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Abstract: The truck and drone based cooperative model of delivery can improve the efficiency of last 

mile delivery, and has thus increasingly attracted attention in academia and from practitioners. In this 

study, we examine a vehicle routing problem and apply a cooperative form of delivery involving trucks 

and drones. We propose a mixed-integer programming model and a branch-price-and-cut based exact 

algorithm to address this problem. To reduce the computation time, we design several acceleration 

strategies, including a combination of dynamic programming and calculus-based approximation for the 

pricing problem, and various effective inequalities for the restricted master problem. Numerical 

experiments are conducted to validate the effectiveness and efficiency of the proposed solution. 
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1. Introduction

Drone-based delivery has recently become a promising option in the last mile delivery industry

(Macrina et al., 2020). Amazon first implemented drone deliveries in 2013, and many logistics companies 

have since developed new modes of drone delivery. In the current COVID-19 pandemic, drones have 

been increasingly useful because they avoid human contact during the delivery process. They can also 

circumvent the road restrictions encountered in the traditional truck-based delivery mode. The flight route 

of a drone is generally straight and is much shorter than the land route of a truck. Drones are also less 

affected by the terrain and thus particularly suitable for fulfilling delivery tasks in remote mountainous 

areas. They can contribute to alleviating road congestion and improve delivery efficiency. However, 

drones have some disadvantages. The maximum flying time and distance is restricted by the battery 

capacity, which limits their service range and makes it impossible to fulfil long-range delivery tasks, and 

their load capacity in terms of weight and volume is relatively limited compared with that of trucks. 

Weather conditions and flying altitude restrictions also limit drone-based delivery services.  

The AMP company and the University of Cincinnati in the U.S. jointly developed a novel cooperative 

delivery system involving both trucks and drones in 2014, aimed at compensating for the shortcomings 

of solely drone delivery. Parcels are delivered by truck groups in this system. The concept “truck group” 

does not mean a fleet of trucks; a truck group is a pair of a truck and a drone carried by the truck. A drone 

in a truck group is launched from and returns to the truck. Figure 1 demonstrates this novel mode and 

gives a comparison with the traditional truck-based delivery mode and the drone-based mode. We make 
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some estimation for the example in Figure 1 under the realistic settings. The truck mode’s route length 

(two trucks), travel cost, completion time is 110km, 76 CNY (Chinese Yuan), 3.67 hour, respectively; the 

drone mode’ route length (two drones), cost, completion time is 174km, 47 CNY, 3.63 hour, respectively. 

While for the cooperative mode, the above three metrics are: 75km (two trucks) & 45km (two drones), 

64 CNY, 3.44 hour. The cooperative mode is the fastest. Although its cost is higher than the drone mode’s 

cost, it should be noted that the drone mode only serves 11 customers due to the limited flying distance 

and other modes serve all the 21 customers. If we compare their average travel cost per customer, the 

cooperative mode is also the most competitive with respect to the economic metric. Therefore, the 

cooperative system inherits the relative merits of both the trucks and the drones, which can potentially 

improve its total performance in the last mile delivery.  

 

Figure 1 Delivery route schemes of trucks and drones 

An efficient schedule for the trucks and drones in terms of their routes and timing decisions is crucial 

for the effective performance of the cooperative system. Mathematical programming has been widely 

used in vehicle routing and has the potential to establish a decision model and an efficient algorithm for 

this cooperative delivery mode. Few studies have been conducted that focus on this specific system and 

the related scheduling problems. Thus, in this paper we propose a vehicle routing problem for truck and 

drone cooperative delivery, which decides the allocation of customers to truck groups and their routes 

(the groups’ routes are the same as the trucks’ routes) and the drones’ routes; we assume that each truck 

is equipped with only one drone, and together they form a truck group.  

We present a mixed-integer programming (MIP) model for the problem. The model considers specific 

factors, such as the influence of the weight of the carried cargo on the drone’s maximum flying time. We 

designed a branch-price-and-cut (B&P&C) algorithm to solve the proposed MIP model, in which valid 

inequalities are used to strengthen the linear relaxation of the model and that takes an effective dynamic 
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programming approach to solving the pricing problem. We conducted numerical experiments to validate 

the effectiveness and efficiency of the B&P&C algorithm.  

The remainder of this paper is organized as follows. Section 2 reviews the related works. Section 3 

describes the background of the problem. We describe our MIP model for the problem in Section 4. 

Section 5 presents an exact algorithm to solve the problem. Section 6 reports the results of our numerical 

experiments. Conclusions are outlined in the final section.  

2. Related works 

The problem investigated in this study represents a new variant of the well-known vehicle routing 

problem (VRP) (see for example, Toth and Vigo, 2014). The problem is more complex than other variants 

of VRPs, because trucks and drones can both serve customers independently and have a cooperative 

relationship. Research into the cooperative delivery of trucks and drones can be divided into two 

categories according to the number of trucks: first, a traveling salesman problem with drones (TSP-D); 

and second, the vehicle routing problem with drones (VRP-D). The routing problem for cooperative 

delivery using a single truck and a single drone is typically referred to as TSP-D with single drone, while 

that for cooperative delivery using a single truck and multiple drones is known as TSP-D with multiple 

drones. The problem studied in this paper belongs to the VRP-D class. The development of drone logistics 

has led to extensive research into the problem of cooperative delivery using trucks and drones. Table 1 

lists the studies in this field. We examine the three research topics of single truck and single drone, single 

truck and multiple drones, and multiple trucks and multiple drones. There are also studies that focus on 

other aspects of drone scheduling. For example, Yi and Sutrisna (2021) examined the optimization of 

drone speed for construction management and designed an interesting dynamic programming algorithm 

for the problem. For brevity, these studies are not reviewed. 

2.1 Single truck and single drone 

The study of Murray and Chu (2015) may be the first to examine the TSP-D with single drone and 

defined the delivery of parcels by a truck and a drone as a flying sidekick traveling salesman problem 

(FSTSP). Yurek and Ozmutlu (2018) improved the FSTSP model and presented an iterative algorithm 

based on a decomposition approach, to minimize delivery completion time. Based on the problems raised 

by Murray and Chu (2015) and Agatz et al. (2018), de Freitas and Penna (2020) proposed a three-step 

method consisting of a hybrid variable neighborhood search, an exact method, and a heuristic to solve 

the TSP-D with single drone. Carlsson and Song (2018) defined the TSP-D with single drone as a horsefly 

routing problem (HRP), which they investigated by applying Euclidean plane theory and a real-time 

numerical simulation of a road network. Their results demonstrated that the efficiency improvement is 
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proportional to the square root of the ratio of the speeds of the truck and the drone. Poikonen et al. (2019) 

proposed four algorithms based on branch and bound to solve the TSP-D with a single drone. They used 

dynamic programming to obtain an approximate lower bound for each node, aimed at further improving 

the solving efficiency. El-Adle et al. (2019) established a binary MIP model for the TSP-D with single 

drone to minimize the duration of the joint tour. To enhance the model, cut generation and other bound 

improvement strategies were applied. Jeong et al. (2019) considered more realistic factors and proposed 

the FSTSP with energy consumption and no-fly zone (FSTSP-ECNZ). They established an MILP model 

and a two-phase constructive and search heuristic to solve the problem. Roberti and Ruthmair (2021) 

proposed a compact MILP model for different TSP-D variants based on the timely synchronizing of truck 

and drone flows. Their proposed branch-and-price algorithm can solve to optimality instances with up to 

39 customers.  

All of the models considered in the above works aim to minimize time-related objectives, while other 

studies have taken the perspective of minimizing cost-related objectives. Agatz et al. (2018) and Bouman 

et al. (2018) proposed a local search-based method and a dynamic programming method for TSP-D with 

a single drone, respectively. Based on the work of Murray and Chu (2015), Ha et al. (2018) proposed a 

model to minimize the operating cost, and designed two heuristic methods by using the local search and 

greedy randomized adaptive search, respectively. The objectives of some studies include both time and 

cost related factors. Omagari and Higashino (2018) defined a constrained multi-objective optimization 

model for a drone delivery problem (DDP). Wang et al. (2020) presented a bi-objective TSP-D with single 

drone and proposed a non-dominated sorting genetic algorithm (INSGA-II) to solve the problem. Ha et 

al. (2020) proposed a hybrid algorithm combining a genetic algorithm (HGA) and local search to solve a 

bi-objective TSP-D with a single drone. 

2.2 Single truck and multiple drones 

Based on the above studies, TSP-D with multiple drones has also been examined. Murray and Chu 

(2015) proposed a parallel drone scheduling traveling salesman problem (PDSTSP). Ferrandez et al. 

(2016) used GA to solve the truck’s route and the K-means algorithm to solve the drones’ routes based 

on the truck’s route. Murray and Raj (2020) proposed a multiple flying sidekick traveling salesman 

problem (mFSTSP). These studies established models to minimize the travel time for a truck and drones 

to return to the depot. Moshref-Javadi et al. (2020) proposed a single truck and multi-drone delivery 

problem and built an MILP model to minimize the waiting time of customers. Poikonen and Golden (2020) 

relaxed some constraints considered in the literature and proposed a k-multi-visit drone routing problem 

(k-MVDRP) in which a drone can carry multiple packages and visit multiple customers in one trip.  
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Table 1 Related literature on cooperative delivery of trucks and drones 

Authors and years 

Key features of the problem 
Problem 

abbreviation Model 

objective 

Methodologies and solving methods Num. 
of 

truck 

Num. 
of 

drone 

Correspo
ndence 

Drone 
multi- 

customer 

Launch
≠

Return 

Non-
customer 

points 

Variable 
flying 

duration 

time cost 

Makespan Waiting 
/traveling Traveling Waiting Fixed 

Murray and Chu (2015) 1 1      FSTSP MILP      Heuristic 
1 n      PDSTSP MILP      Heuristic 

Yurek and Ozmutlu (2018) 1 1      TSP-D MILP      Iterative algorithm 
Carlsson and Song (2018) 1 1      HRP CAP      Continuous approximation analysis 

Poikonen et al. (2019) 1 1      TSP-D --      Heuristics based on the branch-and-bound 
El-Adle et al. (2019) 1 1      TSP-D MIP      Cut generation with bound improvement 
Jeong et al. (2019) 1 1      FSTSP-ECNZ MILP      TPCSA 

Agatz et al. (2018) 1 1      TSP-D IP      Fast route-first, cluster-second heuristics 
based on local search and DP 

Bouman et al. (2018) 1 1      TSP-D DP      DP and A* 
de Freitas and Vaz Penna (2020) 1 1      FSTSP, TSP-D --      HGVNS 

Ha et al. (2018) 1 1      Min-cost TSP-D MILP      TSP-LS and GRASP 
Omagari and Higashino (2018) 1 1      DDP --      Provisional-ideal-point 

Wang et al. (2020) 1 1      TSP-D MILP      INSGA-II 
Ha et al. (2020) 1 1      TSP-D --      HGA 

Roberti and Ruthmair (2021) 1 1      TSP-D MILP      Branch-and-price 
Ferrandez et al. (2016) 1 n      TSP-D --      GA and K-means 
Murray and Raj (2020) 1 n      mFSTSP MILP      Heuristic 

Moshref-Javadi et al. (2020) 1 n      STRPD MILP      TDRA 
Poikonen and Golden (2020) 1 n      k-MVDRP ILP      Heuristic 
Kitjacharoenchai et al. (2019) m m      mTSP-D MIP      ADI 

Wang et al. (2017) m n      VRP-D --      Worst-case analysis 
Poikonen et al. (2017) m n      VRP-D --      extend analysis 

Ham (2018) m n      PDSTSP+DP CP      VOH 
Wang et al. (2019) m n      HPDP MILP      HTDD 

Sacramento et al. (2019) m m      VRP-D MIP      ALNS 
Wang and Sheu (2019) m n      VRP-D MIP      Branch-and-price 

This paper m m      VRP-D MIP      B&P&C 
Notes: Correspondence: A drone must land on the same truck from which it launched; Drone multi-customer: A drone can visit multiple customers in a single flight; Launch≠Return: Drone can’t be launched 
from and return at the same node; Non-customer points: Non-customer nodes (for drones’ launching, returning, charging etc.) are visited; Variable flying duration: The flying duration of the drone changes with 
the weight of the delivered goods; FSTSP: Flying Sidekick Traveling Salesman Problem; MILP: Mixed-Integer Linear Programming; PDSTSP: Parallel Drone Scheduling Traveling Salesman Problem; HRP: 
Horsefly Routing Problem; CAP: Continuous approximation paradigm; FSTSP-ECNZ: FSTSP considering Energy Consumption and No-fly Zone; TPCSA: Two-Phase Construction and Search Algorithm; IP: 
Integer Programming; DP: Dynamic Programming; HGVNS: Hybrid General Variable Neighborhood Search; TSP-LS: Traveling Salesman Problem Local Search; GRASP: Greedy Randomized Adaptive Search 
Procedure; DDP: Drone Delivery Problem; INSGA-II: Improved Non-dominated Sorting Genetic Algorithm; HGA: Hybrid genetic algorithm; GA: Genetic algorithm; mFSTSP: Multiple Flying Sidekicks 
Traveling Salesman Problem; STRPD: Simultaneous Traveling Repairman Problem with Drones; TDRA: Truck and Drone Routing Algorithm; k-MVDRP: k-Multi-Visit Drone Routing Problem; ILP: Integer 
linear program; mTSPD: Multiple Traveling Salesman Problem with Drones; ADI: Adaptive Insertion algorithm; PDSTSP+DP: PDSTSP Drop-Pickup; CP: Constraint programming; VOH: Variable ordering 
heuristics; HPDP: Hybrid truck-UAV cooperative Parcel Delivery Problem; HTDD: Hybrid Truck-Drone Delivery; ALNS: adaptive large neighborhood search. 
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2.3 Multiple truck and multiple drones 

The previous TSP-D is extended to a multiple traveling salesman problem with drones (mTSP-D) to consider 

multiple trucks and drones. Kitjacharoenchai et al. (2019) proposed the mTSP-D, which allows the drone to fly 

from the truck, deliver a parcel, and fly back to any available truck nearby, regardless of capacity limitations. 

An MIP model and an adaptive insertion heuristic algorithm were designed to solve various large-scale instances 

with up to 100 customers. Wang et al. (2017) introduced the VRP with drones (VRP-D), and analyzed the worst 

case, which was dependent on the number of drones per truck and the speed of the drones. Poikonen et al. (2017) 

further extended this work by combining it with another practical variant of the VRP, based on Amdahl’s Law. 

Although Wang et al. (2017) and Poikonen et al. (2017) considered VRP-D, they did not propose models and 

algorithms and mainly conducted theoretical analyses. 

Ham (2018) examined a cooperative delivery problem with trucks and drones in a multi-depot context and 

proposed a constrained programming (CP) model. Wang et al. (2019) proposed a more efficient truck-drone 

parcel delivery system that uses trucks, truck-carried drones, and independent drones. They designed a hybrid 

truck-drone delivery (HTDD) algorithm to solve the problem. Sacramento et al. (2019) also formulated a 

mathematical model for the VRP-D and proposed an adaptive large neighborhood search (ALNS) metaheuristic. 

Wang and Sheu (2019) proposed an MIP model and developed a branch-and-price algorithm, which to the best 

of our knowledge represents the first exact algorithm for the cooperative delivery problem with multiple trucks 

and multiple drones.  

In Table 1, we report the features considered in the problem addressed in this paper (see the “This paper” 

row) and compare them to the problem examined by Wang and Sheu (2019). The main difference is that we 

consider the different cost terms associated with a solution, as formally stated in the next section.  

3. Problem description 

In this problem, a truck group consists of a truck carrying a drone. Each drone is dedicated to a truck. 

Customers’ packages are delivered by a set of truck groups. Both the trucks and the drones can deliver packages 

to the customers. Each customer is served (or visited) by either a truck or a drone. A drone can only be launched 

from and return to its dedicated truck when the truck stops at a customer node or depot. Figure 2 shows an 

example of the problem, which considers 2 truck groups and 23 customer points. In Figure 2, the solid lines 

represent the routes of trucks, and the dotted lines the routes of drones.  

The problem can be defined on a graph 𝐺𝐺 = (𝑁𝑁,𝐸𝐸), where set 𝑁𝑁 = {0,1,2 … ,𝑛𝑛,𝑛𝑛 + 1} represents all of the 

nodes in the network, including customer nodes 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 = {1,2 … ,𝑛𝑛} , and starting and ending depots 

{0,𝑛𝑛 + 1} represent the same location. The weight or demand of the goods required by customer 𝑖𝑖 is 𝑞𝑞𝑖𝑖. The 

set of arcs 𝐸𝐸 represents possible freight routes. The depot houses |𝐾𝐾| truck groups where 𝐾𝐾 is the set of trucks 

or drones indexed by 𝑘𝑘. 
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We assume that the maximum flying duration of a drone is inversely proportional to its weight plus the 

demand the drone carries. If the maximum flying duration of drone 𝑘𝑘  is 𝑒𝑒𝑘𝑘𝐷𝐷  when it flies empty, when it 

delivers goods for customer 𝑖𝑖 the duration is denoted by 𝑒𝑒𝑘𝑘𝑖𝑖𝐷𝐷 , which equals 𝑒𝑒𝑘𝑘𝐷𝐷𝑓𝑓/(𝑓𝑓 + 𝑞𝑞𝑖𝑖), where 𝑓𝑓 is the net 

weight of an empty drone. 

A drone’s delivery trip is defined as a 3-tuple with the form 〈𝑖𝑖, 𝑗𝑗, ℎ〉; here 𝑖𝑖 is a node where a drone departs 

from a truck, 𝑗𝑗 is a customer node to which the drone delivers the cargo, and ℎ is a node where the drone 

returns to the truck. 𝐹𝐹 is the set of all possible tuples, and is generated as follows. For each customer node 

𝑗𝑗  that a drone can serve, we determine the possible launching node 𝑖𝑖  and the returning node ℎ 

according to a distance constraint, i.e., the sum of the distance from 𝑖𝑖 to 𝑗𝑗 and the distance from 𝑗𝑗 

to ℎ is no greater than the drone’s maximum flying distance when the drone carries the customer’s 

cargo.  

 

Figure 2 An example with two truck groups and 23 customers 

The aim of the model proposed in this study is to schedule all of the trucks’ routes and select suitable trips 

from the above set 𝐹𝐹 for all of the drones. This minimizes the total cost, which includes the fixed and travel 

costs of trucks and drones, and the waiting cost of trucks for drones. 

Before we address the model, we summarize the underlying assumptions as follows. 

(1) Each drone is dedicated to a truck.  

(2) A drone can only be launched from and return to its dedicated truck when the truck stops at a customer 

node or depot, which can occur at different customer points. In addition, this study first assumes a drone visits 

one customer in one trip; however it is relaxed in the model extension at Appendix 12. 

(3) Drone batteries are replaced rather than charged, as this achieves more efficient operation. We assume 

that there are sufficient batteries for each drone in its truck and that the time for replacing the battery is short, 

and this is ignored in the model formulation. 

(4) The required setup time before the launching of drones is ignored, as it is relatively short in comparison 

to their travel time. 
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(5) Each customer location has a space suitable for drone landing and take-off. The power consumed when 

drones hover in the air is much greater than that required to start their engines, so we assume that the drones 

stop their engines when they need wait for their trucks. We ignore the waiting cost of drone. 

(6) A drone’s maximum flying time is influenced by the weight of the goods it carries. 

(7) The total demand delivered by a truck route does not exceed the capacity of the truck associated with the 

route. 

(8) The trucks with drones are sufficient so that all the customers could be served. 

The first assumption can be relaxed to that multiple drones are dedicated a truck by adding some constraints 

into the model proposed in this study. For example, when two drones are dedicated to a truck, we define two 

truck groups in the model to denote the two drones and the truck. The two “virtual” trucks in the two truck 

groups are actually one “physical” truck. We just need to add some constraints to make the routing and timing 

decision variables’ values of the two “virtual” trucks equal to each other in the model. Then our proposed model 

and algorithm are still applicable. 

4. Mathematical formulation 

In this section, an MIP model is established for the problem. The model determines the routes of trucks and 

drones for minimizing the sum of the fixed cost and travel cost of trucks and drones, and the waiting cost of 

trucks for drones. Below, we first introduce the notation used, followed by the mathematical formulation. 

4.1. Notation 

Indices and sets: 

𝐾𝐾  set of the trucks and drones, indexed by 𝑘𝑘. 

𝑁𝑁  set of the nodes, indexed by 𝑖𝑖 , 𝑗𝑗  and ℎ ;  𝑁𝑁 = {0,1,2 …𝑛𝑛,𝑛𝑛 + 1} ; 0  and 𝑛𝑛 + 1  represent the 

starting and ending depots, respectively. 

𝑁𝑁𝑐𝑐  set of the customers, 𝑁𝑁𝑐𝑐 = 𝑁𝑁\{0,𝑛𝑛 + 1} = {1,2 …𝑛𝑛}.  

𝑁𝑁0  set of the nodes from which a truck or a drone may depart, 𝑁𝑁0 = 𝑁𝑁\{𝑛𝑛 + 1} = {0,1,2 …𝑛𝑛}. 

𝑁𝑁+  set of the nodes from which a truck or a drone may visit, 𝑁𝑁+ = 𝑁𝑁\{0} = {1,2 …𝑛𝑛,𝑛𝑛 + 1}. 

𝐹𝐹  set of the possible path for drones,  (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹 , 𝑖𝑖 ∈ 𝑁𝑁0 , 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑗𝑗 ≠ 𝑖𝑖} , ℎ ∈ �𝑁𝑁+:ℎ ≠ 𝑗𝑗,ℎ ≠

𝑖𝑖, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑡𝑡𝑗𝑗ℎ𝑘𝑘𝐷𝐷 ≤ 𝑒𝑒𝑘𝑘𝑘𝑘𝐷𝐷 �. 

Parameters: 

𝑞𝑞𝑖𝑖 weight of the goods delivered to customer 𝑖𝑖. 

𝑓𝑓 net weight of a drone without carrying any goods.  

𝑚𝑚𝑘𝑘
𝐾𝐾  maximum load capacity of truck 𝑘𝑘. 

𝑚𝑚𝑘𝑘
𝐷𝐷  maximum load capacity of the drone on truck 𝑘𝑘. 

𝑒𝑒𝑘𝑘𝐷𝐷 maximum flying duration of the drone on truck 𝑘𝑘 without carrying any goods.  
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𝑒𝑒𝑘𝑘𝑘𝑘𝐷𝐷  maximum flying duration when the drone on truck 𝑘𝑘 loads the goods required by customer 𝑖𝑖. If 𝑞𝑞𝑖𝑖 ≤

𝑚𝑚𝑘𝑘
𝐷𝐷,  𝑒𝑒𝑘𝑘𝑖𝑖𝐷𝐷 = 𝑒𝑒𝑘𝑘𝐷𝐷

𝑓𝑓
𝑓𝑓+𝑞𝑞𝑖𝑖

; else 𝑒𝑒𝑘𝑘𝑘𝑘𝐷𝐷 = 0 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾   time for truck 𝑘𝑘 to travel from node 𝑖𝑖 to node 𝑗𝑗. 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷   time for the drone on truck 𝑘𝑘 to fly from node 𝑖𝑖 to node 𝑗𝑗. 

𝑠𝑠𝐾𝐾 unit transportation cost of a truck per unit of time. 

𝑠𝑠𝐷𝐷  unit transportation cost of a drone per unit of time. 

𝑠𝑠𝑊𝑊  unit waiting cost of a truck per unit of time. 

𝑠𝑠𝐺𝐺  fixed cost of a truck group. 

𝑀𝑀  a sufficiently large positive number. 

Decision variables: 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖  binary, equals one if truck 𝑘𝑘 travels from node 𝑖𝑖 ∈ 𝑁𝑁0 to node  𝑗𝑗 ∈ 𝑁𝑁+, and zero otherwise. 

𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘 binary, equals one if the drone on truck 𝑘𝑘 is launched from node 𝑖𝑖 ∈ 𝑁𝑁0, and then flies to customer 

𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 , finally returns to truck 𝑘𝑘 or the ending depot at node ℎ ∈ 𝑁𝑁+, and zero otherwise. 

𝜇𝜇𝑖𝑖𝑖𝑖  integer, represents the order of node 𝑖𝑖 in the path of truck 𝑘𝑘. 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖  binary, equals one if truck 𝑘𝑘 serves node 𝑖𝑖 before serving node 𝑗𝑗, and zero otherwise. 

𝜏𝜏𝑖𝑖𝑖𝑖𝐾𝐾   nonnegative continuous, the arrival time of truck 𝑘𝑘 at node 𝑖𝑖. 

𝜏𝜏𝑖𝑖𝑖𝑖𝐷𝐷   nonnegative continuous, the arrival time of the drone on truck 𝑘𝑘 at node 𝑖𝑖. 

𝜌𝜌𝑖𝑖𝑖𝑖 nonnegative continuous, the latest time for truck group 𝑘𝑘 arriving at node 𝑖𝑖. 

𝜀𝜀𝑘𝑘 binary, equals one if truck group 𝑘𝑘 is used, and zero otherwise. 

4.2. An MIP model 

Based on the above definitions, a mathematical model is formulated as follows.  

Minimize �∑ 𝑠𝑠𝐾𝐾 ∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0𝑘𝑘∈𝐾𝐾 + ∑ 𝑠𝑠𝐷𝐷 ∑ ∑ ∑ �𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑡𝑡𝑗𝑗ℎ𝑘𝑘𝐷𝐷 �𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘ℎ∈𝑁𝑁+𝑗𝑗∈𝑁𝑁𝑐𝑐𝑖𝑖∈𝑁𝑁0𝑘𝑘∈𝐾𝐾 +∑ 𝑠𝑠𝐺𝐺𝜀𝜀𝑘𝑘𝑘𝑘∈𝐾𝐾 +

∑ 𝑠𝑠𝑊𝑊�𝜌𝜌𝑛𝑛+1,𝑘𝑘 − ∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0 �𝑘𝑘∈𝐾𝐾 �              (4-1) 

subject to 

∑ 𝛼𝛼0𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑁𝑁+ = 1         ∀𝑘𝑘 ∈ 𝐾𝐾          (4-2) 

∑ 𝛼𝛼𝑖𝑖,𝑛𝑛+1,𝑘𝑘 = 1𝑖𝑖∈𝑁𝑁0         ∀𝑘𝑘 ∈ 𝐾𝐾          (4-3) 

∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

= ∑ 𝛼𝛼𝑗𝑗ℎ𝑘𝑘ℎ∈𝑁𝑁+
ℎ≠𝑗𝑗

≤ 1      ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾        (4-4) 

∑ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

𝑘𝑘∈𝐾𝐾 ≤ 1     ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐          (4-5) 

∑ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑗𝑗∈𝑁𝑁𝑐𝑐
𝑖𝑖≠𝑗𝑗

𝑘𝑘∈𝐾𝐾 ≤ 1     ∀𝑖𝑖 ∈ 𝑁𝑁0          (4-6) 

∑ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘𝑗𝑗∈𝑁𝑁𝑐𝑐
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠ℎ

𝑘𝑘∈𝐾𝐾 ≤ 1     ∀ℎ ∈ 𝑁𝑁+          (4-7) 
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∑ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

𝑘𝑘∈𝐾𝐾 + ∑ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

𝑘𝑘∈𝐾𝐾 = 1 ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐          (4-8) 

2𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘 ≤ ∑ 𝛼𝛼𝑗𝑗1𝑖𝑖𝑖𝑖𝑗𝑗1∈𝑁𝑁0
𝑗𝑗1≠𝑖𝑖

+ ∑ 𝛼𝛼𝑖𝑖1ℎ𝑘𝑘𝑖𝑖1∈𝑁𝑁𝑐𝑐
𝑖𝑖1≠ℎ

  ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 , 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑖𝑖 ≠ 𝑗𝑗},𝑘𝑘 ∈ 𝐾𝐾,ℎ ∈ {𝑁𝑁+: (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹}  (4-9) 

𝛽𝛽0𝑗𝑗ℎ𝑘𝑘 ≤ ∑ 𝛼𝛼𝑖𝑖ℎ𝑘𝑘𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠ℎ

        ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾,ℎ ∈ {𝑁𝑁+: (0, 𝑗𝑗,ℎ) ∈ 𝐹𝐹}  (4-10) 

𝜏𝜏𝑗𝑗𝑗𝑗𝐾𝐾 ≥ 𝜌𝜌𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾 − 𝑀𝑀�1 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖�     ∀𝑖𝑖 ∈ 𝑁𝑁0,𝑘𝑘 ∈ 𝐾𝐾, 𝑗𝑗 ∈ {𝑁𝑁+: 𝑗𝑗 ≠ 𝑖𝑖}    (4-11) 

𝜏𝜏𝑗𝑗𝑗𝑗𝐷𝐷 ≥ 𝜌𝜌𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷 − 𝑀𝑀�1 − ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

�   ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾, 𝑖𝑖 ∈ {𝑁𝑁0: 𝑖𝑖 ≠ 𝑗𝑗}    (4-12) 

𝜏𝜏ℎ𝑘𝑘𝐷𝐷 ≥ 𝜌𝜌𝑗𝑗𝑗𝑗 + 𝑡𝑡𝑗𝑗ℎ𝑘𝑘𝐷𝐷 − 𝑀𝑀�1 −∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘𝑖𝑖∈𝑁𝑁0
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

�   ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾,ℎ ∈ {𝑁𝑁+:ℎ ≠ 𝑗𝑗}    (4-13) 

𝜇𝜇ℎ𝑘𝑘 − 𝜇𝜇𝑖𝑖𝑖𝑖 ≥ 1 − (𝑛𝑛 + 2)�1 − ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘𝑗𝑗∈𝑁𝑁𝑐𝑐
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

�  ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾,ℎ ∈ {𝑁𝑁+:ℎ ≠ 𝑖𝑖}    (4-14) 

𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑗𝑗𝑗𝑗 + 1 ≤ (𝑛𝑛 + 2)�1 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖�    ∀𝑖𝑖 ∈ 𝑁𝑁0,𝑘𝑘 ∈ 𝐾𝐾, 𝑗𝑗 ∈ {𝑁𝑁+: 𝑗𝑗 ≠ 𝑖𝑖}    (4-15) 

𝜇𝜇𝑗𝑗𝑗𝑗 ≤ (𝑛𝑛 + 2)∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0        ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑗𝑗 ∈ {𝑁𝑁+: 𝑗𝑗 ≠ 𝑖𝑖}      (4-16) 

𝜇𝜇𝑖𝑖𝑖𝑖 ≥ 𝜇𝜇𝑗𝑗𝑗𝑗 − (𝑛𝑛 + 2)𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖        ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾, 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑗𝑗 ≠ 𝑖𝑖}     (4-17) 

𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑗𝑗𝑗𝑗 ≤ −1 + (𝑛𝑛 + 2)�1 − 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖�     ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾, 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑗𝑗 ≠ 𝑖𝑖}     (4-18) 

𝛾𝛾0𝑗𝑗𝑗𝑗 = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0          ∀𝑗𝑗 ∈ 𝑁𝑁+,𝑘𝑘 ∈ 𝐾𝐾        (4-19) 

𝜌𝜌𝑖𝑖2𝑘𝑘 ≥ 𝜏𝜏ℎ1𝑘𝑘
𝐷𝐷 − 𝑀𝑀

⎝

⎜⎜
⎛

3− ∑ 𝛽𝛽𝑖𝑖1𝑗𝑗1ℎ1𝑘𝑘𝑗𝑗1∈𝑁𝑁𝑐𝑐
𝑗𝑗1≠𝑖𝑖2

(𝑖𝑖1,𝑗𝑗1,ℎ1)∈𝐹𝐹

− ∑ ∑ 𝛽𝛽𝑖𝑖2𝑗𝑗2ℎ2𝑘𝑘ℎ2∈𝑁𝑁+
(𝑖𝑖2,𝑗𝑗2,ℎ2)∈𝐹𝐹

ℎ2≠𝑖𝑖1
ℎ2≠ℎ1

𝑗𝑗2∈𝑁𝑁𝑐𝑐
𝑗𝑗2≠𝑖𝑖1
𝑗𝑗2≠ℎ1
𝑗𝑗2≠𝑖𝑖2

− 𝛾𝛾𝑖𝑖1𝑖𝑖2𝑘𝑘

⎠

⎟⎟
⎞

     

      ∀𝑖𝑖1 ∈ 𝑁𝑁0,ℎ1 ∈ {𝑁𝑁+:ℎ1 ≠ 𝑖𝑖1}, 𝑖𝑖2 ∈ �𝑁𝑁𝑐𝑐: 𝑖𝑖2 ≠ 𝑖𝑖1,𝑖𝑖2 ≠ ℎ1�,𝑘𝑘 ∈ 𝐾𝐾 (4-20) 

𝜏𝜏ℎ𝑘𝑘𝐷𝐷 − 𝜌𝜌𝑗𝑗𝑗𝑗 + 𝑡𝑡𝑖𝑖𝑖𝑖𝐷𝐷 ≤ 𝑒𝑒𝑘𝑘𝑗𝑗𝐷𝐷 + 𝑀𝑀�1 − 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘�  ∀ℎ ∈ 𝑁𝑁+, 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑗𝑗 ≠ ℎ},𝑘𝑘 ∈ 𝐾𝐾, 𝑖𝑖 ∈ {𝑁𝑁0: (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹} (4-21) 

𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘�𝑡𝑡𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑡𝑡𝑗𝑗ℎ𝐷𝐷 � ≤ 𝑒𝑒𝑘𝑘𝑘𝑘𝐷𝐷      ∀ℎ ∈ 𝑁𝑁+, 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑗𝑗 ≠ ℎ},𝑘𝑘 ∈ 𝐾𝐾, 𝑖𝑖 ∈ {𝑁𝑁0: (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹} (4-22) 

𝜌𝜌ℎ𝑘𝑘 − 𝜌𝜌𝑖𝑖𝑖𝑖 ≤ 𝑒𝑒𝑘𝑘𝑗𝑗𝐷𝐷 + 𝑀𝑀�1 − 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘�   ∀ℎ ∈ 𝑁𝑁+, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾, 𝑖𝑖 ∈ {𝑁𝑁0: (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹}   (4-23) 

∑ ∑ 𝑞𝑞𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗∈𝑁𝑁0𝑖𝑖∈𝑁𝑁𝑐𝑐 + ∑ ∑ ∑ 𝑞𝑞𝑖𝑖𝛽𝛽𝑗𝑗𝑗𝑗ℎ𝑘𝑘ℎ∈𝑁𝑁+
(𝑗𝑗,𝑖𝑖,ℎ)∈𝐹𝐹

𝑗𝑗∈𝑁𝑁0𝑖𝑖∈𝑁𝑁𝑐𝑐 ≤ 𝑚𝑚𝑘𝑘
𝐾𝐾  ∀𝑘𝑘 ∈ 𝐾𝐾       (4-24) 

𝑞𝑞𝑖𝑖 ∑ ∑ 𝛽𝛽𝑗𝑗𝑗𝑗ℎ𝑘𝑘ℎ∈𝑁𝑁+
(𝑗𝑗,𝑖𝑖,ℎ)∈𝐹𝐹

𝑗𝑗∈𝑁𝑁0 ≤ 𝑚𝑚𝑘𝑘
𝐷𝐷    ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾         (4-25) 

𝜀𝜀𝑘𝑘 ≥ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖        ∀𝑖𝑖 ∈ 𝑁𝑁0,𝑘𝑘 ∈ 𝐾𝐾, 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑗𝑗 ≠ 𝑖𝑖}      (4-26) 

𝜀𝜀𝑘𝑘 ≥ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘        ∀ℎ ∈ 𝑁𝑁+, 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑗𝑗 ≠ ℎ},𝑘𝑘 ∈ 𝐾𝐾, 𝑖𝑖 ∈ {𝑁𝑁0: (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹} (4-27) 

𝜏𝜏0𝑘𝑘𝐾𝐾 = 0          ∀𝑘𝑘 ∈ 𝐾𝐾           (4-28) 

𝜏𝜏0𝑘𝑘𝐷𝐷 = 0          ∀𝑘𝑘 ∈ 𝐾𝐾           (4-29) 

𝜌𝜌𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜏𝜏𝑖𝑖𝑖𝑖𝐷𝐷 , 𝜏𝜏𝑖𝑖𝑖𝑖𝐾𝐾 �      ∀𝑖𝑖 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾         (4-30) 
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𝜏𝜏𝑖𝑖𝑖𝑖𝐾𝐾 ≥ 0          ∀𝑖𝑖 ∈ 𝑁𝑁,𝑘𝑘 ∈ K          (4-31) 

 𝜏𝜏𝑖𝑖𝑖𝑖𝐷𝐷 ≥ 0         ∀𝑖𝑖 ∈ 𝑁𝑁,𝑘𝑘 ∈ K          (4-32) 

𝜌𝜌𝑖𝑖𝑖𝑖 ≥ 0          ∀𝑖𝑖 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾         (4-33) 

1 ≤ 𝜇𝜇𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛 + 2,𝜇𝜇𝑖𝑖𝑖𝑖 ∈ ℤ+     ∀𝑖𝑖 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾         (4-34) 

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}        ∀𝑖𝑖 ∈ 𝑁𝑁0, 𝑗𝑗 ∈ 𝑁𝑁+,𝑘𝑘 ∈ 𝐾𝐾        (4-35) 

𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘 ∈ {0,1}        ∀𝑖𝑖 ∈ 𝑁𝑁0, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾,ℎ ∈ 𝑁𝑁+      (4-36) 

𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}       ∀𝑖𝑖 ∈ 𝑁𝑁,𝑘𝑘 ∈ 𝐾𝐾, 𝑗𝑗 ∈ 𝑁𝑁        (4-37) 

𝜀𝜀𝑘𝑘 ∈ {0,1}         ∀𝑘𝑘 ∈ 𝐾𝐾.           (4-38) 

Objective (4-1) minimizes the total cost, which includes the fixed cost of trucks and drones, the travel cost 

of trucks, the travel cost of drones, and the waiting cost of trucks. It is the usual practice of the VRP variants to 

minimize the travel cost related to travel time; the minimization of the fixed cost is to make the obtained plan 

use as fewer trucks and drones as possible. In addition, the waiting cost (time) that was considered in related 

literature is also taken account in the objective so as to increase the cooperative degree between the trucks and 

drones when executing the delivery tasks. Constraints (4-2) and (4-3) guarantee that truck 𝑘𝑘 starts from the 

depot and eventually returns to the depot. Constraints (4-4) ensure flow conservation and each customer can 

only be served by a truck at most once. Constraints (4-5) require that each customer can only be served by one 

drone at most. Constraints (4-6) indicate that at a particular node 𝑖𝑖, only one drone may be launched from that 

point, at most once. Constraints (4-7) indicate that at a particular node 𝑗𝑗, at most one drone may return to the 

truck at this point. Constraints (4-8) ensure that each customer needs to be served. Constraints (4-9) state that if 

the drone on truck 𝑘𝑘 is launched from node 𝑖𝑖 and returns to truck 𝑘𝑘 at node ℎ, then nodes 𝑖𝑖 and ℎ must be 

assigned to truck 𝑘𝑘. Constraints (4-10) state that if the drone on truck 𝑘𝑘 is launched from the depot and returns 

to truck 𝑘𝑘 at node ℎ, then node ℎ must be assigned to truck 𝑘𝑘. Constraints (4-11) ensure the time that truck 𝑘𝑘 

arrives at node 𝑗𝑗. Constraints (4-12) and (4-13) limit the time that the drone on truck 𝑘𝑘 arrives at node 𝑗𝑗 and 

node ℎ. In Constraints (4-14), if the drone on truck 𝑘𝑘 is launched from node 𝑖𝑖 and returns to truck 𝑘𝑘 at node ℎ, 

then truck 𝑘𝑘 must serve node 𝑖𝑖 before node ℎ. Constraints (4-15) and (4-16) are subtour elimination constraints. 

Constraints (4-17)~(4-19) determine the value of 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖. Constraints (4-20) require that the drone of truck 𝑘𝑘 will 

be launched from point 𝑖𝑖2 for the next time is later than the last time the drone returned to truck 𝑘𝑘 at point 𝑖𝑖1. 

Constraints (4-21)~(4-23) guarantee the maximum flight time of the drone. In Constraints (4-24), if truck group 

𝑘𝑘 forms a route, the total weight of the goods that customers need to be delivered on this route does not exceed 

the maximum load of truck 𝑘𝑘 serving the route. Constraints (4-25) state that the weight of the goods delivered 

to each customer by the drone does not exceed the maximum capacity of the drone. Constraints (4-26) and (4-

27) state whether truck group 𝑘𝑘 is used. Constraints (4-28) state that the time that truck 𝑘𝑘 departs from the 

depot is zero. Constraints (4-29) state that the time that drone on truck 𝑘𝑘  departs from the depot is zero. 
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Constraints (4-30) ensure that truck group 𝑘𝑘’s departure time from node 𝑖𝑖 should be the maximum of the time 

when truck 𝑘𝑘 arrives at node 𝑖𝑖 and the time when drone on truck 𝑘𝑘 arrives at node 𝑖𝑖. Constraints (4-31)~(4-

38) define the decision variables. 

In practice, the above formulation cannot be solved to optimality using general purpose MIP solvers even for 

small-sized instances. Therefore, in the next section we investigate an exact method based on an alternative 

mathematical formulation for the problem. 

4.3. Computing lower bounds 

In this section, we describe two lower bounds (LBs) on the optimal solution cost of the mathematical 

formulation. The first lower bound, called LBP (lower bound problem), is obtained by relaxing some of the 

constraints of the MIP model described in the previous section. The second lower bound requires additional 

information on the customers distribution and computes a lower estimate on the value of the objective function 

using the continuous approximation paradigm (see Carlsson and Song, 2018). 

The first LB is tighter to the original problem than the second LB; while the computation time of the former 

one is a bit longer than the time of the latter one. Thus, the first LB will be used as an benchmark in the 

comparative experiments to validate the quality of solutions solved by our proposed algorithm; while the second 

LB is embedded in a dynamic programming for accelerating the process of solving the pricing problem. 

4.3.1 Lower bound LBP 

Lower bound LBP is obtained by simply relaxing the integrality Constraints (4-34)～(4-37) as follows: 

𝛼𝛼𝑖𝑖ℎ𝑘𝑘,𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘 ,𝛾𝛾𝑖𝑖ℎ𝑘𝑘 ≤ 1    ∀𝑖𝑖 ∈ 𝑁𝑁0, 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑖𝑖 ≠ 𝑗𝑗},ℎ ∈ {𝑁𝑁+: (𝑖𝑖, 𝑗𝑗, ℎ) ∈ 𝐹𝐹},𝑘𝑘 ∈ 𝐾𝐾   (4-39) 

𝛼𝛼𝑖𝑖ℎ𝑘𝑘,𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑘𝑘 ,𝛾𝛾𝑖𝑖ℎ𝑘𝑘 ≥ 0    ∀𝑖𝑖 ∈ 𝑁𝑁0, 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑖𝑖 ≠ 𝑗𝑗},ℎ ∈ {𝑁𝑁+: (𝑖𝑖, 𝑗𝑗, ℎ) ∈ 𝐹𝐹},𝑘𝑘 ∈ 𝐾𝐾   (4-40) 

1 ≤ 𝜇𝜇𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛 + 2    ∀𝑖𝑖 ∈ 𝑁𝑁+,𝑘𝑘 ∈ 𝐾𝐾.           (4-41) 

The resulting model, which is still an MIP model due to Constraints (4-38), will be used in the computational 

experiments to compute lower bounds for instances by means of a general-purpose MIP solver. 

4.3.2 A lower bound based on continuous approximation 

This section describes a continuous approximation model to compute a lower bound on the objective function. 

We assume that there are 𝑛𝑛 customers in the Euclidean plane to be served by a truck group 𝑘𝑘. These customers 

are assumed to follow an absolutely continuous probability distribution 𝑓𝑓(𝑥𝑥) which is defined on a compact 

planar region. The computation of the lower bound requires the following information for the truck group 𝑘𝑘:  

𝛺𝛺𝑘𝑘 ⊆ 𝑅𝑅2  distribution area of the customers served by truck group 𝑘𝑘. 

𝑙𝑙𝑘𝑘   truck route in 𝛺𝛺𝑘𝑘 represented by a loop on the compact planar region. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑙𝑙𝑘𝑘)  the length of truck route 𝑙𝑙𝑘𝑘. 

𝑣𝑣𝐾𝐾   speed of the truck. 

𝑣𝑣𝐷𝐷   speed of the drone. 

𝑐𝑐𝑘𝑘   total cost of truck group 𝑘𝑘. 
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𝑓𝑓(𝑥𝑥)  continuous probability distribution of customer 𝑥𝑥 being served; it is defined on the compact 

planar region. 

The following proposition holds. 

Proposition 1. A lower bound (𝐿𝐿𝐿𝐿) on the cost of all truck groups can be computed as follows: 

𝐿𝐿𝐿𝐿 = ∑
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑙𝑙𝑘𝑘)∗�𝑠𝑠
𝐾𝐾

𝑣𝑣𝐷𝐷
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𝑣𝑣𝐾𝐾
+ 𝑠𝑠𝐺𝐺�𝑘𝑘∈𝐾𝐾 .       (4-42) 

Proof: The proof is provided in Appendix 1. ∎ 

The above expression will be used in Section 5.7.2 to speed up the computation of a dynamic programming 

used to solve the pricing problem of an alternative formulation of the problem, described in the next section. 

5. B&P&C based solution method 

In this section, we describe a B&P&C based exact solution method, which combines column generation, cut 

generators, and a branch-and-bound solution framework. In the following, Sections 5.1~5.4 describe a set-

covering model for the problem and the corresponding column generation algorithm. Section 5.5 presents the 

branching and node selection strategy, followed by Section 5.6 where valid inequalities are introduced to 

strengthen the lower bound obtained from the LP-relaxation of the set-covering formulation. Section 5.7 designs 

a dynamic programming algorithm for solving the pricing problem, followed by Section 5.8 describing some 

accelerating strategies. For a thorough description of the column generation technique and corresponding 

solution approaches, the reader is referred to the book of Desaulniers et al. (2005) and the reviews of Barnhart 

et al. (1998) and Lübbecke and Desrosiers (2005). 

5.1 Set-covering based model for the problem 

The B&P&C method is based on the following set-covering based model for the problem. Let 𝑅𝑅𝑘𝑘 be the set 

of the possible routes for truck group 𝑘𝑘. Each route includes a truck and a drone. Here, 𝑅𝑅 =∪𝑘𝑘∈𝐾𝐾 𝑅𝑅𝑘𝑘 is defined 

as a set of the possible routes. The following notation is used: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘 0-1 coefficient, equal to one if truck 𝑘𝑘 travels from node 𝑖𝑖 ∈ 𝑁𝑁0 to node  𝑗𝑗 ∈ 𝑁𝑁+ in route  𝑟𝑟𝑘𝑘, and 

zero otherwise. 

𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘  0-1 coefficient, equal to one if the drone on truck 𝑘𝑘 is launched from node 𝑖𝑖 ∈ 𝑁𝑁0, flies to customer 

𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 , and returns to truck 𝑘𝑘 or the ending depot at node ℎ ∈ 𝑁𝑁+ in route  𝑟𝑟𝑘𝑘, and zero otherwise. 

𝑐𝑐𝑟𝑟𝑘𝑘  cost of route 𝑟𝑟𝑘𝑘. 

For each feasible route, 𝑟𝑟𝑘𝑘 ∈ 𝑅𝑅𝑘𝑘  ,∀𝑘𝑘 ∈ 𝐾𝐾, let 𝜉𝜉𝑟𝑟𝑘𝑘  be a binary decision variable, which equals one if route 
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𝑟𝑟𝑘𝑘 is selected in solution, and zero otherwise. Based on the above definitions, the set partitioning model of the 

problem is as follows:  

[MP] Minimize∑ ∑ 𝑐𝑐𝑟𝑟𝑘𝑘𝜉𝜉𝑟𝑟𝑘𝑘𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾                  (5-1) 

subject to 

∑ ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘 𝜉𝜉𝑟𝑟𝑘𝑘𝑘𝑘∈𝐾𝐾 + ∑ ∑ ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘 𝜉𝜉𝑟𝑟𝑘𝑘𝑘𝑘∈𝐾𝐾 ≥ 1 ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐     (5-2) 

∑ 𝜉𝜉𝑟𝑟𝑘𝑘𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘 ≤ 1              ∀𝑘𝑘 ∈ 𝐾𝐾     (5-3) 

𝜉𝜉𝑟𝑟𝑘𝑘 ∈ {0,1}               ∀𝑟𝑟𝑘𝑘 ∈ 𝑅𝑅𝑘𝑘 ,𝑘𝑘 ∈ 𝐾𝐾.   (5-4) 

Objective (5-1) minimizes the cost of the routes used in the solution. Constraints (5-2) state each customer is 

served at least once. Constraints (5-3) ensure each truck group selects at most one route. Constraints (5-4) define 

the decision variable. 

In the above model, the route cost parameter 𝑐𝑐𝑟𝑟𝑘𝑘  is calculated as follows. 

𝑐𝑐𝑟𝑟𝑘𝑘 = 𝑠𝑠𝐾𝐾 ∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑗𝑗∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0 + 𝑠𝑠𝐷𝐷 ∑ ∑ ∑ �𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑡𝑡𝑗𝑗ℎ𝑘𝑘𝐷𝐷 �𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+𝑗𝑗∈𝑁𝑁𝑐𝑐𝑖𝑖∈𝑐𝑐𝑐𝑐0 + 𝑠𝑠𝐺𝐺 + 𝑠𝑠𝑊𝑊�𝜌𝜌𝑛𝑛+1,𝑘𝑘 −

∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑗𝑗∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0 �            ∀𝑟𝑟𝑘𝑘 ∈ 𝑅𝑅𝑘𝑘 ,𝑘𝑘 ∈ 𝐾𝐾   (5-5) 

5.2 Restricted master problem (RMP) 

The RMP is defined as the LP-relaxation of formulation MP where, in addition, a subset of all feasible routes 

is selected and represented by 𝑅𝑅′ =∪𝑘𝑘∈𝐾𝐾 𝑅𝑅𝑘𝑘′ ⊆ 𝑅𝑅. The initial feasible solution  𝑅𝑅′ is computed using a heuristic 

algorithm, which is described in Section 5.4. The RMP in then formulated as follows.  

[RMP]  Minimize∑ ∑ 𝑐𝑐𝑟𝑟𝑘𝑘𝜉𝜉𝑟𝑟𝑘𝑘𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘
′𝑘𝑘∈𝐾𝐾                (5-7) 

subject to 

∑ ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘
′ 𝜉𝜉𝑟𝑟𝑘𝑘𝑘𝑘∈𝐾𝐾 + ∑ ∑ ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+

(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹
𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘
′ 𝜉𝜉𝑟𝑟𝑘𝑘𝑘𝑘∈𝐾𝐾 ≥ 1 ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐     (5-8) 

∑ 𝜉𝜉𝑟𝑟𝑘𝑘𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘
′ ≤ 1              ∀𝑘𝑘 ∈ 𝐾𝐾     (5-9) 

𝜉𝜉𝑟𝑟𝑘𝑘 ≥ 0               ∀𝑟𝑟𝑘𝑘 ∈ 𝑅𝑅𝑘𝑘′ ,𝑘𝑘 ∈ 𝐾𝐾.  (5-10) 

In the above model, the route cost parameter 𝑐𝑐𝑟𝑟𝑘𝑘  is calculated as follows, here 𝑟𝑟𝑘𝑘 belongs to the above 

defined set 𝑅𝑅𝑘𝑘′ , i.e., 𝑟𝑟𝑘𝑘 ∈ 𝑅𝑅𝑘𝑘′ . 

𝑐𝑐𝑟𝑟𝑘𝑘 = 𝑠𝑠𝐾𝐾 ∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑗𝑗∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0 + 𝑠𝑠𝐷𝐷 ∑ ∑ ∑ �𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑡𝑡𝑗𝑗ℎ𝑘𝑘𝐷𝐷 �𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+𝑗𝑗∈𝑁𝑁𝑐𝑐𝑖𝑖∈𝑁𝑁0 + 𝑠𝑠𝐺𝐺 + 𝑠𝑠𝑊𝑊�𝜌𝜌𝑛𝑛+1,𝑘𝑘 −

∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑗𝑗∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0 �            ∀𝑟𝑟𝑘𝑘 ∈ 𝑅𝑅𝑘𝑘′ ,𝑘𝑘 ∈ 𝐾𝐾  (5-11) 

At each iteration of the column generation, a new column is added to the RMP until optimality is proven. The 

dual variables of the RMP are transferred to the pricing problem (PP), which is used to generate new columns. 

The dual variables of the RMP are defined as follows: 

𝜋𝜋𝑗𝑗1 dual variables for Constraint (5-8), ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐. 

𝜋𝜋𝑘𝑘2 dual variables for Constraint (5-9), ∀𝑘𝑘 ∈ 𝐾𝐾.  
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5.3 Pricing problem (PP) 

The aim of the pricing problem (PP) is to obtain feasible route plans having negative reduced cost. At each 

iteration of the algorithm, |𝐾𝐾| pricing problems need to be solved, each of which corresponds to one truck 

group and generates a feasible route plan. In the following, we define the pricing problem PPk , for a generic 

truck k. For sake of the exposition, the parameters and variables used in the following model PPk will omit the 

subscript k.  

The mathematical model of the PPk corresponding to truck group k is formulated as follows: 

[PPk] Minimize𝜎𝜎𝑘𝑘 = 𝑐𝑐𝑟𝑟𝑘𝑘 − ∑ �∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

�𝑗𝑗∈𝑁𝑁c 𝜋𝜋𝑗𝑗1 − 𝜋𝜋𝑘𝑘2      (5-12) 

subject to 

∑ 𝛼𝛼0𝑗𝑗𝑗𝑗𝑗𝑗𝑁𝑁+ = 1                   (5-13) 

∑ 𝛼𝛼𝑖𝑖,𝑛𝑛+1 = 1𝑖𝑖∈𝑁𝑁0                   (5-14) 

∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

= ∑ 𝛼𝛼𝑗𝑗ℎℎ∈𝑁𝑁+
ℎ≠𝑗𝑗

≤ 1      ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐         (5-15) 

∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

≤ 1        ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐         (5-16) 

∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑗𝑗∈𝑁𝑁𝑐𝑐
𝑖𝑖≠𝑗𝑗

≤ 1        ∀𝑖𝑖 ∈ 𝑁𝑁0         (5-17) 

∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑗𝑗∈𝑁𝑁𝑐𝑐
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠ℎ

≤ 1        ∀ℎ ∈ 𝑁𝑁+         (5-18) 

∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

≤ 1     ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐          (5-19) 

∑ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

𝑗𝑗∈𝑁𝑁𝑐𝑐 + ∑ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

𝑗𝑗∈𝑁𝑁𝑐𝑐 ≥ 1            (5-20) 

2𝛽𝛽𝑖𝑖𝑖𝑖ℎ ≤ ∑ 𝛼𝛼𝑗𝑗1𝑖𝑖𝑗𝑗1∈𝑁𝑁0
𝑗𝑗1≠𝑖𝑖

+ ∑ 𝛼𝛼𝑖𝑖1ℎ𝑖𝑖1∈𝑁𝑁𝑐𝑐
𝑖𝑖1≠ℎ

 ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 , 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑖𝑖 ≠ 𝑗𝑗},ℎ ∈ {𝑁𝑁+: (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹}     (5-21) 

𝛽𝛽0𝑗𝑗ℎ ≤ ∑ 𝛼𝛼𝑖𝑖ℎ𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠ℎ

         ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ,ℎ ∈ {𝑁𝑁+: (0, 𝑗𝑗,ℎ) ∈ 𝐹𝐹}    (5-22) 

𝜏𝜏𝑗𝑗𝐾𝐾 ≥ 𝜌𝜌𝑖𝑖𝐾𝐾 + 𝑡𝑡𝑖𝑖𝑖𝑖𝐾𝐾 − 𝑀𝑀�1 − 𝛼𝛼𝑖𝑖𝑖𝑖�       ∀𝑖𝑖 ∈ 𝑁𝑁0, 𝑗𝑗 ∈ {𝑁𝑁+: 𝑗𝑗 ≠ 𝑖𝑖}     (5-23) 

𝜏𝜏𝑗𝑗𝐷𝐷 ≥ 𝜌𝜌𝑖𝑖𝐷𝐷 + 𝑡𝑡𝑖𝑖𝑖𝑖𝐷𝐷 − 𝑀𝑀�1 −∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

�   ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 , 𝑖𝑖 ∈ {𝑁𝑁0: 𝑖𝑖 ≠ 𝑗𝑗}      (5-24) 

𝜏𝜏ℎ𝐷𝐷 ≥ 𝜌𝜌𝑗𝑗𝐷𝐷 + 𝑡𝑡𝑗𝑗ℎ𝐷𝐷 − 𝑀𝑀�1 − ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑖𝑖∈𝑁𝑁0
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

�    ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ,ℎ ∈ {𝑁𝑁+:ℎ ≠ 𝑗𝑗}     (5-25) 

𝜇𝜇ℎ − 𝜇𝜇𝑖𝑖 ≥ 1 − (𝑛𝑛 + 2)�1 − ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑗𝑗∈𝑁𝑁𝑐𝑐
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

�   ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 ,ℎ ∈ {𝑁𝑁+:ℎ ≠ 𝑖𝑖}      (5-26) 

𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗 + 1 ≤ (𝑛𝑛 + 2)�1 − 𝛼𝛼𝑖𝑖𝑖𝑖�      ∀𝑖𝑖 ∈ 𝑁𝑁0, 𝑗𝑗 ∈ {𝑁𝑁+: 𝑗𝑗 ≠ 𝑖𝑖}     (5-27) 

𝜇𝜇𝑗𝑗 ≤ (𝑛𝑛 + 2)∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0         ∀𝑗𝑗 ∈ {𝑁𝑁+: 𝑗𝑗 ≠ 𝑖𝑖}        (5-28) 

𝜇𝜇𝑖𝑖 ≥ 𝜇𝜇𝑗𝑗 − (𝑛𝑛 + 2)𝛾𝛾𝑖𝑖𝑖𝑖        ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 , 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑗𝑗 ≠ 𝑖𝑖}      (5-29) 



 16 

𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗 ≤ −1 + (𝑛𝑛 + 2)�1 − 𝛾𝛾𝑖𝑖𝑖𝑖�      ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 , 𝑗𝑗 ∈ {𝑁𝑁𝑐𝑐: 𝑗𝑗 ≠ 𝑖𝑖}      (5-30) 

𝛾𝛾0𝑗𝑗 = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0          ∀𝑗𝑗 ∈ 𝑁𝑁+         (5-31) 

𝜌𝜌𝑖𝑖2
𝐷𝐷 ≥ 𝜏𝜏ℎ1

𝐷𝐷 − 𝑀𝑀

⎝

⎜⎜
⎛

3 − ∑ 𝛽𝛽𝑖𝑖1𝑗𝑗1ℎ1𝑗𝑗1∈𝑁𝑁𝑐𝑐
𝑗𝑗1≠𝑖𝑖2

(𝑖𝑖1,𝑗𝑗1,ℎ1)∈𝐹𝐹

− ∑ ∑ 𝛽𝛽𝑖𝑖2𝑗𝑗2ℎ2ℎ2∈𝑁𝑁+
(𝑖𝑖2,𝑗𝑗2,ℎ2)∈𝐹𝐹

ℎ2≠𝑖𝑖1
ℎ2≠ℎ1

𝑗𝑗2∈𝑁𝑁𝑐𝑐
𝑗𝑗2≠𝑖𝑖1
𝑗𝑗2≠ℎ1
𝑗𝑗2≠𝑖𝑖2

− 𝛾𝛾𝑖𝑖1𝑖𝑖2

⎠

⎟⎟
⎞

       

         ∀𝑖𝑖1 ∈ 𝑁𝑁0,ℎ1 ∈ {𝑁𝑁+:ℎ1 ≠ 𝑖𝑖1}, 𝑖𝑖2 ∈ �𝑁𝑁𝑐𝑐: 𝑖𝑖2 ≠ 𝑖𝑖1,𝑖𝑖2 ≠ ℎ1�  (5-32) 

𝜏𝜏ℎ𝐷𝐷 − 𝜌𝜌𝑗𝑗𝐷𝐷 + 𝑡𝑡𝑖𝑖𝑖𝑖𝐷𝐷 ≤ 𝑒𝑒𝑗𝑗𝐷𝐷 + 𝑀𝑀�1 − 𝛽𝛽𝑖𝑖𝑖𝑖ℎ�     ∀ℎ ∈ 𝑁𝑁+, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 , 𝑖𝑖 ∈ {𝑁𝑁0: (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹}  (5-33) 

𝛽𝛽𝑖𝑖𝑖𝑖ℎ�𝑡𝑡𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑡𝑡𝑗𝑗ℎ𝐷𝐷 � ≤ 𝑒𝑒𝑗𝑗𝐷𝐷        ∀ℎ ∈ 𝑁𝑁+, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 , 𝑖𝑖 ∈ {𝑁𝑁0: (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹}  (5-34) 

𝜌𝜌ℎ𝐷𝐷 − 𝜌𝜌𝑖𝑖𝐷𝐷 ≤ 𝑒𝑒𝑗𝑗𝐷𝐷 + 𝑀𝑀�1 − 𝛽𝛽𝑖𝑖𝑖𝑖ℎ�      ∀ℎ ∈ 𝑁𝑁+, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 , 𝑖𝑖 ∈ {𝑁𝑁0: (𝑖𝑖, 𝑗𝑗,ℎ) ∈ 𝐹𝐹}  (5-35) 

∑ ∑ 𝑞𝑞𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗∈𝑁𝑁0𝑖𝑖∈𝑁𝑁𝑐𝑐 + ∑ ∑ ∑ 𝑞𝑞𝑖𝑖𝛽𝛽𝑗𝑗𝑗𝑗ℎℎ∈𝑁𝑁+
(𝑗𝑗,𝑖𝑖,ℎ)∈𝐹𝐹

𝑗𝑗∈𝑁𝑁0𝑖𝑖∈𝑁𝑁𝑐𝑐 ≤ 𝑚𝑚𝐾𝐾           (5-36) 

𝑞𝑞𝑖𝑖 ∑ ∑ 𝛽𝛽𝑗𝑗𝑗𝑗ℎℎ∈𝑁𝑁+
(𝑗𝑗,𝑖𝑖,ℎ)∈𝐹𝐹

𝑗𝑗∈𝑁𝑁0 ≤ 𝑚𝑚𝐷𝐷       ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐         (5-37) 

𝜏𝜏0𝐾𝐾 = 0                     (5-38) 

𝜏𝜏0𝐷𝐷 = 0                     (5-39) 

𝜌𝜌𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝜏𝜏𝑖𝑖𝐷𝐷, 𝜏𝜏𝑖𝑖𝐾𝐾�         ∀𝑖𝑖 ∈ 𝑁𝑁          (5-40) 

1 ≤ 𝜇𝜇𝑖𝑖 ≤ 𝑛𝑛 + 2,𝜇𝜇𝑖𝑖 ∈ ℤ+        ∀𝑖𝑖 ∈ 𝑁𝑁          (5-41) 

𝜏𝜏𝑖𝑖𝐾𝐾 ≥ 0           ∀𝑖𝑖 ∈ 𝑁𝑁          (5-42) 

𝜏𝜏𝑖𝑖𝐷𝐷 ≥ 0           ∀𝑖𝑖 ∈ 𝑁𝑁         (5-43) 

𝜌𝜌𝑖𝑖 ≥ 0           ∀𝑖𝑖 ∈ 𝑁𝑁          (5-44) 

𝛼𝛼𝑖𝑖𝑖𝑖 ∈ {0,1}          ∀𝑖𝑖 ∈ 𝑁𝑁0, 𝑗𝑗 ∈ 𝑁𝑁+       (5-45) 

𝛽𝛽𝑖𝑖𝑖𝑖ℎ ∈ {0,1}          ∀𝑖𝑖 ∈ 𝑁𝑁0, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ,ℎ ∈ 𝑁𝑁+     (5-46) 

𝛾𝛾𝑖𝑖𝑖𝑖 ∈ {0,1}          ∀𝑖𝑖 ∈ 𝑁𝑁, 𝑗𝑗 ∈ 𝑁𝑁        (5-47) 

𝑐𝑐𝑟𝑟𝑘𝑘 = 𝑠𝑠𝐾𝐾 ∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝐾𝐾𝛼𝛼𝑖𝑖𝑖𝑖𝑗𝑗∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0 + 𝑠𝑠𝐷𝐷 ∑ ∑ ∑ �𝑡𝑡𝑖𝑖𝑖𝑖𝐷𝐷 + 𝑡𝑡𝑗𝑗ℎ𝐷𝐷 �𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+𝑗𝑗∈𝑁𝑁𝑐𝑐𝑖𝑖∈𝑁𝑁0 + 𝑠𝑠𝐺𝐺 + 𝑠𝑠𝑊𝑊�𝜌𝜌𝑛𝑛+1 −

∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝐾𝐾𝛼𝛼𝑖𝑖𝑖𝑖𝑗𝑗∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0 �.                  (5-48) 

Objective (5-12) minimizes the reduced cost. Constraints (5-13)~(5-18) and Constraints (5-21)~(5-47) are 

similar to Constraints (4-2)~(4-7), Constraints(4-9)~(4-25) and Constraints (4-28)~(4-37), respectively. Thus, 

the explanation is omitted here for conciseness. Constraints (5-19) and (5-20) ensure that all customers should 

be served at most once, and at least one customer needs to be served. Constraint (5-48) is the calculation of the 

route’s cost, i.e., value 𝑐𝑐𝑟𝑟𝑘𝑘 , which is used in the objective function. 

5.4 Generation of the initial solution 

A set of initial feasible route plans for the RMP needs to be generated to initialize the column generation 

procedure. To generate the initial solution, we designed a greedy heuristic that performs the following steps.  
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Step 1: Sort the customers according to the increasing order of their demands. Initialize an empty truck route. 

Step 2: Following the customer ordering, add the customers to the emerging route until the vehicle capacity 

constraint is satisfied. If no additional customers can be added, initialize a new truck route, and repeat Step 2 

until all customers have been served. 

Step 3: For each truck route defined at Step 2, apply the well-known 2-opt and 3-opt local search procedures.  

Step 4: For each truck route, evaluate the insertion of drone routes by considering different drone constraints.  

5.5 Branching and node selection strategy  

Based on the branching scheme used by Zhen et al. (2018), the branching and node selection strategy used in 

this paper are designed as follows.  

We decide the assignment of customer 𝑗𝑗  to truck group 𝑘𝑘  according to the expression 𝜍𝜍𝑗𝑗𝑗𝑗 =

∑ �∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

�𝜉𝜉𝑟𝑟𝑘𝑘
∗

𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘

∑ ∑ �∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

�𝜉𝜉𝑟𝑟𝑘𝑘
∗

𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾

 . We calculate the value ∑ �∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘

∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

� 𝜉𝜉𝑟𝑟𝑘𝑘
∗  and the value ∑ ∑ �∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑖𝑖∈𝑁𝑁0

𝑖𝑖≠𝑗𝑗
+ ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+

(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹
𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

� 𝜉𝜉𝑟𝑟𝑘𝑘
∗

𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘𝑘𝑘∈𝐾𝐾 , where 𝜉𝜉𝑟𝑟𝑘𝑘
∗  

is the optimal solution of RMP. If the calculated value of 𝜍𝜍𝑗𝑗𝑗𝑗 is the closest to 0.5, we assign the customer 𝑗𝑗 to 

the truck group 𝑘𝑘. Then, we divide the parent node into two child nodes. For the branch that generates the left 

child node, truck group 𝑘𝑘 must serve customer 𝑗𝑗. For the branch that generates the right child node, customer 

𝑗𝑗 must be served by other truck groups. 

The branch constraints are added to the RMP and pricing problem in the following way. For the first branch, 

which requires that truck group 𝑘𝑘 must serve customer 𝑗𝑗, we remove all routes of truck group 𝑘𝑘 that do not 

serve customer 𝑗𝑗, and delete all routes in the RMP that assign customer 𝑗𝑗 to other truck groups. For problem 

PP and truck group 𝑘𝑘, we require that the newly generated route must include customer 𝑗𝑗. For the remaining 

groups, the newly generated route cannot include customer 𝑗𝑗. For the second branch, which requires that truck 

group 𝑘𝑘 cannot serve customer 𝑗𝑗, we remove all routes of truck group 𝑘𝑘 that serve customer 𝑗𝑗. For problem 

PP and truck group 𝑘𝑘, we require that the newly generated route cannot include customer 𝑗𝑗. For the remaining 

groups, no constraints are added. When all values of 𝜍𝜍𝑗𝑗𝑗𝑗, ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐, 𝑘𝑘 ∈ 𝐾𝐾 are integers, the optimal solutions 

of the RMP are integral and feasible, as shown below. 

After the optimal solutions of RMP are obtained, if there is no fractional value of 𝜍𝜍𝑗𝑗𝑗𝑗, ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐, for a given 

truck group 𝑘𝑘, there are two cases for the values of 𝜍𝜍𝑗𝑗𝑗𝑗, ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐. In the first case, no customer is assigned to 

truck group 𝑘𝑘, 𝜍𝜍𝑗𝑗𝑗𝑗 = 0, ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐. In the second case, there is at least one customer assigned to truck group 𝑘𝑘, 

all 𝜍𝜍𝑗𝑗𝑗𝑗, ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 are integral. When considering the selection of routes in the second case, only two possible 

selections exist: (1) one route is precisely selected for customer 𝑗𝑗, thereby indicating that 𝜉𝜉𝑟𝑟𝑘𝑘
∗ , ∀𝑟𝑟𝑘𝑘 ∈ 𝑅𝑅 are 
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integer; and (2) more than one fractional route is chosen for truck group 𝑘𝑘 . In this case, assume that two 

fractional routes are chosen and denoted by 𝑟𝑟𝑘𝑘1  and 𝑟𝑟𝑘𝑘2 , respectively. The value of �∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘1𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+

∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘1ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

�  and �∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘2𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+ ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘2ℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

�  must be exactly the same, and 

�𝜉𝜉𝑟𝑟𝑘𝑘1
∗ +𝜉𝜉𝑟𝑟𝑘𝑘2

∗ �

∑ �𝜉𝜉𝑟𝑟𝑘𝑘
∗ �𝑘𝑘∈𝐾𝐾

 must be equal to an integer, in order to ensure that all values of 𝜍𝜍𝑗𝑗𝑗𝑗, ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 are integral. These 

two routes represent the same route with an integral value of 
�𝜉𝜉𝑟𝑟𝑘𝑘1

∗ +𝜉𝜉𝑟𝑟𝑘𝑘2
∗ �

∑ �𝜉𝜉𝑟𝑟𝑘𝑘
∗ �𝑘𝑘∈𝐾𝐾

. Thus, for this selection, one route is 

precisely chosen for truck group 𝑘𝑘. Thus, if there is no fractional value of 𝜍𝜍𝑗𝑗𝑗𝑗, ∀𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐, all values of 𝜉𝜉𝑟𝑟𝑘𝑘
∗  ∀𝑟𝑟𝑘𝑘 ∈

𝑅𝑅𝑘𝑘 ,𝑘𝑘 ∈ 𝐾𝐾 are integral, and the integral routes have been chosen, which means that the optimal solutions of 

RMP are integral.  

If the current node has not been explored, the depth-first-search rule is used; otherwise, the best-lower-bound 

rule is used, which means the node with the smallest lower bound is selected from the unexplored nodes as the 

next node to be explored. If all nodes have been explored, the whole process stops, and the algorithm terminates 

with an optimal solution. 

5.6 Strengthening the lower bound value 

To speed up the algorithm, the lower bounds provided by CG can be improved by adding valid inequalities 

to the RMP. This section presents the valid inequalities for the RMP. The valid inequalities are added to the 

RMP in a cutting plane fashion.  

We add the following rounded capacity inequalities and subset-row inequalities to the RMP.  

Let 𝐶𝐶  be a subset of 𝑁𝑁𝑐𝑐 , 𝐶𝐶 ⊆ 𝑁𝑁𝑐𝑐 , 𝑅𝑅𝑘𝑘′ (𝐶𝐶)  be the set of routes of truck group k that visits at least one 

customer in set 𝐶𝐶, and 𝑝𝑝𝑟𝑟𝑘𝑘
𝐶𝐶  be a 0-1 parameter. If 𝑟𝑟𝑘𝑘 ∈ 𝑅𝑅𝑘𝑘′ (𝐶𝐶), 𝑝𝑝𝑟𝑟𝑘𝑘

𝐶𝐶  equals one, otherwise zero. The rounded 

capacity inequalities are inspired to similar inequalities designed for the Capacitated VRP (see Toth and Vigo, 

2014) and are defined as:  

∑ ∑ 𝑝𝑝𝑟𝑟𝑘𝑘
𝐶𝐶 𝜉𝜉𝑟𝑟𝑘𝑘𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘

′𝑘𝑘∈𝐾𝐾 ≥ �
∑ 𝑞𝑞𝑗𝑗𝑗𝑗∈𝐶𝐶

𝑚𝑚𝑘𝑘
𝐾𝐾 �      ∀𝐶𝐶 ⊆ 𝑁𝑁𝑐𝑐.       (5-49) 

The separation problem for capacity constraint (5-49) is NP-complete (see Augerat et al. 1998). Augerat et al. 

(1998) and Ralphs et al. (2003) designed several separation heuristics for these constraints, and in our 

implementation, we used the heuristic, called the greedy randomized algorithm, proposed by Augerat et al. 

(1998) to separate inequalities (5-49). We refer he reader to Augerat et al. (1998) for the corresponding details. 

Constraints (5-49) are added to the RMP. The dual variable for Constraints (5-49) and a given set 𝐶𝐶  is 

defined as 𝜋𝜋𝐶𝐶3. In the PPk, 𝑝𝑝𝐶𝐶 defined as a binary decision variable, which is equal to one if the route of truck 

group that visits at least one customer in set 𝐶𝐶, and zero otherwise. The objective of pricing problem is revised 
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as the formula (5-50); and the variable 𝑝𝑝𝐶𝐶 related Constraints (5-51) and (5-52) are also added as follows. 

Minimize  𝜎𝜎𝑘𝑘 = 𝑐𝑐𝑟𝑟𝑘𝑘 − ∑ �∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

�𝑗𝑗∈𝑁𝑁𝑐𝑐 𝜋𝜋𝑗𝑗1 − ∑ 𝑝𝑝𝐶𝐶𝜋𝜋𝐶𝐶3𝐶𝐶⊆𝑁𝑁𝑐𝑐 − 𝜋𝜋𝑘𝑘2.   (5-50) 

𝑝𝑝𝐶𝐶 ≥ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

     ∀𝑗𝑗 ∈ 𝐶𝐶,𝐶𝐶 ⊆ 𝑁𝑁𝑐𝑐      (5-51) 

𝑝𝑝𝐶𝐶 ∈ {0,1}           ∀𝐶𝐶 ⊆ 𝑁𝑁𝑐𝑐.       (5-52) 

In addition, Jepsen et al. (2008) introduced subset-row inequalities in the VRPTW for the first time and 

proved that subset-row inequalities are valid for the set partitioning model. For any 𝐵𝐵 ⊆ 𝑁𝑁𝐶𝐶  and an integer 

𝑝𝑝 ∈ ℕ  such that  0 < 𝑝𝑝 ≤ |𝐵𝐵| , the valid inequalities obtained by the Chvatal-Gomory rounding of the 

partitioning constraints are as follows, also called Subset Rows Inequalities (SRI): 

∑ ∑ �1
𝑝𝑝
∑ �∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑖𝑖∈𝑁𝑁0 + ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0 �𝑗𝑗∈𝐵𝐵 �𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘

′ 𝜉𝜉𝑟𝑟𝑘𝑘𝑘𝑘∈𝐾𝐾 ≤ �|𝐵𝐵|
𝑝𝑝
� .       (5-53) 

In order to have a good tradeoff between the quality of the lower bound obtained by adding inequality (5-53) 

to the RMP and the complexity of the resulting pricing problem, we decided to use the subset row inequalities 

with |𝐵𝐵| = 4 and 𝑝𝑝 = 3, i.e.: 

∑ ∑ �1
3
∑ �∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟𝑘𝑘𝑖𝑖∈𝑁𝑁0 + ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖ℎ𝑟𝑟𝑘𝑘ℎ∈𝑁𝑁+𝑖𝑖∈𝑁𝑁0 �𝑗𝑗∈𝐵𝐵 �𝑟𝑟𝑘𝑘∈𝑅𝑅𝑘𝑘

′ 𝜉𝜉𝑟𝑟𝑘𝑘𝑘𝑘∈𝐾𝐾 ≤ 1.        (5-54) 

The inequalities (5-54) are separated by complete enumeration of the possible sets B. 

Constraints (5-54) are added to the RMP. The dual variable for constraint (5-54) is defined as 𝜋𝜋𝐵𝐵4. After 

adding the inequalities to the RMP, the objective function of the PPk is rewritten as follows:  

Minimize  𝜎𝜎𝑘𝑘 = 𝑐𝑐𝑟𝑟𝑘𝑘 − ∑ �∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

+ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+
(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹

𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

�𝑗𝑗∈𝑁𝑁𝑐𝑐 𝜋𝜋𝑗𝑗1 − 𝜋𝜋𝑘𝑘2 − ∑ 𝑝𝑝𝐶𝐶𝜋𝜋𝐶𝐶3𝐶𝐶⊆𝑁𝑁𝑐𝑐 −

∑ �1
3
∑ �∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁0

𝑖𝑖≠𝑗𝑗
+ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖ℎℎ∈𝑁𝑁+

(𝑖𝑖,𝑗𝑗,ℎ)∈𝐹𝐹
𝑖𝑖∈𝑁𝑁0
𝑖𝑖≠𝑗𝑗

�𝑗𝑗∈𝐵𝐵 �𝐵𝐵⊆𝑁𝑁𝑐𝑐: |𝐵𝐵|=4 𝜋𝜋𝐵𝐵4 .         (5-55) 

5.7 Solving the pricing problem  

PP is a new variant of Elementary Shortest Path Problem with Resource Constraints (ESPPRC). For solving 

the PP efficiently, this section proposes a novel algorithm, which is accelerated by using the dynamic 

programming and calculus approximation principle.  

5.7.1 Dynamic programming 

Dynamic programming can be used to solve the PP. As mentioned in Section 3, a solution for the problm can 

be broken down into a concatenation of 3-tuple of the form and 2-tuple of the form. Each 3-ruple of the form is 

a sequence of combined arcs of a drone, and each 2-tuple of the form is an arc of a truck. Let → connect to the 

truck routes and ⇢ connect to the drone routes. The solution illustrated in Figure 2 is the routes for two truck 

groups, which can be represented as ( [Depot → 2, Depot ⇢ 1 ⇢ 2], [2 → 4], [4 → 8,4 ⇢ 3 ⇢ 8], [8 →

10,8 ⇢ 9 ⇢ 10], [10 → 11], [11 → 12], [12 → 6,12 ⇢ 7 ⇢ 6], [6 → Depot, 6 ⇢ 5 ⇢ Depot] ), ( [Depot →
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14], [14 → 16,14 ⇢ 15 ⇢ 16], [16 → 17,16 ⇢ 18 ⇢ 17], [17 → 19], [19 → 22,19 ⇢ 23 ⇢ 22], [22 →

20], [20 → 13,22 ⇢ 21 ⇢ 13], [13 → Depot]). Each stage can be generated by first generating the 2-tuple of 

the form for trucks, and then adding the drone routes. The dynamic programming we describe in this section are 

based on the idea that a solution for the problem can be decomposed into a set of 3-tuple of the form and 2-tuple 

of the form. Therefore, a complete solution can be generated by sequentially adding a 3-tuple of the form or 2-

tuple of the form at a time to a partial solution. 

The PP starts from the source state ({𝑣𝑣0},𝑣𝑣0). The truck group travels from 𝑣𝑣0, visits all the nodes that meet 

the capacity constraints, and then ends at 𝑣𝑣0. The PP is to find the path with the smallest reduced cost in the 

above process. Let Stage 𝑚𝑚 be the |𝑚𝑚| sub-states that have been explored. Since there are multiple nodes in 

the sub-state, the end state 𝑚𝑚 is less than the total number of nodes. Let the maximum value of 𝑚𝑚 be 𝑍𝑍, 0 ≤

𝑚𝑚 ≤ 𝑍𝑍 ≤ 𝑛𝑛 + 1; 𝑚𝑚 = 0 represents the starting point, and 𝑚𝑚 = 𝑍𝑍 is the destination point. 

Given the set of partial 𝑃𝑃𝑃𝑃𝑘𝑘 solutions, we define the function for the value of the reduced cost at Stage 𝑚𝑚:  

𝑓𝑓𝑚𝑚(𝑗𝑗, 𝑑𝑑,𝑉𝑉𝑚𝑚+1)                   (5-56) 

where 𝑗𝑗 is the end node of the customer that the truck will serve, 𝑑𝑑 is the customer node that the drone will 

serve at this stage, and 𝑉𝑉𝑚𝑚+1 is the set of nodes that the truck or the drone may pass through from Stage 0 to 

Stage 𝑚𝑚. 

Let 𝑥𝑥𝑚𝑚 = (𝑖𝑖,𝑑𝑑′,𝑉𝑉𝑚𝑚) be the state of the stage from 0 to 𝑚𝑚, where 𝑖𝑖 represents the customer that the truck 

serves, 𝑑𝑑′ represents the customer that the drone serves, and 𝑉𝑉𝑚𝑚 is the set of all the nodes that the truck or the 

drone may pass through from node 0 to node 𝑖𝑖  and node 𝑑𝑑′ ; 𝑉𝑉𝑚𝑚  excludes node 𝑖𝑖  and 𝑑𝑑′ . 𝑉𝑉1 = ∅ , 𝑉𝑉𝑍𝑍 =

{0,1, … ,𝑛𝑛}, 𝑥𝑥1 = (0,0,∅). 

Proposition 2. The optimal path satisfying all the capacity constraints and the minimum reduced cost are 

obtained through the recursive equation. 

𝑓𝑓𝑚𝑚(𝑗𝑗,𝑑𝑑,𝑉𝑉𝑚𝑚+1) = �
∞,                                                                                      if 𝑗𝑗 ∉ 𝑆𝑆𝑚𝑚+1

𝑡𝑡0𝑗𝑗𝐾𝐾 𝑠𝑠𝐾𝐾 ,                                                                                    if 𝑆𝑆𝑚𝑚+1 = {𝑗𝑗}
min�𝐷𝐷𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗,𝑑𝑑) + 𝑓𝑓𝑚𝑚−1(𝑥𝑥𝑚𝑚)�,                                    otherwise

      (5-57) 

𝑓𝑓0(𝑥𝑥1) = 𝑓𝑓0(0,0,∅) = 0  

where 𝐷𝐷𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗,𝑑𝑑) is the reduced cost of the path where the truck starts from node 𝑖𝑖, ends at node 𝑗𝑗, and 

the drone services node 𝑑𝑑. 

𝐷𝐷𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗,𝑑𝑑) is related to the traveling time of the truck and which customer can be served by drone on the 

truck route. Thus, we determine the traveling time of the truck firstly, then look for customers that can be served 

by drone on the truck route, and obtain the reduce cost and sub-path of the sub-state. 

Proof: See Appendix 2. ∎ 

Algorithm 1: Determine the traveling time of the truck 

This algorithm computes the total time 𝑇𝑇(𝑃𝑃𝑣𝑣 ,𝑤𝑤)  of path 𝑃𝑃𝑣𝑣  as the sum of the travel time of the arcs 
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composing the path. 𝑇𝑇(𝑃𝑃𝑣𝑣 ,𝑤𝑤) is the time of a path starting at node 𝑣𝑣, visiting nodes in 𝑃𝑃𝑣𝑣 and ending at 𝑤𝑤. 

The path 𝑃𝑃𝑣𝑣 can be represented as (𝑣𝑣,𝑢𝑢1,𝑢𝑢2,⋯ ,𝑤𝑤). 

𝑇𝑇(𝑃𝑃𝑣𝑣 ,𝑤𝑤) = �
∞,                                                                                   if 𝑤𝑤 ∉ 𝑃𝑃𝑣𝑣   

𝑡𝑡𝑣𝑣𝑣𝑣𝐾𝐾 ,                                                                                    if 𝑃𝑃𝑣𝑣 = {𝑤𝑤}  
𝑇𝑇(𝑃𝑃𝑣𝑣 ∖ {𝑤𝑤},𝑢𝑢) +𝑡𝑡𝑢𝑢𝑢𝑢𝐾𝐾                                                    otherwise .

      (5-58) 

The details of Algorithm 1 are provided in Appendix 3.  

Algorithm 2: Compute the reduce cost 

Based on the truck paths calculated, drone paths are added into truck paths. In the sub-state, the optimization 

problem of the truck group starting from node 𝑣𝑣, serving node 𝑑𝑑 and ending at node 𝑤𝑤 can represent the 

shortest path problem, in which the truck starts from node 𝑣𝑣, ends at node 𝑤𝑤, and the drone serves node 𝑑𝑑, 

returns to the truck at node 𝑤𝑤. For the point where the drone takes off, it is denoted by ℎ, which is in the truck 

route that the truck group has traveled. The truck path is the shortest path starting from node 𝑣𝑣 and ending at 

node 𝑤𝑤. For the takeoff point ℎ of the drone, the constraints of the flying duration time of the drone and the 

non-crossing routes of the drone need to be satisfied. Among the set of possible takeoff points, we choose the 

takeoff point ℎ corresponding to the path with the smallest reduced cost. 

The reduced cost of a truck group in the sub-state is calculated according to Formula (5-59), where 𝑃𝑃𝑣𝑣 

represents a set of customers that the truck serves sequentially starting from node 𝑣𝑣, 𝑃𝑃𝑣𝑣 ⊂ 𝑁𝑁, 𝑤𝑤 ∈ 𝑃𝑃𝑣𝑣\{𝑣𝑣}. 

𝐷𝐷𝑜𝑜𝑜𝑜(𝑣𝑣,𝑤𝑤,𝑑𝑑) means the reduced cost of the path where the truck starts from node 𝑣𝑣, ends at node 𝑤𝑤, and the 

drone services node 𝑑𝑑. 

𝐷𝐷𝑜𝑜𝑜𝑜(𝑣𝑣,𝑤𝑤,𝑑𝑑) =

⎩
⎪
⎨

⎪
⎧∞,                                                                                                                                   𝑣𝑣 = 𝑤𝑤   
𝑡𝑡𝑣𝑣𝑣𝑣𝐾𝐾 𝑠𝑠𝐾𝐾 − 𝜋𝜋𝑤𝑤1                                                                                 (𝑣𝑣,𝑤𝑤,𝑑𝑑) ∉ 𝐹𝐹 and 𝑣𝑣 ≠ 𝑤𝑤

𝑚𝑚𝑚𝑚𝑚𝑚
ℎ∈𝑃𝑃0∖{𝑤𝑤}

�
�𝑚𝑚𝑚𝑚𝑚𝑚��𝑡𝑡ℎ𝑑𝑑𝐷𝐷 + 𝑡𝑡𝑑𝑑𝑑𝑑𝐷𝐷 � − 𝑇𝑇(𝑃𝑃ℎ\{𝑑𝑑},𝑤𝑤), 0��𝑠𝑠𝑤𝑤

+ 𝑇𝑇(𝑃𝑃𝑣𝑣\{𝑑𝑑},𝑤𝑤)𝑠𝑠𝐾𝐾 + 𝑠𝑠𝐷𝐷�𝑡𝑡ℎ𝑑𝑑𝐷𝐷 + 𝑡𝑡𝑑𝑑𝑑𝑑𝐷𝐷 �
� − 𝜋𝜋𝑤𝑤1 − 𝜋𝜋𝑑𝑑1    if(𝑣𝑣,𝑤𝑤,𝑑𝑑) ∈ 𝐹𝐹.

(5-59) 

Details of Algorithm 2 are provided in Appendix 4. According to all the descriptions above, the whole flow 

of dynamic programming (named by Algorithm 3) for solving the pricing problem is provided in Appendix 5. 

5.7.2 Accelerating the dynamic programming 

This subsection presents a novel method to accelerate the dynamic programming by using a lower bound, 

which is based on the principle of calculus approximation (Carlsson and Song, 2018). Before presenting this 

accelerating tactic, some required parameters are defined first as follows.  

𝛺𝛺𝑘𝑘 distribution area of the customers served in the PPk. 

𝛺𝛺𝐶𝐶 distribution area of the customers in the set 𝐶𝐶 of the RMP Constraints (5-49). 

𝛺𝛺𝐵𝐵 distribution area of the customers in the set 𝐵𝐵 of the RMP Constraints (5-54). 

𝑓𝑓(𝑥𝑥) continuous probability distribution of customer 𝑥𝑥 being served in the PPk. 

𝑙𝑙𝑘𝑘 truck route in 𝛺𝛺𝑘𝑘. 

Based on these parameters, Section 4.3, and Section 5.6, a formula is obtained to calculate the lower bound 
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of reduced cost. The formula is shown in the following proposition. 

Proposition 3. At stage 𝑚𝑚 of dynamic programming, some required parameters are defined as follows. 𝛺𝛺𝑘𝑘𝑘𝑘 

is he distribution area of the customers served in the PPk from stage 0 to stage 𝑚𝑚. 𝑙𝑙𝑘𝑘𝑚𝑚 is the truck route in 

𝛺𝛺𝑘𝑘𝑘𝑘. 𝑃𝑃𝑘𝑘𝑘𝑘 the set of the customers served in the PPk from stage 0 to stage 𝑚𝑚. Let 𝜎𝜎𝑘𝑘𝑚𝑚 be the reduced cost in 

the PPk from stage 0 to stage 𝑚𝑚. A lower bound of reduced cost in the PPk from stage 0 to stage 𝑚𝑚 shows that: 

𝐿𝐿𝐿𝐿𝜎𝜎𝑘𝑘𝑘𝑘 =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑙𝑙𝑘𝑘𝑘𝑘)∗�𝑠𝑠

𝐾𝐾

𝑣𝑣𝐷𝐷
+𝑠𝑠𝐷𝐷�

𝑣𝑣𝐾𝐾
+ 𝑠𝑠𝐺𝐺 − 𝜋𝜋𝑘𝑘2 − ∑ 𝜋𝜋𝑗𝑗1 − ∑ 𝜋𝜋𝐶𝐶3𝐶𝐶⊆𝑃𝑃𝑘𝑘𝑘𝑘𝑗𝑗∈𝑁𝑁𝑐𝑐 .        (5-60) 

Proof: See Appendix 6. ∎ 

We combine the dynamic programming with the principle of calculus approximation to solve the PPk 

efficiently. Let 𝑧𝑧𝑐𝑐  be the reduced cost from stage 0 to the current stage. Before performing the dynamic 

programming, we calculate the lower bound (𝐿𝐿𝐿𝐿) according to formula (5-60) for each stage 𝑚𝑚. If 𝐿𝐿𝐿𝐿 is less 

than 𝑧𝑧𝑐𝑐, the dynamic programming is performed and the reduced cost is 𝑓𝑓𝑚𝑚(𝑗𝑗,𝑑𝑑,𝑉𝑉𝑚𝑚+1) + 𝑠𝑠𝐺𝐺 − 𝜋𝜋𝑘𝑘2; otherwise, 

the next node is selected. After traversing all the nodes that satisfy the truck capacity constraint, the optimal 

solution of the PPk is obtained. The above new dynamic programming algorithm (named by Algorithm 4) with 

the acceleration based on the calculus approximation is elaborated in Appendix 7.  

5.8. A rounding heuristic 

To improve the value of the incumbent primal solution, we apply a rounding heuristic at the different nodes 

of the numeration tree. At a generic iteration of the column generation procedure, let 𝑝𝑝 be the current fractional 

solution of cost 𝑧𝑧𝑙𝑙𝑙𝑙(𝑝𝑝). Based on solution 𝑝𝑝, we apply the rounding heuristic to obtain integer solution. Besides 

fractional solution 𝑝𝑝 and cost 𝑧𝑧𝑙𝑙𝑙𝑙(𝑝𝑝), the input of the rounding heuristic also contains the assignment values 

of each customer to truck group, denoted by 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖. The output contains 𝑈𝑈𝑈𝑈, updated assignment 

value 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖, other decision variables’ values (𝛼𝛼𝑖𝑖𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖ℎ, 𝛾𝛾𝑖𝑖𝑖𝑖, 𝜇𝜇𝑖𝑖, 𝜏𝜏𝑖𝑖𝐾𝐾, 𝜏𝜏𝑖𝑖𝐷𝐷, 𝜌𝜌𝑖𝑖), and global optimal 

objective value 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. The core idea of the rounding heuristic is to assign customers to truck groups according 

to the priority related to the assignment value, i.e., 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖; the capacity of each truck group should 

also be taken into account during the above assignment decision. The detailed pseudo code of the rounding 

heuristic is presented in Appendix 8. 

6. Numerical experiments 

In this section, we present numerical experiments for evaluating the performance of the B&P&C algorithm. 

Experiments were performed on a workstation with two Xeon E5-2680 V4 CPUs (12 cores) running at 2.4 GHz 

with 256 GB of memory under Windows 10. The proposed model and algorithm were implemented in C# 

(VS2019) concert technology and CPLEX 12.6.1 was used as the MIP and LP solver. The time limit for all of 

the test instances was set to three hours (10,800 seconds).  
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6.1 Benchmark sets 

We generated instances to simulate a real truck and drone distribution scenario based on the set introduced in 

Poikonen et al. (2019), i.e., poi-10-1~ poi-10-10 and poi-15-1~ poi-15-10. We used the Manhattan distance to 

define the distance between any two nodes for a truck, as they are driven in a real traffic network, and the 

Euclidean distance to define that between any two nodes for a drone. If (𝑖𝑖, 𝑗𝑗) and (𝑖𝑖′, 𝑗𝑗′) are the coordinates 

of node 𝑖𝑖 and node 𝑗𝑗, the Manhattan distance between the two nodes is |𝑖𝑖 − 𝑖𝑖′| + |𝑗𝑗 − 𝑗𝑗′|, and the Euclidean 

distance between the two nodes is �(𝑖𝑖 − 𝑖𝑖′)2 + (𝑗𝑗 − 𝑗𝑗′)2. We assume that the speed of trucks is 30 km/h and 

the speed of drones is 48 km/h, and the parameters of 𝑚𝑚𝑘𝑘, 𝑚𝑚𝐷𝐷 and 𝑒𝑒𝑓𝑓 are set to 200 kg, 2.3 kg and 0.5 hours 

(based on Mayerowitz, 2013; Wang and Sheu, 2019), respectively. Customer demands are randomly generated 

in the interval (0, 50] kg. The gasoline price on September 9, 2021 was 6.93 CNY/L in Shanghai, and the average 

fuel consumption of a truck is 0.10 L/km, so 𝑠𝑠𝐾𝐾 is 20.79 CNY/h. We defined 𝑠𝑠𝐷𝐷 as 12.35 CNY/h, as the cost 

incurred by a drone is typically 0.19 CNY/km (Wang and Sheu, 2019). The fuel consumption of a truck for one 

minute of idling is one third of its normal traveling consumption, so the parameter 𝑠𝑠𝑊𝑊 is set to 6.93 CNY/h, 

and 𝑠𝑠𝐺𝐺   to 100 CNY per truck group. We considered two instance groups (ISGs) in the computational 

experiments, ISG1 and ISG2, as shown in Table 2. Ten instances were generated per group.  

Table 2 Instance groups 

Group ID Number of customers (|𝑵𝑵𝒄𝒄|) Number of truck groups (|𝑲𝑲|) 
ISG1 9 2 
ISG2 14 3 

6.2 Effectiveness of the valid inequalities 

We conducted experiments to evaluate the performance of the B&P&C algorithm using different 

combinations of valid inequalities or cuts. We first considered a variant in which the cuts are used only at the 

root node of the B&P&C. We evaluated the following cases: Constraints (5-49); (5-54); (5-49); and (5-54). The 

numerical results are shown in Table 3.  

Table 3 Effectiveness of the different cuts once used at the root node of the B&P&C 

Instances Solution and time for different combinations cuts Gap 
Scale ID 𝐹𝐹0 𝑡𝑡0(s) 𝐹𝐹1 𝑡𝑡1(s) 𝐹𝐹2 𝑡𝑡2(s) 𝐹𝐹3 𝑡𝑡3(s) ∆𝐹𝐹1  ∆𝑡𝑡1 ∆𝐹𝐹2  ∆𝑡𝑡2 ∆𝐹𝐹3 ∆𝑡𝑡3  

ISG1 

1 324 73 324 67 324 64 324 70 0.00% -8.96% 0.00% -12.33% 0.00% -4.11% 
2 331 131 331 143 331 119 331 122 0.00% 8.39% 0.00% -9.16% 0.00% -6.87% 
3 332 77 332 68 332 82 332 73 0.00% -13.24% 0.00% 6.49% 0.00% -5.19% 
4 312 63 312 63 312 61 312 58 0.00% 0.00% 0.00% -3.17% 0.00% -7.94% 
5 306 79 306 98 306 93 306 79 0.00% 19.39% 0.00% 17.72% 0.00% 0.00% 
6 343 55 343 38 343 43 343 53 0.00% -44.74% 0.00% -21.82% 0.00% -21.82% 
7 299 74 299 80 299 79 299 69 0.00% 7.50% 0.00% 6.76% 0.00% -6.76% 
8 290 78 290 71 290 86 290 75 0.00% -9.86% 0.00% 10.26% 0.00% -3.85% 
9 355 75 355 74 355 72 355 66 0.00% -1.35% 0.00% -4.00% 0.00% -12.00% 

10 305 89 305 73 305 102 305 89 0.00% -20.27% 0.00% 14.61% 0.00% -2.25% 

ISG2 
11 352 4225 352 3545 352 5152 352 3285 0.00% -16.09% 0.00% 21.94% 0.00% -22.25% 
12 355 3773 355 3999 355 4268 355 4037 0.00% 5.99% 0.00% 13.12% 0.00% 7.00% 
13 363 4189 363 3725 363 3920 363 3454 0.00% -11.08% 0.00% -6.42% 0.00% -17.55% 
14 347 4928 347 4941 347 5661 347 5444 0.00% 0.26% 0.00% 14.87% 0.00% 10.47% 
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15 329 4342 329 3803 329 3549 329 3358 0.00% -12.41% 0.00% -18.26% 0.00% -22.66% 
16 340 6687 340 6284 340 5658 340 6186 0.00% -6.03% 0.00% -15.39% 0.00% -7.49% 
17 356 6189 356 5619 356 7911 356 4439 0.00% -9.21% 0.00% 27.82% 0.00% -28.28% 
18 371 4357 371 4122 371 4085 371 4232 0.00% -5.39% 0.00% -6.24% 0.00% -2.87% 
19 348 9875 348 8112 348 9607 348 8678 0.00% -17.85% 0.00% -2.71% 0.00% -12.12% 
20 330 1256 330 1967 330 1257 330 363 0.00% 56.61% 0.00% 0.08% 0.00% -71.10% 

Average      0.00% -1.52% 0.00% 2.88% 0.00% -16.68% 
Notes: (1) 𝐹𝐹0, 𝐹𝐹1, 𝐹𝐹2, 𝐹𝐹3 is solution of the method without cuts in RMP of CG before BB, with Constraints (5-49) in RMP of CG 
before BB, with Constraints (5-54) in RMP of CG before BB, with both Constraints (5-49) and Constraints (5-54) in RMP of CG before 
BB, respectively. And 𝑡𝑡0, 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3 is computation time of the method without cuts in RMP of CG before BB, with Constraints (5-49) 
in RMP of CG before BB, with Constraints (5-54) in RMP of CG before BB, with both Constraints (5-49) and Constraints (5-54) in RMP 
of CG before BB, respectively. (2) ∆𝐹𝐹1= (𝐹𝐹1 − 𝐹𝐹0)/𝐹𝐹0 , ∆𝐹𝐹2= (𝐹𝐹2 − 𝐹𝐹0)/𝐹𝐹0 , ∆𝐹𝐹3= (𝐹𝐹3 − 𝐹𝐹0)/𝐹𝐹0 , ∆𝑡𝑡1= (𝑡𝑡1 − 𝑡𝑡0)/𝑡𝑡0 , ∆𝑡𝑡2= (𝑡𝑡2 −
𝑡𝑡0)/𝑡𝑡0, ∆𝑡𝑡3= (𝑡𝑡3 − 𝑡𝑡0)/𝑡𝑡0. 

Table 3 shows that the average values of ∆𝐹𝐹1, ∆𝐹𝐹2, and ∆𝐹𝐹3 are 0.00%, demonstrating that the optimal 

solution can be obtained by methods with different combinations of cuts. The average value of ∆𝑡𝑡2 is 2.88%, 

indicating that the solution is less efficient when adding subset-row inequalities in the RMP of CG before BB 

than that without cuts. However, the average values of ∆𝑡𝑡1 and ∆𝑡𝑡3 are -1.52% and -16.68%, respectively. 

∆𝑡𝑡1 and ∆𝑡𝑡3 are negative, and |∆𝑡𝑡3| is greater than |∆𝑡𝑡1|, which indicates the effectiveness of adding round 

capacity inequalities and subset-row inequalities at the root node. 

We then considered the addition of these Constraints during the enumeration. For the interest of space, the 

results are shown in Appendix 9. The results indicate that using cuts at the root node is more efficient than using 

cuts at all nodes, which suggests that Constraints (5-49) and Constraints (5-54) should be used at the root node 

only, and that the separation of cuts during the enumeration should be disabled. .  

We also investigate the effectiveness of the dynamic programming algorithm and of the calculus based 

approximation for solving PP. For the interest of space, the results are shown in Appendix 10, and indicate that 

both the dynamic programming and the principle of calculus based on dynamic programming can improve the 

efficiency of the PP solution. We therefore used the combination of dynamic programming and calculus-based 

approximation in the PP solving process. 

By summarizing the above experiments, we tuned a suitable combination of strategies for our proposed 

B&P&C algorithm by adding round capacity inequalities and subset-row inequalities to the RMP of CG before 

BB, by adding no cuts when branching RMP, and by using dynamic programming and the calculus-based LB 

updating method to solve PP. The above tuned B&P&C algorithm was then used in the following experiments 

and the sensitivity analysis. 

6.3 Evaluating performance of the B&P&C algorithm 

In this section, we conduct experiments to compare the solutions and computation time of solving the original 

MIP model using the CPLEX solver, the original MIP model using the proposed B&P&C algorithm, and the 

LBP model (see Section 4.3.1) using the CPLEX solver. The results of on group ISG1 instances are shown in 

Table 4. The table shows that the B&P&C algorithm obtain the optimal solution; but the computation time of 

the proposed B&P&C algorithm is longer than the CPLEX solver. Thus, CPLEX may be more proper for solving 

group ISG1 instances. 
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Table 4 Algorithm performance for group ISG1 instances 

Instances CPLEX LBP B&P&C 
Scale ID 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(s) ∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿 ∆𝐿𝐿𝐿𝐿𝐿𝐿 𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵  𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 ∆𝐵𝐵𝐵𝐵𝐵𝐵 ∆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

ISG1 

1 324 20 0.00% 252 22.22% 324 70 0.00% 250.00% 
2 331 19 0.00% 253 23.56% 331 122 0.00% 542.11% 
3 332 28 0.00% 238 28.31% 332 73 0.00% 160.71% 
4 312 25 0.00% 250 19.87% 312 58 0.00% 132.00% 
5 306 19 0.00% 229 25.16% 306 79 0.00% 315.79% 
6 343 70 0.00% 230 32.94% 343 53 0.00% -24.29% 
7 299 112 0.00% 253 15.38% 299 69 0.00% -38.39% 
8 290 56 0.00% 241 16.90% 290 75 0.00% 33.93% 
9 355 60 0.00% 257 27.61% 355 66 0.00% 10.00% 

10 305 58 0.00% 248 18.69% 305 89 0.00% 53.45% 
Average     23.07%   0.00% 143.53% 

Notes: (1) 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 denote the objective value of solving the original model by CPLEX, solving LBP model by CPLEX, 
and solving the original model B&P&C algorithm, respectively. And 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 denote the computation time of CPLEX and 
B&P&C algorithm to solve the original model, respectively. (3) ∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  is the gap when the optimal solution is obtained, or the 
maximum solution time is reached during the solving process of CPLEX. (4) ∆𝐿𝐿𝐿𝐿𝐿𝐿= (𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿)/𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . (5) ∆𝐵𝐵𝐵𝐵𝐵𝐵= (𝐹𝐹𝑈𝑈𝑈𝑈 −
𝐹𝐹𝐿𝐿𝐿𝐿)/𝐹𝐹𝐿𝐿𝐿𝐿 , here 𝐹𝐹𝐿𝐿𝐿𝐿  be the lower bound value and 𝐹𝐹𝑈𝑈𝑈𝑈  be the upper bound value of B&P&C algorithm. (6) ∆𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵= (𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 −
𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)/𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 

The data column ∆𝐿𝐿𝐿𝐿𝐿𝐿 in Table 4 also demonstrates the optimality gap of the LBP model, and indicates that 

the proposed lower bound (LB) is on average 23.07% below the optimal value. This result was used in further 

comparative experiments in group ISG2 instances. The results in Table 5 indicate that CPLEX cannot solve all 

of the instances to optimality within three hours. We can therefore simply use the LB to evaluate the solution 

quality of the B&P&C algorithm. 

Table 5 Algorithm performance for group ISG2 instances  

Instances CPLEX LBP B&P&C 
Scale ID 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(s) ∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿 ∆𝐿𝐿𝐿𝐿𝐿𝐿 𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵  𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 ∆𝐵𝐵𝐵𝐵𝐵𝐵 ∆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

ISG2 

1 352 >10800 16.46% 261 25.85% 352 3285 0.00% - 
2 355 >10800 14.37% 273 23.10% 355 4037 0.00% - 
3 363 >10800 13.15% 270 25.62% 363 3454 0.00% - 
4 347 >10800 12.64% 257 25.94% 347 5444 0.00% - 
5 329 >10800 13.89% 239 27.36% 329 3358 0.00% - 
6 340 >10800 18.34% 264 22.35% 340 6186 0.00% - 
7 356 >10800 18.54% 257 27.81% 356 4439 0.00% - 
8 371 >10800 20.91% 247 33.42% 371 4232 0.00% - 
9 348 >10800 14.96% 247 29.02% 348 8678 0.00% - 

10 330 >10800 10.77% 260 21.21% 330 363 0.00% - 
Average     26.17%   0.00% - 

Notes: (1) 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 denote the objective value of solving the original model by CPLEX, solving LBP model by 
CPLEX, and solving the original model B&P&C algorithm, respectively. (2) 𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 denote the computation time of CPLEX 
and B&P&C algorithm to solve the original model, respectively. (3) ∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the gap when the optimal solution is obtained, or the 
maximum solution time is reached during the solving process of CPLEX. (4) ∆𝐿𝐿𝐿𝐿𝐿𝐿= (𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿)/𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . (5) ∆𝐵𝐵𝐵𝐵𝐵𝐵= (𝐹𝐹𝑈𝑈𝑈𝑈 −
𝐹𝐹𝐿𝐿𝐿𝐿)/𝐹𝐹𝐿𝐿𝐿𝐿 , here 𝐹𝐹𝐿𝐿𝐿𝐿  be the lower bound value and 𝐹𝐹𝑈𝑈𝑈𝑈  be the upper bound value of B&P&C algorithm. (6) ∆𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵= (𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 −
𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)/𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

CPLEX cannot obtain a result within 3 hours for group ISG2 instances, but the B&P&C algorithm can solve 

them in about 9,000 seconds. This validates the solution quality and the efficiency of the proposed B&P&C 

algorithm. The data column ∆𝐿𝐿𝐿𝐿𝐿𝐿  in Table 5 indicates that the average gap for solutions provided by the 

B&P&C algorithm from the LBs is 26.17%. Recall that the average LB gap from the optimal results is about 

23.07%, which is estimated from the experiments in the group ISG1 instances. These generally consistent results 

demonstrate the good performance of the B&P&C algorithm. Table 5 also indicates that the average value of 
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∆𝐵𝐵𝐵𝐵𝐵𝐵 is 0.00%, which validates the optimality of the solution provided by the B&P&C algorithm. 

Besides the above numerical experiments for validating the efficiency of the algorithm, this study also 

presents various sensitivity analyses conducted on selected instances to provide managerial implications. Due 

to the limitation of space, the details are listed in Appendix 11. 

7. Conclusions 

This paper studies a variant of VRP for a novel cooperative delivery mode based on trucks and drones. An 

MIP model is formulated for the problem and a B&P&C based exact solution method is designed to solve the 

proposed model to optimality. Numerical experiments are also conducted to validate the effectiveness and 

efficiency of the proposed solution method. The main contributions of this study are outlined as follows. 

(1) From modeling perspective, the proposed model considers many practical factors, such as one-on-one 

collaboration between trucks and drones, truck road network, the truck can serve multiple customers, the flying 

duration of a drone is affected by demands of customers, the non-customer nodes for drones’ 

launching/returning/charging are needless, and etc. An MIP model is established for the complex and practical 

problem context. 

(2) From algorithmic perspective, a B&P&C based exact solution method algorithm is designed. For 

accelerating the solving process, we embed some tailored tactics such as a dynamic programming with the 

calculus approximation based LB updating for solving the PP, round capacity inequalities and subset-row 

inequalities for solving the RMP, and some heuristics for updating the UB in the branch-and-bound procedure. 

The experimental results show that the PP solving strategy combining dynamic programming and calculus 

approximation can accelerate the solving speed by 97.69%.  

The increasing interest in the various applications of drones offers several potential and challenging future 

research directions, in terms of risk evaluation, number of drone batteries for replacement, batteries’ charging 

on trucks, and uncertainty in delivery (Macrina et al., 2020). In addition, more fast and practical algorithms may 

also be needed for this problem as well as some further extended problems, which may be more concerned by 

practitioners. All of the above could be the future research directions. 

Funding 

This research is supported by the National Natural Science Foundation of China (Grant numbers 72025103, 

71831008, 72071173). 

Notes on contributors 

Lu Zhen is a Professor and Dean at School of Management, Shanghai University, Shanghai, China. His research 

interests include operations management and optimization; mixed-integer linear programming and algorithms; 

port operations and maritime transportation; urban logistics and supply chain management. He has served as an 



 27 

associate editor or an editorial board member of five journals such as Transportation Research Part B, Journal 

of the Operational Research Society, Computers & Operations Research; and he is also the Fellow of the 

Operational Research Society (U.K.). He has been awarded the National Funds for Distinguished Young 

Scientists, for Outstanding Young Scientists in China, the Changjiang Young Scholar in China, and etc. 

 

Jiajing Gao is a Ph.D. student at School of Management, Shanghai University, Shanghai, China. Her research 

interests include vehicle routing problem’s variants. She has published six papers on SCI international journals. 

 

Zheyi Tan is a Research Engineer at School of Management, Shanghai University, Shanghai, China. His 

research interests include warehouse operations management and optimization, vehicle routing problem’s 

variants. He has published 17 papers on SCI international journals such as European Journal of Operational 

Research, INFORMS Journal on Applied Analytics. 

 

Shuaian Wang is a Professor at Faculty of Business, The Hong Kong Polytechnic University, Hong Kong, 

China. His research interests include big data in shipping, green shipping, shipping operations management, 

port planning and operations, urban transport network modeling, and logistics and supply chain management. 

He is an editor-in-chief of Cleaner Logistics and Supply Chain and Communications in Transportation Research, 

an associate editor of Transportation Research Part E, Flexible Services and Manufacturing Journal, 

Transportmetrica A, and Transportation Letters, a handle editor of Transportation Research Record, an editorial 

board editor of Transportation Research Part B, and an editorial board member of Maritime Transport Research. 

 

Roberto Baldacci is an Associate Professor at the College of Science and Engineering, Hamad Bin Khalifa 

University, Doha, Qatar. His research interests include transportation planning, logistics and distribution, and 

the solution of vehicle routing and scheduling problems over street networks. He is on the editorial board of 

Operations Research, and he has published more than 50 papers in reputable journals such as Mathematical 

Programming, Operations Research, Transportation Science, and INFORMS Journal on Computing. 

 

References 

Agatz, N., Bouman, P., and Schmidt, M. (2018) Optimization approaches for the traveling salesman problem 

with drone. Transportation Science 52(4), 965-981. 

Augerat, P., Belenguer, J. M., Benavent, E., Corberán, A., and Naddef, D. 1998. Separating capacity constraints 

in the CVRP using tabu search. European Journal of Operational Research 106(2–3), 546–557. 

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. and Vance, P. H. (1998), Branchand-price: 

Column generation for solving huge integer programs, Operations Research 46(3), 316–329. 



 28 

Bouman, P., Agatz, N., and Schmidt, M. (2018) Dynamic programming approaches for the traveling salesman 

problem with drone. Networks 72(4), 528-542. 

Carlsson, J. G., and Song, S. (2018) Coordinated logistics with a truck and a drone. Management Science 64(9), 

4052-4069. 

de Freitas, J. C., and Vaz Penna, P. H. (2020) A variable neighborhood search for flying sidekick traveling 

salesman problem. International Transactions in Operational Research 27(1), 267-290. 

Desaulniers, G. (2010), Branch-and-price-and-cut for the split-delivery vehicle routing problem with time 

windows, Operations Research 58(1), 179–192. 

El-Adle, A. M., Ghoniem, A., and Haouari, M. (2019) Parcel delivery by vehicle and drone. Journal of the 

Operational Research Society 72(2), 1-19. 

Ferrandez, S. M., Harbison, T., Weber, T., Sturges, R., and Rich, R. (2016) Optimization of a truck-drone in 

tandem delivery network using k-means and genetic algorithm. Journal of Industrial Engineering and 

Management 9(2), 374-388. 

Ha, Q. M., Deville, Y., Pham, Q. D., and Ha, M. H. (2018) On the min-cost traveling salesman problem with 

drone. Transportation Research Part C-Emerging Technologies 86, 597-621. 

Ha, Q. M., Deville, Y., Pham, Q. D., and Ha, M. H. (2020) A hybrid genetic algorithm for the traveling salesman 

problem with drone. Journal of Heuristics 26(2), 219-247. 

Ham, A. M. (2018) Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-

pickup, and m-visit using constraint programming. Transportation Research Part C-Emerging 

Technologies 91, 1-14. 

Jeong, H. Y., Song, B. D., and Lee, S. (2019) Truck-drone hybrid delivery routing: payload-energy dependency 

and no-fly zones. International Journal of Production Economics 214, 220-233.  

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008) Subset-row inequalities applied to the 

vehicle-routing problem with time windows. Operations Research 56(2), 497-511. 

Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J. M. A., and Brunese, P. A. (2019) 

Multiple traveling salesman problem with drones: mathematical model and heuristic approach. Computers 

& Industrial Engineering 129, 14-30. 

Laporte, G. (1992) The vehicle routing problem: an overview of exact and approximate algorithms. European 

Journal of Operational Research 59(3), 345-358.  

Laporte, G. (2000) Classical and modern heuristics for the vehicle routing problem. International Transactions 

in Operational Research 7(4-5), 285-300.  

Li, Y., Fang, X., and Chen, W. (2019) A novel scheduling algorithm to improve SUPT for multi-queue multi-

server system. Wireless Networks 25(8), 5173-5185. 



 29 

Lübbecke, M. E. and Desrosiers, J. (2005), Selected topics in column generation, Operations Research 53(6), 

1007–1023. 

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., Laporte, G. (2020) Drone-aided routing: A literature review, 

Transportation Research Part C: Emerging Technologies 120, 102762.  

Mayerowitz S. (2013) Amazon.com Sees Delivery Drone as Future. https://phys.org/news/2013-12-amazon-

unveils-futuristic-mini-drone-delivery.html. 

Moshref-Javadi, M., Hemmati, A., and Winkenbach, M. (2020) A truck and drones model for last-mile delivery: 

a mathematical model and heuristic approach. Applied Mathematical Modelling 80, 290-318. 

Murray, C. C., and Chu, A. G. (2015) The flying sidekick traveling salesman problem: optimization of drone-

assisted parcel delivery. Transportation Research Part C-Emerging Technologies 54, 86-109. 

Murray, C. C., and Raj, R. (2020) The multiple flying sidekicks traveling salesman problem: Parcel delivery 

with multiple drones. Transportation Research Part C-Emerging Technologies 110, 368-398. 

Omagari, H., and Higashino, S.-I. (2018) Provisional-Ideal-Point-Based multi-objective optimization method 

for drone delivery problem. International Journal of Aeronautical and Space Sciences 19(1), 262-277. 

Poikonen, S., and Golden, B. (2020) Multi-visit drone routing problem. Computers & Operations Research 113, 

104802. 

Poikonen, S., Golden, B., and Wasil, E. A. (2019) A Branch-and-Bound approach to the traveling salesman 

problem with a drone. INFORMS Journal on Computing 31(2), 335-346. 

Poikonen, S., Wang, X., and Golden, B. (2017) The vehicle routing problem with drones: extended models and 

connections. Networks 70(1), 34-43. 

Ralphs, T. K., Kopman, L., Pulleyblank, W. R., and Trotter, L. E. (2003). On the capacitated vehicle routing 

problem. Mathematical Programming 94(2-3), 343-359. 

Roberti, R., Ruthmair, M. (2021). Exact Methods for the Traveling Salesman Problem with Drone. 

Transportation Science 55, 315–335.  

Sacramento, D., Pisinger, D., and Ropke, S. (2019) An adaptive large neighborhood search metaheuristic for 

the vehicle routing problem with drones. Transportation Research Part C-Emerging Technologies 102, 

289-315. 

Sirdey, R., and Kerivin, H. L. M. (2007) A branch-and-cut algorithm for a resource-constrained scheduling 

problem. RAIRO-Operations Research 41(3), 235-251. 

Toth, P., and Vigo, D. (2014) Vehicle Routing: Problems, Methods, and Applications (SIAM). 

Wang, B., and Tian, R. (2019) Study on fluctuation feature and breakdown characteristic of water film on the 

wall of corrugated plate. International Journal of Heat and Mass Transfer 143, 118501. 

Wang, D., Hu, P., Du, J., Zhou, P., Deng, T., and Hu, M. (2019) Routing and scheduling for hybrid truck-drone 



 30 

collaborative parcel delivery with independent and truck-carried drones. IEEE Internet of Things Journal 

6(6), 10483-10495. 

Wang, K., Yuan, B., Zhao, M., and Lu, Y. (2020) Cooperative route planning for the drone and truck in delivery 

services: a bi-objective optimisation approach. Journal of the Operational Research Society 71(10), 1657-

1674. 

Wang, X., Poikonen, S., and Golden, B. (2017) The vehicle routing problem with drones: several worst-case 

results. Optimization Letters 11(4), 679-697. 

Wang, Z., and Sheu, J.-B. (2019) Vehicle routing problem with drones. Transportation Research Part B-

Methodological 122, 350-364. 

Yi, W., and Sutrisna, M. (2021) Drone scheduling for construction site surveillance. Computer-Aided Civil and 

Infrastructure Engineering 36(1), 3-13. 

Yurek, E. E., and Ozmutlu, H. C. (2018) A decomposition-based iterative optimization algorithm for traveling 

salesman problem with drone. Transportation Research Part C-Emerging Technologies 91, 249-262. 

Zhen, L., Wang, K., Wang, S., and Qu, X. (2018) Tug scheduling for hinterland barge transport: a branch-and-

price approach. European Journal of Operational Research 265(1), 119-132. 


	Branch-Price-and-Cut for Trucks and Drones Cooperative Delivery
	Lu Zhen 1, Jiajing Gao 1, Zheyi Tan 1, Shuaian Wang 2*, Roberto Baldacci 3
	1 School of Management, Shanghai University, Shanghai, China
	2 Faculty of Business, The Hong Kong Polytechnic University, Kowloon, Hong Kong
	3 College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
	1. Introduction
	Figure 1 Delivery route schemes of trucks and drones
	2.1 Single truck and single drone
	2.2 Single truck and multiple drones
	2.3 Multiple truck and multiple drones
	3. Problem description
	Figure 2 An example with two truck groups and 23 customers
	4. Mathematical formulation
	4.1. Notation
	Indices and sets:
	Parameters:
	Decision variables:
	4.2. An MIP model
	4.3. Computing lower bounds
	4.3.1 Lower bound LBP
	4.3.2 A lower bound based on continuous approximation
	5. B&P&C based solution method
	5.1 Set-covering based model for the problem
	5.2 Restricted master problem (RMP)
	5.3 Pricing problem (PP)
	5.4 Generation of the initial solution
	5.5 Branching and node selection strategy
	5.6 Strengthening the lower bound value
	5.7 Solving the pricing problem
	5.7.1 Dynamic programming
	5.7.2 Accelerating the dynamic programming
	5.8. A rounding heuristic
	6.1 Benchmark sets
	6.2 Effectiveness of the valid inequalities
	6.3 Evaluating performance of the B&P&C algorithm
	7. Conclusions
	Funding
	Notes on contributors
	References



