for rectangular section where the width b is the width of octagonal 357 section and the other one is to use an equivalent diameter for the octagonal section, and 358 in this paper the diameter of inscribed circle of the octagonal section is adopted. Figure 359 15a shows the comparison of prediction of load capacity from the equations for the 360 rectangular composite section (N_{AISC1}) to the test and FE results (N). It is found that the 361 362 prediction is very conservative, for those octagonal CFSTs with compact section and non-compact section, the average value of N_{AISC1}/N is about 0.79, and as the slenderness 363

coefficient increases, the average value of $N_{\rm AISC1}/N$ reduces to 0.65 for those CFSTs with slender section. In Figure 15b, the predictions from the formulas for circular section ($N_{\rm AISC2}$) are compared with the experimental and numerical results (N) where the inscribed diameter of octagonal section is used. It could be found the formulas for circular section are less conservative, where the average value of $N_{\rm AISC2}/N$ is about 0.82 for compact and noncompact section, and 0.71 for slender section. It should be noted that these two design approaches give difference boundaries for section classification, as shown in Figures 15a and 15b, with the same set of data, more octagonal sections exceed the maximum permitted slenderness coefficient when the equivalent diameter is used.

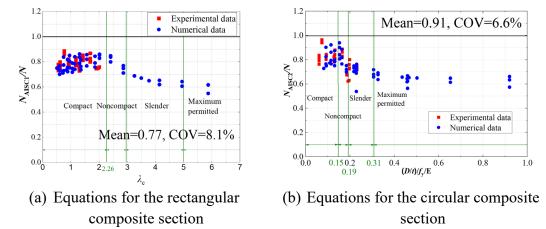


Figure 15. Comparison of load capacity from experimental and numerical results with the predicted capacity from American standard (ANSI/AISC 360-16).

3.1.2 EN 1994-1-1

In Eurocode EN 1994-1-1, two design formulas are suggested for the calculation of load bearing capacity. The first formula is the superposition of the compressive strength of steel and concrete components, the expression is shown as follows:

$$N_{\text{EC4-1}} = A_{\text{s}} f_{\text{y}} + A_{\text{c}} f_{\text{c}}^{'} \tag{21}$$

Another formula is especially for the CFST with circular section which considers the strength enhancement of concrete due to the confinement and the strength reduction of steel tube due to the biaxial stress. The expression is shown as follows:

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

$$N_{\text{EC4-2}} = \eta_{\text{a}} A_{\text{s}} f_{\text{y}} + \left(1 + \eta_{\text{c}} \frac{t f_{\text{y}}}{D f_{\text{c}}'} \right) A_{\text{c}} f_{\text{c}}'$$
 (22)

where η_a is a reduction factor on the strength of steel, and η_c is an enhancement factor to the confined concrete. $\overline{\lambda}$ is the relative slenderness determined by EN 1994-1-1. As the design method in EN 1994-1-1 does not cover the octagonal section, similar design approaches can be used as mentioned in section 4.1.1. Figures 16a and 16b show the comparisons of the predicted capacity from Eq. 22 and Eq. 23 to the test and numerical results respectively. It could be found that Eq. 22 gives conservative predictions with average value of $N_{\rm EC4-1}/N$ equal to 0.89, and as the section slenderness coefficient increases, the prediction become less conservative. The formula for circular section considers the effect of confinement, and overestimates the strength of octagonal CFSTs with an average N_{EC4-2}/N value equal to 1.10. Recently, Zhu and Chan[10] proposed a modified design formula based on the Eq. 23 for the octagonal CFSTs. This modified formula uses the inscribed diameter of the octagonal section as an equivalent diameter, and also applies a reduction factor to concrete strength to consider the difference of confinement effectiveness between circular and octagonal section. The modified formula is shown as follows:

$$N_{\rm d} = \eta_{\rm a,Di} A_{\rm s} f_{\rm y} + \left(1 + 0.73 \eta_{\rm c,Di} \frac{t f_{\rm y}}{D_i f_{\rm c}'} \right) A_{\rm c} f_{\rm c}'$$
 (23)

where $\eta_{a,Di}$ and $\eta_{c,Di}$ are the reduction and enhancement factors calculated based on the

inscribed diameter. Figure 17 shows the assessment of the Eq. 24 from Zhu and Chan[10]. It could be found this equation provides a good prediction to the load capacity of octagonal CFSTs but the trend shows that for those CFSTs with slender section, the prediction is not conservative as the reduction of strength in steel tube due to the local buckling is not considered.

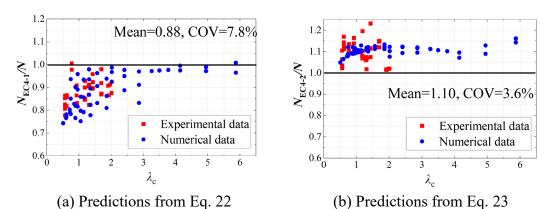


Figure 16. Comparison of load capacity from experimental and numerical results with the predictions from European standard (EN 1994-1-1)

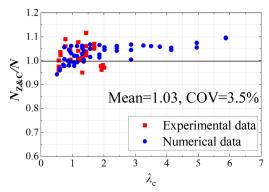


Figure 17. Comparison of load capacity from experimental and numerical results with the predictions from Zhu and Chan[10].

3.1.3 GB 50936-2014

Chinese standard specifies the design formula for CFST with circular, hexadecimal, octagonal and rectangular sections. A cross-sectional strength of composite section is suggested which considers the effect of confinement in concrete core. The expressions are shown as follows:

$$N_{\rm GB} = (1.212 + B\theta + C\theta^2)(A_{\rm s} + A_{\rm c})f_{\rm ck}$$
 (24)

where θ is confinement ratio, B and C are modification factors for different crosssection shapes. f_{ck} is the characteristic compressive strength of concrete. GB 50936-2014 specifies the relationship of the characteristic strength of concrete and the cube strength $f_{cu,k}$ which is from compressive tests on 150 mm × 150 mm × 150 mm cube specimens. The expression is shown as follows:

$$f_{\rm ck} = 0.88\alpha_1\alpha_2 f_{\rm cu,k} \tag{25}$$

where α_1 is the reduction factors that considers the strength difference between cubic test specimens and structural members, and α_2 is the reduction factors accounts for the brittleness of concrete with cube strength larger than 50 MPa. To converge the cube strength to the cylinder strength of concrete, the following relationship was adopted in this paper:

$$f_{\text{cu.k}} = 0.8 f_{\text{c}}^{'} \tag{26}$$

Figure 18 shows the comparison of load capacity from experimental and numerical results to the predicted capacity from GB 50936-2014. It could be found that the design formula from GB 50936-2014 gives a very conservative prediction for those compact section (λ_c <1.2), as the section slenderness coefficient increases, the predictions become less conservative as the local buckling behaviour of steel tube is not considered.

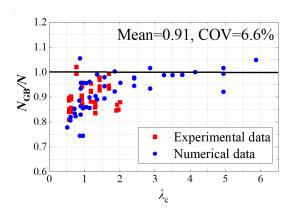


Figure 18. Comparison of load capacity from experimental and numerical results with the predictions from Chinese standard (GB 50936)

3.1.4 Discussion

The assessment has shown that the current design approaches from EN 1994-1-1 are unconservative for the thin-walled octagonal CFST. The predictions can reasonably capture the load capacities of octagonal CFSTs within their specified limit but when the section slenderness exceeds the limit, the design method does not consider the strength reduction in steel tube due to local buckling, which overestimates the capacity contribution from the steel tube. On the contrary, in the American standard (ANSI/AISC 360-16), the strength reduction due to local buckling of the steel tube is over considered, the design formula underestimates the load capacities of the octagonal CFSTs with non-compact and slender section, indicating that the design method for thin-walled rectangular section may not be suitable for octagonal CFSTs. Thus, a new design formula based on the local buckling behavior of octagonal steel tube was proposed.

3.2 Proposed design formula

To accurately capture the strength of the octagonal CFSTs with slender section, the local buckling of steel tube should be considered. The design formula of octagonal hollow section could be used with modification factors to consider the influence of

biaxial stress and infilled concrete core. In this paper, the following equation is established:

$$N_{\rm pro} = \alpha_{\rm s} N_{\rm sy} + \alpha_{\rm c} N_{\rm c} \tag{27}$$

where α_s is a reduction factor due to the biaxial stress and the local buckling, N_{sy} is the nominal load capacity of steel tube which is equal to $A_s f_y$, α_c is the magnified factor due the effect of confinement and N_c is the nominal load capacity of concrete core. Based on the relationship of $N_{FE,s}/N_{sy}$ and confinement ratio of octagonal CFSTs with compact section ($\lambda_c \le 1.69$), it was found that the reduction factor α_s is equal to a constant 0.95 when the confinement ratio ranges from 0.24 to 1.5. For α_s when $\lambda_c > 1.69$, regression analysis was conducted and the expression of α_s is obtained as follows (see Figure 19):

$$\alpha_{s} = \begin{cases} 0.95 & \lambda_{c} \le 1.69 \\ 1.08\lambda_{c}^{-0.2} & \lambda_{c} > 1.69 \end{cases}$$
 (28)

For the enhancement factor on concrete core α_c , it has been proved that the section slenderness coefficient has minor influence to the confinement index. Thus, α_c could be obtained from the relationship between concrete strength enhancement ratio and confinement ratio ξ as shown in Figure 19. The expression is shown as follows:

$$\alpha_{c} = 0.11\xi^{2} + 0.36\xi + 1 \tag{29}$$

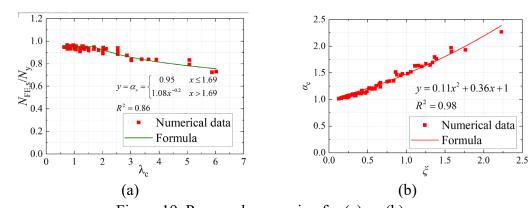


Figure 19. Proposed expression for (a) α_s , (b) α_c

Figure 20 shows the predictions of proposed formula to the test and numerical results $(N_{\rm pro}/N)$. A new batch of numerical data of thin-walled octagonal CFSTs $(\lambda_{\rm c} > 1.69)$ were generated for the assessment. It could be seen that the predictions from the proposed model have good agreements with the test and FE results, the mean value of $N_{\rm pro}/N$ is about 1.00 and COV is 3.7%.

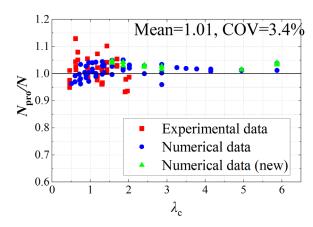


Figure 20. Comparison of load capacity of octagonal CFST between proposed formula and results from database

4. Conclusion

This paper presents a numerical investigation of thin-walled octagonal CFST under uniaxial compression. Finite element analysis was conducted and the models were validated by the collected existing experimental results. Based on the validated model, a parametric study was conducted and a new design model was proposed. The detailed conclusions are summarised as follows:

- Finite element models for octagonal CFSTs were established and validated by the
 existing experimental results. The model can well capture both the failure mode and
 load-shortening curves of octagonal CFSTs.
- 2. In the parametric study, it was found the infilled concrete can significantly improve

- the buckling strength of octagonal steel tubes, the enhancement of the buckling strength increases with the increase of section slenderness coefficient. The buckling behaviour of thin-walled steel tubes has a minor influence on the effect of confinement in the concrete core.
- 3. The existing code of practices, American standard ANSI/AISC 360-16, Eurocode 471 472 EN 1994-1-1 and Chinese code GB 50936-2014, were assessed by a database of octagonal CFSTs which includes 37 test specimens and 51 numerical models. It was 473 found that the design methods from EN 1994-1-1 overestimate the load capacity of 474 475 thin-walled octagonal CFSTs because the strength reduction in steel tube due to local buckling is not considered. However, ANSI/AISC 360-16 who considers the 476 local buckling strength underestimates the load capacity which indicates the current 477 478 design approaches for thin-walled rectangular section may not suitable for thinwalled octagonal section. GB 50936-2014 is conservative for the octagonal CFSTs 479 with compact section but less conservative for that with slender section. 480
 - 4. A design model was proposed which is based on the current design method of octagonal hollow steel tubes and considers the effect of infilled concrete core to the buckling strength of slender octagonal steel tubes and the effect of confinement to the concrete core. The model can accurately capture the load-bearing capacity of octagonal CFSTs with compact and slender sections.

Acknowledgement

467

468

469

470

481

482

483

484

485

486

This work is supported by the National Natural Science Foundation of China (No. 52008238, No. 52208317) and the China Postdoctoral Science Foundation (No.

490

Reference:

- 491 [1] L.H. Han, Tests on stub columns of concrete-filled RHS sections, Journal of Constructional Steel
- 492 Research 58(3) (2002) 353-372.
- 493 [2] S.P. Schneider, Axially Loaded Concrete-Filled Steel Tubes, Journal of Structural Engineering 124(10)
- 494 (1998) 1125-1138.
- 495 [3] K.A.S. Susantha, H. Ge, T. Usami, Uniaxial stress-strain relationship of concrete confined by various
- shaped steel tubes, Engineering Structures 23(10) (2001) 1331-1347.
- 497 [4] M. Tomii, K. Yoshimura, Y. Morishita, Experimental studies on concrete filled steel tubular stub
- 498 columns under concentric loading, International Colloquium on Stability of Structures under Static and
- 499 Dynamic Loads, American Society of Civil Engineers (ASCE), Washington, DC, USA, 1977, pp. 718-
- 500 741.
- 501 [5] J. Chen, T.-M. Chan, Experimental assessment of the flexural behaviour of concrete-filled steel
- tubular beams with octagonal sections, Engineering Structures 199 (2019) 109604.
- 503 [6] J. Chen, T.-M. Chan, R.K.L. Su, J.M. Castro, Experimental assessment of the cyclic behaviour of
- 504 concrete-filled steel tubular beam-columns with octagonal sections, Engineering Structures 180 (2019)
- 505 544-560.
- 506 [7] F.-x. Ding, Z. Li, S. Cheng, Z.-w. Yu, Composite action of octagonal concrete-filled steel tubular stub
- 507 columns under axial loading, Thin-Walled Structures 107 (2016) 453-461.
- 508 [8] H. Fang, T.-M. Chan, B. Young, Structural performance of concrete-filled cold-formed high-strength
- steel octagonal tubular stub columns, Engineering Structures 239 (2021) 112360.
- 510 [9] J.-J. Lim, T.-S. Eom, Compression tests of octagonal concrete-filled thin-walled tube columns,
- 511 Engineering Structures 221 (2020) 111082.
- 512 [10] J.-Y. Zhu, T.-M. Chan, Experimental investigation on octagonal concrete filled steel stub columns
- under uniaxial compression, Journal of Constructional Steel Research 147 (2018) 457-467.
- 514 [11] J.-Y. Zhu, T.-M. Chan, Behaviour of polygonal-shaped steel-tube columns filled with high-strength
- 515 concrete, 171(2) (2018) 96-112.
- 516 [12] J. Chen, T.-M. Chan, Compressive behaviour and design of compact to slender octagonal concrete-
- 517 filled steel tubular stub columns, Thin-Walled Structures 167 (2021) 108211.
- 518 [13] M.F. Hassanein, V.I. Patel, M. Elchalakani, H.-T. Thai, Finite element analysis of large diameter
- 519 high strength octagonal CFST short columns, Thin-Walled Structures 123 (2018) 467-482.
- 520 [14] CEN, Eurocode 4: Design of Composite Steel and Concrete Structures Part 1-1: General Rules and
- Rules for Buildings, EN 1994-1-1, European Committee for Standardization (CEN), Brussels, Belgium,
- 522 2004.
- 523 [15] ASCE, Specification for Structural Steel Buildings, ANSI/AISC 360-16, American Institute of Steel
- 524 Construction (AISC), Chicago, IL, USA, 2016.
- 525 [16] Q.Q. Liang, B. Uy, J.Y. Richard Liew, Nonlinear analysis of concrete-filled thin-walled steel box
- 526 columns with local buckling effects, Journal of Constructional Steel Research 62(6) (2006) 581-591.
- 527 [17] C.-C. Chen, J.-W. Ko, G.-L. Huang, Y.-M. Chang, Local buckling and concrete confinement of
- 528 concrete-filled box columns under axial load, Journal of Constructional Steel Research 78 (2012) 8-21.
- 529 [18] T. Aoki, Y. Migita, Y. Fukumoto, Local buckling strength of closed polygon folded section columns,
- Journal of Constructional Steel Research 20(4) (1991) 259-270.

- [19] J. Chen, J.-Y. Zhu, T.-M. Chan, Experimental and numerical investigation on stub column behaviour
- of cold-formed octagonal hollow sections, Engineering Structures 214 (2020) 110669.
- 533 [20] H. Fang, T.-M. Chan, B. Young, Behavior of octagonal high-strength steel tubular stub columns,
- 534 Journal of Structural Engineering 145(12) (2019) 04019150.
- 535 [21] A. Godat, F. Legeron, D. Bazonga, Stability investigation of local buckling behavior of tubular
- polygon columns under concentric compression, Thin-Walled Structures 53 (2012) 131-140.
- 537 [22] Y. Migita, Y. Fukumoto, Local buckling behaviour of polygonal sections, Journal of Constructional
- 538 Steel Research 41(2) (1997) 221-233.
- 539 [23] J.-Y. Zhu, T.-M. Chan, B. Young, Cross-sectional capacity of octagonal tubular steel stub columns
- under uniaxial compression, Engineering Structures 184 (2019) 480-494.
- 541 [24] J. Chen, H. Fang, T.-M. Chan, Design of fixed-ended octagonal shaped steel hollow sections in
- compression, Engineering Structures 228 (2021) 111520.
- 543 [25] CEN, Eurocode 3: Design of steel structures Part 1.1: General rules and rules for buildings, EN
- 544 1993-1-1, European Committee for Standardization (CEN), Brussels, 2005.
- 545 [26] ASCE, Design of Steel Transmission Pole Structures, ASCE/SEI 48-11, American Society of Civil
- 546 Engineers (ASCE), Reston, Virginia, 2011.
- 547 [27] H. Fang, T.-M. Chan, B. Young, Material properties and residual stresses of octagonal high strength
- steel hollow sections, Journal of Constructional Steel Research 148 (2018) 479-490.
- 549 [28] CABP, Technical Code for Concrete-Filled Steel Tubular Structures, Architecture & Building Press
- 550 Beijing, China, 2014.
- 551 [29] ABAQUS, Dassault Systèmes Simulia Crop., Johnston, RI, USA, 2022.
- 552 [30] J. Chen, H. Liu, T.-M. Chan, Material properties and residual stresses of cold-formed octagonal
- hollow sections, Journal of Constructional Steel Research 170 (2020) 106078.
- 554 [31] Z. Tao, Z.-B. Wang, Q. Yu, Finite element modelling of concrete-filled steel stub columns under
- axial compression, Journal of Constructional Steel Research 89 (2013) 121-131.
- 556 [32] V.K. Papanikolaou, A.J. Kappos, Confinement-sensitive plasticity constitutive model for concrete
- in triaxial compression, International Journal of Solids and Structures 44(21) (2007) 7021-7048.