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EXTENDED MEAN FIELD GAMES WITH SINGULAR CONTROLS*

GUANXING FU\dagger 

Abstract. This paper establishes the existence of equilibria result of a class of mean field games
with singular controls. The interaction takes place through both states and controls. A relaxed
solution approach is used. To circumvent the tightness issue, we prove the existence of equilibria
by first considering the corresponding mean field games with continuous controls instead of singular
controls and then taking approximation.

Key words. mean field game, singular control, relaxed control, Skorokhod M1 topology
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1. Introduction. Mean field games (MFGs), introduced by [38] and [43], pro-
vide a powerful tool to study approximate Nash equilibria in symmetric large popula-
tion games, where the interaction only takes place in the empirical distribution of all
players' states or strategies. The methodology is to first approximate the empirical
distribution by an exogenously given distribution, and to consider the standard op-
timization problem of a representative player, and then to search for the fixed point
such that the distribution of the representative player's optimal state or strategy is
identical to the given one; for details, we refer to the monograph [15]. Until now,
most works have studied MFGs with absolutely continuous strategies (regular con-
trols) and there are limited results on MFGs with singular controls. Among them,
MFGs with singular controls were first studied in [27], where the existence of equilib-
ria result for a class of MFGs was established using a relaxed solution approach. By
studying the quasi-variational inequalities, [13] and [35] characterized the equilibria
of MFGs with singular controls in infinite horizons. [37] examined a class of mean
field type games with singular controls by the maximum principle approach. The
recent work [10] considered an MFG with finite fuel arising in goodwill problems. By
using the connection with optimal stopping problems, [10] obtained the equilibrium
iteratively. In all these papers, the interaction takes place only through states. In our
paper, motivated by the optimal portfolio liquidation problem and optimal exploita-
tion of an exhaustible resource (see section 2), we introduce a novel class of extended
MFGs with singular controls where the interaction takes place through both states
and actions,
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286 GUANXING FU

\left\{                 

1. For fixed probability measures \mu := (\mu (1), \mu (2), \mu (3), \mu 4, \mu (5)) in some suitable
space, solve the optimization problem : minimize J(u,Z(1),Z(2);\mu ) such that

dX
(i)
t = b(i)(t,X

(i)
t , \mu 

(i)
t )dt+ d(\kappa (i)\mu 

(i)
t + \eta (i)Z

(i)
t ) + \sigma (i)(t)dW

(i)
t , i= 1,2, and

dX
(3)
t = b(3)(t,X

(3)
t , ut)dt+ \alpha (1)dZ

(1)
t  - \alpha (2)dZ

(2)
t + l(t, ut) \widetilde N (dt).

2. Search for the fixed point \mu = (\scrL (Z(1)),\scrL (Z(2)),\scrL (X(1)),\scrL (X(2)),\scrL (X(3))),
where Z(1),Z(2) and X(1),X(2),X(3) are the optimal controls and states from 1,

(1.1)

where the cost functional follows

J(u,Z(1),Z(2);\mu )

=\BbbE 

\Biggl[ \int T

0

2\sum 
i=1

h(X(i)
s ) \cdot d(\kappa (i)\mu (i)

s + \eta (i)Z(i)
s )c

+
\sum 2

i=1

\sum 
0\leq t\leq T

\sum d
j=1

\int \Delta X
(i)
j,t

0

hj(X
(i)
j,t - + x)dx

+

\int T

0

f(t,X
(1)
t ,X

(2)
t ,X

(3)
t , \mu t, ut)dt+ g(X

(1)
T ,X

(2)
T ,X

(3)
T , \mu T )

\Biggr] 
.

(1.2)

In (1.1) and (1.2), \widetilde N is a compensated Poisson process with intensity function \lambda ,
W (1) and W (2) are two Brownian motions defined on some probability space, u is the
regular control, Z(1) and Z(2) are singular controls, whose trajectories are c\`adl\`ag and
nondecreasing, Xc stands for the continuous part of X, \Delta Xt is the jump of X at t,
\mu (i) is the first moment of \mu (i), i= 1,2, and \scrL (\cdot ) is the law of \cdot .

Differently from standard MFGs, where the interaction is only through the states,
the interaction in (1.1) takes place not only through the states X(1), X(2), and X(3),
but also through the singular controls Z(1) and Z(2). Extended MFGs were analyzed
in [17, 32] by using probabilistic and analytical approaches, respectively. We apply
the relaxed solution method (probabilistic compactification method)1 to establish the
existence of equilibria result. The relaxed solution method was first applied to MFGs
in [40]. Later it was used to prove existence of equilibria for MFGs with controlled
jumps [5, 6], MFGs with absorptions where the interaction takes place through the
empirical distribution of players remaining in the game [11] and through both sur-
viving players and past absorptions [12], MFGs with common noise [16], MFGs with
finite states [20], and MFGs with singular controls [27]. The idea is to work with
Berge's maximum theorem together with the Kakutani--Fan--Glicksberg fixed point
theorem: first, establish the closed graph property of the representative player's best
response correspondence to a given \mu by the former theorem, and then use the latter
theorem to prove the best response correspondence admits a fixed point, which turns
out to be a solution to the MFG; for details, one can refer to the lecture notes [42].

The MFG with Poisson jumps while without singular controls was studied in [6].
However, the existence of singular controls makes our problem essentially different
from [6]. In particular, the Skorokhod J1 topology used in [6] does not work for
(1.1). Motivated by [27] (one-dimensional case) and [28] (multidimensional case),
we work with the Skorokhod M1 topology, which is weaker than J1 and stronger
than the widely used Meyer--Zheng topology (see, e.g., [23, 44], where Meyer--Zheng
topology was used to approximate controls of finite variations by Lipschitz continuous
controls when studying stochastic games/controls of singular type), because (1) the

1The relaxed solution method we apply is in the sense of [40], which is different from [8].
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EXTENDED MFGs WITH SINGULAR CONTROLS 287

set of bounded monotone functions is compact in the M1 topology but not in the J1
topology; (2) the M1 topology allows for convergence of functions with unmatched
jumps; (3)M1 topology is metrizable with explicit metric while the metric for Meyer--
Zheng topology is not explicit. Thus, one cannot bound the value of a trajectory at
each time point by the corresponding metric. These three properties are essential to
prove the existence of equilibria result of (1.1). Loosely speaking, there are two M1

topologies, the strong one and the weak one. They coincide with each other for one-
dimensional paths, which are the usual objectives in the literature; see [4, 22, 27, 45],
among others. For multidimensional paths the weak M1 topology has an advantage
over the strong M1 topology since the oscillation function for weak M1 is always 0
for monotone paths; see [2, 21, 28]. So in this paper, by M1 topology we always
mean the weak M1 topology unless otherwise stated. For the detailed definition and
properties of weak M1 topology, we refer to the book [47, Chapter 12]; see also the
recent interesting work [21, section 3] for a summary, where Cohen highlighted the
advantange of M1 topology over J1 topology by proving the existence of optimal
controls for a class of singular control problems with state and control constraint by
a simpler proof than [9].

Due to the c\`adl\`ag regularity of singular controls, the relaxed solution method,
which might not work for extended MFGs with regular controls as in [17], still works
for (1.1). Consequently, the states in (1.1) are allowed to be degenerate. The prop-
erty of degeneracy is important in applications; see section 2 and [10]. Although
in [27] we solved the MFGs with singular controls with a relaxed solution method,
singular controls enter (1.1) in a different way from [27]. In [27] singular controls
enter the game through the form of

\int \cdot 
0
cs dZs, whether in the state or in the cost.

Since
\int \cdot 
0
cs dZs =

\int \cdot 
0
c+s dZs  - 

\int \cdot 
0
c - s dZs and c+c - \equiv 0, simultaneous jumps never oc-

cur. However, Z(1) and  - Z(2) in (1.1) may jump at the same time and in different
directions. Such a feature does not appear in [27]. One difficulty of our paper comes
from the possible simultaneous jumps in different directions. It is well acknowledged
that the Skorokhod space endowed with the M1 topology is not a vector space, in the
sense that if xn \rightarrow x and yn \rightarrow y in the M1 topology, it is not necessarily true that
xn+yn\rightarrow x+y in the M1 topology. One possible condition to make it true is x and y
do not admit simultaneous jumps in different directions, i.e., \Delta xt\Delta yt \geq 0. However,
this is not our case because of the simultaneous jumps in different directions of singu-
lar controls and the Poisson integral, which make it difficult to establish convergence
and relative compactness results under the M1 topology. To overcome this difficulty,
we follow a two-step strategy: in step 1, instead of considering Z(1) and Z(2) we con-
sider their continuous counterparts k

\int \cdot 
\cdot  - 1/k

Z
(1)
s ds and k

\int \cdot 
\cdot  - 1/k

Z
(2)
s ds. The resulting

MFG indexed by k has only one jump process, the Poisson process, and hence it can
be analyzed by using theM1 topology. Although in this step the J1 topology works as
well, we prefer to proceed with the M1 topology because the approximation in step 2
requires the use of the M1 topology, in which we show that the sequence of equilibria
indexed by k from step 1 helps construct an equilibrium of (1.1) by approximation.
The approximation from step 1 to step 2 holds only under the M1 but not the J1
topology as the M1 topology allows convergence of unmatched jumps. Note that the
approximant k

\int \cdot 
\cdot  - 1/k

Zs ds was also used in [27], where we established a relationship
between MFGs with singular controls and MFGs with regular controls. Even so, our
paper is not an immediate generalization from [27]. First, the approximating sequence
in [27] was proved to be relatively compact, while in the current paper the approxi-
mating sequence associated with X(3) can never be expected to be relatively compact,
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288 GUANXING FU

because of the simultaneous jumps of singular controls in different directions. Instead
of struggling with the relative compactness issue of X(3), we search for a candidate of
Nash equilibrium by construction through nested transformation of probability spaces;
see section 4.2. Second, in [27], we assumed processes did not admit jumps at the ter-
minal time T . In the current paper we drop this assumption by considering a slightly
different MFG on a possibly larger horizon in step 1 and assume the coefficients to
be trivially extended to this larger horizon in step 2. Here we should emphasize that
the trick of enlargement of the time horizon and trivial extension of the coefficients
does not reduce the generality of our problem at all. We prove this point by showing
the limit in step 2 is supported on the original space and the martingale property
is satisfied; see Lemma 4.8. In addition to the simultaneous jumps, we complement
the MFG literature by introducing and solving a new MFG with singular controls
where the interaction takes place through strategies. The strategic interaction makes
the problem with general singular controls difficult, even if the interaction only takes
place through the first moment. In order to get the relative compactness result with
general singular controls, we need a uniform bound of the sequence of laws obtained
from section 4. We achieve the goal by doing a fine estimate of the upper bound and
the lower bound of the state and the cost; see Lemma 5.1.

The remainder is organized as follows. We introduce two motivating examples
in section 2. In section 3 we introduce the model setup and two main results: the
existence of equilibria result of (1.1) with finite fuel, and the existence of equilibria
result of (1.1) with general singular controls under additional coercive assumptions of
the coefficients. The proofs are given in sections 4 and 5, respectively.

2. Motivation. Game theory is the study of mathematical models of strategic
interactions among rational players. In this section, we introduce two examples of
MFGs with strategic interaction, which motivate our study of the general MFG (1.1).

2.1. Optimal portfolio liquidation. In classic liquidation models, a large
trader would like to unwind her open position by submitting market orders in blocked
shape into the order book. Due to the limited liquidity, the large orders would move
the order book in an unfavorable direction, making the immediate execution costly.
However, slow trading may result in high inventory risk due to market uncertainty.
Thus, the trader needs to make a decision of the trading rate in order to minimize her
trading cost (or maximize her net profit). One can refer to [4, 36] among others for
liquidation with singular controls. Recently, liquidation models beyond single player,
especially MFGs of optimal liquidation, have drawn a lot of attention (see, e.g., [14,
18, 19, 26, 29, 31, 39]), the common nature of which is that the trading price is influ-
enced not only by the individual trader's strategy but also by the aggregation of the
competitors' strategies.

So far the literature on MFGs of optimal liquidation has been focused on abso-
lutely continuous strategies. However, in, e.g., the cryptocurrency market, an initial
block-shaped execution is often observed, and absolutely continuous strategies are not
appropriate to model such phenomenon. In the first example, we introduce a model
of optimal portfolio liquidation with singular controls, which is a variant of [36]. In-
stead of describing the trading price, it is more convenient to consider the spread
directly. Following [36], we assume the buy spread X(1) and the sell spread X(2) of a
representative player follow the dynamics

X
(i)
t = \chi (i)  - 

\int t

0

\rho (i)X(i)
s ds+ \kappa (i)\nu 

(i)
t + \eta (i)Z

(i)
t +

\int t

0

\sigma (i)(s)dW (i)
s , i= 1,2.(2.1)
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EXTENDED MFGs WITH SINGULAR CONTROLS 289

Here, Z(1) and Z(2) are the accumulative market buy and sell orders until time
t, respectively, and \nu (1) and \nu (2) are the aggregated (mean field) market buy and sell
orders of competitors. It reflects the fact that market dynamics is the aggregation of
other market participants. We assume players trade different stocks and the aggre-
gation of strategies influences the representative player's spread through a spillover
effect. \rho (1) and \rho (2) describe the resilience of the order book. In addition to sub-
mitting market orders in the traditional venue, the representative player also submits
passive orders into the dark pool, where the execution cost is smaller than that in
the traditional venue. However, the execution is uncertain. The execution times are
described by a Poisson process N ; the occurrence of jumps of N corresponds to the
occurrence of order executions. Thus, the current position X(3) follows

(2.2) X
(3)
t = \chi (3) +Z

(1)
t  - Z(2)

t +

\int t

0

us dNs,

where \chi (3) is the initial position of the representative player and u is the net amount
of passive orders submitted into the dark pool.

By using strategies Z(1) and Z(2), following [36] the liquidity cost together with

the cost crossing the spread is
\int T

0
(X

(1)
s - + 1

2\Delta (\kappa (1)\nu 
(1)
s + \eta (1)Z

(1)
s ))dZ

(1)
s +

\int T

0
(X

(2)
s - +

1
2\Delta (\kappa (2)\nu 

(2)
s +\eta (2)Z

(2)
s ))dZ

(2)
s , and the cost of spillover effect is assumed to be \kappa (1)

\eta (1)

\int T

0

(X
(1)
s - + 1

2\Delta (\kappa (1)\nu 
(1)
s + \eta (1)Z

(1)
s ))d\nu 

(1)
s + \kappa (2)

\eta (2)

\int T

0
(X

(2)
s - + 1

2\Delta (\kappa (2)\nu 
(2)
s + \eta (2)Z

(2)
s ))d\nu 

(2)
s .

The ratio coefficients \kappa (1)/\eta (1) and \kappa (2)/\eta (2), coming from the dynamics of the spreads,
reflect the weight of influence between the aggregation and the individual strategy.
The cost to minimize is given by

\BbbE 

\Biggl[ \int T

0

\biggl( 
X

(1)
s - +

1

2
\Delta (\kappa (1)\nu (1)s + \eta (1)Z(1)

s )

\biggr) 
d(\kappa (1)\nu (1)s + \eta (1)Z(1)

s )

+

\int T

0

\biggl( 
X

(2)
s - +

1

2
\Delta (\kappa (2)\nu (2)s +\eta (2)Z(2)

s )

\biggr) 
d(\kappa (2)\nu (2)s +\eta (2)Z(2)

s )+

\int T

0

(X(1)
s  - S(1)

s )2 ds

+

\int T

0

(X(2)
s  - S(2)

s )2 ds+
\int T

0
\lambda s(X

(3)
s )2 ds+

\int T

0

\gamma sus ds+ \varrho (X
(3)
T )2

\Biggr] 
.

(2.3)

The quadratic terms
\int T

0
\lambda s(X

(3)
s )2 ds and \varrho (X

(3)
T )2 are inventory penalization,

the term
\int T

0
\gamma sus ds is the cost arising from adverse selection, and the two terms\int T

0
(X

(i)
s  - S(i)

s )2 ds (i = 1,2) are the penalization of deviation from the price signals
S(i) (i= 1,2), which are assumed to be deterministic and c\`adl\`ag. The tracking of the
price signals S(i) (i = 1,2) reflects the investor's anticipation of the market. When
tracking the c\`adl\`ag signals, intermediate and simultaneous jumps of X(i) (i =1,2) and
thus of Z(i) (i=1,2) may happen. The goal is to find an equlibrium of the following
MFG, which is a special case of (1.1):\left\{   
1. Fix (\nu (1), \nu (2)) in some suitable space and minimize (2.3) subject to (2.1)-(2.2);
2. Search for the fixed point (\nu (1), \nu (2)) = (\BbbE [Z(1)],\BbbE [Z(2)]),

where Z(1) and Z(2) are the best response to (\nu (1), \nu (2)) in 1.

2.2. Optimal exploitation of exhaustible resources. In the second exam-
ple, we consider an MFG of optimal exploitation of exhaustible resource. A model
with infinite horizon and without game nature was introduced in [24], where Fer-
rari and Koch studied a single player's optimal extraction problem by solving a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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290 GUANXING FU

two-dimensional degenerate singular control problem with finite fuel via a combination
of calculus of variation established in [3] and the standard approach. We introduce
a model among infinite players with mean field interaction and finite horizon. In the
model, each player is endowed with a limited amount of an exhaustible resource, such
as earth minerals, metal ores, and fossil fuels, to exploit for sale.

Let Xt be the reservoir of the resource at time t, and let Zt be the accumulative
amount of exploitation until time t. Thus,

(2.4) Xt = x - Zt,

where x is the initial reservior. One character of problems with exhaustible resource
is that Xt cannot be negative due to its economic meaning. One way to address this
issue is to add an absorption boundary at 0: the player drops out of the game once
Xt = 0; see [33]. Another way to address this issue is to incorporate singular controls
with finite fuels, i.e., Zt is assumed to be valued in [0, x] for each t.

The market price of the resource is determined by three parts. The first part
is generated from the market itself and noise traders. It is assumed to be a mean-
reverting process. When there is no exploitation activity, the price would recover to
the mean level. The second part comes from the player's sales. Once selling, the price
is moved in an undesirable direction due to illiquidity of the exhaustible resource.
The third part arises from an alternative resource. Any exploitation of an alternative
resource would make the price of the exhaustible resource decline. We assume the
price impact to be in a linear form. Hence, the actual market price of the exhaustible
resource follows dPt = (a - bPt)dt+ \sigma dWt  - \eta dZt  - \kappa d\nu t, where \nu is the aggregated
(mean field) exploitation of the alternative resource. The goal for the representative
player is to maximize the profit

(2.5) \BbbE 

\left[  \int T

0

Pt d(\eta Zt + \kappa \nu t)
c +

\sum 
0\leq t\leq T

\int \Delta (\eta Zt+\kappa \nu t)

0

(Pt -  - x)dx

\right]  ,
where (\eta Z + \kappa \nu )c is the continuous part of \eta Z + \kappa \nu . To maximize (2.5) is equivalent
to minimizing

(2.6) \BbbE 

\left[  \int T

0

P t d(\eta Zt + \kappa \mu t)
c +

\sum 
0\leq t\leq T

\int \Delta (\eta Zt+\kappa \nu t)

0

(P t - + x)dx

\right]  ,
where

(2.7) dP t = ( - a - bP t)dt - \sigma dWt + \eta dZt + \kappa d\nu t.

Therefore, the following MFG is a special case of (1.1):\biggl\{ 
1. Fix \nu in some suitable space and minimize (2.6) subject to (2.4) and (2.7);
2. Search for the fixed point \nu =\BbbE [Z], where Z is the optimal control from 1.

The analysis in our forthcoming paper [30] yields a characterization of the equi-
librium for a modified version of the MFG in section 2.1 without passive orders but
with random volatility \sigma and liquidation constraint. In this paper, we are motivated
by MFGs in section 2 to study a general class of MFGs (1.1).

3. Extended MFGs with singular controls.
Space and filtration. Throughout the paper, denote by \scrD ([0, T ];\BbbR d) the Sko-

rokhod space of all functions from [0, T ] to \BbbR d with c\`adl\`ag path, by \scrC ([0, T ];\BbbR d) \subset 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

8/
23

 to
 1

58
.1

32
.1

61
.2

11
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



EXTENDED MFGs WITH SINGULAR CONTROLS 291

\scrD ([0, T ];\BbbR d) the subset of all continuous functions, and by\scrA m([0, T ];\BbbR d)\subset \scrD ([0, T ];\BbbR d)
the subset of all nondecreasing functions with zT \leq m and m\in (0,\infty ], which is under-
stood in the componentwise sense zjT \leq m, j = 1, . . . , d. To incorporate the initial and
final jumps of elements in \scrD ([0, T ];\BbbR d), we identify trajectories on [0, T ] with ones on
the whole real line by the following trivially extended space:

\widetilde \scrD 0,T (\BbbR ;\BbbR d) := \{ x\in \scrD (\BbbR ;\BbbR d) : xt = 0 for t < 0 and xt = xT for t > T\} .

Correspondingly, we can define \widetilde \scrC 0,T (\BbbR ;\BbbR d) and \widetilde \scrA m
0,T (\BbbR ;\BbbR d). For any metric space

(S,\varrho ), denote by \scrM +(S;\varrho ) the set of all finite nonnegative measures on S and by
\scrP (S;\varrho )\subset \scrM +(S;\varrho ) the set of all probability measures on S and by \scrP p(S;\varrho ) the subset
of probability measures with finite pth moments. When the metric \varrho is clear from
the context, we write\scrM +(S), \scrP (S), and \scrP p(S) for short. Denote by \scrU ([0, T ]\times U)\subset 
\scrM +([0, T ]\times U) the set of all measures on [0, T ]\times U with the first marginal Lebesgue
measure on [0, T ] and the second marginal a probability measure on U , where U is
some metric space. Similarly, we identify \scrU ([0, T ]\times U) with \widetilde \scrU 0,T (\BbbR \times U), where\widetilde \scrU 0,T (\BbbR \times U) =

\bigl\{ 
q \in \scrU (\BbbR \times U) : 1( - \infty ,0)\times Uq(dt, du)

= \delta u0
(du)dt and 1(T,\infty )\times Uq(dt, du) = \delta uT

(du)dt
\bigr\} 

for some fixed u0, uT \in U . Each element q \in \widetilde \scrU 0,T (\BbbR \times U) admits the disintegration

q(dt, du) = qt(du)dt. When there is no confusion, we write \widetilde \scrD 0,T , \widetilde \scrC 0,T , \widetilde \scrA m
0,T , and\widetilde \scrU 0,T for simplicity. Let the canonical space be defined as the product space \Omega m :=\widetilde \scrD 0,T \times \widetilde \scrD 0,T \times \widetilde \scrD 0,T \times \widetilde \scrU 0,T \times \widetilde \scrA m

0,T \times \widetilde \scrA m
0,T , and let (X(1),X(2),X(3),Q,Z(1),Z(2)) be

the coordinate processes on \Omega m, i.e.,

X(1)(\omega ) = x(1),X(2)(\omega ) = x(2),X(3)(\omega ) = x(3),Q(\omega ) = q,Z(1)(\omega ) = z(1),Z(2)(\omega ) = z(2),

for each \omega = (x(1), x(2), x(3), q, z(1), z(2)) \in \Omega m. Note that by [27, section 2.1.2] and
[40, Lemma 3.2], Q can be identified by a predictable disintegration in the following
sense: Q(dt, du) = Qt(du)dt. The space \Omega m is equipped with the product \sigma -algebra

\scrF t = \scrF X(1)

t \times \scrF X(2)

t \times \scrF X(3)

t \times \scrF Q
t \times \scrF Z(1)

t \times \scrF Z(2)

t , where \scrF X(i)

t is the \sigma -algebra
generated by the \Pi system \{ \{ x \in \widetilde \scrD 0,T : (xt1 , . . . , xtn) \in A1 \times \cdot \cdot \cdot \times An\} | t1 \leq \cdot \cdot \cdot \leq 
tn \leq t,Aj \in \scrB (\BbbR d), n \in \BbbN \} , \scrF Z(i)

t is the \sigma -algebra generated by the \Pi system \{ \{ z \in \widetilde \scrA m
0,T : (zt1 , . . . , ztn) \in A1 \times \cdot \cdot \cdot \times An\} | t1 \leq \cdot \cdot \cdot \leq tn \leq t,Aj \in \scrB (\BbbR d), n \in \BbbN \} , and \scrF Q

t is

the \sigma -algebra generated by 1[0,t]Q, where Q is the coordinate projection from \widetilde \scrU 0,T to

itself, i.e., Q(q) = q for each q \in \widetilde \scrU 0,T .
Metric. Let | y| , \| x\| := max1\leq j\leq d | xj | , and | u| U be the norm of y \in \BbbR , x \in \BbbR d,

and u \in U , respectively. For x, y \in \BbbR d, denote by x \cdot y the inner product of x and
y. For each t, \| x\| t = sup0\leq s\leq t \| xs\| denotes the uniform norm of x \in \scrC ([0, t];\BbbR d)

(and thus of x\in \widetilde \scrC 0,t). Endow \widetilde \scrD 0,T and \widetilde \scrA m
0,T with Skorokhod weak M1 topology and

endow \scrP p(S;\varrho ) with Wasserstein metric \scrW p,(S,\varrho ). By Proposition A.1 in Appendix A

the spaces \widetilde \scrD 0,T and \widetilde \scrA m
0,T are Polish when endowed with the M1 topology. It is well

known that (\scrP p(S),\scrW p,(S,\varrho )) is Polish if (S,\varrho ) is Polish. Endowed with the following

metric induced by Wasserstein metric, \widetilde \scrU 0,T is Polish:

\widetilde \scrW p,[0,T ]\times U (q1, q2) =\scrW p,[0,T ]\times U

\Bigl( q1
T
,
q2
T

\Bigr) 
+

\infty \sum 
n=0

1

2n+1

\bigl( 
\scrW p,[T+n,T+n+1]\times U (q1, q2) +\scrW p,[ - (n+1), - n]\times U (q1, q2)

\bigr) 
.
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292 GUANXING FU

Convention. We use the convention that C is a generic constant which may vary
from line to line. For a stochastic process X by X \in \widetilde \scrD 0,T we mean X(\omega )\in \widetilde \scrD 0,T a.s.;
other analogous notation can be understood in the same way. Whenever we mention
W , \mu , Z, and X, we mean (W (1),W (2)), (\mu (1), \mu (2), \mu (3), \mu (4), \mu (5)), (Z(1),Z(2)), and
(X(1),X(2),X(3)), respectively, unless otherwise stated; the same convention holds for

other variants of (W,\mu ,Z,X) like (\widetilde W, \widetilde \mu , \widetilde Z, \widetilde X), (W k, \mu k,Zk,Xk), etc. Moreover, for
each \nu \in \scrP p( \widetilde \scrD 0,T ), put \nu t = \nu \circ \pi  - 1

t , where \pi t : x\in \widetilde \scrD 0,T \rightarrow xt and \nu :=
\int 
x\nu (dx).

We are ready to introduce the notion of relaxed controls.

Definition 3.1. A probability measure \BbbP on \Omega m is called a relaxed control with
respect to \mu \in \scrP p( \widetilde \scrA m

0,T )\times \scrP p( \widetilde \scrA m
0,T )\times \scrP p( \widetilde \scrD 0,T )\times \scrP p( \widetilde \scrD 0,T )\times \scrP p( \widetilde \scrD 0,T ) if

1. (X,Q,Z) are coordinate processes on the canonical space \Omega m;
2. there exists an adapted process Y \in \widetilde \scrD 0,T such that

(1) \BbbP 
\bigl( 
Y =X(3)  - \alpha (1)Z(1) + \alpha (2)Z(2)

\bigr) 
= 1,

(2) \scrM \phi ,X(1),Z(1),\mu (1)

and\scrM \phi ,X(2),Z(2),\mu (2)

are continuous \BbbP martingales for each
\phi \in \scrC 2b (\BbbR d;\BbbR ),

(3) \scrM \phi ,X(3),Y ,Q is a \BbbP martingale with c\`adl\`ag path for each \phi \in \scrC 2b (\BbbR d;\BbbR ),

where
\bullet \scrC 2b (\BbbR d;\BbbR ) is the space of all continuous and bounded functions from \BbbR d to \BbbR 

with continuous and bounded first- and second-order derivatives,
\bullet for t\in [0, T ] and i= 1,2

\scrM \phi ,X(i),Z(i),\mu (i)

t := \phi (X
(i)
t ) - 

\int t

0

\BbbL (i)\phi (s,X(i)
s )ds - 

\int t

0

\nabla \phi (X(i)
s ) \cdot d(\kappa (i)\mu (i)

s + \eta (i)Z(i)
s )

 - 
\sum 

0\leq s\leq t

(\phi (Xs) - \phi (Xs - ) - \nabla \phi (Xs - ) \cdot \Delta Xs)

with \BbbL (i)\phi (s,x) = b(i)(s,x,\mu (i)) \cdot \nabla \phi (x) + 1
2Tr(a

(i)(s)\Delta \phi (x)), a(i) = \sigma (i)(\sigma (i))\top ,

\bullet and for t \in [0, T ], \scrM \phi ,X(3),Y ,Q
t := \phi (Yt)  - 

\int t

0

\int 
U
\scrL \phi (s,X(3)

s - , Ys - , u)Qs(du)ds,
with \scrL \phi (s,x, y,u) :=\nabla \phi (y) \cdot b(3)(s,x,u) + (\phi (y+ l(s,u)) - \phi (y) - \nabla \phi (y) \cdot l(s,u))\lambda s.

Remark 3.2.

(1) In [27], the probability measure \BbbP defined on the canonical space is called a
control rule. Here we do not distinguish control rule and relaxed control since
there is no confusion.

(2) The definition of relaxed controls (control rules) is different from [27]. The
current definition can avoid considering the simultaneous jumps of singular
controls and the Poisson process in the definition of\scrM \phi ,X(3),Y,Q. Definition
3.1 is linked to the weak solution of SDEs given by the following proposition.
The proof is the same as [6, Lemma 2.1].

Proposition 3.3. The probability measure \BbbP on \Omega m is a relaxed control if and
only if there is an extension of (\Omega ,\scrF ,\{ \scrF t\} ,\BbbP ), (\widehat \Omega , \widehat \scrF ,\{ \widehat \scrF t\} ,\widehat \BbbP ), on which a tuple of

adapted stochastic processes ( \widehat X, \widehat Z, \widehat Q,\widehat W, \widehat N) is defined such that for all t\in [0, T ]2

(3.1) d \widehat X(i)
t = b(i)(t, \widehat X(i)

t , \mu 
(i)
t )dt+ d

\Bigl( 
\eta (i) \widehat Z(i)

t + \kappa (i)\mu 
(i)
t

\Bigr) 
+\sigma (i)(t)d\widehat W (i)

t , i= 1,2, and

2Note that the time horizon [0, T ] only depends on the horizon of the corresponding martingale
problem. In section 4 the horizon of the martingale problem is enlarged to [0, T + 1], thus so is the
horizon of the weak solution of SDEs.
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EXTENDED MFGs WITH SINGULAR CONTROLS 293

(3.2)

d \widehat X(3)
t =

\int 
U

b(3)(t, \widehat X(3)
t , u) \widehat Q(dt, du) + \alpha (1) d \widehat Z(1)

t  - \alpha (2) d \widehat Z(2)
t +

\int 
U

l(t, u)
\widetilde \widehat N (dt, du),

where \widehat W (1) and \widehat W (2) are two Brownian motions, and
\widetilde \widehat N is a compensated Poisson

random measure with intensity \lambda t \widehat Q(dt, du). Moreover, two tuples are related by \BbbP \circ 
(X,Q,Z) - 1 = \widehat \BbbP \circ ( \widehat X, \widehat Q, \widehat Z) - 1.

Given \mu \in \scrP p( \widetilde \scrA m
0,T ) \times \scrP p( \widetilde \scrA m

0,T ) \times \scrP p( \widetilde \scrD 0,T ) \times \scrP p( \widetilde \scrD 0,T ) \times \scrP p( \widetilde \scrD 0,T ), the set of
relaxed controls associated with \mu is denoted by \scrR m(\mu ), and the cost associated with
a relaxed control \BbbP \in \scrR m(\mu ) is given by

J(\BbbP ;\mu ) =\BbbE \BbbP 

\Biggl[ 
2\sum 

i=1

\int T

0

h(X(i)
s ) \cdot d(\kappa (i)\mu (i)

s + \eta (i)Z(i)
s )c

+

2\sum 
i=1

\sum 
0\leq t\leq T

d\sum 
j=1

\int \Delta X
(i)
j,t

0

hj(X
(i)
j,t - + x)dx

+

\int T

0

\int 
U

f(t,Xt, \mu t, ut)Qt(du)dt+ g(XT , \mu T )

\Biggr] 
.(3.3)

The set of optimal relaxed controls associated with \mu is denoted by \scrR m,\ast (\mu ) :=
argmin\BbbP \in \scrR m(\mu )J(\BbbP ;\mu ). Based on the notion of relaxed controls, we introduce the defi-
nition of relaxed solutions to MFGs. If a probability measure \BbbP satisfies the fixed point
property \BbbP \in \scrR m,\ast (\BbbP \circ (Z(1)) - 1,\BbbP \circ (Z(2)) - 1,\BbbP \circ (X(1)) - 1,\BbbP \circ (X(2)) - 1,\BbbP \circ (X(3)) - 1),
then we call \BbbP or the associated tuple (\Omega m,\scrF ,\{ \scrF t\} ,\BbbP ,X,Q,Z) a relaxed solution
to the MFG with singular controls (1.1). Moreover, if \BbbP \in \scrR m,\ast (\BbbP \circ (Z(1)) - 1,\BbbP \circ 
(Z(2)) - 1,\BbbP \circ (X(1)) - 1,\BbbP \circ (X(2)) - 1,\BbbP \circ (X(3)) - 1) and \BbbP (Q(dt, du) = \delta \~ut(du)dt) = 1
for some progressively measurable process \~u, then we call \BbbP or the associated tuple
(\Omega m,\scrF ,\{ \scrF t\} ,\BbbP ,X, \=u,Z) a strict solution.

To guarantee the existence of a relaxed solution to (1.1), we make the following
assumptions.

\scrA 1. The \BbbR d valued functions b(1), b(2), and b(3) are measurable in t \in [0, T ] and
there exists a positive constant C1 such that \| b(1)(t, x, \nu )\| + \| b(2)(t, x, \nu )\| \leq 
C1(1 + \| x\| + \scrW p(\nu , \delta 0)), \| b(3)(t, x,u)\| \leq C1(1 + \| x\| ), and \| b(1)(t, x, \nu )  - 
b(1)(t, y, \nu )\| +\| b(2)(t, x, \nu ) - b(2)(t, y, \nu )\| +\| b(3)(t, x,u) - b(3)(t, y, u)\| \leq C1\| x - 
y\| for any (t, x, y, u, \nu ) \in [0, T ] \times \BbbR d \times \BbbR d \times U \times \scrP p(\BbbR d). Moreover, b(3) is
continuous in u.

\scrA 2. The function f is measurable in t \in [0, T ] and continuous with respect to
(x, \nu ,u)\in (\BbbR d)3\times (\scrP p(\BbbR d))5\times U . g is continuous in (x, \nu )\in (\BbbR d)3\times (\scrP p(\BbbR d))5.
h(y) := (h1(y1), . . . , hd(yd)) for each y \in \BbbR d and each hi \in \scrC 1(\BbbR ), the space of
continuous functions on \BbbR with continuous derivatives.

\scrA 3. For p\geq 1, there exists a positive constant C2 such that for each (t, x, y, \nu ,u)\in 
[0, T ]\times (\BbbR d)3 \times \BbbR \times (\scrP p(\BbbR d))5 \times U

| hi(y)| + | h\prime i(y)| \leq C2

\bigl( 
1 + | y| p - 1

\bigr) 
, i= 1, . . . , d,

| g(x, \nu )| \leq C2

\bigl( 
1 + \| x\| p+\scrW p

p (\nu , \delta 0)
\bigr) 
and | f(t, x, \nu , u)| \leq C2

\bigl( 
1+\| x\| p+\scrW p

p (\nu , \delta 0)
\bigr) 
,

where \scrW p(\nu , \delta 0) := (
\sum 5

i=1\scrW p
p (\nu 

(i), \delta 0))
1
p .
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294 GUANXING FU

\scrA 4. (\alpha 
(1), \alpha (2), \kappa (1), \kappa (2), \eta (1), \eta (2))\in \BbbR 6. (\sigma (1), \sigma (2)) : [0, T ]\rightarrow \BbbR d\times \BbbR d are bounded

and measurable. Denote a(1) = \sigma (1)(\sigma (1))\top and a(2) = \sigma (2)(\sigma (2))\top . \lambda : [0, T ]\rightarrow 
(0,\infty ) are measurable and bounded. l is a bounded and measurable function
on [0, T ]\times U and continuous in u. \kappa (i)\eta (i) \geq 0, i= 1,2.

\scrA 5. The functions b
(1), b(2), and f are locally Lipschitz continuous with measures

uniformly in other arguments, i.e., there exists C3 > 0 such that for each

(t, x, y,u) \in [0, T ]\times (\BbbR d)3 \times \BbbR d \times U , \nu 1, \nu 2 \in (\scrP p(\BbbR d))5, and \nu 1
\prime 
, \nu 2

\prime 
\in \scrP p(\BbbR )

there holds that

| f(t, x, \nu 1, u) - f(t, x, \nu 2, u)| \leq C3

\Bigl( 
1 +L(\scrW p(\nu 

1, \delta 0),\scrW p(\nu 
2, \delta 0))

\Bigr) 
\scrW p(\nu 

1, \nu 2),

(3.4)

| b(i)(t, y, \nu 1
\prime 
) - b(i)(t, y, \nu 2

\prime 
)| \leq C3

\Bigl( 
1 +L(\scrW p(\nu 

1
\prime 
, \delta 0),\scrW p(\nu 

2
\prime 
, \delta 0))

\Bigr) 
\scrW p(\nu 

1
\prime 
, \nu 2

\prime 
),

where L(\scrW p(\ast , \delta 0),\scrW p(\ast \ast , \delta 0)) is locally bounded with \scrW p(\ast , \delta 0) and
\scrW p(\ast \ast , \delta 0).

\scrA 6. U is a compact metrizable space.
The following two theorems are our two main results. The proofs of them are

given in sections 4 and 5, respectively.

Theorem 3.4 (existence with finite fuel constraint). Under assumptions \scrA 1--
\scrA 6, there exists a relaxed solution to MFGs with singular controls (1.1) for each
0<m<\infty .

Theorem 3.5 (existence with general singular controls). In addition to assump-
tions \scrA 1--\scrA 6, we assume the following assumption \scrA 7 holds.

\scrA 7. For i= 1,2, \eta (i) = 0 if and only if \alpha (i) = 0. For p\geq 2, there exists a positive
constant C4 such that the following coercive conditions hold for i = 1,2,
j = 1, . . . , d, \^x \in \BbbR , x \in \BbbR d, \~x \in (\BbbR d)3, \nu \in \scrP p(\BbbR d), \~\nu \in (\scrP p(\BbbR d))5 , and u \in U :

\left\{             
 - C4(1 - | \^x| p)\leq 

\int \^x

0
hj(r)dr\leq C4(1 + | \^x| p),

 - C4(1 - | xj |  - \scrW p(\nu , \delta 0))\leq b(i)j (t, x, \nu )\leq C4(1 + | xj | +\scrW p(\nu , \delta 0)),

 - C4(1 - \| x\| p  - \scrW p
p (\nu , \delta 0))\leq  - h(x) \cdot b(i)(t, x, \nu )\leq C4(1 + \| x\| p +\scrW p

p (\nu , \delta 0)),
 - C4(1 - \| \~x\| p  - \scrW p

p (\~\nu , \delta 0))\leq g(\~x, \~\nu )\leq C4(1 + \| \~x\| p +\scrW p
p (\~\nu , \delta 0)),

 - C4(1 - \| \~x\| p  - \scrW p
p (\~\nu , \delta 0))\leq f(t, \~x, \~\nu ,u)\leq C4

\bigl( 
1 + \| \~x\| p +\scrW p

p (\~\nu , \delta 0)
\bigr) 
.

(3.5)

Moreover, for some 1 < \=p < p, the continuity of the coefficients with the
measure is in \scrW \=p:

(3.6)\left\{         
g(xn, \nu n)\rightarrow g(x, \nu ) if xn\rightarrow x and \nu n\rightarrow \nu in \scrW \=p,

| f(t, x, \nu 1, u) - f(t, x, \nu 2, u)| \leq C3

\Bigl( 
1 +L(\scrW p(\nu 

1, \delta 0),\scrW p(\nu 
2, \delta 0))

\Bigr) 
\scrW \=p(\nu 

1, \nu 2),

| b(i)(t, y, \nu 1
\prime 
) - b(i)(t, y, \nu 2

\prime 
)| \leq C3

\Bigl( 
1 +L(\scrW p(\nu 

1
\prime 
, \delta 0),\scrW p(\nu 

2
\prime 
, \delta 0))

\Bigr) 
\scrW \=p(\nu 

1
\prime 
, \nu 2

\prime 
).

Then there exists a relaxed solution to (1.1) when m=\infty .

Remark 3.6. (1) Examples in section 2 satisfy assumptions \scrA 1--\scrA 7.
(2) By [27, Remark 2.8], an additional convexity assumption implies that a strict

solution to MFGs can be constructed from a relaxed solution.
(3) In Theorems 3.4 and 3.5 we consider all processes starting from 0 for simplicity.

The extension to general and different initial values is straightforward. However, there
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EXTENDED MFGs WITH SINGULAR CONTROLS 295

is one generalization our analysis cannot address: neither \alpha (i) nor \eta (i) is allowed to
depend on the state, control, or measure, unless our model (1.1) is modified. The rea-
son is the possible simultaneous jumps of the intergrand and the differential function.
For example, if Zn\rightarrow Z in M1, generally it is not true that

\int \cdot 
0
Zn
s dZ

n
s \rightarrow 

\int \cdot 
0
Zs dZs.

(4) It can be proved that the relaxed solution obtained in Theorem 3.5 can be used
to construct an approximate equilibrium of an N -player game. It is worth noting that
we do not distinguish regular controls and singular controls in discrete time models.
For this reason, MFGs in discrete time can be viewed as MFGs with singular controls.
Regarding the problem of approximate equilibria of N -player games in discrete time,
we may refer to, e.g., [34, 46], among many others. However, it is difficult to prove
the reverse convergence; refer to [25, 41] for the weak convergence without singular
controls. For the convergence from N -player games to MFGs with singular controls,
the only result to our knowledge is [35], where the (strong) convergence of value
functions was obtained by the explicit solution of the N -player game. For the general
characterization of the weak convergence, it is open in the literature. We plan to
study it in an independent work, together with the (well-established) approximate
relaxed Nash equilibrium result.

4. Existence of equilibria with finite fuel constraint. In this section (sec-
tions 4.1 and 4.2), we prove the existence of a relaxed solution to MFGs under a finite
fuel constraint, i.e., Theorem 3.4. That is, in this section the space of admissible
singular controls is \widetilde \scrA m

0,T := \{ z \in \widetilde \scrA 0,T : \| zT \| \leq m\} for some m \in (0,\infty ). By [47,

Theorem 12.12.2], the set \widetilde \scrA m
0,T is ( \widetilde \scrD 0,T ,M1) compact.

As mentioned in the introduction, due to the possible simultaneous jumps of
Z(1), Z(2) and the Poisson process, it is difficult to show the tightness of X(3). We
circumvent the problem by splitting the proof of Theorem 3.4 into two parts. In
section 4.1 we prove the existence of equilibria by smoothing the singular controls
Z(1) and Z(2). Thus, the tightness of X(3) can be obtained in section 4.1. The
general case is considered in section 4.2 using an approximation argument. Note that
the tightness of X(3) is necessary in section 4.1, while we do not need it in section
4.2.

Precisely, in section 4.1, instead of singular control Z we consider its continuous
counterpart Z

[k]
t := k

\int t

t - 1/k
Zs ds. Since T +1 is definitely a continuous point of Z(i),

by [47, Theorem 12.9.3(ii)], it holds that Z(i),[k]\rightarrow Z(i) in ( \widetilde \scrA 0,T+1,M1), i= 1,2, which

is not necessarily true in ( \widetilde \scrA m
0,T ,M1) since T might be a discontinuous time point of

Z(i). Therefore, in section 4.1 the canonical space is chosen as

\Omega m,o := \widetilde \scrD 0,T+1 \times \widetilde \scrD 0,T+1 \times \widetilde \scrD 0,T+1 \times \widetilde \scrU 0,T \times \widetilde \scrA m
0,T \times \widetilde \scrA m

0,T .

Let Xo be the coordinate projection onto \widetilde \scrD 0,T+1\times \widetilde \scrD 0,T+1\times \widetilde \scrD 0,T+1 and (\scrF o
t ) be the

canonical filtration on \Omega o. Correspondingly, we extend the time-domain of coefficients
from [0, T ] to [0, T + 1], i.e., let \widetilde \gamma satisfy the same assumptions as \scrA 1--\scrA 6 with [0, T ]
replaced by [0, T + 1] such that

(4.1) \widetilde \gamma (t, \cdot ) = \gamma (t, \cdot ) on t\in [0, T ],

where \widetilde \gamma = \widetilde b(1),\widetilde b(2),\widetilde b(3),\widetilde \sigma (1),\widetilde \sigma (2),\widetilde \lambda ,\widetilde l and \gamma = b(1), b(2), b(3), \sigma (1), \sigma (2), \lambda , l. In section
4.1 we consider the MFG with \widetilde \gamma . But for simplicity, we use the notation \gamma instead
of \widetilde \gamma . Moreover, in section 4.1, we consider terminal cost g(Xo

T+1, \mu T+1) instead of
g(XT , \mu T ); see section 4.1 for details.
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296 GUANXING FU

In order to make MFG in section 4.1 converge to the original MFG (1.1), in
section 4.2 we make a further assumption that the coefficients are trivially extended
from [0, T ] to [0, T + 1], i.e.,

(4.2) \widetilde \gamma (t, \cdot ) = \gamma (t)\gamma (t, \cdot ),

where \gamma (t) = 1 when 0 \leq t \leq T and \gamma (t) = 0 elsewhere. In particular, (4.2) implies
(4.1). Again, to simplify the notation, we identify \widetilde \gamma with \gamma in section 4.2.

4.1. Existence of equilibria with \bfitZ [k]. In this part, we replace Z by Z [k].
Due to the continuity of Z [k], the corresponding MFG becomes
(4.3)\left\{                                                       

1.For fixed \mu \in 
\Bigl( 
\scrP p( \widetilde \scrA m,c

0,T+1)
\Bigr) 2
\times 
\Bigl( 
\scrP p( \widetilde \scrD 0,T+1)

\Bigr) 3
, minimize J(Z [k];\mu )

=\BbbE 

\left[  \sum 
i=1,2

\int T+1

0

h(X(i)
s ) \cdot d(\kappa (i)\mu (i)

s + \eta (i)Z(i),[k]
s )

+

\int T

0

f(t,Xt, \mu t, ut)dt+ g(XT+1, \mu T+1)

\Biggr] 
, such that for t\in [0, T + 1]

X
(i)
t =

\int t

0

b(i)(s,X(i)
s , \mu (i)

s )ds+ \kappa (i)\mu 
(i)
t + \eta (i)Z

(i),[k]
t +

\int t

0

\sigma (i)
s dW (i)

s , i= 1,2,

X
(3)
t =

\int t

0

b(3)(s,X(3)
s , us)ds+ \alpha (1)Z

(1),[k]
t  - \alpha (2)Z

(2),[k]
t +

\int t

0

l(s,us) \widetilde N(ds).

2.Let Z and X be the optimal control and state from 1 and search for the fixed

point

\mu = (\BbbP \circ (Z(1),[k]) - 1,\BbbP \circ (Z(2),[k]) - 1,\BbbP \circ (X(1)) - 1,\BbbP \circ (X(2)) - 1,\BbbP \circ (X(3)) - 1).

Here \widetilde \scrA m,c
0,T+1 is the set of all elements in \widetilde \scrA m

0,T+1 with continuous trajectories. Denote

by\scrR m,[k](\mu ) and\scrR m,[k],\ast (\mu ) the set of all relaxed controls and optimal relaxed controls
corresponding to (4.3), respectively, and \BbbP \in \scrR m,[k](\mu ) if and only if it is a probability
measure supported on \Omega m,o and it satisfies Definition 3.1 with item 2 modified as item
2\prime :

2\prime . There exists an adapted process Y \in \widetilde \scrD 0,T+1 such that

(1) \BbbP 
\Bigl( 
Y =Xo,(3)  - \alpha (1)Z(1),[k] + \alpha (2)Z(2),[k]

\Bigr) 
= 1, and for each \phi \in \scrC 2b (\BbbR d;\BbbR ),

it holds that

(2)
\Bigl( 
\scrM \phi ,Xo,(1),Z(1),\mu (1),[k]

t

\Bigr) 
0\leq t\leq T+1

and
\Bigl( 
\scrM \phi ,Xo,(2),Z(2),\mu (2),[k]

t

\Bigr) 
0\leq t\leq T+1

are continuous \BbbP martingales,

(3)
\Bigl( 
\scrM \phi ,Xo,(3),Y ,Q,[k]

t

\Bigr) 
0\leq t\leq T+1

is a \BbbP martingale with c\`adl\`ag path,

where for t\in [0, T + 1] and i= 1,2,\scrM \phi ,Xo,(i),Z(i),\mu (i),[k]
t is defined as

(4.4) \phi (X
o,(i)
t ) - 

\int t

0

\BbbL (i)\phi (s,Xo,(i)
s )ds - 

\int t

0

\nabla \phi (Xo,(i)
s ) \cdot d(\kappa (i)\mu (i)

s + \eta (i)Z(i),[k]
s ),

and\scrM \phi ,Xo,(3),Y ,Q
t is defined as

(4.5) \phi (Yt) - 
\int t

0

\int 
U

\scrL \phi (s,Xo,(3)
s , Ys, u)Qs(du)ds.
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EXTENDED MFGs WITH SINGULAR CONTROLS 297

The cost functional corresponding to \BbbP \in \scrR m,[k](\mu ) is defined as

Jo(\BbbP ;\mu ) =\BbbE \BbbP 

\Biggl[ \sum 
i=1,2

\int T+1

0

h(Xo,(i)
s ) \cdot d(\kappa (i)\mu (i)

s + \eta (i)Z(i),[k]
s )

+

\int T

0

\int 
U

f(t,Xo
t , \mu t, u)Qt(du)dt+ g(Xo

T+1, \mu T+1)

\Biggr] 
.(4.6)

Remark 4.1. By the continuity of Z [n], the result in the current section (section
4.1) holds under J1 topology. But in section 4.2 the convergence from Z [n] to Z only
holds under M1 topology. So in section 4.1 our analysis will be based on M1 topology
and the argument will be used in sections 4.2 and 5. Moreover, we notice that it is
unnecessary to extend the integral horizon of f in (4.3).

In the current section, we prove the existence of equilibria for (4.3) for each fixed
k. To apply Berge's maximum theorem and the Kakutani--Fan--Glicksberg fixed point
theorem, we will prove the union of all possible relaxed controls is relatively compact
in Lemma 4.2, the cost functional is jointly continuous on the graph of \scrR m,[k] in
Lemma 4.3, and the graph is closed in Proposition 4.4, where by graph we mean

Gr\scrR m,[k] :=

\biggl\{ 
(\mu ,\BbbP )\in 

\Bigl( 
\scrP p( \widetilde \scrA m,c

0,T+1)
\Bigr) 2
\times 
\Bigl( 
\scrP p( \widetilde \scrD 0,T+1)

\Bigr) 3
\times \scrP p(\Omega 

o) : \BbbP \in \scrR m,[k](\mu )

\biggr\} 
.

Lemma 4.2. Under assumptions \scrA 1, \scrA 4, and \scrA 6, the set
\bigcup 

\mu \in (\scrP p( \widetilde \scrA m,c
0,T+1))

2\times 

(\scrP p( \widetilde \scrD 0,T+1))3
\scrR m,[k](\mu ) is relatively compact in \scrW p for each fixed k.

Proof. Let \{ \mu n\} n\geq 1 be any sequence in (\scrP p( \widetilde \scrA m,c
0,T+1))

2\times (\scrP p( \widetilde \scrD 0,T+1))
3 and \BbbP n \in 

\scrR [k](\mu n), n \geq 1. Since U and \widetilde \scrA m
0,T are compact by assumption and [47, Theorem

12.12.2], respectively, \{ \BbbP n \circ Q - 1\} n\geq 1 and \{ \BbbP n \circ (Zi) - 1\} n\geq 1 are tight, and even rel-

atively compact in the topology induced by the Wasserstein metric, since \widetilde \scrU 0,T and\widetilde \scrA m
0,T are compact.

By Proposition 3.3 there exist extensions (\=\Omega n, \=\scrF n,\{ \=\scrF n
t \} ,\BbbQ n) of the canonical

path space \Omega o and processes (Xn,Zn,Qn,Wn,Nn) defined on (\=\Omega n, \=\scrF n,\{ \=\scrF n
t \} ,\BbbQ n)

such that for t\in [0, T + 1]

dX
(i),n
t = b(i)(t,X

(i),n
t , \mu 

(i),n
t )dt+d(\kappa (i)\mu 

(i),n
t +\eta (i)Z

(i),n,[k]
t )+\sigma (i)(t)dW

(i),n
t , i= 1,2,

dX
(3),n
t =

\int 
U

b(3)(t,X
(3),n
t , u)Qn

t (du)dt+ \alpha (1) dZ
(1),n,[k]
t  - \alpha (2) dZ

(2),n,[k]
t

+

\int 
U

l(t, u) \widetilde Nn(dt, du),

and \BbbP n = \BbbP n \circ (Xo,Q,Z) - 1 =\BbbQ n \circ (Xn,Qn,Zn) - 1, where Z
n,[k]
t = k

\int t

t - 1/k
Zn
s ds and

Nn is a Poisson random measure on [0, T ] \times U with intensity Qn
t (du)\lambda t dt. Thus,

the relative compactness of \{ \BbbP n \circ (Xo,(i)) - 1\} n\geq 1 is equivalent to relative compactness
of \{ \BbbQ n \circ (X(i),n) - 1\} n\geq 1. By assumptions \scrA 1, \scrA 4, and the boundedness of singular
controls, we have for any p\geq 1

(4.7) sup
i=1,2,3

sup
n

\BbbE \BbbQ n

\biggl[ 
sup

0\leq t\leq T
\| X(i),n

t \| p
\biggr] 
\leq \widetilde C1 <\infty .

Moreover, by the monotonicity of \kappa (i)\mu (i),n+\eta (i)Z(i),n, we have for any t1 < t2 < t3
and for i = 1,2 that max1\leq j\leq d | X(i),n,j

t2  - [X
(i),n,j
t1 ,X

(i),n,j
t3 ]| = max1\leq j\leq d inf\lambda \in [0,1]
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298 GUANXING FU

| X(i),n,j
t2  - \lambda X(i),n,j

t1  - (1 - \lambda )X(i),n,j
t3 | \leq \| 

\int t2
t1
b(i)(t,X

(i),n
t )dt\| +\| 

\int t3
t2
b(i)(t,X

(i),n
t )dt\| +

\| 
\int t2
t1
\sigma (i)(s)dW

(i),n
s \| + \| 

\int t3
t2
\sigma (i)(s)dW

(i),n
s \| , which implies the existence of k(\delta ) with

lim\delta \rightarrow 0 k(\delta ) = 0 such that

(4.8) \BbbQ n( \widetilde w(X(i),n, \delta )\geq \eta )\leq \BbbE \BbbQ n

[ \widetilde w(X(i),n, \delta )]

\eta 
\leq k(\delta )

\eta 
,

where \widetilde w is the extended oscillation function of M1 topology; see [27, Appendix B].
Finally, by the linear growth of b(3), boundedness of l, and compactness of U and\widetilde \scrA m

0,T , and the uniform bound (4.7), it holds that

(4.9) sup
n

sup
\tau 

\BbbE \BbbQ n

\| X(3),n
\tau +\delta  - X

(3),n
\tau \| 2 \leq \widetilde C2\delta ,

where \tau is the stopping time taking values in [0, T + 1]. Thus, Aldous's tightness
criterion [7, Theorem 16.10] implies that tightness of \BbbQ n \circ (X(3),n) - 1 in J1 topology,
thus in M1 topology.

Lemma 4.3. Let assumptions \scrA 1--\scrA 6 hold. Then Jo : Gr\scrR m,[k]\rightarrow \BbbR is continu-
ous.

Proof. By Proposition 3.3 and Lemma B.1 we have

Jo(\BbbP ;\mu ) =\BbbE \BbbP 

\Biggl[ 
d\sum 

j=1

\int X
o,(1)
j,T+1

X
o,(1)
j,0

hj(x)dx - 
\int T+1

0

h(X
o,(1)
t ) \cdot b(1)(t,Xo,(1)

t )dt

 - 1

2

d\sum 
j=1

\int T+1

0

a
(1)
jj (t)h

\prime 
j(X

o,(1)
j,t )dt

+

d\sum 
j=1

\int X
o,(2)
j,T+1

X
o,(2)
j,0

hj(x)dx - 
\int T+1

0

h(X
o,(2)
t ) \cdot b(2)(t,Xo,(2)

t )dt

 - 1

2

d\sum 
j=1

\int T+1

0

a
(2)
jj (t)h

\prime 
j(X

o,(2)
j,t )dt

+

\int T

0

\int 
U

f(t,Xo
t , \mu t, u)Qt(du)dt+ g(Xo

T+1, \mu T+1)

\Biggr] 
.

By [47, Theorem 12.5.2], xn\rightarrow x in ( \widetilde \scrD 0,T+1(\BbbR ;\BbbR d),M1) is equivalent to xnj \rightarrow xj in

( \widetilde \scrD 0,T+1(\BbbR ;\BbbR ),M1) for each j = 1, . . . , d. Then the joint continuity can be verified by
the same argument as that in the proof of [27, Lemma 3.3].

Proposition 4.4. The assumptions \scrA 1, \scrA 4, and \scrA 6 imply the set-valued map
\scrR m,[k] has a closed graph, i.e., for any sequence \{ \mu n\} n\geq 1 \subseteq (\scrP p( \widetilde \scrA m,c

0,T+1))
2 \times 

(\scrP p( \widetilde \scrD 0,T+1))
3 and \mu \in (\scrP p( \widetilde \scrA m,c

0,T+1))
2 \times (\scrP p( \widetilde \scrD 0,T+1))

3 with \mu n \rightarrow \mu in \scrW p, \widetilde \scrA m,c
0,T+1

\times 
\scrW p, \widetilde \scrA m,c

0,T+1
\times \scrW p, \widetilde \scrD 0,T+1

\times \scrW p, \widetilde \scrD 0,T+1
\times \scrW p, \widetilde \scrD 0,T+1

, if \BbbP n \in \scrR m,[k](\mu n) and \BbbP n \rightarrow \BbbP in

\scrW p,\Omega m,o , then \BbbP \in \scrR m,[k](\mu ).

Proof. To verify \BbbP \in \scrR m,[k](\mu ), it suffices to check the items in the definition of
relaxed controls. For each n, there exists a stochastic process Y n \in \widetilde \scrD 0,T+1 such that

\BbbP n(X
o,(3)
\cdot = Y n

\cdot + \alpha (1)Z
(1),[k]
\cdot  - \alpha (2)Z

(2),[k]
\cdot ) = 1 and the corresponding martingale

problem is satisfied. By Proposition 3.3, for each n there exists a probability space
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EXTENDED MFGs WITH SINGULAR CONTROLS 299

(\Omega n,\scrF n,\BbbQ n) that accommodates ( \v Xn, \v Qn, \v Zn), a Poisson random measure Nn with
intensity \v Qn

t (du)\lambda tdt, and two Brownian motions W (1),n and W (2),n such that \BbbP n \circ 
(Xo,Q,Z,Y n) - 1 =\BbbQ n \circ ( \v Xn, \v Qn, \v Zn, \v Y n) - 1, where\left\{                   

\v Y n
\cdot =

\int \cdot 

0

\int 
U

b(3)(s, \v X(3),n
s , u) \v Qn

s (du)ds+

\int \cdot 

0

\int 
U

l(1)(s,u) \widetilde Nn(ds, du),

\v X
(3),n
\cdot = \v Y n

\cdot + \alpha (1) \v Z
(1),n,[k]
\cdot  - \alpha (2) \v Z

(2),n,[k]
\cdot ,

\v X
(i),n
\cdot =

\int \cdot 

0

b(i)(s, \v X(i),n
s , \mu (i),n

s )ds+ \kappa (i)\mu 
(i),n
\cdot + \eta (i) \v Z

(i),n,[k]
\cdot 

+

\int \cdot 

0

\sigma (i)(s)dW (i),n
s , i=1,2.

The relative compactness of \v Y n (thus the relative compactness of Y n) follows from the
same argument as Lemma 4.2. As a result, the sequence (Xo,Q,Z,Y n) of random
variables taking values in \Omega m,o \times \widetilde \scrD 0,T+1 has a weak limit ( \widehat X, \widehat Q, \widehat Z, \widehat Y ) defined on
some probability space. Skorokhod's representation theorem yields a probability space
(\widetilde \Omega , \widetilde \scrF ,\BbbQ ) that accommodates ( \widetilde Xn, \widetilde Qn, \widetilde Zn, \widetilde Y n) and ( \widetilde X, \widetilde Q, \widetilde Z, \widetilde Y ) such that

(4.10) ( \widetilde Xn, \widetilde Qn, \widetilde Zn, \widetilde Y n)
d
= (Xo,Q,Z,Y n), ( \widetilde X, \widetilde Q, \widetilde Z, \widetilde Y )

d
= ( \widehat X, \widehat Q, \widehat Z, \widehat Y ),

and as elements in the product space \Omega m,o \times \widetilde \scrD 0,T+1

(4.11) ( \widetilde Xn, \widetilde Qn, \widetilde Zn, \widetilde Y n)\rightarrow ( \widetilde X, \widetilde Q, \widetilde Z, \widetilde Y ), \BbbQ -a.s.

In particular, \BbbQ ( \widetilde X(3) = \widetilde Y + \alpha (1) \widetilde Z(1),[k]  - \alpha (2) \widetilde Z(2),[k]) = 1. By \BbbP n \rightarrow \BbbP and the
uniqueness of the limit, we have \BbbP \circ (Xo,Q,Z ) - 1 = \BbbQ \circ ( \widetilde X, \widetilde Q, \widetilde Z) - 1. It yields a
stochastic process Y \in \widetilde \scrD 0,T+1 such that \BbbP (Xo,(3) = Y +\alpha (1)Z(1),[k] - \alpha (2)Z(2),[k]) = 1,
and

(4.12) \BbbP \circ (Xo,Q,Z,Y ) - 1 =\BbbQ \circ ( \widetilde X, \widetilde Q, \widetilde Z, \widetilde Y ) - 1.

It remains to verify\scrM \phi ,Xo,(1),Z(1),\mu (1),[k],\scrM \phi ,Xo,(2),Z(2),\mu (2),[k], and\scrM \phi ,Xo,(3),Y,Q are
martingales under \BbbP , where \scrM \phi ,Xo,(1),Z(1),\mu (1),[k], \scrM \phi ,Xo,(2),Z(2),\mu (2),[k], and
\scrM \phi ,Xo,(3),Y,Q are defined in (4.4) and (4.5), respectively. First, we verify the martin-
gale property related to (4.4). Note that \mu n \rightarrow \mu in (\scrP p( \widetilde \scrA m,c

0,T+1))
2 \times (\scrP p( \widetilde \scrD 0,T+1))

3

implies

(4.13) \mu (i),n\rightarrow \mu (i) in uniform topology, i= 1,2.

Thus, we have for any s < t and any \scrF o
s -measurable continuous and bounded function

F defined on the canonical space \Omega m,o

0 =\BbbE \BbbP n
\Bigl( 
\scrM \phi ,Xo,(1),Z(1),\mu (1),n,[k]

t  - \scrM \phi ,Xo,(1),Z(1),\mu (1),n,[k]
s

\Bigr) 
F (since \BbbP n \in \scrR [k](\mu n))

\mathrm{b}\mathrm{y} (4.10)
= \BbbE \BbbQ 

\Bigl( 
\scrM \phi , \widetilde X(1),n,\widetilde Z(1),n,\mu (1),n,[k]

t  - \scrM \phi , \widetilde X(1),n,\widetilde Z(1),n,\mu (1),n,[k]
s

\Bigr) 
F ( \widetilde Xn, \widetilde Qn, \widetilde Zn)

\mathrm{b}\mathrm{y} (4.11) \mathrm{a}\mathrm{n}\mathrm{d} (4.13)\rightarrow \BbbE \BbbQ 
\Bigl( 
\scrM \phi , \widetilde X(1),\widetilde Z(1),\mu (1),[k]

t  - \scrM \phi , \widetilde X(1),\widetilde Z(1),\mu (1),[k]
s

\Bigr) 
F ( \widetilde X, \widetilde Q, \widetilde Z)

\mathrm{b}\mathrm{y} (4.12)
= \BbbE \BbbP 

\Bigl( 
\scrM \phi ,Xo,(1),Z(1),\mu (1),[k]

t  - \scrM \phi ,Xo,(1),Z(1),\mu (1),[k]
s

\Bigr) 
F.

The same result holds for\scrM \phi ,Xo,(2),Z(2),\mu (2),[k].
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300 GUANXING FU

Next we check the martingale property of \scrM \phi ,Xo,(3),Y,Q. Since \widetilde Y n \rightarrow \widetilde Y in M1

topology \BbbQ a.s., there exists \widetilde \Omega \prime \subseteq \widetilde \Omega with full measure such that for each \widetilde \omega \in \widetilde \Omega \prime ,\widetilde Y n
t (\widetilde \omega )\rightarrow \widetilde Yt(\widetilde \omega ) for almost every t\in [0, T +1], which together with step 2 in the proof

of [27, Lemma 3.3] implies that for each \widetilde \omega \in \widetilde \Omega and for each continuous and bounded

F , limn\rightarrow \infty 
\int T+1

0
| \scrM \phi , \widetilde X(3),n,\widetilde Y n, \widetilde Qn

t F ( \widetilde Xn, \widetilde Qn, \widetilde Zn) - \scrM \phi , \widetilde X(3),\widetilde Y , \widetilde Q
t F ( \widetilde X, \widetilde Q, \widetilde Z)| (\widetilde \omega )dt= 0.

By the dominated convergence, it holds that

lim
n\rightarrow \infty 

\BbbE \BbbQ 

\Biggl[ \int T+1

0

\bigm| \bigm| \bigm| \scrM \phi , \widetilde X(3),n,\widetilde Y n, \widetilde Qn

t F ( \widetilde Xn, \widetilde Qn, \widetilde Zn) - \scrM \phi , \widetilde X(3),\widetilde Y , \widetilde Q
t F ( \widetilde X, \widetilde Q, \widetilde Z)\bigm| \bigm| \bigm| dt\Biggr] = 0.

Thus, up to a subsequence, we have for almost every t\in [0, T + 1] that

(4.14) lim
n\rightarrow \infty 

\BbbE \BbbQ 
\Bigl[ 
\scrM \phi , \widetilde X(3),n,\widetilde Y n, \widetilde Qn

t F ( \widetilde Xn, \widetilde Qn, \widetilde Zn) - \scrM \phi , \widetilde X(3),\widetilde Y , \widetilde Q
t F ( \widetilde X, \widetilde Q, \widetilde Z)\Bigr] = 0,

which implies that for almost every s, t \in [0, T + 1) and s < t, and for each F that is
continuous, bounded, and \scrF o

s -measurable

0 =\BbbE \BbbP n
\Bigl[ \Bigl( 
\scrM \phi ,Xo,(3),Y n,Q

t  - \scrM \phi ,Xo,(3),Y n,Q
s

\Bigr) 
F (Xo,Q,Z)

\Bigr] 
(since \BbbP n \in \scrR [k](\mu n))

(4.15)

\mathrm{b}\mathrm{y} (4.10)
= \BbbE \BbbQ 

\Bigl[ \Bigl( 
\scrM \phi , \widetilde X(3),n,\widetilde Y n, \widetilde Qn

t  - \scrM \phi , \widetilde X(3),n,\widetilde Y n, \widetilde Qn

s

\Bigr) 
F ( \widetilde Xn, \widetilde Qn, \widetilde Zn)

\Bigr] 
\mathrm{b}\mathrm{y} (4.14)\rightarrow \BbbE \BbbQ 

\Bigl[ \Bigl( 
\scrM \phi , \widetilde X(3),\widetilde Y , \widetilde Q

t  - \scrM \phi , \widetilde X(3),\widetilde Y , \widetilde Q
s

\Bigr) 
F ( \widetilde X, \widetilde Q, \widetilde Z)\Bigr] 

\mathrm{b}\mathrm{y} (4.12)
= \BbbE \BbbP 

\Bigl[ \Bigl( 
\scrM \phi ,Xo,(3),Y,Q

t  - \scrM \phi ,Xo,(3),Y,Q
s

\Bigr) 
F (Xo,Q,Z)

\Bigr] 
.

The convergence in (4.15) is still true for t= T +1. Indeed, the same argument in the

proof of [27, Lemma 3.3] implies
\int T+1

0

\int 
U
\scrL \phi (s, \widetilde X(3),n

s , \widetilde Y n
s , u)

\widetilde Qn
s (du)ds \rightarrow 

\int T+1

0

\int 
U

\scrL \phi (s, \widetilde X(3)
s , \widetilde Ys, u) \widetilde Qs(du)ds, \BbbQ a.s. Note that \widetilde Y n \rightarrow \widetilde Y in ( \widetilde \scrD 0,T+1,M1), \BbbQ a.s., im-

plies that \widetilde Y n
T+1 \rightarrow \widetilde YT+1,\BbbQ a.s. Thus, by dominated convergence it holds that

\BbbE \BbbQ [\scrM \phi , \widetilde X(3),n,\widetilde Y n, \widetilde Qn

T+1 F ( \widetilde Xn, \widetilde Qn, \widetilde Zn)]\rightarrow \BbbE \BbbQ [\scrM \phi , \widetilde X(3),\widetilde Y , \widetilde Q
T+1 F ( \widetilde X, \widetilde Q, \widetilde Z)]. By the right con-

tinuity of the trajectory of\scrM \phi ,Xo,(3),Y,Q, we have for any 0\leq s < t\leq T + 1

\BbbE \BbbP 
\Bigl[ \Bigl( 
\scrM \phi ,Xo,(3),Y,Q

t  - \scrM \phi ,Xo,(3),Y,Q
s

\Bigr) 
F (Xo,Q,Z)

\Bigr] 
= 0.

Corollary 4.5. Suppose that \scrA 1, \scrA 4, and \scrA 6 hold. Then, \scrR m,[k] : (\scrP p( \widetilde \scrA m,c
0,T+1))

2

\times (\scrP p( \widetilde \scrD 0,T+1))
3\rightarrow 2\scrP p(\Omega 

m,o) is continuous in the sense of [1, Definition 17.2, Theo-
rems 17.20, 17.21] and compact-valued.

Proof. Lemma 4.2, Proposition 4.4, and [1, Theorem 17.20] imply that \scrR m,[k] is
upper hemicontinuous and compact-valued. The lower hemicontinuity of \scrR m,[k] can
be verified in the same manner as [40, Lemma 4.4].

Corollary 4.6. Under assumptions \scrA 1--\scrA 6, \scrR m,[k],\ast (\mu ) \not = {\O} for each \mu \in 
(\scrP p( \widetilde \scrA m,c

0,T+1))
2 \times (\scrP p( \widetilde \scrD 0,T+1))

3 and \scrR m,[k],\ast is upper hemicontinuous.

Proof. By Lemma 4.3 and Corollary 4.5, the conditions in Berge's maximum
theorem (see [1, Theorem 17.31]) are satisfied. Thus, the desired results follow.

Theorem 4.7. Under assumptions \scrA 1--\scrA 6 and the finite fuel constraint Z \in \widetilde \scrA m
0,T \times \widetilde \scrA m

0,T , there exists a relaxed solution to (4.3).
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EXTENDED MFGs WITH SINGULAR CONTROLS 301

Proof. Define a set-valued map \psi by

\psi :(\scrP p( \widetilde \scrA m,c
0,T+1))

2 \times (\scrP p( \widetilde \scrD 0,T+1))
3\rightarrow 2(\scrP p( \widetilde \scrA m,c

0,T+1))
2\times (\scrP p( \widetilde \scrD 0,T+1))

3

,

\mu \mapsto \rightarrow 
\Bigl\{ \Bigl( 

\BbbP \circ (Z(1),[k]) - 1,\BbbP \circ (Z(2),[k]) - 1,\BbbP \circ (Xo,(1)) - 1,\BbbP \circ (Xo,(2)) - 1,\BbbP \circ (Xo,(3)) - 1
\Bigr) 

: \BbbP \in \scrR m,[k],\ast (\mu )
\Bigr\} 
.

Let S1, S2, and S3 be defined as

Si =
\Bigl\{ 
\BbbP \circ (Xo,(i)) - 1 \in \scrP p( \widetilde \scrD 0,T+1) : \BbbP \in \scrP p(\Omega 

m,o),\BbbP (\widetilde \omega (Xo,(i), \delta )\geq \eta )

\leq k(\delta )

\eta 
,\BbbE \BbbP 

\Bigl[ 
\| Xo,(i)\| pT+1

\Bigr] 
\leq \widetilde C1

\biggr\} 
, i= 1,2,

and

S3 =
\Bigl\{ 
\BbbP \circ (Xo,(3)) - 1 \in \scrP p( \widetilde \scrD 0,T+1) : \BbbP \in \scrP p(\Omega 

m,o)

for any X(3) - stopping time \tau ,\BbbE \BbbP 
\Bigl[ 
\| Xo,(3)

\tau +\delta  - X
o,(3)
\tau \| 2

\Bigr] 
\leq \widetilde C2\delta ,\BbbE \BbbP 

\Bigl[ 
\| Xo,(3)\| pT+1

\Bigr] 
\leq \widetilde C1

\Bigr\} 
,

where k(\delta ), \widetilde C1, and \widetilde C2 are the given by (4.8), (4.7), and (4.9), respectively, and a

nonnegative random variable is called anXo,(3)-stopping time if \{ \tau \leq t\} \in \sigma (Xo,(3)
t , s\leq 

t) for each t. By [7, Theorem 16.10], S3 is relatively compact.
Denote by \=Si the closure of Si, i= 1,2,3. Clearly, \psi maps (\scrP p( \widetilde \scrA m,c

0,T+1))
2 \times \=S1 \times 

\=S2 \times \=S3 into the power set of itself and (\scrP p( \widetilde \scrA m,c
0,T+1))

2 \times \=S1 \times \=S2 \times \=S3 is nonempty,
compact, and convex. Moreover, by Corollary 4.6, \psi is nonempty-valued and upper
hemicontinuous. Indeed, the nonemptiness is obvious and to check the upper hemi-
continuity we take any \mu n \rightarrow \mu in (\scrP p( \widetilde \scrA m,c

0,T+1))
2 \times \=S1 \times \=S2 \times \=S3, and Corollary 4.6

implies the existence of subsequence \BbbP nj \in \scrR m,[k],\ast (\mu nj ) such that \BbbP nj \rightarrow \BbbP \in \scrR [k],\ast (\mu ),
which implies \BbbP nj \circ (Xo,(i)) - 1\rightarrow \BbbP \circ (Xo,(i)) - 1, i = 1,2,3. Skorokhod representation
implies the existence of (\BbbQ , \widehat \scrF , \widehat \scrF t) and R

nj := (R(1),nj ,R(2),nj ) and R := (R(1),R(2))
defined on it such that for i = 1,2 it holds that \BbbP nj \circ (Z(i)) - 1 = \BbbQ \circ (R(i),nj ) - 1,
\BbbP \circ (Z(i)) - 1 =\BbbQ \circ (R(i)) - 1, and Rnj \rightarrow R in ( \widetilde \scrA m

0,T ,M1)\times ( \widetilde \scrA m
0,T ,M1), \BbbQ a.s., which im-

plies Rnj ,[k]\rightarrow R[k] in ( \widetilde \scrA m
0,T+1,M1)\times ( \widetilde \scrA m

0,T+1,M1),\BbbQ a.s., by [47, Theorem 12.5.2(iii)],

where R
nj ,[k]
t := k

\int t

t - 1/k
R

nj
s ds and R

[k]
t := k

\int t

t - 1/k
Rs ds. Since both Rnj ,[k] and

R[k] are continuous, it holds that Rnj ,[k] \rightarrow R[k] in uniform topology \BbbQ a.s. by [47,
Theorem 12.5.2(iv)]. Thus, for any continuous function \phi defined on \widetilde \scrA m,c

0,T+1 with
| \phi (y)| \leq C(1 + \| y\| pT+1), there holds for i= 1,2 by dominated convergence\int 

\widetilde \scrA m,c
0,T+1

\phi (y)\BbbP nj \circ (Z(i),[k]) - 1(dy) =\BbbE \BbbP nj
\phi (Z(i),[k]) =\BbbE \BbbQ \phi (R(i),nj ,[k])

\rightarrow \BbbE \BbbQ \phi (R(i),[k]) =\BbbE \BbbP \phi (Z(i),[k]) =

\int 
\widetilde \scrA m,c
0,T+1

\phi (y)\BbbP \circ (Z(i),[k]) - 1(dy),

which implies the upper hemicontinuity of \psi . Therefore, [1, Corollary 17.55] is applica-
ble by embedding (\scrP p( \widetilde \scrA m,c

0,T+1))
2\times (\scrP p( \widetilde \scrD 0,T+1))

3 into (\scrM (\widetilde \scrC 0,T+1))
2\times (\scrM ( \widetilde \scrD 0,T+1))

3,

the respective product spaces of all bounded signed measures on \widetilde \scrC 0,T+1 and \widetilde \scrD 0,T+1

endowed with the weak convergence topology.
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302 GUANXING FU

4.2. Approximation. In this section, the extension (4.2) is valid throughout.
All the limits in this section are taken as k\rightarrow \infty .

In section 4.1, we have shown that for each fixed k, there is an equilibrium
\BbbP m,[k],\ast \in \scrR m,[k],\ast (\mu m,[k],\ast ), where \mu m,[k],\ast := (\mu (1),m,[k],\ast , \mu (2),m,[k],\ast , \mu (3),m,[k],\ast ,
\mu (4),m,[k],\ast , \mu (5),m,[k],\ast ):=(\BbbP m,[k],\ast \circ (Z(1),[k]) - 1,\BbbP m,[k],\ast \circ (Z(2),[k]) - 1,\BbbP m,[k],\ast \circ (Xo,(1)) - 1,
\BbbP m,[k],\ast \circ (Xo,(2)) - 1,\BbbP m,[k],\ast \circ (Xo,(3)) - 1). In this section, we establish the exis-
tence of equilibria of (1.1) by constructing \BbbP m,\ast \in \scrR m,\ast (\mu m,\ast ) with \mu m,\ast = (\BbbP m,\ast \circ 
(Z(1)) - 1,\BbbP m,\ast \circ (Z(2)) - 1,\BbbP m,\ast \circ (X(3)) - 1,\BbbP m,\ast \circ (X(4)) - 1,\BbbP m,\ast \circ (X(5)) - 1), from the
sequence \{ \BbbP m,[k],\ast \} k.

By Proposition 3.3, \BbbP m,[k],\ast \in \scrR m,[k],\ast (\mu m,[k],\ast ) implies the existence of (\widehat \Omega k, \widehat \scrF k,\widehat \BbbP k
)

and ( \widehat Xk, \widehat Qk, \widehat Zk,\widehat W k, \widehat Nk)3 such that

\widehat X(i),k
t =

\int t

0

b(i)(s, \widehat X(i),k
s , \mu (i),m,[k],\ast 

s )ds+ \kappa (i)\mu 
(i),m,[k],\ast 
t + \eta (i) \widehat Z(i),k,[k]

t(4.16)

+

\int t

0

\sigma (i)(s)\widehat W (i),k
s , t\in [0, T + 1], i= 1,2,

\widehat X(3),k
t =

\int t

0

\int 
U

b(3)(s, \widehat X(3),k
s , u) \widehat Qk

s(du)ds

+

\int t

0

\int 
U

l(s,u)
\widetilde \widehat Nk(ds, du) + \alpha (1) \widehat Z(1),k,[k]

t  - \alpha (2) \widehat Z(2),k,[k]
t , t\in [0, T + 1],

and

(4.17) \widehat \BbbP k
\circ 
\Bigl( \widehat Xk, \widehat Qk, \widehat Zk

\Bigr)  - 1

= \BbbP m,[k],\ast \circ (Xo,Q,Z)
 - 1
.

Let \widehat Y k
t := \widehat X(3),k

t  - \alpha (1) \widehat Z(1),k,[k]
t + \alpha (2) \widehat Z(2),k,[k]

t

=

\int t

0

\int 
U

b(3)(s, \widehat X(3),k
s , u) \widehat Qk

s(du)ds+

\int t

0

\int 
U

l(s,u)
\widetilde \widehat Nk(ds, du), t\in [0, T + 1].(4.18)

Thus, we have

\widehat \BbbP k
\circ 
\Bigl( \widehat Y k, \widehat X(1),k, \widehat X(2),k, \widehat Z(1),k, \widehat Z(2),k, \widehat Qk

\Bigr)  - 1

= \BbbP m,[k],\ast \circ 
\Bigl( 
Y [k],Xo,(1),Xo,(2),Z(1),Z(2),Q

\Bigr)  - 1

,

where Y [k] is a stochastic process such that \BbbP m,[k],\ast (Y [k] = Xo,(3)  - \alpha (1)Z(1),[k] +
\alpha (2)Z(2),[k]) = 1. The same argument as in Lemma 4.2 yields the relative com-

pactness of \widehat \BbbP k
\circ (\widehat Y k, \widehat X(1),k, \widehat X(2),k, \widehat Z(1),k, \widehat Z(2),k, \widehat Qk) - 1, which implies a weak limit

( \v Y , \v X(1), \v X(2), \v Z(1), \v Z(2), \v Q). The Skorokhod representation theorem implies that
there exists a probability space (\r \Omega , \r \scrF ,\r \BbbQ ), two sequences of stochastic processes

(\r Y k, \r X(1),k, \r X(2),k,\r Z(1),k,\r Z(2),k, \r Qk) and (\r Y , \r X(1), \r X(2),\r Z(1),\r Z(2), \r Q)

such that
(4.19)\Bigl( 

\r Y k, \r X(1),k, \r X(2),k,\r Z(1),k,\r Z(2),k, \r Qk
\Bigr) 

d
=
\Bigl( \widehat Y k, \widehat X(1),k, \widehat X(2),k, \widehat Z(1),k, \widehat Z(2),k, \widehat Qk

\Bigr) 
,

3Note that (\widehat \Omega k, \widehat \scrF k,\widehat \BbbP k
) and ( \widehat Xk, \widehat Qk, \widehat Zk,\widehat Wk, \widehat Nk) should depend on m. Since m is a fixed finite

number in this section, we drop this dependence and only keep the dependence on m for the optimal
ones, e.g., \mu m,\ast and \BbbP m,\ast .
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EXTENDED MFGs WITH SINGULAR CONTROLS 303

\Bigl( 
\r Y , \r X(1), \r X(2),\r Z(1),\r Z(2), \r Q

\Bigr) 
d
=
\Bigl( 
\v Y , \v X(1), \v X(2), \v Z(1), \v Z(2), \v Q

\Bigr) 
,

and

(4.20)
\Bigl( 
\r Y k, \r X(1),k, \r X(2),k,\r Z(1),k,\r Z(2),k, \r Qk

\Bigr) 
\rightarrow 
\Bigl( 
\r Y , \r X(1), \r X(2),\r Z(1),\r Z(2), \r Q

\Bigr) 
,\r \BbbQ a.s.

Let

(4.21) \r X(3),k := \r Y k+\alpha (1)\r Z(1),k,[k] - \alpha (2)\r Z(2),k,[k] and \r X(3) := \r Y +\alpha (1)\r Z(1) - \alpha (2)\r Z(2).

Thus, (4.20) and (4.21) imply the following convergence result:

(4.22) \BbbE \r \BbbQ 

\Biggl[ \int T+1

0

\bigm\| \bigm\| \bigm\| \r X(3),k
t  - \r X

(3)
t

\bigm\| \bigm\| \bigm\| p dt\Biggr] \rightarrow 0 and \r X
(3),k
T+1 \rightarrow \r X

(3)
T+1,

\r \BbbQ a.s.

Moreover, (4.17), (4.18), (4.19), and (4.21) imply that

\r \BbbQ \circ 
\Bigl( 
\r Y k, \r X(1),k, \r X(2),k, \r X(3),k,\r Z(1),k,\r Z(2),k, \r Qk

\Bigr)  - 1

=\widehat \BbbP k
\circ 
\Bigl( \widehat Y k, \widehat X(1),k, \widehat X(2),k, \widehat X(3),k, \widehat Z(1),k, \widehat Z(2),k, \widehat Qk

\Bigr)  - 1

=\BbbP m,[k],\ast \circ 
\Bigl( 
Y [k],Xo,(1),Xo,(2),Xo,(3),Z(1),Z(2),Q

\Bigr)  - 1

.

(4.23)

Define

\mu m,\ast = (\mu (1),m,\ast , \mu (2),m,\ast , \mu (3),m,\ast , \mu (4),m,\ast , \mu (5),m,\ast )

:=

\biggl( 
\r \BbbQ \circ 

\Bigl( 
\r Z(1)

\Bigr)  - 1

,\r \BbbQ \circ 
\Bigl( 
\r Z(2)

\Bigr)  - 1

,\r \BbbQ \circ 
\Bigl( 
\r X(1)

\Bigr)  - 1

,\r \BbbQ \circ 
\Bigl( 
\r X(2)

\Bigr)  - 1

,\r \BbbQ \circ 
\Bigl( 
\r X(3)

\Bigr)  - 1
\biggr) 

(4.24)

and

(4.25) \BbbP m,\ast := \r \BbbQ \circ 
\Bigl( 
\r X(1), \r X(2), \r X(3), \r Q,\r Z(1),\r Z(2)

\Bigr)  - 1

.

The next lemma shows the admissibility of \BbbP m,\ast .

Lemma 4.8. Assume assumptions \scrA 1, \scrA 4, and \scrA 6 hold. Let \mu m,\ast and \BbbP m,\ast be
defined as (4.24) and (4.25), respectively. Then we have \BbbP m,\ast \in \scrR m(\mu m,\ast ).

Proof. The proof is split into two steps. In Step 1, we verify \BbbP m,\ast is supported
on the original canonical space \Omega m and we recall \Omega m = \widetilde \scrD 0,T \times \widetilde \scrD 0,T \times \widetilde \scrD 0,T \times \widetilde \scrU 0,T \times \widetilde \scrA m

0,T \times \widetilde \scrA m
0,T . In Step 2, we verify the martingale properties.

Step 1. By the definition of \BbbP m,[k],\ast and (4.17), \widehat Zk \in \widetilde \scrA m
0,T \times \widetilde \scrA m

0,T . The trivial

extension (4.2) and (4.18) imply \widehat Y k \in \widetilde \scrD 0,T . Thus, the tuple of stochastic processes

(\widehat Y k, \widehat X(1),k, \widehat X(2),k, \widehat Z(1),k, \widehat Z(2),k, \widehat Qk) in fact takes values in the product space \widetilde \scrD 0,T \times \widetilde \scrD 0,T+1 \times \widetilde \scrD 0,T+1 \times \widetilde \scrA m
0,T \times \widetilde \scrA m

0,T \times \widetilde \scrU 0,T a.s., and so does (\r Y k, \r X(1),k, \r X(2),k,\r Z(1),k,
\r Z(2),k, \r Qk) by (4.19).

Since \widetilde \scrD 0,T , \widetilde \scrA m
0,T , and

\widetilde \scrU 0,T are closed, the convergence (4.20) implies \r Z \in \widetilde \scrA m
0,T \times \widetilde \scrA m

0,T ,
\r Y \in \widetilde \scrD 0,T , and \r Q \in \widetilde \scrU 0,T . Thus, (4.21) implies \r X(3),k \in \widetilde \scrD 0,T+1 and \r X(3) \in \widetilde \scrD 0,T . It remains to prove (\r X(1), \r X(2)) \in \widetilde \scrD 0,T \times \widetilde \scrD 0,T . By (4.16) and the trivial

extension (4.2) there exists \widehat K(1),k \in \widetilde \scrC 0,T such that \widehat X(1),k = \widehat K(1),k + \kappa (1)\mu (1),m,[k],\ast +
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304 GUANXING FU

\eta (1) \widehat Z(1),k,[k] and the same argument as Lemma 4.2 implies the relative compactness

of \widehat \BbbP k
\circ ( \widehat X(1),k, \widehat K(1),k, \widehat Z(1),k) - 1 with a weak limit denoted by (X \prime ,K \prime ,Z \prime ). Skorokhod

representation implies

( \widehat X(1),k, \widehat K(1),k, \widehat Z(1),k)
d
= ( \widehat X \prime 

(1),k, \widehat K(1),k, \widehat Z \prime 
(1),k) and ( \widehat X \prime 

(1), \widehat K(1), \widehat Z \prime 
(1))

d
= (X \prime ,K \prime ,Z \prime )

and ( \widehat X \prime 
(1),k, \widehat K(1),k, \widehat Z \prime 

(1),k) \rightarrow ( \widehat X \prime 
(1), \widehat K(1), \widehat Z \prime 

(1)) in \widetilde \scrD 0,T+1 \times \widetilde \scrC 0,T \times \widetilde \scrA m
0,T , which

together with (4.16) yield

\widehat X \prime 
(1) = \widehat K(1) + \kappa (1)\mu (1),m,\ast + \eta (1) \widehat Z \prime 

(1).

Thus, \widehat X \prime 
(1) \in \widetilde \scrD 0,T . Note that by the uniqueness of the limit \widehat X \prime 

(1) d
= \r X(1), which

implies \r X(1) \in \widetilde \scrD 0,T . The same result holds for \r X(2).

Step 2. In this step, we check \scrM \phi ,X(3),Y,Q is a (\BbbP \ast , (\scrF t)0\leq t\leq T ) martingale. The

martingale property of\scrM \phi ,X(1),Z(1),\mu \ast 
and\scrM \phi ,X(2),Z(2),\mu \ast 

can be obtained similarly.
Boundedness and linear growth of the coefficients, compactness of U , (4.20),

(4.22), and dominated convergence yield that for any bounded and continuous \Phi ,
up to a subsequence,

lim
k\rightarrow \infty 

\BbbE \r Q

\Biggl[ \int T+1

0

\int T+1

0

\cdot \cdot \cdot 
\int T+1

0

\bigm| \bigm| \bigm| \scrM \phi ,\r X(3),k,\r Y k,\r Qk

t \Phi (\r \zeta kt1 , . . . ,
\r \zeta ktn)

 - \scrM \phi ,\r X(3),\r Y ,\r Q
t \Phi (\r \zeta t1 , . . . ,

\r \zeta tn)
\bigm| \bigm| \bigm| dt1 \cdot \cdot \cdot dtndt\Biggr] = 0,

where

(4.26) \r \zeta k\cdot := (\r Xk
\cdot ,\r Z

k
\cdot ) and \r \zeta \cdot := (\r X\cdot ,\r Z\cdot ).

It implies up to a subsequence for almost every (t, t1, . . . , tn)\in [0, T + 1]n+1

(4.27) lim
k\rightarrow \infty 

\BbbE \r \BbbQ 
\bigm| \bigm| \bigm| \scrM \phi ,\r X(3),k,\r Y k,\r Qk

t \Phi (\r \zeta kt1 , . . . ,
\r \zeta ktn)  - \scrM 

\phi ,\r X(3),\r Y ,\r Q
t \Phi (\r \zeta t1 , . . . ,

\r \zeta tn)
\bigm| \bigm| \bigm| = 0.

Thus, for almost every (s, t, t1, . . . , tn) \in [0, T + 1]n+2 with (t, t1, . . . , tn) \in [s,T + 1]\times 
[0, s]n, any continuous and bounded function \Phi on (\BbbR d \times \BbbR d \times \BbbR d \times \BbbR d \times \BbbR d)n, and
any continuous and bounded function \varphi which is defined on \widetilde \scrU 0,T and \scrF Q

s measurable
we have

0 =\BbbE \BbbP m,[k],\ast 
\Bigl( 
\scrM \phi ,Xo,(3),Y [k],Q

t  - \scrM \phi ,Xo,(3),Y [k],Q
s

\Bigr) 
\Phi (\zeta ot1 , . . . , \zeta 

o
tn)\varphi (Q)

\mathrm{b}\mathrm{y} (4.23)
= \BbbE \r \BbbQ 

\Bigl( 
\scrM \phi ,\r X(3),k,\r Y k,\r Qk

t  - \scrM \phi ,\r X(3),k,\r Y k,\r Qk

s

\Bigr) 
\Phi (\r \zeta kt1 , . . . ,

\r \zeta ktn)\varphi (
\r Qk)

\mathrm{b}\mathrm{y} (4.27)\rightarrow \BbbE \r \BbbQ 
\Bigl( 
\scrM \phi ,\r X(3),\r Y ,\r Q

t  - \scrM \phi ,\r X(3),\r Y ,\r Q
s

\Bigr) 
\Phi (\r \zeta t1 , . . . ,

\r \zeta tn)\varphi (
\r Q)

\mathrm{b}\mathrm{y} (4.25)
= \BbbE \BbbP m,\ast 

\Bigl( 
\scrM \phi ,X(3),Y ,Q

t  - \scrM \phi ,X(3),Y ,Q
s

\Bigr) 
\Phi (\zeta t1 , . . . , \zeta tn)\varphi (Q),

where \r \zeta and \r \zeta k are defined as (4.26), and \zeta o and \zeta are defined as \zeta o\cdot := (Xo
\cdot ,Z\cdot )

and \zeta \cdot := (X\cdot ,Z\cdot ). By the right continuity of \scrM \phi ,X(3),Y,Q and X(3) we have for any
(t, t1, . . . , tn)\in [s,T + 1]\times [0, s]n

\BbbE \BbbP m,\ast 
\Bigl( 
\scrM \phi ,X(3),Y ,Q

t  - \scrM \phi ,X(3),Y ,Q
s

\Bigr) 
\Phi (\zeta t1 , . . . , \zeta tn)\varphi (Q) = 0.
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EXTENDED MFGs WITH SINGULAR CONTROLS 305

Finally, using continuous functions \Phi and \varphi to approximate the indicator function
and by the monotone class theorem we get \scrM \phi ,X(3),Y ,Q is a (\BbbP m,\ast , (\scrF t)0\leq t\leq T )
martingale.

For each (\BbbP ,X,Q,\mu ), define

\scrJ (\BbbP ,X,Q,\mu ) :=\BbbE \BbbP 

\Biggl[ 
d\sum 

j=1

\int X
(1)
j,T+1

X
(1)
j,0 - 

hj(x)dx - 
\int T

0

h(X
(1)
t ) \cdot b(1)(t,X(1)

t , \mu (1)
t

)dt

 - 1

2

d\sum 
j=1

\int T

0

a
(1)
jj (t)h

\prime 
j(X

(1)
j,t )dt+

d\sum 
j=1

\int X
(2)
j,T+1

X
(2)
j,0 - 

hj(x)dx

 - 
\int T

0

h(X
(2)
t ) \cdot b(2)(t,X(2)

t , \mu (2)
t

)dt - 1

2

d\sum 
j=1

\int T

0

a
(2)
jj (t)h

\prime 
j(X

(2)
j,t )dt

+

\int T

0

\int 
U

f(t,Xt, \mu t
, u)Q

t
(du)dt+ g(XT+1, \mu T+1

)

\Biggr] 
.

By Lemma B.1 and (4.2) it holds that

(4.28) Jo(\BbbP ;\nu ) =\scrJ (\BbbP ,Xo,Q, \nu ) and J(\BbbP ;\mu ) =\scrJ (\BbbP ,X,Q,\mu ) if \mu T+1 = \mu T .

With (4.28), the next lemma shows any admissible relaxed control corresponding to
\mu m,\ast inducing a finite cost can be approximated by a sequence of admissible relaxed
controls corresponding to \mu m,[k],\ast .

Lemma 4.9. For any \BbbP \in \scrR m(\mu m,\ast ) with J(\BbbP ;\mu m,\ast )<\infty , we can find a sequence
\BbbP k \in \scrR m,[k](\mu m,[k],\ast ) such that Jo(\BbbP k;\mu m,[k],\ast )\rightarrow J(\BbbP ;\mu m,\ast ), where \mu m,\ast is defined in
(4.24).

Proof. The admissibility of \BbbP implies the existence of (\u \Omega , \u \scrF , \u \BbbP ) and ( \u X, \u Q, \u Z, \u W, \u N)
such that
(4.29)

\u X
(i)
\cdot =

\int \cdot 

0

b(i)(s, \u X(i)
s , \mu (i),m,\ast 

s )ds+ \kappa (i)\mu 
(i),m,\ast 
\cdot + \eta (i) \u Z

(i)
\cdot +

\int \cdot 

0

\sigma (i)(s)d \u W (i)
s , i= 1,2,

(4.30)

\u X
(3)
\cdot =

\int \cdot 

0

\int 
U

b(3)(s, \u X(3)
s , u) \u Qs(du)ds+

\int \cdot 

0

\int 
U

l(s,u)
\widetilde \u N(ds, du) + \alpha (1) \u Z

(1)
\cdot  - \alpha (2) \u Z

(2)
\cdot ,

and

(4.31) \u \BbbP \circ 
\Bigl( 
\u X, \u Q, \u Z

\Bigr)  - 1

= \BbbP \circ (X,Q,Z) - 1
.

Let \u X(1),k, \u X(2),k, and \u X(3),k be the unique strong solution to the following dynamics,
respectively:

\u X
(i),k
\cdot =

\int \cdot 

0

b(i)(s, \u X(i),k
s , \mu (i),m,[k],\ast 

s )ds+ \kappa (i)\mu 
(i),m,[k],\ast 
\cdot + \eta (i) \u Z

(i),[k]
\cdot (4.32)

+

\int \cdot 

0

\sigma (i)(s) \u W (i)
s , i= 1,2,
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306 GUANXING FU

and

\u X
(3),k
\cdot =

\int \cdot 

0

\int 
U

b(3)(s, \u X(3),k
s , u) \u Qs(du)ds(4.33)

+

\int \cdot 

0

\int 
U

l(s,u)
\widetilde \u N(ds, du) + \alpha (1) \u Z

(1),[k]
\cdot  - \alpha (2) \u Z

(2),[k]
\cdot ,

where we recall \mu m,[k],\ast is the optimal mean field aggregation from section 4.1. Define

(4.34) \BbbP k \circ (Xo,Q,Z) - 1 := \u \BbbP \circ 
\Bigl( 
\u Xk, \u Q, \u Z

\Bigr)  - 1

,

which together with (4.32)--(4.33) implies the admissibility of \BbbP k, i.e., \BbbP k \in \scrR m,[k]

(\mu m,[k],\ast ). By the fact \u Z(i),[k] \rightarrow \u Z(i) in ( \widetilde \scrD 0,T+1,M1), \u \BbbP a.s., we have the following
convergence from (4.29)--(4.33):

(4.35) \BbbE \u \BbbP 

\Biggl[ \int T+1

0

\bigm\| \bigm\| \bigm\| \u Xk
t  - \u Xt

\bigm\| \bigm\| \bigm\| p dt\Biggr] \rightarrow 0 and \u Xk
T+1\rightarrow \u XT+1

\mathrm{b}\mathrm{y} (4.2)
= \u XT .

Moreover, by (4.20)--(4.24) we have

(4.36) \mu 
m,[k],\ast 
t \rightarrow \mu m,\ast 

t for almost all t\in [0, T + 1] including T + 1 and \mu m,\ast 
T+1 = \mu m,\ast 

T .

Therefore, by choosing a subsequence if necessary, we have

Jo(\BbbP k;\mu m,[k],\ast )
\mathrm{b}\mathrm{y} (4.28)

= \scrJ (\BbbP k,Xo,Q,\mu m,[k],\ast )
\mathrm{b}\mathrm{y} (4.34)

= \scrJ (\v \BbbP , \v Xk, \v Q,\mu m,[k],\ast )

\mathrm{b}\mathrm{y} (4.35),(4.36)\rightarrow \scrJ (\v \BbbP , \v X, \v Q,\mu m,\ast )
\mathrm{b}\mathrm{y} (4.31)

= \scrJ (\BbbP ,X,Q,\mu m,\ast )
\mathrm{b}\mathrm{y} (4.28)

= J(\BbbP ;\mu m,\ast ).

The following theorem shows \mu m,\ast defined in (4.24) is an equilibrium of (1.1).

Theorem 4.10. Under assumptions \scrA 1--\scrA 6, it holds that \BbbP m,\ast \in \scrR m,\ast (\mu m,\ast ).

Proof. For any \BbbP \in \scrR m(\mu m,\ast ) with J(\BbbP ;\mu m,\ast ) < \infty , let \BbbP k be the probability
measure constructed in Lemma 4.9. Thus, Lemma 4.9 and optimality of \BbbP m,[k],\ast 

imply

J(\BbbP ;\mu m,\ast )
\mathrm{b}\mathrm{y} \mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a} (4.9)\leftarrow Jo(\BbbP k;\mu m,[k],\ast )\geq Jo(\BbbP m,[k],\ast ;\mu m,[k],\ast )

=\scrJ (\BbbP m,[k],\ast ,Xo,Q,\mu m,[k],\ast )

\mathrm{b}\mathrm{y} (4.23)
= \scrJ (\r \BbbQ , \r Xk, \r Qk, \mu m,[k],\ast )

\mathrm{b}\mathrm{y} (4.20) \mathrm{a}\mathrm{n}\mathrm{d} (4.22)\rightarrow \scrJ (\r \BbbQ , \r X, \r Q,\mu m,\ast )

\mathrm{b}\mathrm{y} (4.25),(4.28)
= J(\BbbP m,\ast ;\mu m,\ast ).

5. Existence of equilibria with general singular controls. In this section,
we prove Theorem 3.5. From section 4, for eachm\in (0,\infty ) there exists an equilibrium
\BbbP m,\ast for the MFG with finite fuel constraint, i.e., \BbbP m,\ast \in \scrR m,\ast (\mu m,\ast ), where \mu m,\ast =
(\BbbP m,\ast \circ (Z(1)) - 1,\BbbP m,\ast \circ (Z(2)) - 1,\BbbP m,\ast \circ (X(1)) - 1,\BbbP m,\ast \circ (X(2)) - 1,\BbbP m,\ast \circ (X(3)) - 1). In
order to drop the finite fuel constraint, we need the following uniform bound for p
moments of Z(1) and Z(2) under \BbbP m,\ast .

Lemma 5.1. Under assumptions \scrA 1, \scrA 2, \scrA 4, \scrA 6, and \scrA 7, we have the following
uniform estimate: supm\BbbE \BbbP m,\ast 

[\| Z(1)
T \| p + \| Z

(2)
T \| p]<\infty .
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EXTENDED MFGs WITH SINGULAR CONTROLS 307

Proof. Without loss of generality, we assume \eta (i)\alpha (i) \not = 0 for i = 1,2 and p is an
integer. Proposition 3.3 yields \BbbQ and ( \"X, \"Z, \"Q, \"W, \"N) such that \BbbP m,\ast =\BbbQ \circ ( \"X, \"Z, \"Q) - 1

and

\"X
(i)
t =

\int t

0

b(i)(s, \"X(i)
s , \mu (i),m,\ast 

s )ds+ \kappa (i)\mu 
(i),m,\ast 
t + \eta (i) \"Z

(i)
t +

\int t

0

\sigma (i)(s)d \"W (i)
s , i= 1,2,

\"X
(3)
t =

\int t

0

\int 
U

b(3)(s, \"X(3)
s , u) \"Q(ds, du) + \alpha (1) \"Z

(1)
t  - \alpha (2) \"Z

(2)
t +

\int t

0

\int 
U

l(s,u) \widetilde \"N(ds, du).

In the following, we first establish lower bounds of \"X(i) and J(\BbbP m,\ast ;\mu m,\ast ), then
construct a \BbbP 0 \in \scrR m(\mu m,\ast ) and establish an upper bound of J(\BbbP 0;\mu 

m,\ast ); finally we
complete the proof by using the optimality of \BbbP m,\ast .

Step 1: Lower bound of \"X(i) and J(\BbbP m,\ast ;\mu m,\ast ).
By assumption \scrA 7, it holds for each i= 1,2 and j = 1, . . . , d that

| \"X(i)
j,t | \geq 

\bigm| \bigm| \bigm| \bigm| \int t

0

\Bigl( 
b
(i)
j (s, \"X(i)

s , \mu (i),m,\ast 
s ) +C4

\Bigr) 
ds+ \kappa (i)\mu 

(i),m,\ast 
j,t + \eta (i) \"Z

(i)
j,t

\bigm| \bigm| \bigm| \bigm| 
 - C4t - 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\biggl( \int t

0

\sigma (i)(s)d \"W (i)
s

\biggr) 
j

\bigm| \bigm| \bigm| \bigm| \bigm| 
\geq 
\int t

0

C4| \"X(i)
j,s | ds+

\int t

0

C4\scrW p(\mu 
(i),m,\ast 
s , \delta 0)ds+ \kappa (i)\mu 

(i),m,\ast 
j,t + \eta (i) \"Z

(i)
j,t

 - C4t - 
\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

\sigma (i)(s)d \"W (i)
s

\bigm\| \bigm\| \bigm\| \bigm\| ,
which implies  - | \"X(i)

j,t | \leq 
\int t

0
C4( - | \"X(i)

j,s | )ds  - 
\int t

0
C4\scrW p(\mu 

(i),m,\ast 
s , \delta 0)ds  - \kappa (i)\mu (i),m,\ast 

j,t  - 
\eta (i) \"Z

(i)
j,t + C4t + \| 

\int t

0
\sigma (i)(s)d \"W

(i)
s \| . Here, we recall \| 

\int t

0
\sigma (i)(s)d \"W

(i)
s \| = maxj=1,...,d

| (
\int t

0
\sigma (i)(s)d \"W

(i)
s )j | . Gr\"onwall's inequality implies that

 - | \"X(i)
j,t | \leq  - 

\int t

0

C4\scrW p(\mu 
(i),m,\ast 
s , \delta 0)ds - \kappa (i)\mu (i),m,\ast 

j,t  - \eta (i) \"Z(i)
j,t +C4t+

\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

\sigma (i)(s)d \"W (i)
s

\bigm\| \bigm\| \bigm\| \bigm\| 
+

\int t

0

C4

\biggl( 
 - 
\int s

0

C4\scrW p(\mu 
(i),m,\ast 
r , \delta 0)dr - \kappa (i)\mu (i),m,\ast 

j,s

 - \eta (i) \"Z(i)
j,s +C4s+

\bigm\| \bigm\| \bigm\| \bigm\| \int s

0

\sigma (i)(r)d \"W (i)
r

\bigm\| \bigm\| \bigm\| \bigm\| \biggr) eC4(t - s) ds,

which further implies that

| \"X(i)
j,t | \geq 

\int t

0

C4\scrW p(\mu 
(i),m,\ast 
s , \delta 0)ds+ \kappa (i)\mu 

(i),m,\ast 
j,t

(5.1)

+

\int t

0

C4

\biggl( \int s

0

C4\scrW p(\mu 
(i),m,\ast 
r , \delta 0)dr+ \kappa (i)\mu 

(i),m,\ast 
j,s

\biggr) 
eC4(t - s) ds

+

\biggl( 
\eta (i) \"Z

(i)
j,t +

\int t

0

C4\eta 
(i) \"Z

(i)
j,se

C4(t - s) ds

\biggr) 
 - C4t - 

\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

\sigma (i)(s)d \"W (i)
s

\bigm\| \bigm\| \bigm\| \bigm\|  - C4

\int t

0

\biggl( 
C4s+

\bigm\| \bigm\| \bigm\| \bigm\| \int s

0

\sigma (i)(r)d \"W (i)
r

\bigm\| \bigm\| \bigm\| \bigm\| \biggr) eC4(t - s) ds

:= I
(i)
1,j(t) + I

(i)
2,j(t) - I

(i)
3 (t).
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308 GUANXING FU

Define \Omega 1 = \{ \omega : I
(i)
3 (t)> I

(i)
1,j(t)+ I

(i)
2,j(t)\} and \Omega 2 = \{ \omega : I

(i)
1,j(t)+ I

(i)
2,j(t)\geq I

(i)
3 (t)\} .

On \Omega 2, the right-hand side (r.h.s.) of (5.1) is nonnegative. Taking | \cdot | p on both sides,
we get

| \"X(i)
j,t | 

p \geq \{ I(i)1,j(t) + I
(i)
2,j(t)\} 

p1\Omega 2
+ ( - I(i)3 (t))p1\Omega 2

(5.2)

+

p - 1\sum 
n=1

\biggl( 
p
n

\biggr) 
\{ I(i)1,j(t) + I

(i)
2,j(t)\} 

p - n( - I(i)3 (t))n1\Omega 2
.

On \Omega 1 it holds that I
(i)
3 (t)p1\Omega 1

\geq \{ I(i)1,j(t)+I
(i)
2,j(t)\} p1\Omega 1

, which together with (5.2)

implies | \"X(i)
j,t | p+I

(i)
3 (t)p1\Omega 1

\geq \{ I(i)1,j(t)+I
(i)
2,j(t)\} p+( - I(i)3 (t))p1\Omega 2

+
\sum p - 1

n=1

\biggl( 
p
n

\biggr) 
\{ I(i)1,j(t)+

I
(i)
2,j(t)\} p - n( - I3(t))n1\Omega 2

, which further implies that by moving I
(i)
3 (t)p1\Omega 1

to the
r.h.s.

| \"X(i)
j,t | 

p \geq I(i)1,j(t)
p + I

(i)
2,j(t)

p  - I(i)3 (t)p  - 
p - 1\sum 
n=1

\biggl( 
p
n

\biggr) 
\{ I(i)1,j(t) + I

(i)
2,j(t)\} 

p - nI
(i)
3 (t)n.(5.3)

By taking maximum over j = 1, . . . , d, one has

\| \"X(i)
t \| p \geq \| I

(i)
1 (t)\| p  - I(i)3 (t)p  - 

p - 1\sum 
n=1

\biggl( 
p
n

\biggr) \Bigl\{ 
\| I(i)1 (t)\| + \| I(i)2 (t)\| 

\Bigr\} p - n

I
(i)
3 (t)n,(5.4)

where \| I(i)1 (t)\| = maxj=1,...,d I
(i)
1,j(t). By assumptions \scrA 3, \scrA 4, and \scrA 7, (5.3), and

(5.4), it implies that

J(\BbbP m,\ast ;\mu m,\ast )

\geq  - 2C4d - 3C4T  - C4  - 
C2

2

2\sum 
i=1

d\sum 
j=1

\BbbE \BbbP m,\ast 

\Biggl[ \int T

0

| a(i)jj (t)| (1 + | X
(i)
j,t | 

p - 1)dt

\Biggr] 

+C4

2\sum 
i=1

d\sum 
j=1

\Biggl( 
I
(i)
1,j(T )

p +\BbbE \BbbP m,\ast 

\Biggl[ 
I
(i)
2,j(T )

p  - I(i)3 (T )p

 - 
p - 1\sum 
n=1

\biggl( 
p
n

\biggr) \Bigl\{ 
I
(i)
1,j(t) + I

(i)
2,j(t)

\Bigr\} p - n

I
(i)
3 (t)n

\Biggr] \Biggr) 

+C4

2\sum 
i=1

\Biggl( \int T

0

\| I(i)1 (t)\| p dt - \BbbE \BbbP m,\ast 

\Biggl[ \int T

0

I
(i)
3 (t)p

+

p - 1\sum 
n=1

\biggl( 
p
n

\biggr) \Bigl\{ 
\| I(i)1 (t)\| + \| I(i)2 (t)\| 

\Bigr\} p - n

I
(i)
3 (t)n dt

\Biggr] \Biggr) 

+C4

\Biggl( \int T

0

max
i=1,2

\| I(i)1 (t)\| p dt - \BbbE \BbbP m,\ast 

\Biggl[ \int T

0

max
i=1,2

\Biggl\{ 
I
(i)
3 (t)p

+

p - 1\sum 
n=1

\biggl( 
p
n

\biggr) \Bigl\{ 
\| I(i)1 (t)\| + \| I(i)2 (t)\| 

\Bigr\} p - n

I
(i)
3 (t)n

\Biggr\} 
dt

\Biggr] \Biggr) 
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EXTENDED MFGs WITH SINGULAR CONTROLS 309

+C4

\Biggl( 
max
i=1,2

\| I(i)1 (T )\| p  - \BbbE \BbbP m,\ast 

\Biggl[ 
max
i=1,2

\Biggl\{ 
I
(i)
3 (T )p

+

p - 1\sum 
n=1

\biggl( 
p
n

\biggr) \Bigl\{ 
\| I(i)1 (T )\| + \| I(i)2 (T )\| 

\Bigr\} p - n

I
(i)
3 (T )n

\Biggr\} \Biggr] \Biggr) 

+C4

2\sum 
i=1

\int T

0

\scrW p
p (\mu 

(i),m,\ast 
t , \delta 0)dt+C4

\int T

0

\scrW p
p (\mu 

m,\ast 
t , \delta 0)dt+C4\scrW p

p (\mu 
m,\ast 
T , \delta 0).(5.5)

Step 2: Construction of \BbbP 0 and upper bound of J(\BbbP 0;\mu 
m,\ast ).

Choose u0 \in U and a probability measure \BbbP on some probability space that is large
enough to support two Brownian motions \widehat W (1) and \widehat W (2) and a Poisson process \widehat N
with intensity \lambda . Define \u X(i), i= 1,2,3, as the unique strong solutions to the following
SDEs: \u X

(i)
t =

\int t

0
b(s, \u X

(i)
s , \mu 

(i),m,\ast 
s )ds+\kappa (i)\mu 

(i),m,\ast 
t +

\int t

0
\sigma 
(i)
s d\widehat W (i)

s , i= 1,2, and \u X
(3)
t =\int t

0
b(3)(s, \u X

(3)
s , u0)ds+

\int t

0
l(s,u0)

\widetilde \widehat N(ds). Define \BbbP 0 := \BbbP \circ ( \u X, \u Z, \u Q) - 1, where \u Z \equiv 0 and
\u Q(dt, du) \equiv \delta u0(du)dt. Then \BbbP 0 \in \scrR m(\mu m,\ast ) and \BbbP 0(Z = 0,Q = \delta u0(du)dt) = 1. By

assumption \scrA 7, we have | \u X(i)
j,t | \leq 

\int t

0
C4(1 + | \u X(i)

j,t | +\scrW p(\mu 
(i),m,\ast 
s , \delta 0))ds+ \kappa (i)\mu m,\ast 

t +

\| 
\int t

0
\sigma 
(i)
s d\widehat W (i)

s \| . Gr\"onwall's inequality implies that

| \u X(i)
j,t | \leq C4

\int t

0

\scrW p(\mu 
(i),m,\ast 
s , \delta 0)ds+ \kappa (i)\mu m,\ast 

j,t +C4t+

\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

\sigma (i)
s d\widehat W (i)

s

\bigm\| \bigm\| \bigm\| \bigm\| 
+C4

\int t

0

\biggl( 
C4

\int s

0

\scrW p(\mu 
(i),m,\ast 
r , \delta 0)dr+ \kappa (i)\mu m,\ast 

j,s +C4s+

\bigm\| \bigm\| \bigm\| \bigm\| \int s

0

\sigma (i)
r d\widehat W (i)

r

\bigm\| \bigm\| \bigm\| \bigm\| \biggr) eC4(t - s) ds

= I
(i)
1,j(t) + I

(i)
3 (t), i= 1,2,

(5.6)

where I
(i)
1,j and I

(i)
3 are defined as in Step 1. The inequality (5.6) further implies that

by taking maximum over j = 1, . . . , d

(5.7) \| \u X(i)
t \| \leq \| I

(i)
1 (t)\| + I

(i)
3 (t), i= 1,2.

Moreover, a standard argument implies \BbbE \BbbP 0 [sup0\leq t\leq T \| X
(3)
t \| p]+\BbbE \BbbP 0 [

\int T

0
\| X(3)

t \| p dt]\leq 
C <\infty . By assumptions \scrA 3, \scrA 4, \scrA 7, (5.6), and (5.7), we have

J(\BbbP 0;\mu 
m,\ast )\leq 2C4d+ 3C4T +C4 +

C2

2

2\sum 
i=1

d\sum 
j=1

\BbbE \BbbP 0

\Biggl[ \int T

0

| a(i)jj (t)| (1 + | X
(i)
j,t | 

p - 1)dt

\Biggr] 

+C4

2\sum 
i=1

d\sum 
j=1

\Biggl( 
I
(i)
1,j(T )

p +\BbbE \BbbP 0

\Biggl[ 
I
(i)
3 (T )p +

p - 1\sum 
n=1

\biggl( 
p
n

\biggr) 
I
(i)
1,j(T )

p - nI
(i)
3 (T )n

\Biggr] \Biggr) 

+C4

2\sum 
i=1

\Biggl( \int T

0

\| I(i)1 (t)\| p dt+\BbbE \BbbP 0

\Biggl[ \int T

0

I
(i)
3 (t)p +

p - 1\sum 
n=1

\biggl( 
p
n

\biggr) 
\| I(i)1 (t)\| p - nI

(i)
3 (t)n dt

\Biggr] \Biggr) 

+C4

\Biggl( \int T

0

max
i=1,2

\| I(i)1 (t)\| p dt+\BbbE \BbbP 0

\Biggl[ \int T

0

max
i=1,2

\Biggl\{ 
I
(i)
3 (t)p

+

p - 1\sum 
n=1

\biggl( 
p
n

\biggr) 
\| I(i)1 (t)\| p - nI

(i)
3 (t)n

\Biggr\} 
dt

\Biggr] \Biggr) 
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310 GUANXING FU

+C4

\Biggl( 
max
i=1,2

\| I(i)1 (T )\| p +\BbbE \BbbP 0

\Biggl[ 
max
i=1,2

\Biggl\{ 
I
(i)
3 (T )p +

p - 1\sum 
n=1

\biggl( 
p
n

\biggr) 
\| I(i)1 (T )\| p - nI

(i)
3 (T )n

\Biggr\} \Biggr] \Biggr) 

+C4

2\sum 
i=1

\int T

0

\scrW p
p (\mu 

(i),m,\ast 
t , \delta 0)dt+C4

\int T

0

\scrW p
p (\mu 

m,\ast 
t , \delta 0)dt+C4\scrW p

p (\mu 
m,\ast 
T , \delta 0) +C4C.

(5.8)

Step 3: Complete the proof by the optimality of \BbbP m,\ast .
From (5.5), (5.8), and J(\BbbP m,\ast ;\mu m,\ast ) \leq J(\BbbP 0;\mu 

m,\ast ), we can see that terms with\sum d
j=1 | I

(i)
1,j | p,

\int T

0
\| I(i)1 (t)\| p dt, \| I(i)1 (T )\| p,

\sum 2
i=1

\int T

0
\scrW p

p (\mu 
(i),m,\ast 
t , \delta 0)dt,

\int T

0
\scrW p

p (\mu 
m,\ast 
t ,

\delta 0)dt, and \scrW p
p (\mu 

m,\ast 
T , \delta 0) cancel out. Note that all terms with I

(i)
3 are bounded uni-

formly in m. Using H\"older's inequality to terms with \| I(i)2 \| p - n(I
(i)
3 )n in (5.5), we

obtain a positive constant C that is independent of m such that

2\sum 
i=1

\BbbE \BbbP m,\ast 
[\| Z(i)

T \| 
p]\leq C

\Biggl( 
1 +

2\sum 
i=1

p - 1\sum 
n=1

\BbbE \BbbP m,\ast 
[\| Z(i)

T \| 
p - n] +

2\sum 
i=1

p - 1\sum 
n=1

\BbbE \BbbP m,\ast 
[\| (Z(i)

T )p\| ]
p - n
p

\Biggr) 

\leq C

\Biggl( 
1 +

2\sum 
i=1

p - 1\sum 
n=1

\BbbE \BbbP m,\ast 
[\| (Z(i)

T )p\| ]
p - n
p

\Biggr) 
.

If \BbbE \BbbP m,\ast 
[\| Z(i)

T \| p] \geq (4Cp)
p
n , it holds that \BbbE \BbbP m,\ast 

[\| Z(i)
T \| p]

p - n
p \leq 1

4Cp\BbbE 
\BbbP m,\ast 

[\| Z(i)
T \| p],

which implies that \BbbE \BbbP m,\ast 
[\| Z(i)

T \| p]
p - n
p \leq (4Cp)

p - n
n + 1

4Cp\BbbE 
\BbbP m,\ast 

[\| Z(i)
T \| p]. Thus, we have

that
\sum 2

i=1\BbbE \BbbP m,\ast 
[\| Z(i)

T \| p] \leq C(1 + 2
\sum p - 1

n=1(4Cp)
p - n
n ) + 1

4

\sum 2
i=1\BbbE \BbbP m,\ast 

[\| Z(i)
T \| p], which

implies the desired result.

Recall Y =X(3) - \alpha (1)Z(1)+\alpha (2)Z(2). By Lemma 5.1 and the same arguments as
Lemma 4.2, the sequence \{ \BbbP m,\ast \circ (X(1),X(2),Q,Z(1),Z(2), Y ) - 1\} m is relatively com-

pact in \scrW 
p
\prime for any 1 < p\prime < p. Denote by \u \BbbP 

\ast 
the weak limit. Skorokhod repre-

sentation implies the existence of (\u \Omega , \u \scrF ,\BbbQ ) and two tuples of stochastic processes
( \u X(1), \u X(2), \u Q, \u Z(1), \u Z(2), \u Y ) and (X(1),m,X(2),m,Qm,Z(1),m,Z(2),m, Y m) such that

\left\{   
\BbbQ \circ (X(1),m,X(2),m,Qm,Z(1),m,Z(2),m, Y m) - 1=\BbbP m,\ast \circ (X(1),X(2),Q,Z(1),Z(2), Y ) - 1,

\BbbQ \circ ( \u X(1), \u X(2), \u Q, \u Z(1), \u Z(2), \u Y ) - 1 = \u \BbbP 
\ast 
,

(X(1),m,X(2),m,Qm,Z(1),m,Z(2),m, Y m)\rightarrow ( \u X(1), \u X(2), \u Q, \u Z(1), \u Z(2), \u Y ), \BbbQ a.s.

(5.9)

Let X(3),m = Y m + \alpha (1)Z(1),m  - \alpha (2)Z(2),m and \u X(3) = \u Y + \alpha (1) \u Z(1)  - \alpha (2) \u Z(2).
Consequently, we have \BbbP m,\ast = \BbbQ \circ (X(1),m,X(2),m,X(3),m,Qm,Z(1),m,Z(2),m) - 1. De-
fine the candidate of the equilibrium as
(5.10)

\BbbP \ast =\BbbQ \circ ( \u X, \u Q, \u Z) - 1, \mu (i),\ast = \BbbP \ast \circ (Z(i)) - 1, i= 1,2, \mu (j),\ast = \BbbP \ast \circ (X(j)) - 1, j = 1,2,3.

For each constant K define JK(\BbbP ;\mu ) the same as J(\BbbP ;\mu ) in Lemma B.1 but

with hj , h \cdot b(i), a(i)jj h
\prime 
j , f , and g replaced by hj \wedge K, (h \cdot b(i)) \wedge K, (a

(i)
jj h

\prime 
j) \wedge K,

f \wedge K, and g \wedge K. Then from Lemma B.1, (5.9), and (3.6) in assumption \scrA 7 we
have limm\rightarrow \infty J(\BbbP m,\ast ;\mu m,\ast )\geq limm\rightarrow \infty JK(\BbbP m,\ast ;\mu m,\ast ) = JK(\BbbP \ast ;\mu \ast ). Letting K go to
infinity, monotone convergence and (3.5) in assumption \scrA 7 imply

(5.11) lim
m\rightarrow \infty 

J(\BbbP m,\ast ;\mu m,\ast )\geq J(\BbbP \ast ;\mu \ast ).
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EXTENDED MFGs WITH SINGULAR CONTROLS 311

The same argument as in Lemma 5.1 implies \BbbE \BbbP \ast 
[(Z

(i)
T )p] < \infty , which further

implies \BbbP \ast \in \scrP p(\Omega ). It can be checked by the same arguments as in Proposition 4.4
and Lemma 4.8 that \BbbP \ast \in \scrR \infty (\mu \ast ). Together with (5.11), the next theorem concludes
this section.

Theorem 5.2. Under \scrA 1 - \scrA 7, the probability measure defined in (5.10) is a
relaxed solution to MFG (1.1) with general singular controls, i.e., J(\BbbP \ast ;\mu \ast ) =
sup\BbbP \in \scrR \infty (\mu \ast ) J(\BbbP ;\mu \ast ).

Proof. First, we prove that for each \BbbP \in \scrR \infty (\mu \ast ) with J(\BbbP ;\mu \ast )<\infty , there exists
\BbbP m \in \scrR m(\mu m,\ast ) such that

(5.12) lim
m\rightarrow \infty 

J(\BbbP m;\mu m,\ast ) = J(\BbbP ;\mu \ast ).

Note that \BbbP \in \scrR \infty (\mu \ast ) yields a tuple ( \widehat X, \widehat Q, \widehat Z,\widehat W, \widehat N) defined on a probability
space (\widehat \Omega , \widehat \scrF ,\widehat \BbbP ) such that\left\{             
\widehat X(i)
t =

\int t

0

b(i)(s, \widehat X(i)
s , \mu (i),\ast 

s )ds+ \kappa (i)\mu 
(i),\ast 
t + \eta (i) \widehat Z(i)

t +

\int t

0

\sigma (i)(s)d\widehat W (i)
s , i= 1,2,

\widehat X(3)
t =

\int t

0

\int 
U

b(3)(s, \widehat X(3)
s , u) \widehat Qs(du)ds+

\int t

0

\int 
U

l(s,u)
\widetilde \widehat N(ds, du)+\alpha (1) \widehat Z(1)

t  - \alpha (2) \widehat Z(2)
t ,

\BbbP =\widehat \BbbP \circ ( \widehat X, \widehat Q, \widehat Z) - 1.

Define

\widehat Z(i),m
j,t =

\Biggl\{ \widehat Z(i)
j,t ,

\widehat Z(i)
j,t \leq m,

m, \widehat Z(i)
j,t >m,

i= 1,2, j = 1, . . . , d, and \BbbP m = \widehat \BbbP \circ ( \widehat Xm, \widehat Q, \widehat Zm) - 1,

where \widehat Xm is defined as \widehat X with \widehat Z replaced by \widehat Zm and \mu \ast replaced by \mu m,\ast . Obviously,
\BbbP m \in \scrR m(\mu m,\ast ). Next we verify the convergence (5.12). By definitions of \widehat X(i),m and\widehat X(i) and Gr\"onwall's inequality, for a.e. t \in [0, T ] including T and for i = 1,2, we

have that \| \widehat X(i),m
t  - \widehat X(i)

t \| \rightarrow 0, and for any t\in [0, T ], \| \widehat X(3),m
t  - \widehat X(3)

t \| \rightarrow 0. Note that\widehat Zm
t \leq \widehat Zt componentwise. Assumption \scrA 7 implies for i= 1,2\bigm| \bigm| \bigm| h( \widehat X(i),m

t ) \cdot b(i)(t, \widehat X(i),m
t , \mu 

(i),m,\ast 
t ) - h( \widehat X(i)

t ) \cdot b(i)(t, \widehat X(i)
t , \mu 

(i),\ast 
t )

\bigm| \bigm| \bigm| 
\leq C

\Bigl( 
1 + \| \widehat X(i),m

t \| p + \| \widehat X(i)
t \| p +\scrW p

p (\mu 
(i),m,\ast 
t , \delta 0) +\scrW p

p (\mu 
(i)
t , \delta 0)

\Bigr) 
\leq C

\Biggl( 
sup
m

\BbbE \BbbP m,\ast 
[\| Z(i)

T \| 
p] +\BbbE \BbbP \ast 

[\| Z(i)
T \| 

p] + \| \widehat Z(i)
T \| 

p +

\bigm\| \bigm\| \bigm\| \bigm\| \int t

0

\sigma (i)(s)d\widehat W (i)
s

\bigm\| \bigm\| \bigm\| \bigm\| p
\Biggr) 
,

which is integrable. Indeed, the finiteness of supm\BbbE \BbbP m,\ast 
[\| Z(i)

T \| p] is given by Lemma

5.1. Fatou's lemma implies \BbbE \BbbP \ast 
[\| Z(i)

T \| p] < \infty . The same argument as in Lemma

5.1 implies \BbbE \widehat \BbbP [\| Z(i)
T \| p] <\infty . Thus, dominated convergence yields \BbbE \widehat \BbbP [\int T

0
| h( \widehat X(i),m

t ) \cdot 
b(i)(t, \widehat X(i),m

t , \mu 
(i),m,\ast 
t )  - h( \widehat X(i)

t ) \cdot b(i)(t, \widehat X(i)
t , \mu 

(i),\ast 
t )| dt] \rightarrow 0. Similarly, we have the

convergence of other terms in the cost. Finally, by (5.11) and the optimality of \BbbP m,\ast 

w.r.t. to \mu m,\ast , we have J(\BbbP \ast ;\mu \ast ) \leq limm\rightarrow \infty J(\BbbP m,\ast ;\mu m,\ast ) \leq limm\rightarrow \infty J(\BbbP m;\mu m,\ast ) =
J(\BbbP ;\mu \ast ).

6. Conclusion. We study a class of extended MFGs with singular controls by
a relaxed solution method. The simultaneous jumps of singular controls in different
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312 GUANXING FU

directions make it difficult to verify the tightness. In order to establish the existence
of equilibria result, we smooth the singular controls to circumvent the tightness issue
and then take approximation.

Appendix A. \bfscrD ([0, \bfitT ];\BbbR \bfitd ) is Polish under the weak \bfitM 1 topology. This
section proves that \scrD ([0, T ];\BbbR d) is a Polish space under the weak M1 topology. De-
note by SM1 and WM1 the strong and the weak M1 topologies, respectively. Since
SM1 and WM1 coincide in \scrD ([0, T ];\BbbR ), we use M1 to denote SM1 and WM1 in
\scrD ([0, T ];\BbbR ).

Proposition A.1. The space \scrD ([0, T ];\BbbR d) is a Polish space under the weak M1

topology.

Proof. First, it is well known that \scrD ([0, T ];\BbbR d) is separable under J1 topology;
see, e.g., [47, section 11.5]. Thus, \scrD ([0, T ];\BbbR d) is separable under (S- and W -) M1

topology since J1 is stronger than (S- and W -) M1 topology. It remains to prove the
topological completeness of WM1. By [47, Theorem 12.8.1], \scrD ([0, T ];\BbbR d) is topologi-
cally complete under SM1. In particular, this is true when d= 1. Therefore, there is
a homeomorphic mapping f : (\scrD ([0, T ];\BbbR ), dSM1

(= dWM1
= dM1

))\rightarrow (\scrD ([0, T ];\BbbR ), \widehat ds),
where \widehat ds is the complete metric on \scrD ([0, T ];\BbbR ). For any Cauchy sequence \{ xn\} \subseteq 
(\scrD ([0, T ];\BbbR d), dWM1

), i.e., \| xn  - xm\| dWM1
\rightarrow 0, [47, Theorem 12.5.2] implies that

dM1(x
i
n, x

i
m) \rightarrow 0 for any i = 1, . . . , d, which implies by the continuity of f that\widehat ds(f(xin), f(xim)) \rightarrow 0 for any i = 1, . . . , d. By the completeness of \widehat ds there exists

xi \in \scrD ([0, T ];\BbbR ) such that \widehat ds(f(xin), f(xi))\rightarrow 0 for each i= 1, . . . , d, which implies by
the continuity of f - 1 that dM1

(xin, x
i)\rightarrow 0. By [47, Theorem 12.5.2] again we have

dWM1
(xn, x)\rightarrow 0, where x= (x1, . . . , xd)\in \scrD ([0, T ];\BbbR d).

Appendix B. Transformation of the cost functional

Lemma B.1. Under assumptions \scrA 1--\scrA 4, the cost functional (3.3) can be rewrit-
ten as

J(\BbbP ;\mu ) =\BbbE \BbbP 

\left[  2\sum 
i=1

d\sum 
j=1

\int X
(i)
j,T

X
(i)
j,0 - 

hj(x)dx - 
2\sum 

i=1

\int T

0

h(X
(i)
t ) \cdot b(i)(t,X(i)

t , \mu 
(i)
t )dt

 - 1

2

2\sum 
i=1

d\sum 
j=1

\int T

0

a
(i)
jj (t)h

\prime 
j(X

(i)
j,t )dt

+

\int T

0

\int 
U

f(t,Xt, \mu t, u)Qt(du)dt+ g(XT , \mu T )

\Biggr] 
.

Proof. The desired result follows from using It\^o's formula as follows and then
taking expectation:\int X

(1)
j,T

X
(1)
j,0 - 

hj(x)dx=

\int T

0

hj(X
(1)
j,s )b

(1)
j (s,X(1)

s , \mu (1)
s )ds

+

\int T

0

hj(X
(1)
j,s - )d

\Bigl( 
\kappa (1)\mu 

(1)
j,s + \eta (1)Z

(1)
j,s

\Bigr) 
+

1

2

\int T

0

h\prime j(X
(1)
j,s )a

(1)
jj (s)ds

+
\sum 

0\leq t\leq T

\Biggl( \int X
(1)
j,t

X
(1)
j,t - 

hj(x)dx - hj(X(1)
j,t - )\Delta X

(1)
j,t

\Biggr) 
+martingale

=

\int T

0

hj(X
(1)
j,s )b

(1)
j (s,X(1)

s , \mu (1)
s )ds+

1

2

\int T

0

h\prime j(X
(1),j
s )a

(1)
jj (s)ds
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+

\int T

0

hj(X
(1)
j,s - )d(\kappa 

(1)\mu 
(1)
j,s + \eta (1)Z

(1)
j,s )

c

+
\sum 

0\leq t\leq T

\Biggl( \int \Delta X
(1)
j,t

0

hj(y+X
(1)
j,t - )dy

\Biggr) 
+martingale.
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