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 
Abstract—To estimate the accurate fundamental relationship in 

traffic flow, this paper proposes a novel framework that extends 
classical fundamental diagram (FD) models to incorporate more 
dimensions of traffic state variables and allow for the impact of the 
supply-side factors of roads. The proposed framework is suitable 
for real-time traffic management, especially in urban areas, due to 
its reliance on minimal assumptions, its flexibility in adapting to 
various data sources, and its scalability to higher-dimensional 
data. The Gaussian process (GP) model is adopted as the base 
model for learning the optimal mapping from these input features 
to traffic volume. To enhance the GP model, an in-depth analysis 
of the properties of its kernel and likelihood function is provided. 
To cope with the hyperparameter optimisation of the GP, a modi-
fied Newton method for GP-based traffic flow model is also de-
signed, which can jump over regions with small gradients. Exper-
iments based on simulation data demonstrate the ability of the pro-
posed framework to capture complex relationships between traffic 
state variables and supply-side factors, and show its value for esti-
mating dynamic road capacity. 

Index Terms—traffic flow, fundamental diagram, Gaussian 
process, road capacity, hyperparameter optimisation 

I. INTRODUCTION

INCE the pioneering work by Greenshields [1], numerous 
researchers have focused on interpreting traffic phenomena 

and improving traffic management practices using various 
models, including fundamental diagram (FD), three-phase traf-
fic flow model, and higher-order traffic flow models. These 
models are valuable in revealing either the relationship between 
traffic variables in ideal scenarios or the statistical relationship 
between them in reality. They can be further enhanced for real-
world applications in terms of assumption rationality, data 
availability, and scalability. First, classical models like the FD 
model and many kinematic-wave models [2], [3] work on the 
assumption of an equilibrium state in which all vehicles con-
stantly run at the same speed and with the same spacing [4], [5]. 
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This assumption is appropriate for near-stationary highway traf-
fic [6], but may not accurately represent other real-life situa-
tions, especially complex urban traffic [7], [8]. As shown in Fig. 
1, one typical issue is the wide scatter observed from two urban 
traffic detectors [9], and the high stochasticity of traffic makes 
it hard to correctly validate the FD model. Many successful ef-
forts in traffic flow theory have been made to model traffic in a 
non-equilibrium state [10], [11]. 

Second, many of the traffic variables used in classical traffic 
flow models are difficult to obtain accurately from commonly 
available traffic sensors and hence are often approximated by 
other biased measures. The three basic variables in the FD, 
namely flow q , speed v  and density ρ , should be defined in 
the same space-time domain such that the equation q vρ=
holds. Regarding the definition in the space domain, the flow 
q  in the equation should be the ratio of total speed of vehicles 
on a road section to the length of the road section rather than 
the number of vehicle passages over a unit time period [12]. 
Similarly, the speed v  in the equation should be space mean 
speed rather than time mean speed. However, these variables 
(especially space mean speed) cannot be directly measured un-
less the trajectories of all vehicles are available, which is a chal-
lenge in a large city considering the cost of video cameras. 
Therefore, a common practice is to resort to surrogate quantities 
collected by fixed sensors, such as loop detectors and license 
plate recognition (LPR) devices, as an approximation, e.g., us-
ing the harmonic mean of instant vehicle speed over the cross-
section of a road for space mean speed. These surrogates are 
merely estimations of real values, and the difference between 
them can be large [13], especially in the urban traffic environ-
ment. Traffic data unavailability becomes a barrier for high-or-
der models. Their demand for fine-grained vehicle trajectories 
remains unresolved at present due to cost concerns. 

Third, classical models are limited to the three fundamental 
traffic variables (flow, speed, and density), often described in a 
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bivariate functional form. In the era of big data, ubiquitous sen-
sors for traffic data collection provide access to data of a much 
greater quantity and higher dimensions. However, the bivariate 
formulation restricts the utilisation of emerging data resources. 
It is worth noting that the traffic state is a joint outcome of di-
verse factors, e.g., speed, density, and vehicle type composition. 
Given the increasing amount of traffic data, there appears to be 
a need for a new model that can fully utilise these data to better 
portray traffic flow. In addition, only a few works on traffic 
flow have incorporated the influence of road supply on traffic. 
For instance, Jin and Zhang [14] modeled spatial inhomogene-
ity in road conditions. The external environment, including traf-
fic signals and weather conditions, is often assumed to be tem-
porally homogeneous during the data collection period (e.g., a 
week or month), but this assumption needs further considera-
tion.  

In this study, we, therefore, propose a data-driven model uti-
lising big traffic data and machine learning technologies to 
overcome the three challenges of existing traffic flow models. 
The proposed model is applicable to cases where the assump-
tion of an equilibrium state does not hold and leverages directly 
observable data. It is also scalable, allowing it to incorporate an 
extended set of flow-related variables and external factors in-
fluencing the supply of road resources.  

A. Literature Review 
The FD is a fundamental topic in the field of traffic flow the-

ory and is the basis of many advanced macroscopic traffic flow 
models. It describes the relationship between flow, density and 
speed in the equilibrium state [4]. Research on FD models can 
be traced back to over 80 years ago when Greenshields con-
ducted a photographic survey to study road capacity [1]. One 
typical formulation of the FD describes flow q  as a function of 
density ρ , i.e., ( )q f ρ= , and another popular formulation is 
speed v  as a function of density ρ . These bivariate formula-
tions are connected by the equation q vρ= . FD is usually ap-
plied in assisting traffic control practices by determining the 
critical values of traffic state variables, e.g., capacity, critical 
density, and free-flow speed. In addition to road capacity esti-
mation [1], [15], FD was also adopted as the theoretical foun-

dation of ramp metering strategies like ALINEA [16]. Simi-
larly, the design of the variable speed limit is also based on FD 
[17]. Moreover, FD is also useful as one of the basic inputs of 
LWR model and high-order traffic flow models for understand-
ing the kinetic mechanism of traffic flow, where FD defines the 
relationship between volume, speed and density in the equilib-
rium state [2], [18]–[20]. Many studies have focused on explor-
ing the functional form of the FD, which can be generally cate-
gorised as either single-regime or multi-regime. The single-re-
gime FD models all traffic states, including both congested and 
uncongested states, using a single formula, such as Green-
shields [1] and Newell  [21]. Nevertheless, it is argued that the 
single-regime FD cannot adequately fit data in both congested 
and uncongested states [12], [22]. The multi-regime FD offers 
a solution to this problem by separately fitting data in different 
traffic states, e.g., Daganzo [23], Wu [24], and Li and Zhang 
[25]. 

Aside from the functional form of the FD, another line of re-
search has focused on the estimation method for the parameters 
involved in these functional forms. The most straightforward 
and widely adopted parameter estimation method is least 
squares. However, this method has been criticised by Qu et al. 
[26] in that the uneven number of observations corresponding 
to traffic density may lead to biased estimations. Instead, it is 
more appropriate to adopt a weighted least squares method. In 
addition to generic parameter estimation methods, some re-
searchers have proposed tailored methods to estimate each pa-
rameter of the FD based on its physical meaning. For instance, 
Dervisoglu et al. [27] designed a framework for estimating the 
triangular FD parameterised by free-flow speed, wave speed 
and capacity, in which the first two were estimated by perform-
ing linear regressions in two subsets of data, and capacity was 
estimated using historical maximum traffic volume. Similarly, 
Knoop and Daamen [22] attempted to separately calibrate each 
parameter of the FD proposed by Wu [24], including free-flow 
speed, wave speed, free-flow capacity, queue discharge rate and 
jam density. Both methods above rely on normal loop detector 
data. In contrast, Seo et al. [28] developed an algorithm to infer 
the FD based on the trajectories of probe vehicles, in which an 
FD for probe vehicles was estimated and then scaled using the 
jam density obtained from other data sources.  

Emerging big data and machine learning technologies have 
attracted a lot of attention in a variety of fields. However, most 
research on traffic flow utilising these technologies has focused 
on traffic volume prediction. Following the seminal work by 
Ahmed and Cook [29], researchers have usually formulated 
traffic dynamics as a time series and extracted spatio-temporal 
patterns from historical data [30], [31]. Note that these predic-
tive models focus on the relationship between volumes in dif-
ferent time instants rather than the relationship between differ-
ent traffic flow characteristics like volume and density. In addi-
tion to traffic flow prediction, some researchers have managed 
to recreate network-wide traffic states from incomplete sensor 
data [32]. Moreover, machine learning models like neural net-
works have been introduced to microscopic traffic flow analysis 
to capture complex car following behaviours [33]. In recent 
decades, many researchers begin to exploit the capability of 

 
Fig. 1.  The occupancy-flow scatterplot of two detectors [9]  
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Gaussian process (GP) in transportation modelling. Most of 
these GP-based studies aimed at traffic flow prediction. Focus-
ing on network traffic volume forecasting, Sun et al. [34] made 
a comparison between various machine learning models, where 
GP shows its advantage in providing prediction results with un-
certainty. Lin et al. [35] addressed the problem of traffic speed 
estimation on unobserved links using trajectory sensors on par-
tial links and social media data, where GP is used to reconstruct 
the traffic speeds on all links. However, it is still an open ques-
tion how to model macroscopic traffic flow using a data-driven 
approach, and a few researchers managed to address traffic state 
estimation with the help of GP in recent years. A very recent 
study by Yuan et al. [36] combined Gaussian process with clas-
sical macroscopic traffic flow models for traffic state estima-
tion, but the third concern mentioned in the previous section 
remained unresolved. Li et al. [37] worked on traffic flow meas-
urement based on floating car data, and GP was adopted to es-
timate traffic flow from traveling profiles. Sederlin et al. [38] 
developed their traffic state estimation model based on a Bayes-
ian filtering framework, where GP was used to model the state-
space transition of traffic states. However, these researches are 
not related to modelling the relationship between traffic state 
variables. Therefore, our research is intended to bridge this gap 
by developing a data-driven traffic flow model using GP regres-
sion.  

B. Objectives and Contributions 
Existing FD-based traffic flow models focus on the bivariate 

relationship among q , v  and ρ . As mentioned above and by 
Hall [39], empirical observations rarely precisely accord with 
the fundamental equation q vρ= . Thanks to the development 
of big data technology, a diversity of data from different sources 
can be collected. Therefore, in this study, higher dimensions of 
data are incorporated into the proposed framework, to provide 
an enhanced fitting of the empirical relationship of traffic vari-
ables. We seek to model the relationship in a data-driven way 
instead of beginning with a predefined hypothesis on the func-
tional form of basic traffic state variables. 

Another point often neglected in classical models is the in-
fluence of supply-side factors on the traffic state. We further 
attempt to capture their interdependency with traffic state vari-
ables by simultaneously modelling the internal factors (e.g., 
speed and density) and external factors (e.g., traffic signal) that 
determine the traffic state. Compared with classical FD models, 
the proposed model no longer requires recalibration for distinct 
road scenarios and can be generalised to unseen scenarios. 

Because of the uncertainty of traffic flow, deterministic mod-
els are unsuitable for our goal. This research proposes the use 
of the Gaussian process (GP) model, a Bayesian machine learn-
ing model, to learn the complex nonlinear mapping among high 
dimensions of variables. To address the challenging issue of hy-
perparameter tuning of the GP, an improved search method 
called the modified Newton method for the GP-based traffic 
flow model is developed to reduce the risk of being stuck in a 
local optimum. 

To sum up, this study aims at developing a new framework 
of traffic flow modelling that makes full use of big traffic data 

resources. Its contributions can be summarised as follows. First, 
the dimension of traffic state variables is extended compared 
with the classical bivariate formulation of the FD. Second, sup-
ply-side factors are also incorporated into the model, allowing 
our model to be applied to multiple road scenarios. Third, the 
use of the GP model for learning the complex relationship 
among input variables is proposed and a modified Newton 
method is designed to facilitate hyperparameter optimisation. It 
is worth noting that, as a data-driven black box method, the pro-
posed framework is not a substitution for classical traffic flow 
models. Rather than interpreting the physics of traffic phenom-
ena or predicting traffic state dynamics, it focuses on capturing 
the relationship among various traffic state variables and sup-
ply-side factors. As an example of its potential applications, we 
apply the proposed method to estimate the dynamic road capac-
ity, which is a new concept that is valuable for urban road net-
work analysis. Note that compared with the traditional FD-
based approach, the proposed data-driven traffic flow model is 
more suitable for the analysis of complex and unstable traffic 
flows, especially for urban areas.  

The remainder of this paper is organised as follows. We de-
fine the problem of learning fundamental traffic relationships 
and formulate the data-driven traffic flow model in Sections 2 
and 3, respectively. A tailored machine learning model based 
on the GP and an improved searching method for hyperparam-
eter optimisation are elucidated in Section 4. The proposed 
model is applied to estimate the dynamic road capacity in Sec-
tion 5. Numerical experiments based on simulations are per-
formed and analysed in Section 6. Finally, conclusions and fu-
ture directions are provided in Section 7. A list of the main no-
tations is provided in Appendix A for the sake of readability. 

II. PROBLEM STATEMENT 
Let us consider a set of road segments. To learn the relation-

ship between traffic volume q ∈   (whose definition will be 
discussed below) and an m -dimensional feature vector m∈x   
derived from the data directly collected by sensors (for varia-
bles like vehicle speed) and surveys (for variables like road 
width), we aim to identify the mapping below using big traffic 
data, 

 :f qx  . (1) 
By recording a set of vehicles TV  passing a specific road sec-

tion during a period T , the volume q  can be defined as 

 Tq
T
V

=   (2) 

where TV  denotes the number of elements in set TV . In the lit-
erature, q  is defined for a ‘short roadway – long time’ [2], [12], 
which is directly observable using a fixed traffic sensor. q  is 
different from another term, the flow q , which is used in some 
existing traffic flow models. q  is defined for a ‘short time – 
long roadway’ [12], formulated as: 

 ( )1

Li

i
L

V
q v

L ∈

= ∑  (3) 
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where LV  denotes the set of vehicles on a road segment of 
length L  at a specific time instant, and ( )i

Lv  is the instant speed 
of the i -th vehicle in LV . It can only be measured through 
overhead video cameras that continuously monitor a complete 
road segment. One critical problem in past research lies in the 
inconsistency between theoretical definitions and actually col-
lected data. In this paper, q  is adopted for the definition of vol-
ume, instead of q , as it can be easily collected by most traffic 
sensors and is intuitive for administrators without hindering real 
traffic management.  

The feature vector x  in (1) can be decomposed into de-
mand-side variables dm

d ∈x   and supply-side variables 
sm

s ∈x  . In this paper, we mention traffic flow attributes like 
speed and density as demand-side variables to distinguish them 
from supply-side variables. These variables, along with vol-
ume, are all extracted from traffic flow itself, and their relation-
ship can be captured by (1). Note that most classical traffic flow 
models only consider these demand-side variables, while ne-
glecting the supply-side variables. The supply-side variables in-
volved in (1) include factors related to roadway’s geometric at-
tributes and traffic control strategies like signal schemes. By in-
corporating these variables, variations in the relationship 
among demand-side factors and the differences among various 
roads can be simultaneously modelled. 

A. Demand-Side Factors 
Traffic volume is inherently correlated with demand-side 

variables such as speed and density. In real-time traffic opera-
tion and management, traffic flow data are obtained mostly 
from fixed sensors like loop detectors and LPR devices, which 
can provide highly accurate records of cross-sectional traffic 
variables. Both types of sensors are capable of reading instan-
taneous vehicle speeds. In addition, using loop detectors, the 
time occupancy can also be obtained, whilst with LPR devices, 
the vehicle type will be available in the dataset. 

The two most important and widely adopted demand-side 
variables relating to volume q  are density ρ  and speed v . 
Usually, individual observations of vehicles will be aggregated 
over a specific period, whereby statistics like average, variance, 
and median can be calculated to obtain density and speed. Re-
garding speed, the variable used in theoretical FD relationship 
should be space mean speed [40], that is, the arithmetic mean 
of all vehicle speeds in LV , which cannot be directly measured 
by fixed sensors. Two common approximations to space mean 
speed are time mean speed tmsv  (the arithmetic mean of all ve-
hicle speeds in TV ) and harmonic mean speed hmsv  (the har-
monic mean of all vehicle speeds in TV ). Although it was 
proved that harmonic mean speed equals space mean speed in 
equilibrium state [40], they are not equivalent in reality. Like-
wise, density ρ  in FD is also defined on LV  and cannot be di-
rectly measured by fixed sensors. As a result, it is often substi-
tuted by time occupancy o . The use of these approximations 

indicates that the measured traffic volume is not linearly corre-
lated to the product of measured occupancy and speed. How-
ever, this issue can be resolved by introducing the data-driven 
model, which directly models the statistical relationship be-
tween the measured variables and the output without the equi-
librium assumption. 

B. Supply-Side Factors 
The distributions of demand-side variables are conditional on 

supply-side factors. The geometric design of the road is a criti-
cal set of factors that determines the supply of road resources. 
Typical road attributes include road width rw , lane number 
lan , gradient g  and median type mt . These variables place a 
constraint on the capacity of a road, and usually remain constant 
for a relatively long time. 

In addition, traffic control and management methods like sig-
nal control and speed limit, denoted by sl , can potentially in-
fluence the traffic state. For instance, a traffic signal can impact 
road capacity, whilst the speed limit usually accords with the 
free-flow speed. Regarding traffic signals, these can be input 
into the model in the form of the green/cycle (g/C) ratio, de-
noted by gr . Due to the difference in traffic demand between 
peak hours and off-peak hours, gr  may undergo several 
changes during the day, which will in turn affect traffic patterns. 

These supply-side factors together constitute the vector sx . 
For example, sx  can include the elements of ,  ,  ,  ,rw lan g mt

,  sl gr  and can be further extended when more data are availa-
ble. 

III. DATA-DRIVEN MODELLING OF TRAFFIC FLOW 
This section focuses on the formulation of the proposed 

framework for traffic flow modelling. The following two sub-
sections discuss how the proposed framework extends the clas-
sical FD model from the perspective of the representation of the 
traffic state and the influence of supply-side factors. 

A. Multi-Dimensional Representation of Traffic State 
Recall the classical Greenshields FD, which can be formu-

lated as 
 ( )1 /f jq vρ ρ ρ= −  (4) 

where fv  denotes free-flow speed, and jρ  denotes jam den-
sity. Similar to many FD models, it expresses flow as a function 
of ρ , as follows: 

 ( )FDq f ρ= . (5) 
However, it is worth restating that the bivariate formulation 

of the FD is insufficient to account for the stochasticity of traffic 
flow, as pointed out by many studies [41], [42]. Recall the scat-
terplot in Fig. 1: wide scattering is often observed, which is not 
reflected by classical FD models. Wang et al. [43] dealt with 
this issue by proposing a stochastic modelling framework for 
the FD. Kerner [44] negated the rationality of the FD and pro-
moted the three-phase partitioning of traffic flow. Another ap-
proach to this problem is a multi-class traffic flow model, which 
accounts for the heterogeneity of traffic flow in terms of the 
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speeds and lengths of different vehicle types [7], [45]. How-
ever, as mentioned earlier, higher-order traffic flow models and 
the three-phase flow model depend on fine-grained trajectory 
data, which are often unavailable in real applications. Moreo-
ver, the collected traffic data do not always conform to what we 
expect. For example, the speeds in many datasets are provided 
as time mean speed, but FD and kinematic-wave models require 
space mean speed. 

Therefore, we propose to extend the FD model to include 
more factors, such that the uncertainty can be reduced and esti-
mation accuracy can be improved. The proposed model can be 
formulated by 

 ( )d dq f= x . (6) 
In this formulation, the features in dx  are not restricted to 

space mean speed and density, which are difficult to obtain, be-
cause their statistical relationship to volume can be directly cap-
tured by the model. For instance, dx  can be set as tms[ , ]v o . In 
addition to density and speed in the classical FD model, more 
features can be exploited from data collected by various traffic 
sensors, such as small vehicle ratio , /T s TVsr V= , where ,T sV  

denotes the set of small vehicles observed in period T . Then, 
dx  can be extended to tms ], ,[v o sr . 
Another advantage of the data-driven formulation is its flex-

ibility in adapting to various levels of data availability. When 
data resources are scarce, the proposed model can use basic fea-
tures like occupancy and time mean speed. Accordingly, the 
model is more suitable for applications in real-time traffic man-
agement, compared with higher-order models restricted by the 
availability of fine-grained trajectories. Moreover, even if com-
plete trajectory data become available in the future, the data-
driven model is still advantageous as no strong assumption is 
made. 

B. Incorporating Supply-Side Factors 
Aside from extending the dimensionality of traffic state var-

iables, we further incorporate the influence of supply-side fac-
tors in the model. The FD assumes that traffic and supply-side 
factors remain at a relatively stable state, which is rarely the 
case in reality, especially on urban roads. It should be stressed 
that traffic states are always constrained by the supply of road 
resources, and the distributions of traffic state variables are also 
conditional on this supply. Changes in supply-side factors will 
yield different traffic state patterns. A unified model incorpo-
rating both road supply and traffic state variables is able to ele-
gantly address the above problem. Let the feature set of supply-
side factors be sx ; the new traffic model can be formulated as 

 ( ),ds sdq f= x x . (7) 
Through this formulation, we can not only model the traffic 

flow on a road with time-varying road attributes but also on 
multiple roads simultaneously. Even for roads with constant 
physical attributes, a classical model without supply-side fea-
tures has to be recalibrated for every road. Instead, the proposed 
formulation captures the latent relationship between various 

supply-side variables and traffic state variables. Thus, the traf-
fic flow relationship can be deduced for unseen cases. 

To identify the complex nonlinear relationship represented 
by dsf , machine learning methods can be used instead of cali-
brating a simple predefined function as the FD model does. Alt-
hough the proposed modelling framework is versatile enough 
to accommodate any machine learning model, it is expected that 
the selected model has an adequately large hypothesis space and 
is capable of dealing with data uncertainty. To achieve these 
expectations, GP regression is used as the base model for the 
proposed framework, because it has three merits.  

 Unlike machine learning models that presume a 
class of function from input to output (e.g., linear 
regression), GP regression does not place explicit 
restrictions on functions it learns. It introduces a 
Bayesian view and places a prior distribution on 
each possible function, where higher possibilities 
will be given to those that better conform to the 
training data [46].  

 The output of GP regression corresponding to each 
input vector is modelled as a random variable, and 
the learned function (i.e., the outputs corresponding 
to all input vectors) becomes a random process. The 
distribution of each random variable, on which the 
GP places a Gaussian prior such that the random 
process becomes easily tractable, can quantify the 
uncertainty of the output.  

 A much smaller set of hyperparameters needs to be 
optimised for GP regression compared with com-
plex models like Bayesian neural networks.  

In the following section, we elaborate on how GP regression 
works and how it can be improved in the proposed modelling 
framework. 

IV. GAUSSIAN PROCESS (GP) REGRESSION 
In this section, we give the definition and learning process of 

GP regression for traffic flow modelling. Part A and Part B dis-
cuss the basic procedures for GP regression and hyperparameter 
optimisation, respectively. For the proposed GP-based traffic 
flow model, the optimisation of the kernel hyperparameter is 
crucial but faces difficulty due to the nonconvexity of the opti-
misation model. Hence, in Part C, a modified Newton method 
for GP-based traffic flow model is proposed to address the is-
sue. 

A. Preliminaries of GP Regression 
A GP is a random process, which gives the distribution of 

functions and can be adapted to solve regression problems [46]. 
Let 1n×∈y   be a label vector of traffic volumes 

[ ]1 2, , , nq q q…  
• , where n is the number of samples. The de-

mand-side and supply-side features are represented by a feature 
matrix n m×∈x  , where m  is the total number of demand-side 
and supply-side features. The aim of GP regression is to identify 

: mf →  , that is, to obtain the relationship between traffic 
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volume and variables relating to supply-side variables and traf-
fic state variables from the data. Note that the notation f  is 
used to replace dsf  for simplicity.  

Given a noise-free training dataset 1{ , } { , }n
i i iy == = xx yD , 

where ( )i iy f= x , we denote the random variable correspond-
ing to iy  by iY . A GP makes an a priori assumption that iY  is 
normally distributed with mean ( )im x  and variance ( , )i iκ x x , 
where )(m ⋅  and ( , )κ ⋅ ⋅  are a mean function and a kernel func-
tion, respectively. 

For an arbitrary new input feature vector *x , the posterior 
distribution of *Y  follows a Gaussian distribution with mean 

*m  and variance *Σ , formulated as 

 
( )* * * *

1
* * *

1
* ** * *

| , , ~ ,

( )

Y m

m µ

κ

−

−−

= −

=

Σ

+

Σ

x

κ K μ
κ K κ

y x

yú

ú

N

 (8) 

where * *( )mµ = x  and ** * *( , )x xκ κ= . The covariances be-
tween *x  and every training sample are contained in vector *κ
, the i -th element of which is *( , )iκ x x . The covariances be-
tween all training samples are stored in matrix K , called the 
kernel matrix, whose element on the i -th row and j -th col-
umn is ( , )i jκ x x . The posterior mean *m  here is a point esti-

mation of *Y , and the posterior variance measures the uncer-
tainty of the estimation.  

According to (8), it is obvious that the GP posterior is de-
pendent on the choice of both prior mean function and prior 
kernel function, whilst the posterior variance is only affected by 
the prior kernel function. Usually, ( )m ⋅  is directly set to be con-
stantly zero, indicating that we assume at first that all inputs 
yield zero traffic volume. In this case, the posterior distribution 
of *Y  can be simplified to 

 ( )1 1
* * * ** * *| , , ~ ,Y κ− −−x κ K κ K κy x yú úN . (9) 

Note that the kernel function plays an important role in the 
GP, which essentially acts as a similarity measurement between 
vectors in the input space. For traffic flow modelling, we expect 
similar input variables to correlate with similar traffic volumes. 
A common kernel to achieve this is the Gaussian kernel [47]. A 
standard Gaussian kernel is formulated as 

 
2

2 2

1( , ) exp
2G i j i jl

κ  = − 


−


x x x x  (10) 

where l  is the length scale of the kernel, which is the hyperpa-
rameter of the model. 

The posterior mean of GP regression does not have a form 
with physical meaning like classical models. For example, anal-
ogous to an FD modelling the relationship between q  and v , a 
zero-mean GP regression model with traffic volume q  as its 
label and speed hmsv  as its only feature can be built. Recall that 
its posterior mean is 1

* *m −= κ K yú . We substitute the constant 

vector 1−K y  by 1 2[ ], , , na a a…=A ú . The posterior mean can 

then be written as 
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∑

∑

κ A  

 

ú

. (11) 

The Gaussian kernel above writes the covariance between ix  

and jx  as a function of 2
2ji −x x‖ ‖ . As a result, when more di-

mensions of features are incorporated, the covariance will still 
change in the same scale with respect to all features. In other 
words, the kernel is isotropic. To allow the model to adapt to 
various dimensions of features, the standard Gaussian kernel 
can be modified as, 

 ( ) ( ),ani
1( , ) exp
2 jG i j i i jκ − − = −

 
x x x x Λ x x

ú
, (12) 

 2 2
1 2

2 , ,diag( , )ml l l− − −= …Λ , (13) 
where Λ  is a diagonal matrix defining unique length scales for 
each dimension of input features ( m  denotes the dimension of 
features), enabling GP regression to automatically determine 
the importance of each feature and reduce the impact of irrele-
vant features [48]. A large length scale in a specific feature di-
mension indicates that this feature makes little contribution to 
the prediction, whereas a small length scale indicates an im-
portant feature in prediction. 

B. Hyperparameter Optimisation of GP Regression 
A zero-mean GP can be completely determined by its covar-

iance matrix, i.e., the kernel matrix. Therefore, training a GP 
regression model is essentially a search for the optimal hyperpa-
rameters of the kernel. Here, we denote the vector of all hy-
perparameters of a kernel by θ . For example, the hyperparam-
eter vector of an anisotropic Gaussian kernel described in (12) 
and (13) is [ ]1 2, , , ml l l= …θ . The optimal hyperparameters *θ  
are obtained through maximising the log marginal likelihood 
(LML) of the GP regression, )log ( | ;p θy x , which means that 
we would like to maximise the probability of observing y  
given the input data x  and the kernel matrix K  parameterised 
by θ . As a GP for a finite set of samples follows a multivariate 
Gaussian distribution, we have 

 ( )| , ~ ,Y x θ 0 KN  (14) 

where 1 2, , , ][ nYY Y…=Y ú , K  is a covariance matrix parame-
terised by θ . Then, the LML of this GP regression can be for-
mulated as 

 

1

1 .

1 1log ( ; ) log exp
2(2 )

1 1log(2 ) log
2 2 2

n
p

n

π

π

−

−

   = −    

= − − −

y | x θ y
K

K y

K y

K y

ú

ú

 (15) 

According to (15), LML comprises three terms, the first of 
which is a constant. Therefore, maximising LML is equivalent 
to minimising )(L θ : 
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 1o( ) l gL −= +θ K Ky yú . (16) 

Among the two terms of )(L θ , the former, i.e., log K , 
works as a regulariser corresponding to the model complexity 
for GP regression, whereas the latter, i.e., 1−y yKú , reveals the 
data fitting quality. 

Two extreme cases of the GP kernel matrix K  are the iden-
tity matrix I  and the matrix of ones J , where the former leads 
to an extremely flexible GP model that can perfectly fit any 
given data. For illustration, consider two arbitrary samples as 
shown in Fig. 2. Clearly, the posterior mean of GP regression 
drastically increases near the two samples, but remains approx-
imately zero for input *x  elsewhere. Whatever y  is given, the 
GP will severely overfit the data. The other extreme case is as-
sociated with severe underfitting. In this case, the posterior 
mean of GP regression near sample points will be almost con-

stant, as demonstrated in Fig. 3. For most input *x , the esti-
mated *y  is constant around 1.5.  

C. A Modified Newton Method for Hyperparameter Optimi-
sation 

An appropriate set of hyperparameters, i.e., the length scale 
of the Gaussian kernel, should be a careful trade-off between 
log K  and 1−Ky yú  to avoid overfitting and underfitting. To 
find the optimal hyperparameters, first find the derivative of 

)(L θ , 

 
( )1

1 1 1

( lo

t

) g

r

L −

− − −

∂ ∂
= +

∂ ∂
∂ ∂ = − ∂ ∂ 

θ y y
θ θ

y yK
θ

K

KK K
θ

K

K .

ú

ú
 (17) 

Unfortunately, the optimisation objective, i.e., )(L θ , is often 
nonconvex. For the sake of presentation, we take a two-dimen-
sional sinusoidal function, formulated as 1 2sin sin 3toyf x x= + , 
as an illustrative example. We randomly sample 80 points be-
tween 5−  and 5  to examine the )(L θ  surface, 1 2( , )l l=θ , 
where 1l  and 2l  are the length scales corresponding to the two 
dimensions. The )(L θ  with respect to length scales is plotted 
in Fig. 4 (a), where the z-axis is shifted and log transformed for 
the sake of demonstration. Fig. 4 (b) shows an enlarged view of 
part of Fig. 4 (a), where 1 2, [10,10.0001]l l ∈ . 

In existing machine learning platforms (e.g., Scikit-learn 
[49]), gradient-based algorithms, like the Newton method, are 
commonly used for the )(L θ  maximisation of GP regression. 
Considering the nonconvexity of )(L θ , the multi-start Newton 
method is often adopted in the hope that a better initial point 
can be selected. However, we find that the gradient soon be-
comes zero and the optimiser is stuck in a local optimum, caus-
ing the overfitting of the GP regression model, as depicted in 
Fig. 5. In comparison, the model should reasonably fit the data 

 
Fig. 2.  Posterior mean of a GP regression with a small length scale (0.001) of 
Gaussian kernel 

 
Fig. 3.  Posterior mean of a GP regression with a large length scale ( 910 ) of 

Gaussian kernel 
 
 

  
(a) 5 5

1 2
, [10 ,10 ]ll −∈                       (b) 

1 2
, [10,10.0001]l l ∈  

Fig. 4.  )(L θ  surface of the toy example (
1 2

sin sin 3
toy

f x x= + ) 
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if the global optimum of )(L θ  is reached, as depicted in Fig. 
6. The reason for the failure of the common multi-start Newton 
method can be attributed to the characteristics of the )(L θ  sur-
face. For many hyperparameter sets, the )(L θ  surface often ap-
pears to be a plateau where the gradient is extremely small, es-
pecially when all length scales of the anisotropic Gaussian ker-
nel are small. 

Proposition 1. For a GP with an anisotropic Gaussian kernel 
parameterised by a length scale vector 1 2[ ], , , ml l l…=θ , where 

0il > , 2 ,1, , mi …= , we have 

 )lim (L
+→

∂
=

∂θ 0

θ
θ

0 . (18) 

The proof of Proposition 1 can be found in Appendix B. 
Aside from the plateau of the )(L θ  surface when θ  is small, 

the surface can be numerically unstable when θ  becomes 
larger. As demonstrated in Fig. 4 (b), we magnify the surface to 
the range of 1 2, [10,10.0001]l l ∈ . It is apparent that the surface is 
rough, which can be difficult for gradient-based algorithms to 
optimise. 

Therefore, compared with directly performing a multi-start 
search, it is more reasonable to truncate the hyperparameter 
space with near-zero or unstable gradients in the outer rim. To 
achieve this goal, we propose a modified Newton method for 
the hyperparameter optimisation of GP regression. The algo-
rithm comprises two stages: the first searches for the bound of 
the region with near-zero gradients, and the second is the ordi-
nary multi-start Newton algorithm. The bound search begins 

from the lower and upper bounds of the length scales, respec-
tively, to truncate the hyperparameter space. For example, a 
typical two-dimensional contour of 1 2 )( ,L l l  is illustrated in 
Fig. 7, where a darker blue colour indicates a higher value. The 
optimal hyperparameters are located in the centre of the Figure. 
It is highly possible that the algorithm will get stuck in the plat-
eau when a starting point is randomly picked. Before searching, 
the hyperparameter space has to be discretised. For each dimen-
sion of the input feature, k  values are selected as probes b , 
which are equally spaced on a logarithmic scale within the pre-
determined lower and upper bounds.  

We first search for the new lower bound of the length scales. 
The probes should be sorted in ascending order, indicating that 
the algorithm starts from the lower bound. As presented in Al-
gorithm 1, Q  is initialised in the beginning so as to store the 
truncated lower bounds. In addition, the value of )(L θ  when all 
length scales are set to their lower bounds is first computed as 

0L . Then, we iterate through all dimensions of the features and 
compute the value of )(L θ  corresponding to each combination 
of length scales, i.e., 21( ), , , mL p p p… . If its difference from 

0L  is greater than the threshold l∆ , the combination of length 

 
Fig. 5.  Posterior mean surface of an overfitted GP with ) 67.00(L ≈θ  

 

Fig. 6.  Posterior mean surface of a reasonably fitted GP with ) 144.47(L ≈ −θ  

 
Fig. 7.  Bound search of modified Newton method for GP-based traffic flow 
model  

 

Fig. 8.  Truncated space for hyperparameter search 
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scales will be labelled as a bound point and added to Q . 
The new upper bounds of the length scales can be searched 

in a similar way. However, note that the probes b  should be 
sorted in descending order so that the search can start from the 
upper bound. Also, the bound condition in Line 6 of Algorithm 
1 can be changed to 1 2 0, , , )( mp p L lL p … − < ∆  considering 
that )(L θ  at the optimum should be smaller than 0L . 

New lower and upper bounds can be used in substitution for 
the original ones when sampling the initial points for the multi-
start Newton method, to narrow down the search region. For 
example, as illustrated in Fig. 8, the initial points should not be 
selected within the grey region. 

V. APPLICATION IN DYNAMIC ROAD CAPACITY ESTIMATION 

A. Dynamic Road Capacity Estimation 
The proposed data-driven model can be adopted in many 

suitable applications, e.g., optimisation of road design. In this 
paper, for the sake of presentation, we take the road capacity 
analysis as an illustrative example to present the application of 
the proposed data-driven model. Meanwhile, a new concept 
termed dynamic road capacity is proposed and analysed, as a 
representative case to show the merits of the new model. The 
road capacity is extended from a stable value to a variational 
term, mainly because the dynamic change of supply-side fac-
tors, rather than the demand-side factors.  

The notion of road capacity in this study refers to the maxi-
mum traffic throughput that a road allows to pass, similar to the 
notion of practical capacity in engineering practices. Road ca-
pacity is an essential ingredient in analysing and optimizing 
traffic plannings, designs, and management schemes [50]. 
Thus, there has been a long-standing and growing interest in 
estimating capacity. Highway Capacity Manual (HCM) pro-
vides some guidelines on the estimation of link capacity in en-
gineering practices, whereas, the crude default values of various 
external factors limit its generalizability [51]. Besides follow-
ing the guidelines in HCM, one of the most widely used capac-
ity estimation methods is the FD-based method [52]-[55]. The 
FD-based methods construct traffic flow relationships, which 
are derived based on field data, to estimate road capacity [53], 
[56]. Many studies estimate capacity in freeways considering 
physical and environmental conditions [57]-[59]. In recent 
years, capacity has been extensively studied in urban networks, 
in which the effects of traffic facilities such as pedestrian cross-
ings and signalized intersections are considered [60]-[64]. Ex-
isting analysis of road capacity generally revolves around a 
static definition of capacity oriented to road design. The capac-
ity of a road is assumed to be constant over a relatively long 
period. Nonetheless, supply-side factors like traffic signals that 
influence capacity usually change over time, and correspond-
ingly, the road capacity also varies over time. This is unfortu-
nately not considered in the existing notion of saturation rate. 
Aside from dynamic signal controlling schemes, adverse 
weather can also restrict a road from reaching the same level of 
capacity as on sunny days. When the FD is adopted for capacity 
estimation, all historical traffic state observations are placed in 

the same diagram, making it impossible to tell the capacity var-
iations. Therefore, a dynamic definition and a new approach to 
road capacity estimation are required. We believe that this def-
inition can be valuable in engineering practices because it pro-
vides traffic engineers with a direct value of the maximum num-
ber of vehicles that can pass the road in prevailing cases. Based 
on this value, the network capacity can be further obtained, 
which is helpful in regional traffic control.  

Based on the proposed data-driven traffic flow model, the 
road capacity in scenarios with different supply-side features 
can be easily obtained. Given the supply-side features sx  of a 
road, its capacity ( )sc x  can be obtained by maximising the vol-
ume of (7), 

 ( )( m ,) ax
d

s ds d sc f=
x

x x x
_

. (19) 

As the posterior of a trained GP regression model can be ex-
pressed in a closed form, the optimisation problem in (19) is 
easily tractable. The continuity of the GP naturally suggests the 
use of gradient-based algorithms for optimisation. 

It is worth noting that the lack of ability of causal inference 
has long been regarded as a shortage of machine learning mod-
els, but it does not mean that these models cannot generalise to 
other cases. For various applications of machine learning mod-
els nowadays, one fundamental requisite is the abundance of 
training data, which can be ensured by emerging transportation 
big data. These models care about the statistical relationship 
among input features, with little prespecified assumptions. It is 
the quantity of data that makes machine learning models, which 
are complex in terms of the number of parameters, effective in 
predictive tasks. When it comes to future scenario, not in his-
torical data, the trained machine learning model may not be able 
to present an accurate result, neither do classical parametric 
models. However, as a Bayesian model, GP can show us the 
uncertainty of prediction results by providing a posterior distri-
bution instead of merely a point estimate.  

B. Incorporating Noises in Observation 
To estimate the dynamic road capacity, it is necessary to ad-

dress noise in data. Despite the increased dimensionality of the 
features input into the model, we cannot account for all uncer-
tainties in real-world traffic flow, e.g., changes in driving be-
haviours among drivers and in different time instants. This in-
trinsic noise in the observed volumes in the dataset may lead to 
overfitting of the traffic flow model and an inaccurate estimate 
of capacity. Therefore, in this section, we show how to incor-
porate noise into the observations in the training set. 

A standard GP regression model assumes that the observa-
tions are noise-free, i.e., ( )f=y x . For aggregated traffic vari-
ables, it is more reasonable to incorporate the stochasticity of 
traffic flow by including a noise term ε , that is, ( )f= +y x ε . 
We allow the noise to be included in the GP regression model 
by adding a constant to the diagonal of the original kernel ma-
trix K . Then, the kernel matrix will be 

 2
noisy Kσ= + IK K  (20) 

where I  denotes the identity matrix, and 2
Kσ  denotes the noise 
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constant. This formulation allows the kernel to incorporate the 
noise inherent in each sample of the dataset; otherwise, the pos-
terior variance at observed points will be zero. In this case, we 
can write the joint prior distribution of Y  and Y∗  of a zero-
mean GP as follows: 

 
2

*

* * **0
~ , K

Y
σ

κ

  +   
           

Y 0 K
κ

I κ
úN . (21) 

The posterior of this GP regression can be written as 

 ( ) ( )( )1 12 2

* * ** * *
~ ,

K K
σ κ σ

− −

+ − +
*

Y I| y, x, x κ K y κ K I κú úN  (22) 

The mean and variance of the posterior are identical to those 
without noise, except for the kernel matrix inversion term. Ac-
cordingly, the solution to a GP without noise is still applicable 
when observation noise is incorporated. The optimal value of Kσ  
can be determined by minimising cross-validation errors. 

VI. SIMULATION-BASED EXPERIMENTS 
Typical demand-side and supply-side data in reality can usu-

ally be obtained in simulation and their influences on traffic 
flow can be reproduced. Collecting data in simulation can avoid 
errors in data acquisition; hence there is no need for data pre-
processing, which ensures the reliability of the data for model 
analysis. Although simulation cannot perfectly reflect the actual 
traffic dynamics, the performance of the proposed model can 
still be examined. Also note that the proposed model is designed 
to be versatile to various data sources rather than being re-
stricted to a specific set of input features, and its effectiveness 
can be validated even when the data used in the simulation are 
not completely identical to those in reality. Therefore, in this 
paper, simulations are performed on Vissim to generate a set of 
data to evaluate the proposed data-driven traffic flow model. In 
the experiment, traffic volume is used as the label when com-
puting the prediction error of the model, and the dataset is ran-
domly partitioned into two subsets to evaluate the generalisa-
tion performance of the model. Two common metrics for the 
goodness-of-fit of regression, namely mean absolute error 
(MAE) and mean absolute percentage error (MAPE), are used 
to evaluate the performance. The GP model used in the experi-
ment adopts the anisotropic Gaussian kernel. The kernel hy-
perparameters are optimised using the modified Newton 
method. As one application of the data-driven traffic flow 
model, we maximise the traffic volume under the given supply-
side features to obtain the road capacity. The estimated result is 
then compared with the maximum observed volume in the sim-
ulation. 

A. Data Description 
A minimal urban road scenario is built in the microscopic 

traffic simulator Vissim, containing a basic road section and 
traffic signals upstream. Three scenarios from one to three lanes 
are constructed, and 1,000 simulation runs are performed in 
each scenario. One simulation run lasts one hour, with ran-
domly generated parameters. To show the capability of the pro-
posed model in modelling macroscopic relationships among 

various traffic-related factors, the simulation setting in this ex-
periment is simplified; for the demonstration, only the signal 
timing, lane number and speed limit are altered in terms of sup-
ply-side variables, and vehicle turning at the intersection is not 
considered. In this simulation, the signal cycle consists of two 
phases, one allowing all vehicles on the road to pass, and the 
other stopping them. The durations of the two phases are inde-
pendently randomised between 10 and 40 seconds; accordingly, 
the cycle time ranges from 20 seconds to 80 seconds.  

Traffic data are collected by virtual sensors located 200 me-
ters downstream of the traffic signal. The sensors in our simu-
lation mimic both the loop detectors and the LPR system in the 
real world, which record the instantaneous vehicle speed, vehi-
cle type, and corresponding timestamp when the vehicle enters 
and leaves the detection area. These data are aggregated over a 
time window of 15 minutes every time a vehicle is detected, and 
a small dataset is then constructed by randomly selecting 3,000 
samples from the full dataset to reduce the computational bur-
den in the following experiments. In addition, four parameters 
of Vissim relating to driving behaviour are included in the fea-
ture set, namely the three parameters of the Wiedemann 74 car 
following model and the safety reduction factor of lane chang-
ing [65]. Although these data cannot be directly observed in re-
ality, they are added as surrogates for other behavioural data 
collected through field surveys and video analysis. The distri-
bution of volume and all candidate features are presented in Fig. 
9.  

Before discussing the performance of the proposed model, it 
is worth showing the scatter between q% and the product of 

hmsv%  and o  (see Fig. 10). The theoretical linear relationship 
cannot be observed from the Figure, indicating that the traffic 
deviates from the ideal equilibrium state. This finding consoli-
dates the need to use a data-driven model in real-time traffic 
management, which is potentially more suitable for modelling 
complex environments. 

B. Model Implementation and Experiment Results 
To evaluate the performance of the proposed model, we ran-

domly partition the dataset into two subsets, 80% of which are 
used as the training set and the other 20% as the test set. MAE 
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and MAPE are used as the performance metrics, which are for 

 
(a) Distribution of volume                        (b) Distribution of lane number 

 
(c) Distribution of speed limit                        (d) Distribution of g/C ratio 

 
(e) Distribution of time mean speed                      (f) Distribution of occupancy 

 
(g) Distribution of small-sized vehicle ratio            (h) Distribution of average standstill distance 

 
(i) Distribution of multiplicative factor of desired safety distance   (j) Distribution of additive factor of desired safety distance 

Fig. 9.  Distribution of volume and candidate features extracted from the simulation 
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 put features, is adopted for the GP regression model in our  

TABLE I 
PERFORMANCE OF VARIOUS DEMAND-SIDE FEATURE COMBINATIONS 

Number 
of Fea-
tures 

occ. mean 
speed 

small 
vehicle 

W74 
stand. 

W74 
add. 

W74 
multi. 

safety 
reduc. 

Train 
MAE 

Train 
MAPE 

Test 
MAE 

Test 
MAPE 

1 

●       65.73 9.33% 71.43 10.51% 
 ●      71.76 10.87% 77.36 12.39% 
  ●     101.95 17.66% 110.24 19.49% 
    ●   103.01 17.77% 111.12 19.74% 
   ●    105.14 18.09% 115.57 20.27% 
     ●  106.08 18.16% 115.53 20.29% 
      ● 106.07 18.15% 115.65 20.29% 

2 

●  ●     51.61 7.37% 53.93 7.83% 
● ●      61.35 8.50% 64.69 9.08% 
●   ●    58.25 8.42% 61.05 9.20% 
●    ●   55.73 8.14% 60.31 9.20% 
 ● ●     59.32 9.04% 64.80 10.07% 
    ● ●  102.53 17.70% 110.73 19.71% 
    ●  ● 102.93 17.76% 111.13 19.74% 
   ●  ●  104.80 18.04% 115.23 20.22% 
   ●   ● 104.52 18.00% 115.45 20.24% 
     ● ● 105.60 18.09% 115.31 20.24% 

3 

●  ●  ●   41.05 6.07% 42.59 6.46% 
● ● ●     44.68 6.35% 46.31 6.61% 
●  ● ●    45.85 6.58% 47.16 6.96% 
●  ●   ●  50.40 7.25% 52.76 7.70% 
●  ●    ● 51.29 7.34% 53.74 7.81% 
  ●   ● ● 101.07 17.57% 109.24 19.40% 
   ● ● ●  100.98 17.57% 110.07 19.61% 
   ● ●  ● 101.34 17.62% 110.47 19.64% 
    ● ● ● 102.49 17.70% 110.89 19.75% 
   ●  ● ● 104.15 17.95% 115.06 20.18% 

4 

● ● ●  ●   34.44 5.10% 35.00 5.25% 
●  ● ● ●   34.07 5.21% 35.15 5.56% 
●  ●  ● ●  37.41 5.67% 39.04 6.08% 
● ● ● ●    41.46 5.86% 43.11 6.17% 
● ● ●   ●  43.37 6.20% 44.93 6.47% 
  ● ● ● ●  95.36 16.83% 101.65 18.32% 
  ● ● ●  ● 95.92 16.91% 102.23 18.36% 
  ●  ● ● ● 96.64 16.99% 102.03 18.40% 
  ● ●  ● ● 99.10 17.30% 107.56 19.13% 
   ● ● ● ● 100.93 17.57% 110.04 19.61% 

5 

● ● ● ● ●   29.69 4.48% 30.80 4.71% 
● ● ●  ● ●  31.04 4.70% 30.75 4.77% 
●  ● ● ● ●  29.00 4.65% 29.65 4.96% 
● ● ●  ●  ● 34.50 5.12% 35.06 5.27% 
●  ● ● ●  ● 34.11 5.23% 35.29 5.59% 
● ●  ●  ● ● 54.57 7.67% 56.51 8.13% 
 ● ●  ● ● ● 44.95 7.30% 48.73 8.17% 
 ● ● ●  ● ● 52.53 8.17% 56.17 8.98% 
 ●  ● ● ● ● 59.73 9.47% 64.26 10.95% 
  ● ● ● ● ● 95.39 16.84% 101.63 18.31% 

6 

● ● ● ● ● ●  25.31 3.96% 25.66 4.11% 
● ● ● ● ●  ● 29.79 4.50% 30.94 4.74% 
● ● ●  ● ● ● 31.04 4.71% 30.74 4.77% 
●  ● ● ● ● ● 29.03 4.65% 29.72 4.97% 
● ● ● ●  ● ● 39.91 5.68% 41.46 5.98% 
● ●  ● ● ● ● 42.55 6.19% 45.00 6.85% 
 ● ● ● ● ● ● 37.63 6.43% 40.64 7.19% 

7 ● ● ● ● ● ● ● 25.39 3.98% 25.73 4.12% 
Note: occ. represents occupancy; small vehicle represents small vehicle ratio; W74 stand., W74 add. and W74mult. represent the three parameters of the 

Wiedemann 74 car following model; safety reduc. represents the safety reduction factor of lane changing. 
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and MAPE are used as the performance metrics, which are for-
mulated as 
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The anisotropic Gaussian kernel, which can give a smooth 
posterior estimate and allow for the contributions of various in 
experiments. The optimal length scales are selected by max-
imising the LML of the GP regression, where the modified 
Newton method is used to reduce the probability of the optimi-
sation algorithm getting stuck in the plateau of the hyperparam-
eter surface.  
1) Feature Combination Selection 

In feature combination selection, we mainly focus on de-
mand-side features. Hence, the three road attribute features, i.e., 
lane number, g/C ratio and speed limit, are always included in 
the feature set. All combinations of candidate demand-side fea-
tures are added to the feature set and evaluated. The noise con-
stant 2

Kσ  is set to 0.01, the tuning process of which is shown in 
Appendix C. The performances of these feature combinations 
are listed in Table I. Due to limited space for demonstration, 
only the combinations ranking in the top five and bottom five 
are shown for each group with the same number of features. 

A general trend that can be observed from the table is the 
decreasing estimation error as the number of input features in-
creases. The test MAPE drops by approximately 2.7% for the 
best combination when the number of features increases from 1 
to 2. As the number of features increases, the performance of 
the model shows only marginal improvement, and the test 
MAPE reaches 4.12% if all demand-side features are added to 
the model, which is almost the same as the performance without 
the last feature, i.e., safety reduction factor of lane changing. 

Among all demand-side features, occupancy is the one ap-
pearing most frequently in the top five feature sets. Regarding 
the performance when only one demand-side feature is used, 
both occupancy and time mean speed, two important features in 
traffic flow analysis, perform well. As for the other five fea-
tures, their estimation errors on the test set are more than twice 
those of the previous two when no other demand-side features 
are included.  

However, combining occupancy and time mean speed does 
not produce the best result compared with other combinations. 
The MAPE of the combination of occupancy and small-sized 
vehicle ratio reaches 7.83%, which is slightly better than the 
combination of occupancy and time mean speed. As to the com-
binations of car following parameters, which cannot be directly 
observed in reality, they have much higher errors than the first 
three features. 

By fixing the lane number and speed limit, we can plot the 
relationship between volume and occupancy against different 
g/C ratios. As plotted in Fig. 11 using the model with one de-
mand-side feature, i.e., occupancy, various patterns of volume–
occupancy curves can be observed. The curve gets flatter as the 
g/C ratio decreases, reflecting its effect on road capacity. Using 

classical FD models, only one curve can be estimated, which 
will suffer from the dispersion caused by multiple or adaptive 
signal controlling schemes. In contrast, different volume–occu-
pancy curves can be simultaneously modelled in one model be-
cause our model accounts for the g/C ratio. 
2) Comparison with FD Models 

The performances of three classical FD models – the Green-
shields model, triangle model and trapezoidal model – are also 
evaluated. The flow–density relationship described by these 
models can be formulated as follows. 

a) Greenshields FD 

 ( )1 /f jq vρ ρ ρ= −  (25) 

where fv  and jρ  are the two parameters of this functional 
form. 

b) Triangle FD 

 
,
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ρ ρ ρ ρ ρ ρ ρ
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 (26) 

where fv , jρ , and cρ  are the three parameters of this func-
tional form. 

 
Fig. 10.  Scatter plot of 

hms
v o⋅  and q  

 

Fig. 11.  Volume-occupancy relationship given different g/C ratios 
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c) Trapezoidal FD 
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where fv , jρ , 1cρ , and 2cρ  are the four parameters of this 
functional form. 

Because classical FD models cannot model traffic on distinct 
roads, we split the data by lane number and speed limit. The 
results of FD models on data with speed limits of 40 km/h, 50 
km/h and 60 km/h are shown in Table II. It is clear that the FD 
models are outperformed by the proposed data-driven model. In 
comparison, the differences between the three FD models are 
minor. As discussed, traffic flow is inherently complex, espe-
cially on urban roads. Although physical models provide pow-
erful insights into various traffic phenomena, they may be un-
suitable for real-time urban traffic management. 
3) Comparison with data-driven models 

We now benchmark the performance of the proposed model 
to that of three widely used data-driven methods: the support 
vector machine (SVM), the decision tree (DT), and the artificial 
neural network (ANN). In training these models, all the 10 fea-
tures are considered simultaneously. 

Experimental results are shown in Table III. Results indicate 
that the proposed model outperforms the benchmark methods. 
The decision tree model has a similar performance to the pro-
posed model. Whereas, the reason why GP is chosen is mainly 
influenced by the requirement of capacity estimation. Recall 
that the capacity is calculated by: 

 ( ) ( )arg max ,
d

s ds d sc f=
x

x x x  (28) 

For a given supply condition, the optimisation problem above 

is implicitly constrained for d d∈x X . For example, it is impos-
sible that the traffic on a narrow single-lane road is crowded in 
terms of density and fast-moving in terms of speed at the same 
time. GP is a Bayesian model, where a prior mean function is 
used to encode our prior knowledge on the values of prediction 
labels. The prior mean ensures that the posterior mean of infea-
sible d d∈x X , which is not observed in the training data, stays 
reasonable. In this way, they will not influence the capacity es-
timation. Nevertheless, other models such as SVM, DT and 
ANN fail to provide reasonable estimations under all the cases, 
as they cannot infer the feasible region dX  from the data; the 
estimated capacity is usually unreasonably high. 

We adopt the length scales of the estimated GP kernel as an 
indicator of feature importance. An important feature often re-
sults in frequent and dramatic gradient change in the posterior 
mean on that dimension. The rationale behind the relationship 
between length scale and feature importance is explained in Ap-
pendix D. The length scales corresponding to different features 
are listed in Table IV. Clearly, occupancy, g/C ratio, time mean 
speed and small-sized vehicle ratio are the four features that 
contribute most to the estimation. 

By optimising the demand-side features, we can obtain the 
capacity given specific supply-side features. According to Ta-
ble IV, we can infer that the capacity (vehicles per hour per 
lane) does not differ much with respect to lane number and 
speed limit. We validate this conjecture by plotting the capacity 
estimation surface against these features in Fig. 12 (a), (c) and 
(e). Note that the safety reduction factor of lane changing is ex-
cluded from the feature set when plotting due to the minor im-
provement in estimation accuracy, as shown in Table I. No sig-
nificant differences can be observed among the three plots, and 

TABLE II 
PERFORMANCE OF FD MODELS 

Supply-side features  Greenshields  Triangle  Trapezoidal  Our model 
Lane 
number 

Speed 
limit 

 Test  
MAE 

Test 
MAPE 

 Test 
MAE 

Test 
MAPE 

 Test 
MAE 

Test 
MAPE 

 Test 
MAE 

Test 
MAPE 

1 40  169.86 28.55%  155.59 26.37%  153.72 26.06%  50.70 7.50% 
1 50  121.83 18.05%  100.84 15.37%  97.72 14.49%  49.53 7.36% 
1 60  178.77 19.74%  160.40 17.96%  149.68 17.00%  71.14 8.01% 
2 40  92.85 13.35%  93.99 13.78%  97.17 14.17%  55.39 7.58% 
2 50  127.39 19.09%  118.89 18.77%  115.87 18.33%  69.89 11.28% 
2 60  205.57 36.57%  113.71 17.32%  110.80 16.62%  55.17 8.58% 
3 40  118.27 19.80%  120.69 19.73%  123.02 20.18%  56.13 8.97% 
3 50  204.03 31.91%  173.56 26.76%  183.77 27.70%  52.79 7.54% 
3 60  149.70 28.06%  124.46 21.31%  121.68 18.85%  85.72 18.05% 

 
TABLE III 

COMPARISON BETWEEN DATA-DRIVEN MODELS 
 Test MAE Test MAPE 
SVM 159.03 24.15% 
DT 39.58 6.29% 
ANN 222.88 38.11% 
Our model 31.72 4.77% 

 
TABLE IV 

LENGTH SCALES OF DIFFERENT FEATURES 

Features g/C  
ratio 

lane  
number 

speed 
limit occ. mean 

speed 
small vehicle 
ratio 

W74 
stand. 

W74 
add. 

W74 
multi. 

safety 
reduc. 

Length scale 6.55 100 100 2.06 14.5 24.9 94 46 100 100 
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the derivatives along the axis of the speed limit are almost flat. 
The standard deviations of the estimation results are given in 
Fig. 12 (b), (d) and (f). It can be observed that a larger variance 
appears for a small or large g/C ratio, when few observations 
are included in the dataset (see Fig. 12 (d)). 

VII. CONCLUSION 
FD-based traffic flow models have long been the primary 

tool for modelling traffic states and have provided the founda-
tions for subsequent policymaking and management practices. 
Numerous studies have focused on the theoretical basis of the 
FD, in an effort to unveil traffic patterns and explain complex 
traffic phenomena. Most existing models have been validated 
and proven effective in modelling highway traffic, but urban 
traffic modelling is still a challenge due to the volatility of urban 
driving behaviours. When the FD is used to model urban traffic, 

 
(a) Estimated capacity surface on a single-lane road         (b) Uncertainty of estimation results on a single-lane road 

 
(c) Estimated capacity surface on a two-lane road             (d) Uncertainty of estimation results on a two-lane road 

 
(e) Estimated capacity surface on a three-lane road             (f) Uncertainty of estimation results on a three-lane road 

Fig. 12.  Estimated capacity surface 
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a large dispersion of data can be observed, which cannot be ad-
equately fitted by parametric models. The reasons are two-fold: 
1. Due to interference from factors like traffic signals, unmo-

torised traffic and entrances/exits from road-side construc-
tions, urban traffic inherently involves greater uncertainty. 

2. Supply-side factors do not always remain constant. 
Changes in the weather and in signal plans will have a sig-
nificant impact on road traffic. 

Consequently, classical FD-based traffic models are insuffi-
cient to explain variations in traffic variables. 

Faced with this issue, we propose a data-driven traffic flow 
model in our study, which fully utilises traffic big data and is 
capable of modelling urban traffic states more accurately. The 
novel formulation of traffic flow incorporates variables relating 
to both traffic state and road supply. This extends the model so 
it can adapt to multiple roads in a given region and account for 
changes in external influencing factors like weather and signal 
plans. In addition, compared with classical FD-based models, 
the data-driven model does not require strong assumptions on 
the functional form of the relationship between traffic variables. 
Instead, the proposed model is based on the flexible GP regres-
sion model, which can capture complicated patterns in traffic 
dynamics. Moreover, a modified Newton method for GP-based 
traffic flow model is designed to avoid getting stuck in the plat-
eau of the optimisation objective during the training process of 
the GP regression model. 

Simulation-based experiments are used to evaluate the per-
formance of the proposed model. The Gaussian kernel is 
adopted to construct the GP regression model used in the exper-
iment, where noise constants are added to the diagonal of the 
kernel matrix to account for noise in traffic observations. The 
length scales of the Gaussian kernel are optimised through the 
modified Newton method. Compared with classical modelling 
approaches, the proposed model reduces the estimation error of 
the MAPE from around 20% to less than 10%. Road capacity 
estimation is one typical application of the data-driven traffic 
flow model. Based on the specific physical attributes of a road, 
the traffic volume can be maximised, which gives the capacity. 
The results indicate that the proposed model is effective and 
suitable for modelling complex urban traffic flow. 

Our study reveals the possibility of including more variables 
in the traffic flow model and substituting a parametric model 
for a machine learning model, which yields improved fitting 
performance. In addition to the performance improvement, con-
cerning the variables in our model, not only (demand-side) traf-
fic state variables, but also supply-side variables are included; 
it enables us to connect the physical attributes of roads to the 
traffic states on them. This is valuable in allowing the estima-
tion of dynamic road capacity. In regard to the model specifica-
tion testing, the feature combination selection and the estimated 
length scales w.r.t features together show that among all can 
candidate features, occupancy, time mean speed, small-sized 
vehicle ratio, and g/C ratio contribute the most to the estimation 
of traffic volume, where the latter two are seldom incorporated 
by previous research. 

For future research, improvements can be made in two areas: 
the model for volume estimation and the use of multi-source 

data. Regarding the model, GP regression can be improved to 
support efficient computation with large-scale data. The train-
ing of an ordinary GP regression model is constrained by the 
computation of the inversion of the kernel matrix, whose time 
complexity is 3 )(NO , where N  is the number of samples [66]. 
In addition, there is plenty of room to improve the optimisation 
algorithm for GP regression. Finding an efficient way to jump 
over the plateau of the optimisation objective surface is a chal-
lenging but critical issue. Another meaningful extension is to 
develop data-driven traffic flow models considering the case of 
actuated and adaptive control, under which the green/cycle 
(g/C) ratio varies with traffic flows. Aside from the model, the 
input features can be refined by searching for variables that can 
better represent the traffic state. Multi-source data, including 
floating car data and cellphone data, can be introduced to extend 
the information fed into the model. 
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APPENDIX 

A. Notations 
See Table AI. 

B. Proof of Proposition 1 
Proposition 1. For a GP with an anisotropic Gaussian kernel 

parameterised by a length scale vector 1 2[ ], , , ml l l…=θ , where 
0il > , 2 ,1, , mi …= , we have 

 )lim (L
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θ
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0 . (29) 

Proof. Based on (12) and (13), the derivative of a Gaussian 
kernel with respect to length scale kl  is 
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where ijκ  is used as a shorthand for G,ani ( , )i jκ x x , and ,i kx  de-

notes the k -th element of ix . Then, its limit as kl  approaches 
zero can be derived,  
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Denote τ  by 2
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−  and ζ  by ( )
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, the following equations can be derived using L’Hôpital’s rule. 
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Again, L’Hôpital’s rule yields 
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We generalise to all elements of K  and have 
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This can be further extended to all length scales, that is, 

lim
+→

∂
=

∂0θ

K 0
θ

. According to the definition of an anisotropic 

Gaussian kernel,  
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This gives lim
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K I , and accordingly, 1lim
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Finally, )lim (L
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=

∂θ 0

θ
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0  can be proved by means of (17). 

TABLE AI 
NOTATIONS 

Con-
stants 

 

T  Duration for aggregating traffic state variables. 
L  Length of the road section for observation. 

  
Sets  

TV  Set of vehicles observed during period T . 

LV  Set of vehicles observed in a road section of length L . 

  
Variables  
q  Flow (defined at a time instant on a long roadway). 
ρ  Density (defined at a time instant on a long roadway). 
v  Space mean speed (defined at a time instant on a long road-

way). 
q  Volume (defined on a cross section of road for a long time). 

ρ  Density (defined on a cross section of road for a long time). 

hmsv  Harmonic mean speed (defined on a cross section of road for 
a long time). 

tmsv  Time mean speed (defined on a cross section of road for a 
long time). 

iv  The instantaneous speed of the i -th vehicle in 
TV  or 

LV . 

io  The duration that the i -th vehicle in 
TV  occupying a fixed 

traffic sensor. 
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C. Optimising Noise Constant 
A simple brute search is adopted to determine the optimal 

noise constant to be added to the Gaussian kernel. The changes 
in the cross-validation (CV) performance of the test set against 
different noise constants is plotted in Fig. A1. It can be observed 
that the error drops steeply and then slowly increases as the 
noise constant becomes larger. Regardless of the feature set, the 
optimal value of the noise constant generally falls within the 
range of (0,0.1) . Therefore, it is reasonable to set 0.01Kσ =  
during feature selection.  

D. Length Scale and Feature Importance 
In this section, we show how the length scale correlates with 

the feature importance. Consider the derivative of the Gaussian 
kernel function with respect to an arbitrary input ix , 
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When dealing with a specific feature dimension, the deriva-
tive will be 
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where ,i kx  denotes the k -th feature of ix .  
Based on Equation (37), we can obtain the derivative of the 

posterior mean of the GP model with respect to *x , 
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where 1−=A K y , and   denotes the Hadamard product. Fur-
thermore, the derivative of the posterior mean of the GP model 
with respect to *,kx  is 
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where kΛ  is the k -th row of Λ , ia  denotes the i -th element 

of A , and we have 
1

n
i is ss

a yκ
=

= ∑ .  

When kl  approaches zero, the GP becomes overfitted in that 
dimension, indicating a rapid change in the posterior mean.  

When kl  approaches infinity, 2
kl
−  will obviously approach 

zero. ,ij kκ  will also approach zero irrespective of the difference 
between two input features. Note that the logarithm of ijκ  can 
be written as the sum of m  components,  

 2 2
, ,

1

1lo (g )
2

m

ij s i s j s
s

l x xκ −

=

−= − ∑ . (41) 

Hence, the upper bound of ijκ  is 1. Accordingly, the value of 

ia  will not exceed 
1

n
ss

y
=∑ . Thus, we can conclude that 

* *lim / 0
k kl M x→+∞ ∂ =∂ . It can be inferred that as kl  becomes 

larger, the importance of the corresponding feature will decline. 
 
 
 

 

(a) With one demand-side features: occupancy 

 

(b) With four demand-side features: occupancy, small-sized vehicle ratio, 
Wiedemann 74 average standstill distance, Wiedemann 74 additive factor of 

desired safety distance 

 

(c) With all candidate demand-side features 
Fig. A1.  Changes in CV performance against different noise constant 
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