
1

A Rapid Method for Impact Analysis of Grid-edge
Technologies on Power Distribution Networks
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Abstract—This paper presents a novel rapid estimation method
(REM) to perform stochastic impact analysis of grid-edge
technologies (GETs) to the power distribution networks. The
evolution of network states’ probability density functions (PDFs)
in terms of GET penetration levels are characterized by the
Fokker-Planck equation (FPE). The FPE is numerically solved
to compute the PDFs of network states, and a calibration process
is also proposed such that the accuracy of the REM is maintained
for large-scale distribution networks. The approach is illustrated
on a large-scale realistic distribution network using a modified
version of the IEEE 8500 feeder, where electric vehicles (EVs) or
photovoltaic systems (PVs) are installed at various penetration
rates. It is demonstrated from quantitative analyses that the
results from our proposed approach have negligible errors
comparing with those obtained from Monte Carlo simulations.

Index Terms—Grid-edge, electric vehicles, power distribution
networks, stochastic analysis, Fokker-Planck equation, probabil-
ity density function, Monte Carlo

I. INTRODUCTION

GRID-edge technologies (GETs), e.g., plug-in electric
vehicles (EVs), rooftop photovoltaic systems (PVs),

demand response (DR) programs, etc., are being installed
at customers’ sites (edges of the grid) from which they
are connected to the power distribution networks. With the
on-going energy transition, the number of GETs is rapidly
growing. It becomes critical to assess their influence on the
distribution network in order to maintain system reliability and
power quality, and to avoid service interruptions. As changes
to customers’ power demands (load offset) due to the use of
GETs are behind-the-meter and are stochastic in terms of cus-
tomers’ usage behaviors, it is difficult to evaluate their impacts
especially at high penetration rates. For example, EV charging
may introduce undesired impacts to power networks such
as overloading of key equipment, severe voltage variations,
phase unbalancing, harmonic distortions, etc. [1], [2]. Various
uncertain factors such as charging locations of EVs, charging
time and duration, charging power, and battery capacities, must
be properly modeled to perform an impact analysis to evaluate
the network states with different penetration levels of EVs
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installed. The analysis should be extended to other GETs than
EVs, and combined impacts should be studied when multiple
types of GETs are installed to the same power network.

In the literature, deterministic methods have been proposed
to study the impacts of EVs [3]–[6] and PVs [7]–[9], and their
combined impacts [10] to the power distribution networks.
These methods normally evaluate network states by generating
typical or worst-case scenarios from the parameters with
uncertainties, e.g., power flow analysis is usually used to study
the impacts in each scenario. While these deterministic simu-
lation models are easier to implement, uncertainty is often ig-
nored when looking at selected scenarios. Analysis results may
be consequently inaccurate and cannot provide meaningful
insights for power system plannings. It is important to model
the uncertainty in the input variables such as the locations
and the charging/generation profiles of EVs/PVs, etc., and use
stochastic approaches to compute the network states and their
associated probability density functions (PDFs).

Such stochastic approaches can be categorized into nu-
merical, analytical, and approximation approaches. Due to
the simplicity in the implementation, several Monte Carlo
simulation-based studies have been performed in the context
of GET integration. Monte Carlo simulations can provide
accurate results to complicated and/or non-linear systems with
many random variables involved. For example, in [11], impacts
of voltage drops and loading conditions of lines due to EV
charging are studied, and in [12], network losses, voltage
variations and transformer loadings are studied at various
penetration levels of EVs. In [13], [14], the harmonic impacts
due to EV charging are analyzed, where not only locations
of EVs and charging patterns are randomized, but also the
operating states of the residential household loads. Finally,
impacts of multiple technologies including EVs and PVs to
the distribution network in terms of abnormal voltages and
transformer loading levels are studied in [15].

While the Monte Carlo simulation approach is a straight-
forward numerical method for the stochastic analysis and can
provide accurate results if all uncertain variables are covered,
it has a very slow rate of convergence. The construction of a
large number of samples is time-consuming, and performing
a power flow analysis to each sample is computationally
expensive. Analytical approaches are, therefore, an alternative
to derive PDFs of output variables from PDFs of input
variables, such as in probabilistic power flow analysis. For
example, the PDF of an output random variable can be com-
puted from the convolution of input random variables which
are independent. However, the convolution operation requires
extensive computation, even with the discrete Fourier trans-
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form (DFT) applied to reduce the computational burden [16].
Approximation methods for probabilistic power flow analysis
are developed to improve the computational efficiency [17]–
[23]. In [17], PDFs of power flows in transmission lines are
approximated in terms of cumulants, which are an alternative
set of quantitative measures to moments related to the shape
of PDFs with the computational time significantly reduced.
Another approximation method is the point estimation method
which approximates the PDF of an output variable from its first
and second moments as in [18]. In recent years, polynomial
chaos expansion (PCE)-based methods have shown promising
results in quantifying uncertainties in power systems; however,
limitations still exist which make them less applicable to
stochastic analysis of large-scale distribution systems. For
example, it suffers from the “curse of dimensionality” [19]
when the number of random input variables is large. Hence, the
computation for the polynomial coefficients of the surrogate
model is challenging even if the expansion degree is limited
to 2 [20]. Also, separate approaches are required to accompany
the PCE method such as using the Copula theory in [21],
[22] when random variables are correlated and certain con-
straints are to be considered, and using the Stieltjes procedure
to construct the orthogonal basis for PCE such as in [23]
when random variables have arbitrary probability distributions.
Although such advancements have been made to characterize
uncertainties in power systems, a common drawback of the
analytical and approximated methods in the literature is that
the models are developed for a fixed penetration rate. To
consider multiple penetration rates of GETs, models will have
to be recomputed, which is inefficient.

To bridge the gap, our objective is to develop a model
which can characterize the evolution of network state PDFs
in terms of the uncertainties of GETs while the penetration
rate is taken as a parameter. Such a model can be derived
from the Fokker-Planck Equation (FPE). In [24], an advection
equation which is a simplified FPE is used to describe the
evolution of temperature PDFs for a group of thermostatically
controlled loads (TCLs). In [25], the FPE is modeled and is
solved to describe the probability of power network stability
over time under perturbations.

In this paper, we propose a rapid estimation method (de-
noted as REM hereinafter) based on FPE to perform a stochas-
tic analysis on the impact of EVs and PVs to power distribu-
tion networks. The REM approach provides a rapid sweep
of the network states at a wide range of penetration levels.
It also indicates concentrated areas where GETs are installed
on the network, and network sections susceptible to abnor-
mal conditions, e.g., equipment overloading and under/over-
voltages, at any given penetration level. Results from the REM
can also identify the maximum penetration level possible that
can be hosted by each network section for the network to
operate securely. Conversely, the REM approach permits to
determine the penetration level at which network expansion
and/or mitigation actions are required.

The rest of the paper is organized as follows: in Section
II the REM approach to perform a stochastic impact analysis
based on FPE is presented. The solution to the FPE model
characterizes the evolution of equipment loading levels and

voltage levels on the network with the GET penetration rate.
In Section III, a numerical method to solve the FPE model is
introduced, and a calibration method to improve the accuracy
of the solution is proposed. Section IV demonstrates the
performance of the REM by evaluating the impacts of EVs
on the modified IEEE-8500 test feeder. Finally the conclusion
is made in Section V along with some future work directions
pointed out.

II. STOCHASTIC IMPACT ANALYSIS MODEL

In this section, the REM model for the stochastic impact
analysis of EVs/PVs is proposed.

A. Assumptions

We assume that the following information is provided. This
information can often be obtained from statistical surveys or
socio-economic analysis [26]–[28].

• Quantity probability Prinum,k(n) which specifies the prob-
abilities of any customer i = 1, 2, · · · of having n =
0, 1, · · · GET k devices where k ∈ {EV, PV}.

• A set of load offset profiles Lk for GET k, Lk =
{ljk(t), j = 1, 2, · · · }, where ljk(t) is an EV charging or a
PV generation profile, both at time t. The diversity of Lk

characterizes different usage patterns of EVs and PVs.
• Adoption probability PriL,k(j), j = 1, 2, · · · . for cus-

tomer i to adopt a load offset profile j in Lk.
Based on the given data, the REM approach is formulated

in the next section which provides PDFs of network states
(equipment loading level and node/bus voltage level) at any
penetration level of EVs and PVs without performing repeti-
tive power flow analysis to the network.

In some work such as [29], the penetration rate is defined
as the ratio of the number of GET devices in service to the
total number of GET devices on the network. This definition
is not applicable to our analysis because we do not know the
total number of GET devices on the network. However, we do
know the total number of customers/meters on the network.
Hence in this paper, the penetration rate is defined as the
ratio of the number of GET devices to the total number of
customers/meters on the distribution network.

Definition 2.1 (Penetration rate): The penetration rate pk
for GET k is defined as

pk ≜
Tk

Nm
=

nk + n0
k

Nm
, (1)

where Nm is the total number of customers/meters on the
network, Tk is the number of GET k devices, n0

k is the number
of GET k devices already existing on the network, and nk is
the number of devices that are required to add in order to
reach pk. The initial penetration rate of GET k of the network
is therefore p0k = n0

k/Nm. Note that the definition is somewhat
similar to that adopted in [30], but we extend it to consider
the case in which some GET k devices may already exist
on the network (i.e., p0k > 0). When simultaneous impacts
of multiple GET types are studied, a separate penetration rate
should be defined for each GET type. By this definition, pk can
exceed 100%, which indicates that on average each customer
has more than one device of GET type k.
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For simplicity, when referring to one GET type, the sub-
script k in the penetration rate is dropped from hereinafter,
unless stated otherwise.

B. Stochastic model

Let x ∈ R denote a network state of interests, whether the
loading level of a network equipment or the voltage level of
a network node/bus. The following general model is proposed
here to describe the network state when GET k devices are
installed to the network with respect to p:

dx = u(x, p)dp+ σ(x, p)dWp, (2)

where Wp is a Wiener process indexed by p. The term u(x, p)
is the drift velocity of the network state under the influence
of EVs/PVs, and σ(x, p) > 0 denotes the magnitude of the
additive disturbances.

Due to the presence of the Wiener process, the trajectory
x(p) does not have an analytical form, but given an initial
network state x(p0), one can generate a single trajectory by
numerical integration of (2) [31]. To study the stochastic
behavior, one can further generate a large set of trajectories
and construct a histogram of x at each p to approximate the
PDF of x at p, denoted as m(x, p). This approach is similar to
Monte Carlo which is computationally heavy. Therefore, we
derive a method that can directly describe the propagation of
m(x, p) with the penetration rate. To obtain such a method,
the Fokker-Planck equation [32] can be used:

∂m(x, p)

∂p
+

∂

∂x

{
m(x, p)u(x, p)

}
=

∂2

∂x2

{
m(x, p)d(x, p)

}
,

(3)
subject to m0 = m(x, p0). Here, d(x, p) = σ(x, p)2/2 is
the diffusion velocity. It can be generally assumed that the
magnitude of additive disturbances to the network states due to
GETs is much smaller than the magnitude of the drift velocity,
i.e., σ(x, p) ≪ |u(x, p)|. Hence, we assume that the diffusion
velocity is a small constant, i.e., d(x, p) ≜ d,∀x, p. We can
then rewrite (3) as

∂m(x, p)

∂p
+

∂

∂x
{m(x, p)u(x, p)} = d

∂2m(x, p)

∂x2
. (4)

To solve (4) for the propagation of m(x, p), the drift term
u(x, p) must first be computed. The term depends on what
network state x is describing, either the loading level of a
device/equipment or the voltage level of a bus/node. In the
following sections, we describe how u(x, p) can be computed
based on the stochastic data of customer’s quantity probability
Prinum,k(n), load offset profiles Lk, and customer’s adoption
probability PriL,k(j).

C. Drift velocity of loading level

Let m(x, p) refer to the PDF of equipment loading level x
at penetration rate p. For equipment on distribution networks,
the loading level is computed by-phase, hence we denote
x = zϕe,k(p) as the loading level of equipment e on phase
ϕ ∈ {A,B,C} when devices of GET k are to be added to
the network. The drift velocity, therefore, is the derivative of

zϕe,k(p) with respect to p. Let zϕe (p
0) be the initial loading

level of e without installing additional GET k devices other
than those already existing on the network (which represent
the penetration rate p0). The value of zϕe (p

0) can be obtained
from the power flow solution of the network. For a given
technology k, let gϕe,k(p) denote the change of loading level on
phase ϕ with respect to p. We can express zϕe,k(p) as devices of
GET k are installed in the network by the following equation.

zϕe,k(p) = zϕe (p
0) + gϕe,k(p). (5)

The term gϕe,k(p) can be expressed as:

gϕe,k(p) = sgn(k)
nk(p) Pr

ϕ
e,k(p)E[S

ϕ
e,k] + E[∆Sϕ

e,loss(p)]

Sϕ
e

.

(6)
Here, sgn(k) is a sign function where sgn(k) = 1 if GET
k consumes active power and sgn(k) = −1 otherwise,
nk(p) = Nmp − n0

k by (1), Prϕe,k(p) is the probability that
GET k devices are installed to sections downstream of e on
the desired phase ϕ, E[Sϕ

e,k] ∈ R is the expected apparent load
offset (in kVA) of one GET k device installed downstream
of e and on phase ϕ, E[∆Sϕ

e,loss(p)] ∈ R is the expected
change of network losses (in kVA) of all sections downstream
of e on ϕ from adding GET k devices, and Sϕ

e ∈ R is the
rated power (in kVA) of e on ϕ which is assumed given.
For certain equipment whose Sϕ

e is expressed in A (e.g.,
overhead lines or switches), their Sϕ

e can be converted into
kVA by multiplying the nominal voltage. The first term in
(6)’s numerator can be interpreted as the expected apparent
power contributed by GET k devices. We simplify (6) by
assuming E[∆Sϕ

e,loss(p)] ≪ nk(p) Pr
ϕ
e,k(p)E[S

ϕ
e,k]. To see this,

let E[Iϕe,k] ∈ R and E[Iϕl,k] ∈ R be the expected currents
contributed by GET k flowing through e and through each
section l downstream of e on ϕ, respectively, E[V ϕ

e,k] ∈ R
be the expected voltage of e on ϕ, and E[δV ϕ

l,k] ∈ R be the
expected voltage drop on section l. Hence, we have

nk(p) Pr
ϕ
e,k(p)E[S

ϕ
e,k] = E[V ϕ

e,k]E[I
ϕ
e,k] (7)

E[∆Sϕ
e,loss(p)] =

∑
l
E[Iϕl,k]E[δV

ϕ
l,k]

≤
∑

l
E[Iϕl,k]δV

= δV
∑

l
E[Iϕl,k]

(8)

where δV is an upper bound of the voltage drops for all
sections. Given that in general δV ≪ E[V ϕ

e,k] and
∑

l E[I
ϕ
l,k] ≈

E[Iϕe,k] if phase angles of currents are similar, we can establish
E[∆Sϕ

e,loss(p)] ≪ nk(p) Pr
ϕ
e,k(p)E[S

ϕ
e,k] by (7) and (8). Hence

gϕe,k can be approximated by,

gϕe,k(p) ≈ sgn(k)
nk(p) Pr

ϕ
e,k(p)E[S

ϕ
e,k]

Sϕ
e

. (9)

By (5), we have d/dp
(
zϕe,k(p)

)
= d/dp

(
gϕe,k(p)

)
. To

obtain an analytical form of d/dp
(
gϕe,k(p)

)
, Prϕe,k(p) and

E[Sϕ
e,k] need to be computed.
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1) Computation of Prϕe,k(p): To derive an analytical form
for Prϕe,k(p), we first denote K as the set of all customers,
and let Kϕ

e = {i ∈ K | i is downstream of e and on phase ϕ}
be the set of customers who are downstream of equipment e
on phase ϕ. Suppose for now that ni

k, the number of GET k
devices allocated to customer i at any p, is proportional to
their expected number of GET devices, which is E[ni

k] =∑
n=0,1,... nPrinum,k(n). We have,

ni
k(p) =

{
nk(p)E[ni

k]/
∑

i∈K E[ni
k], if p < pik,

ni
k, if p ≥ pik.

(10)

Here, ni
k is the maximum number of devices that i is allowed

to add, i.e., ni
k = argmaxn{Pr

i
num,k(n) > 0}, and pik is the

penetration rate at which ni
k devices would have been added

to i. Given that such pik may differ from one customer to
another, for a given p, some customer, say i, may already have
hit the upper bound (p > pik) while another customer j still
has room to add more devices (p ≤ pjk). In such a case, the
total number of devices actually added to the network (denoted
as ñk) will be less than the desired nk.

Let ∆nk(p) = nk(p)−ñk(p) be the gap between the desired
nk and the actual ñk at p, and K>p,k = {i ∈ K|p < pik} be
the set of customers who still have room to add more devices.
Then for each i ∈ K>p,k, we can compute the available room
to add more GET k devices, which is ∆i

k = ni
k − ni

k > 0.
To bridge the gap of ∆nk, each customer in K>p,k should
receive some additional number of devices to ni

k in (10). Such
an additional number ni,+

k for i ∈ K>p,k is computed by,

ni,+
k (p) = ∆nk(p)

∆i
k∑

i∈K>p,k
∆i

k

.

The computed ni,+
k for a customer i never exceeds their

available room ∆i
k because ∆nk ≤

∑
i∈K>p,k

∆i
k. Note that

for i /∈ K>p,k, ni,+
k = 0.

Hence, the number of devices added to customer i can be
modified from (10) by the following equation,

ni
k(p) =

{
ni,old
k (p) + ni,+

k (p), if p < pik,

ni
k, otherwise,

(11)

where ni,old
k (p) is computed by (10).

The probability Prϕe,k(p) can then be expressed as the ratio
of the total numbers of devices that can be installed to all
customers in Kϕ

e over those in K:

Prϕe,k(p) =

∑
i∈Kϕ

e
ni
k(p)∑

i∈K ni
k(p)

. (12)

2) Calculation of E[Sϕ
e,k]: Recall that E[Sϕ

e,k] is the ex-
pected load offset of one GET k device for all customers in
Kϕ

e . Let sik(t) ∈ C be the complex load offset value at time
t for 1 GET k device added to i. Based on Lk and PriL,k(j),
one can compute the expected value of sik(t).

E[sik(t)] =
∑
j

ljk(t) Pr
i
L,k(j). (13)

To calculate E[Sϕ
e,k], one can sum up E[sik(t)] for all customers

in Kϕ
e and then divided by the number of customers in Kϕ

e .
Specifically,

E[Sϕ
e,k] =

1

|Kϕ
e |

∣∣∣∣∣∣
∑
i∈Kϕ

e

E[sik(t)]

∣∣∣∣∣∣ , (14)

where |Kϕ
e | is the cardinality of Kϕ

e . Note that in (14), the
magnitude is taken to the summation since E[sik(t)] may be a
complex value.

D. Drift velocity of voltage level

As GET devices are added to the distribution network,
voltage levels will be affected. For example, undervoltage
conditions are likely to happen to areas with a high penetra-
tion rate of EVs, whereas overvoltage conditions may occur
where high penetration levels of distributed energy resources
(e.g. PVs) are installed on the network. In this section, the
computation of the drift velocity u(x, p) is outlined, where
m(x, p) is the PDF of voltage level x at various penetration
rate p. Unless specified otherwise, all complex variables in
this section refer to per-unit values.

We first consider a simple case where one GET k device
is installed to a customer. We can then compute the current
injected by such GET k device, ∆i, by the following equation,
from which the change of voltage of this customer can be
approximated,

∆i =
∆v

zth
≈
(
∆S

v

)∗

, (15)

where v ∈ C is the customer’s voltage before installing the
GET device, zth ∈ C is the equivalent network impedance
at the customer’s location, ∆S ∈ C is the complex power
of the GET device, and ∆v ∈ C is the change of voltage
after installing the GET device. The ∗ denotes the complex
conjugate.

It should be noted that ∆v in (15) is an approximated value
for the following two reasons:

1) The equivalent impedance zth is assumed to be computed
from a linearized network. In reality, the distribution net-
work is not fully linear (due to load/generation models,
tap changers and voltage-controlled devices, etc.).

2) Even if the network is fully linear, the current injected
by the GET device is non-linear since it depends on the
voltage (v + ∆v) after the GET device is connected.
However, on (15)’s right-hand side, the voltage v before
adding GET devices is used, thus any voltage difference
is neglected.

Model (15) can be extended to simultaneously installing
multiple GET devices to multiple customers in a matrix form,

∆v(p) = Z∆i(p)

=
[
∆vϕo,k(p), o = 1, 2, · · · , N, ϕ = A,B,C

]⊤ (16)

where ∆v ∈ C3N is the voltage change of all N nodes of
the network, and ∆i ∈ C3N is the vector of currents injected
to each node due to the GET devices installed. It is assumed
that each node is three-phase, and for a non-connected phase,
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the voltage and current injection are zero. The matrix Z ∈
C3N×3N is the sensitivity impedance of voltage with respect
to current injection, which can be computed from the modified
augmented nodal analysis (MANA) formulation [33], [34].

When multiple GET devices are connected to a node o, the
current injected to o on phase ϕ, which is a single element of
∆i, can be computed using:

∆iϕo,k(p) ≈ nk(p) Pr
ϕ
o,k(p)

(
E[Sϕ

o,k]

vϕo (p0)

)∗

, (17)

where Prϕo,k(p) is the probability of a GET k device directly
installed to o on phase ϕ, E[Sϕ

o,k] is the expected load offset
of a GET k device directly connected to o on ϕ, and vϕo (p

0)
is the initial phase voltage of node o on phase ϕ which can
be obtained from a power flow analysis.

To derive the analytical forms of Prϕo,k(p) and E[Sϕ
o,k], let

Kϕ
o = {i ∈ K|i is connected to o and on phase ϕ} be the set

of customers who are directly connected to node o and on
phase ϕ. Then Prϕo,k(p) can be computed in a similar way as
in (12), such that,

Prϕo,k(p) =

∑
i∈Kϕ

o
ni
k(p)∑

i∈K ni
k(p)

,

where ni
k(p) is given by (11). Recall that K is the set of all

customers on the network. The expected load offset E[Sϕ
o,k]

can be obtained from (14) where Kϕ
e is replaced by Kϕ

o .
Having computed the current injection to each node on each

phase from (17), we can construct the column vector ∆i(p)
by,

∆i(p) =
[
∆iϕo,k(p), o = 1, 2, · · · , N, ϕ = A,B,C

]⊤
.

Using the resulting ∆i(p) in (16), we can obtain the column
vector ∆v(p) which has the voltage changes to all nodes on
all phases. The voltage of node o on phase ϕ can be written
as,

vϕo,k(p) ≜ vϕo (p
0) + ∆vϕo,k(p).

As x refers to the voltage level and vϕo,k(p) is the per-unit
voltage in phasor, we let x = |vϕo,k(p)|, and the drift velocity
of x can be analytically computed by taking the derivative
of |vϕo,k(p)| with respect to p. Due to space limitation, the
resulting long expression for the derivative is omitted, but it is
straightforward to obtain it using the chain rule and algebraic
operations with all the components of vϕo,k(p) expressed in this
section.

III. NUMERICAL SOLUTION

A. Numerical solution to the FPE

Let the solution to the FPE be M = {m(x, p)}p∈P which
is a sequence of PDFs for each p in a discretized set of
penetration rates P = {p0, p0 + ∆p, p0 + 2∆p, · · · , pmax}
with a step size ∆p. The conservation law is to be satisfied
such that the cumulative probability of each PDF must sum
up to 1. For advection-diffusion partial differential equations
such as the Fokker-Planck equation under the conservation

law, finite-volume method (FVM) [35], [36] is a suitable class
of numerical methods to solve them. Using an implicit scheme,
we can write the following generalized equation:

m(x, p) = f (m(x, p+∆p), u(x, p+∆p)) , (18)

where the mapping f : Rnx 7→ Rnx depends on the selected
discretization scheme and nx is the number of discretized
points of x. For some schemes such as backwards Euler or
Crank–Nicolson, the mapping f is linear such that it can be
represented by a matrix Su ∈ Rnx×nx which depends on
u(x, p+∆p). Hence, (18) can be written as:

m(x, p) = Sum(x, p+∆p).

By taking the inverse of Su, we can compute m(x, p +∆p)
given m(x, p) by the following equation:

m(x, p+∆p) = S−1
u m(x, p).

Due to space limitation, the form of the Su matrix is not
expressed in this paper, but the readers can refer to [35], [36]
for more details. It is remarked that Su is tridiagonal, where
its diagonal elements are always non-zero, and lower/upper-
diagonal elements on each row are also non-zero and differ
from any diagonal element. Hence, for any given row of Su,
it must be linearly independent of any other row. Therefore,
Su has always full rank and is non-singular.

B. Calibration of m(x, p)

Due to the approximations made in (9) and (17), the drift
velocity term u(x, p) computed in Section II-C for equipment
loading levels and in Section II-D for voltage levels may
become less accurate when (i) the penetration rate is high
enough such that magnitudes of voltage drop/rise caused by
GET devices are non-negligible, and (ii) transformers with
load-tap changers, voltage regulators and Volt/VAR devices
are active on the network causing non-linearity to voltages
and network loadings. Under these situations, the obtained
sequence of m(x, p) by numerically solving the FPE may not
accurately reflect the evolution of network states as a function
of the penetration rate. To improve the accuracy, a calibration
process is proposed.

Based on (11) and (13), we can compute the expected
number of GET k devices ni

k(p) that should be added to
customer i at penetration p and the expected offset of one
GET k device E[sik(t)] at the time of analysis t. We can then
compute an aggregated offset value of ni

k(p)E[sik(t)] which
is to be added to each customer i in the network model.
A power flow analysis will be performed to the modified
network to extract the “true” mean network state x̃(p). In the
ideal case, such x̃(p) should be identical to the mean value
E[x(p)] which is computed from E[x(p)] =

∫ +∞
−∞ xm(x, p)dx.

If E[x(p)] ̸= x̃(p), then m(x, p) should by calibrated to
m(x + ∆x, p) where ∆x(p) ≜ x̃(p) − E[x(p)] is the shift
value at p.

To maintain the computation efficiency, the power flow
analysis of the network with aggregated offset values added
to customers is not done for all p ∈ P . Rather, the power
flow is only performed at a few selected penetration rates,
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and the calibration is interpolated for all penetration rates. The
process is as follow. Suppose that Ppf is the set of selected
penetration rates for power flow analyses, then we construct
D = {∆x(p) = x̃(p) − E[x(p)]}p∈Ppf which are differences
between the mean E[x(p)] from the REM and the power flow
mean values x̃(p) at these penetration rates. Then for any
p ∈ P , we compute ∆x(p) by,

∆x(p) =
p− p−
p+ − p−

[∆x(p+)−∆x(p−)] + ∆x(p−),

where p− ≜ max{Ppf ∩ [p0, p]} is the greatest element in Ppf

that is less than or equal to p, p+ ≜ min{Ppf ∩ [p, pmax]}
is the least element in Ppf that is greater than or equal to p,
and ∆x(p−),∆x(p+) ∈ D. The calibrated PDF m(x̃, p) =
m(x+∆x(p), p) is reported as the REM results. The number
of power flow analyses required by the calibration process is
independent of the number of network sections for analysis but
only corresponds to the number of penetration rates included in
Ppf, which is a much smaller set than P . Thus, the calibration
process adds negligible computation efforts to the REM.

It is remarked that this calibration step is optional. It does
not produce any PDF, but rather it “shifts” the mean values of
the PDFs computed numerically from the FPE. For large-scale
distribution networks such as the IEEE-8500 test feeder used
in the next section, voltage control (e.g., regulators) and VAR
control (e.g., switchable shunt capacitors) devices are usually
installed. Without the calibration step, the PDFs obtained by
solving the FPE while neglecting impacts of these Volt/VAR
devices may result in observable errors even at low penetration
rates, and become much less accurate as the penetration rate
increases. On the other hand, the calibration step can be
skipped without impacts on the accuracy for small networks
or networks without Volt/VAR control devices.

C. Combined impact of multiple GETs

In the sections above, we present the methodology to
study the impact of one GET type (EV or PV) installed
to the network at various penetration rates. Throughout this
section, the subscript k in the notation is conserved for clarity.
Recall that Mk = {m(x, pk)}pk∈Pk

is the sequence of PDFs
computed and calibrated from the REM for each pk ∈ Pk

when only GET type k exists on the network. In the following,
we explain how the model can be extended to the analysis of
networks where multiple GET types exist.

We start with the case in which two GET types k1 and
k2 are installed to the network. We first compute Mk1|k2

=
{m(x, pk1

)|pk2
}pk1

∈Pk1
when the penetration rate of GET

type k2 is fixed at pk2
as a parameter. To do so, the numerical

FVM in Section III-A is first used to solve for m(x, pk1)|pk2

from the FPE under the drift velocity of u(x, pk1)|pk2 . By
assuming the impacts of GET types k1 and k2 are independent,
we have u(x, pk1

)|pk2
= u(x, pk1

) + u(x, pk2
) by superposi-

tion. If necessary, the method in Section III-B is then applied to
calibrate the resulting m(x, pk1)|pk2 . We repeat this process to
construct Mk1,k2 = {Mk1|k2

}pk2
∈Pk2

which is a sequence of
Mk1|k2

for each pk2
∈ Pk2

. Each element of Mk1,k2
represents

the network state PDF under the combined impacts of GET
types k1 and k2 with penetrations pk1

and pk2
, respectively.

For combined impacts of more than two GET types, the
same process is adopted to compute Mk1,k2,···, where se-
quences of PDFs are solved and calibrated by varying the
penetration rate of one GET type at a time.

IV. TEST RESULTS

In this section, results from the stochastic impact analysis
are illustrated on a test feeder.

A. Test setup

The IEEE-8500 test feeder [37] is selected to demonstrate
REM’s ability to conduct a rapid stochastic impact analysis.
The following modifications to the network are made:

• The network contains 1177 spot loads and a total of 4205
customers, where some spot loads contain more than
1 customer (the original IEEE-8500 network assumes
each spot load models 1 customer).

• The substation transformer is changed to Wye-wye con-
figuration such that its loading on each phase can be more
easily seen.

To assess impacts of EVs and PVs on the network, we
assume that the following information are given.

• 4 levels of EV charging power are considered (1.8kW,
3.6kW, 6.6kW, 7.2kW). Charging may start at any hour
during the day and can last 2, 4, or 8 hours. Hence the
set LEV contains 288 charging profiles, where each profile
ljEV(t) is time-series data over a 24-hour period.

• 4 levels of PV nominal generation capacity are considered
(1.6kW, 2.4kW, 3.6kW, 4kW). We consider 8 solar radi-
ance profiles under different weather types [38], hence
we have a total of 32 PV generation profiles in LPV.

• Each customer is assumed to have at most 1 EV.1

Quantity probability Prinum,EV(1) for customer i =
1, 2, . . . , 4205 is randomly generated from the uniform
distribution U [0, 1], and Prinum,EV(0) = 1 − Prinum,EV(1).
The probability PriL,EV(j) for adopting charging profile
j ∈ [1, 288] is also randomly generated from U [0, 1], and
PriL,EV is normalized such that

∑
j Pr

i
L,EV(j) = 1.

• Each customer is assumed to have at most 1 PV.1 Quantity
probability Prinum,PV(1) for customer i = 1, 2, . . . , 4205
is randomly generated from U [0, 1], and Prinum,PV(0) =
1−Prinum,PV(1). To consider the correlation between the
weather and the generation profiles, we first randomly
generate the probabilities of the 8 solar radiance profiles
from U [0, 1], denoted as Prsolar. Then for each customer i
we generate the probabilities of PV generation capacity
from U [0, 1], denoted as PriPVgen. Then, we let PriL,PV =

Prsolar ×PriPVgen. Finally, PriL,PV is normalized such that∑
j Pr

i
L,PV(j) = 1.

The information assumed above can be obtained from socio-
economic or statistical studies. Taking EV as an example,
in [26], [28] the adoption rate of electric vehicles in terms
of different demographic and socio-economic characteristics

1 The REM approach is not restricted to this assumption. Rather, this
assumption is made to reduce the amount of the probability data required
and, hence, simplifies the simulation.



7

(such as education levels, age group, household income, etc.)
are studied. The results can be used to quantify the customer’s
quantity probabilities. Probability distributions of EV charging
start time, state-of-charge (SOC), and EV travel information
(mileage and duration per trip) are collected in [11], [12], and
can be used to generate EV charging profiles along with the
adoption probability. Although there may exist much more
possible profiles from the statistical studies, in this paper
we use a smaller set of representative EV charging and PV
generation profiles (288 and 32, respectively) for illustration
purpose. As increasing the number of profiles only affects the
calculations of the expected value in (13) and (14), it has
negligible impacts on the efficiency of the REM. Thus, the
number of profiles is not limited in the REM approach, nor
does it affect its efficiency.

The modified network is modeled in the CYME software
which is also used to perform power flow analysis. The
numerical solution and the calibration process of the REM
analysis are implemented in Python.

B. Result validation

For validation of accuracy, a Monte Carlo simulation-based
approach is also developed, where samples are constructed by
randomly sampling from the same data set as given above.
Although such a Monte Carlo simulation-based approach is
slow in convergence rate and requires extensive computation
for power flow analysis, the obtained results can be considered
accurate once convergence is reached. Stochastic analysis
results based on power flow solutions, i.e., the empirical
distributions of loading levels of equipment and voltage levels
of network sections, serve as benchmarks for the REM and is
used to evaluate its performance.

C. Test results – EV

The analysis time is set to 8:00PM when peak load usually
occurs, and 2000 samples are constructed for Monte Carlo
simulations.

1) Loading level at selected penetration levels: Figure 1
illustrates the loading levels of the substation transformer when
EVs are installed to the modified IEEE-8500 network at 3
penetration rates (10%, 30%, 50%). Because the power flow
solution to a Monte Carlo sample is likely to diverge if the
penetration rate is too high, completing the Monte Carlo sim-
ulations of 2000 samples with feasible power flow solutions
takes too long. For this reason, the maximum penetration
rate of 50% is chosen for Monte Carlo simulations. However,
no limitation to the maximum penetration rate exists for our
REM approach (i.e., see Section IV-C3 and Figure 3 below).
Results from the REM with and without calibrations at these
penetration rates are compared with empirical distributions
from Monte Carlo simulations. It should be noted that the y-
axis represents the probability density and the total area under
each curve sums up to 1.

2) Voltage level at selected penetration levels: Figure 2
illustrates the probability distributions of the voltage level (in
percentage) of a section called “M1125994”. This section is
4.8 km from the substation and 1.2 km from a downstream
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Fig. 1. Comparison of probabilities of the substation transformer loading
levels at various EV penetration rates, REM results (blue) vs. calibrated REM
results (green dashed) vs. Monte Carlo (orange)

voltage regulator. Due to its long distance from the substation,
this section is expected to suffer from undervoltage when EV
penetration is high. While, the substation voltage is regulated
at 1.05 p.u., Figure 2 confirms that this section has a small
probability of having undervoltage issues at 50% EV penetra-
tion if the lower voltage limit is set at 0.95 p.u.
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Fig. 2. Comparison of probabilities of voltage levels the M1125994 section at
various EV penetration rates, REM results (blue) vs. calibrated REM results
(orange dashed) vs. Monte Carlo (green)

3) Network state estimation across a wide range of pen-
etration rates: The REM provides a rapid estimation of
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network states (minimum, average, maximum levels) across
a wide range of penetration rates, based on the computed
PDFs. It also enables fast assessment for probabilities of
abnormal conditions on the network (overloading, under/over-
voltages) as the penetration rate increases. For example, Figure
3 shows the average, minimum, and maximum loading levels
as well as overloading probabilities of a main line section
near the substation of the IEEE-8500 network up to 100% EV
penetration rate. Here, we take the mean value of the calibrated
PDF at each p as the average loading level, and minimum
and maximum loading levels are ± 2× standard deviation
from the mean value, respectively. This type of results can
provide insightful information on what penetration level can
be supported by the network before severe abnormalities occur.
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Fig. 3. Loading levels (top) and overloading probabilities (bottom) of a line
section vs. penetration rates of EVs added to the IEEE-8500 network

4) Network locations susceptible to abnormal conditions:
In the last experiment related to EVs, we select a total of
183 network sections on which the initial equipment loading
level is greater than 50% or the initial voltage level is less
than 0.965 p.u. before any EV is installed to the network.
These sections are likely to have equipment overloading or
undervoltage issues as EVs are installed to the network. The
impact analysis is performed to these sections to estimate
network states and probabilities of abnormal conditions at
different EV penetration rates. Figure 4 visualizes the locations
of the network sections with the calculated probabilities of
abnormal conditions at 50% EV penetration rate. Here, we
create Overloading probability and Undervoltage probability
keywords in CYME to highlight the locations according
to the computed overloading and undervoltage probabilities,
respectively. Almost all selected network equipment have
some probability of overloading. The line sections near the
substation have an overloading probability close to 50%, which
is consistent with the results of Figure 3. The undervoltage
issue is less severe on the network mainly due to the presence
of voltage regulators (indicated by the green droplets). Only
some sections that are far from the substation and upstream
of a voltage regulator show some probability of undervoltage,
and this is where the section M1125994 is located.

 

Fig. 4. IEEE-8500 network sections susceptible to equipment overloading
and undervoltage issues at 50% EV penetration rate

D. Test results – PV

The analysis time is set to 11:00AM when the solar ir-
radiance starts to reach the peak. While customers can have
diversified EV charging profiles, the PV generation profiles are
correlated with the weather type, thus the analysis should be
performed conditional on each weather type. Then weighted
average results based on probabilities of all weather types are
computed. Here, we present only the results when considering
PV generation profiles during sunny days to avoid running
Monte Carlo simulations for other weather types. In Monte
Carlo simulations, 2000 samples are constructed.

1) Loading level at selected penetration levels: Figure 5
illustrates the loading levels of the substation transformer
when PV are installed to the network at 3 penetration rates
(10%, 30%, 50%). Similar to the EV case, 50% penetration
is selected for comparison purpose. Results from the REM
with and without calibrations are compared with empirical
distributions from Monte Carlo simulations.

2) Voltage level at selected penetration levels: Figure 6
illustrates the probability distributions of the voltage level (in
percentage) of the M1125994 section when PVs are installed.
Although no overvoltage (by taking 1.05 p.u. as the upper
voltage limit) occurs to this section due to its distance from the
substation, it is observed that REM well captures the trend of
increasing voltage levels with the PV penetration. Therefore,
overvoltage would possibly occur as the penetration continues
to increase, and calibrated results from the REM approach
would accurately indicate the probabilities.

3) Network locations susceptible to overvoltage: In this
experiment, we select a total of 114 locations whose voltage
level is greater than 1.04 p.u. before any PV is installed to
the network. When setting the upper voltage limit to 1.05 p.u.,
more than half of these locations have overvoltage probabilities
at 50% PV penetration. The calibrated probability values from
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Fig. 5. Comparison of probabilities of the substation transformer loading
levels at various PV penetration rates, REM results (blue) vs. calibrated REM
results (green dashed) vs. Monte Carlo (orange)
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Fig. 6. Comparison of probabilities of voltage levels of the M1125994 section
at various PV penetration rates, REM results (blue) vs. calibrated REM results
(orange dashed) vs. Monte Carlo (green)

REM are used to create the Overvoltage probability keyword
in CYME to highlight network sections in Figure 7. It is
observed that sections near the substation have close to 100%
probability of overvoltage, while some sections immediately
downstream of voltage regulators also have overvoltage issues
with different probabilities.

E. Discussion of results

1) Impacts of EV: As the EV penetration level increases,
more power demand is expected on the network due to EV

 Fig. 7. IEEE-8500 network sections susceptible to overvoltage issues at 50%
PV penetration rate

charging. This will increase the loading level of the substation
transformer, and more voltage drops will be incurred on each
network section. These can be confirmed from observations of
Figure 1 and 2: empirical distributions of the substation trans-
former loading levels constructed from Monte Carlo simula-
tions shift towards the heavier loading side, and distributions
of the voltage level shift towards the lower voltage side. The
same dynamics are also observable from the PDFs computed
and calibrated from the REM approach. In addition, as the
level of uncertainties increases with the penetration rate, so
does the dispersion of the distributions which is well captured
by both Monte Carlo and our method.

Tables I and II provide quantitative comparisons of the
mean and standard deviation values for the substation trans-
former loading levels using the two methods at various EV
penerations. Here, the standard deviation is the square root
of the variance. For the Monte Carlo method, the variance
is empirically computed from the result set of all Monte
Carlo samples constructed. For the REM, let m(x, p) and
m(x̃, p) be the non-calibrated and calibrated PDFs, respec-
tively. Hence, we have σ2 =

∫∞
−∞(x − E[x])2m(x, p)dx and

σ̃2 =
∫∞
−∞(x̃ − E[x̃])2m(x̃, p)dx̃ for the variance of m(x, p)

and m(x̃, p), respectively. From the calibration process, we
have x̃ = x+∆x, hence σ2 = σ̃2 and the standard deviation
values with and without calibration are identical. For this
reason, only one cell is used for the standard deviation (Std) of
REM PDFs at each penetration rate in Tables II, IV, VI, and
VIII. From Table I, the calibration step significantly reduces
the errors of the mean values, i.e., from 4.32% to less than
0.5% at 50% penetration rate. From Table II, the Std errors
are negligible, and the increasing values reflect higher levels
of uncertainties with the penetrations.

Tables III and IV list the mean and standard deviation values
of voltage levels of the section M1125994 at various EV
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penetrations. The mean values from both methods are almost
identical without the calibration step, and the calibration step
further reduces the errors. The standard deviation values are
also observed to increase with the penetration rates, which
captures the higher levels of uncertainties.

TABLE I
MEAN VALUES OF SUBSTATION TRANSFORMER LOADING LEVELS AT

VARIOUS EV PENETRATION RATES

Substation transformer loading levels (Mean)

Penetration Monte Carlo
(p.u.)

Non-calibrated (p.u.)
and relative error

Calibrated (p.u.)
and relative error

10% 0.396 0.389 -1.97% 0.397 0.08%
30% 0.432 0.419 -3.06% 0.432 -0.08%
50% 0.467 0.447 -4.32% 0.465 -0.45%

TABLE II
STANDARD DEVIATIONS OF SUBSTATION TRANSFORMER LOADING

LEVELS AT VARIOUS EV PENETRATION RATES

Substation transformer loading levels (Std)

Penetration Monte Carlo
(p.u.)

Calibrated/non-calibrated (p.u.)
and error (p.u.)

10% 1.31× 10−2 1.06× 10−2 -2.5×10−3

30% 1.80× 10−2 1.42× 10−2 -3.8×10−3

50% 2.13× 10−2 2.13× 10−2 2.5×10−5

TABLE III
MEAN VALUES OF VOLTAGE LEVELS ON THE M1125994 SECTION AT

VARIOUS EV PENETRATION RATES

Voltage levels (Mean)

Penetration Monte Carlo
(p.u.)

Non-calibrated (p.u.)
and relative error

Calibrated (p.u.)
and relative error

10% 0.9860 0.9881 0.21% 0.9866 0.06%
30% 0.9764 0.9821 0.59% 0.9790 0.26%
50% 0.9679 0.9774 0.98% 0.9714 0.35%

TABLE IV
STANDARD DEVIATIONS OF VOLTAGE LEVELS ON THE M1125994

SECTION AT VARIOUS EV PENETRATION RATES

Voltage levels (Std)

Penetration Monte Carlo
(p.u.)

Calibrated/non-calibrated (p.u.)
and error (p.u.)

10% 3.26× 10−3 2.76× 10−3 -4.96×10−4

30% 6.76× 10−3 5.92× 10−3 -8.32×10−4

50% 1.18× 10−2 8.69× 10−3 -3.11×10−3

2) Impacts of PV: It is generally expected that PVs have
opposite impacts on the network to those by EVs, such that
network equipment’s loadings should decrease, and voltage
rise usually happens on network sections as PV penetration
increases. From Figures 5 and 6, it is observed that empirical
distributions of the substation transformer loading levels shift
towards the lighter loading side, while distributions of the
voltage levels of the M1125994 section shift towards the
higher voltage side. The PDFs computed and calibrated from
our REM approach show similar dynamics.

Tables V and VI provide quantitative comparisons of the
mean and standard deviation values using the two methods.
As in the EV case, the calibration step reduces errors of the
mean values, and errors of the standard deviation values are
negligible.

TABLE V
MEAN VALUES OF SUBSTATION TRANSFORMER LOADING LEVELS AT

VARIOUS PV PENETRATION RATES

Substation transformer loading levels (Mean)

Penetration Monte Carlo
(p.u.)

Non-calibrated (p.u.)
and relative error

Calibrated (p.u.)
and relative error

10% 0.381 0.388 1.85% 0.381 -0.10%
30% 0.311 0.327 4.94% 0.306 -1.82%
50% 0.252 0.265 5.13% 0.248 -1.35%

TABLE VI
STANDARD DEVIATIONS OF SUBSTATION TRANSFORMER LOADING

LEVELS AT VARIOUS PV PENETRATION RATES

Substation transformer loading levels (Std)

Penetration Monte Carlo
(p.u.)

Calibrated/non-calibrated (p.u.)
and error (p.u.)

10% 5.82× 10−3 5.19× 10−3 -6.33×10−4

30% 8.31× 10−3 8.65× 10−3 3.48×10−4

50% 8.70× 10−3 1.04× 10−2 1.68×10−3

Tables VII and VIII list the mean and standard deviation
values of voltage levels on the M1125994 section at various
PV penetrations. The mean values from Monte Carlo and the
REM have a relative difference of 1.85% in the worst case
without the calibration step, and the calibration step further
reduces the relative errors to below 0.35%.

TABLE VII
MEAN VALUES OF VOLTAGE LEVELS ON THE M1125994 SECTION AT

VARIOUS PV PENETRATION RATES

Voltage levels (Mean)

Penetration Monte Carlo
(p.u.)

Non-calibrated (p.u.)
and relative error

Calibrated (p.u.)
and relative error

10% 0.9881 0.9920 0.40% 0.9876 -0.05%
30% 1.0026 1.0083 0.57% 1.0060 0.34%
50% 1.0096 1.0282 1.85% 1.0092 -0.03%

TABLE VIII
STANDARD DEVIATIONS OF VOLTAGE LEVELS ON THE M1125994

SECTION AT VARIOUS PV PENETRATION RATES

Voltage levels (Std)

Penetration Monte Carlo
(p.u.)

Calibrated/non-calibrated (p.u.)
and error (p.u.)

10% 1.85× 10−3 1.21× 10−3 6.39×10−4

30% 2.87× 10−3 1.81× 10−3 -1.06×10−3

50% 2.32× 10−2 2.41× 10−3 9.49×10−5

3) Quantile-Quantile plots: Besides comparing the mean
and standard deviation values, we use Quantile-Quantile (Q-Q)
plots to compare the calibrated PDFs from the REM against
the empirical distributions from Monte Carlo simulations in
Figure 8. Given that the latter are considered as the benchmark,
we use them on the x-axis as the theoretical distribution and
quantiles of the calibrated PDFs are plotted on the y-axis [39].
It is observed that in most plots the points in the center region
mainly lie on a 45◦ straight line, indicating that the mean
values of the calibrated PDFs from the REM well match those
from Monte Carlo simulations. Some skewness and deviations
from the straight line at both ends can also be observed. This
could be due to the use of a constant diffusion velocity value
in the FPE, which results in errors at the tail regions of the
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PDFs. Diffusion velocity’s dependency on the penetration rate
and on the network model can be studied in future work.
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Fig. 8. Q-Q plots to compare quantiles of distributions from Monte Carlo
simulations and calibrated PDFs obtained from the REM

4) Computation speed: All the experiments are performed
on a workstation equipped with Intel Core i7-11800H @
2.30GHz CPU and 16GB RAM. Table IX lists the computation
time for experiments in Section IV-C when EVs are installed
to the network. In Table IX, the time spent on numerically
solving the FPE is reported in the “Non-calibrated” column.
As the FPE is solved for one location at a time, the time is
expected to increase linearly with the number of locations to be
simulated. However, for the time in the “Calibration” column,
since network states of all locations can be obtained from a
single power flow, the time may only be slightly increased
for data processing as the number of locations for simulation
increases. The total time spent on each experiment using the
REM is the sum of times in these two columns.

For the Monte Carlo simulation approach, since the re-
sults are based on power flow solutions of all the samples
constructed, the time shown in Table IX is similar for all
experiments, independent of the number of network sections
included for stochastic impact analysis. For the REM ap-
proach, it is significantly faster to conduct an impact analysis
to a single network section (within a few minutes including the
calibration). However, in the last experiment, as 183 network
sections are to be included for analysis, the time to obtain
non-calibrated PDFs increases to 5.69 hours which is 190×
that required for a single network section. On the other hand,
as the time on calibrations does not depend linearly on the
number of sections for analysis, it takes only 0.29 hour in
the last experiment which is increased by only 10× on more
data processing. Finally, although not shown in the table,
the analysis time also depends linearly on the maximum
penetration level for both approaches.

TABLE IX
COMPARISON OF COMPUTATION SPEED

Experiments Time (hr)
Monte Carlo Non-calibrated Calibration

Substation transformer
loading levels

20.84 0.03 0.03

Section M1125994 volt-
age levels

21.79 0.03 0.03

Line loading levels
across a wide range of
penetration rates

- 0.06 0.03

Identifying locations
with potential abnormal
conditions

21.90 5.69 0.29

V. CONCLUSION AND FUTURE WORK

In this paper, we present a rapid estimation approach to
perform a stochastic analysis on the impact of EVs and PVs
to power distribution networks. A calibration step is also
proposed to improve the accuracy of the REM. Quantitative
assessments on a large-scale realistic distribution network
indicate that results from the REM well follow those from
Monte Carlo simulations with minimal errors, hence Monte
Carlo simulations can be avoided for such a stochastic analysis
and the computation efficiency can be greatly improved.

We demonstrated the impacts of EVs and PVs to the
distribution network at their respective “peak” time in this
work. As a next step, time-series analysis (e.g., on a typical
day) can be performed, and the combining impacts can be
studied when EVs and PVs are simultaneously installed to
the network. The approach can also be extended to analyze
the impacts of other GETs to power networks. For example,
DR programs or other control schemes for EVs and PVs can
be designed to modify the set of offset profiles and to shift
customers’ adoption probabilities, and their effectiveness and
impacts to the networks can be rapidly evaluated by the REM.
As penetration levels of GETs are expected to increase over
the next few years, an analysis framework dedicated to these
technologies will allow utilities to properly plan and optimize
their networks.
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[24] F. Li, R. P. Malhamé, and J. Le Ny, “Mean field game based control
of dispersed energy storage devices with constrained inputs,” in 2016
IEEE 55th Conference on Decision and Control (CDC), 2016.

[25] K. Wang and M. L. Crow, “The Fokker-Planck Equation for power sys-
tem stability probability density function evolution,” IEEE Transactions
on Power Systems, vol. 28, no. 3, pp. 2994–3001, 2013.
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