
Optimized Scenario Reduction: Solving Large-scale Stochastic

Programs with Quality Guarantees

Wei Zhang
Faculty of Business, The Hong Kong Polytechnic University, Hong Kong

Alexandre Jacquillat
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Kai Wang
School of Vehicle and Mobility, Tsinghua University, Beijing, China

Shuaian Wang
Faculty of Business, The Hong Kong Polytechnic University, Hong Kong

Stochastic programming involves large-scale optimization with exponentially many scenarios. This paper pro-

poses an optimization-based scenario reduction approach to generate high-quality solutions and tight lower

bounds by only solving small-scale instances, with a limited number of scenarios. First, we formulate a sce-

nario subset selection model that optimizes the recourse approximation over a pool of solutions. We provide

a theoretical justification of our formulation, and a tailored heuristic to solve it. Second, we propose a sce-

nario assortment optimization approach to compute a lower bound—hence, an optimality gap—by relaxing

nonanticipativity constraints across scenario “bundles”. To solve it, we design a new column-evaluation-

and-generation algorithm, which provides a generalizable method for optimization problems featuring many

decision variables and hard-to-estimate objective parameters. We test our approach on stochastic programs

with continuous and mixed-integer recourse. Results show that (i) our scenario reduction method dominates

scenario reduction benchmarks, (ii) our scenario assortment optimization, combined with column-evaluation-

and-generation, yields tight lower bounds, and (iii) our overall approach results in stronger solutions, tighter

lower bounds, and faster computational times than state-of-the-art stochastic programming algorithms.

Key words : Stochastic programming; Scenario reduction; Column evaluation and generation.

1. Introduction

Since its introduction by ?, stochastic programming has had a tremendous impact on decision mak-

ing under uncertainty, with applications in supply chain management, energy systems, healthcare,

urban operations, cloud computing, portfolio management, etc. Despite being considerably larger

and more complex than their deterministic counterparts, stochastic programs can now be solved

in large-scale instances (see ??). Yet, there remain limits on the size and complexity that existing

algorithms can handle. Moreover, stochastic programs with integer recourse remain notoriously

challenging, with a lack of general-purpose algorithms that can routinely scale to realistic problems

(?).

Accordingly, scenario reduction seeks a smaller problem instance that can yield high-quality

solutions. Consider a “full” two-stage stochastic program minx∈X
{
cTx+

∑
s∈S hsQ(x, ξs)

}
, where

1

This is the accepted manuscript of the following article: Zhang, W., et al. (2023). "Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs
with Quality Guarantees." INFORMS Journal on Computing 35(4): 886-908, which has been published in final form at https://doi.org/10.1287/ijoc.2023.1295.

This is the Pre-Published Version.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
2

x ∈ X is the first-stage decision, S is a finite set of scenarios with probabilities (hs)s∈S , and

Q(·, ·) is the recourse function. The scenario set S can be exponentially large (for instance, n

uncertain components each with m possible values lead to mn scenarios). Scenario reduction aims

to approximate S with a small subset of K scenarios (say, K = 10, 100, or 1,000), such that the

resulting stochastic program can be handled with available solution algorithms. The most common

approach, sample average approximation (SAA), randomly samples equiprobable scenarios (?).

This approach is asymptotically optimal and has shown considerable success in practice, but can

also lead to suboptimality in small samples. Another approach, termed “distribution-based scenario

reduction” (“DSR” for short), generates scenarios and their probabilities to minimize their distance

from the full scenario set (see, e.g., ?). However, the scenarios that best approximate the input

distribution may not lead to the best stochastic programming solution. Moreover, DSR does not

yield lower bounds of the full problem and SAA yields stochastic bounds.

This paper proposes new scenario reduction methods to address these limitations. Throughout,

we impose that the stochastic program can be solved with up to K scenarios, where K is dictated

by the complexity of the problem, the solution algorithm, and practical requirements. Our methods

aim to: (i) generate a high-quality solution, in view of the full scenario set S, and (ii) derive a lower

bound of the full stochastic program, hence an optimality gap. By design, we seek general-purpose

methods that encompass a broad class of stochastic programming models, including problems with

mixed-integer recourse (as opposed to relying on strong inner duality).

In response to the first objective, we propose an optimization approach to scenario reduction, via

a scenario subset selection (SSS) model that optimizes the approximation of the recourse function

over a pool of first-stage solutions—as opposed to approximating the input probability distribution.

The SSS model is formulated as a mixed-integer program, using connections with sparse regression

in statistical learning (?), and we solve it via a tailored heuristic. This approach is motivated by a

theoretical bound on the quality of the solution based on (i) the representativeness of the solution

pool, and (ii) the quality of the recourse function approximation.

In response to the second objective, we propose a scenario assortment optimization (SAO) ap-

proach that relaxes nonanticipativity constraints across scenario “bundles”, solves a smaller-scale

stochastic program within each bundle, and sums costs across bundles. This approach yields a

valid lower bound to the full stochastic program, and extends previous methods by allowing each

scenario to be “split” into multiple bundles. We seek the largest bound within this family.

The SAO formulation features two sources of complexity: (i) a large, or even infinite, number

of bundle-based variables; and (ii) hard-to-evaluate cost parameters (a stochastic program, in our

case). To circumvent these difficulties, we propose a column-evaluation-and-generation approach

that leverages a fast relaxation-approximation of the cost parameters (a stochastic program over

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
3

a restricted solution space, in our case). The algorithm iterates between a column generation step

to derive a solution based on the relaxation (addressing difficulty (i)), and a column evaluation

step to update the cost parameters for selected solutions (addressing difficulty (ii)). We prove

that the column-evaluation-and-generation procedure exhibits the same convergence properties as

the underlying column-generation algorithm—in particular, it converges finitely to the optimum

if the number of variables is finite. Ultimately, the SAO approach yields a valid lower bound at

each iteration, and exhibits strong empirical convergence. The column-evaluation-and-generation

algorithm provides a stand-alone contribution of this paper to solve optimization problems where

objective parameters are hard to estimate but a relaxation-approximation thereof is available.

We test our models and algorithms on four problems: (i) the production routing problem with

continuous recourse (PRP–CR) from ?; (ii) a new one with mixed-integer recourse (PRP–IR); (iii)

a facility location problem with continuous recourse (FLP–CR); and (iv) one with mixed-integer

recourse (FLP–IR). We first apply standard stochastic programming algorithms (i.e., CPLEX im-

plementation, Benders decomposition for problems with continuous recourse, the integer L-shaped

method for problems with mixed-integer recourse) and more advanced ones using additional cuts

(“enhanced” Benders decomposition and “enhanced” integer L-shaped). Results show that all four

problems are highly complex, both from a stochastic standpoint—scenario-based solutions exhibit

poor out-of-sample performance—and from a computational standpoint—all baseline algorithms

fail to solve the full 500-scenario problems within a five-hour time limit.

Our computational results fall into three categories. First, our SSS solution outperforms the

scenario reduction benchmarks (SAA and DSR) for all problems, by up to 12–14%. This suggests

that our optimization-based problem-driven approach to scenario reduction can provide benefits

as compared to randomized or distribution-driven scenario reduction. Second, our scenario assort-

ment optimization, combined with our column-evaluation-and-generation algorithm, generates a

strong lower bound to the full stochastic program. These lower-bounding results guarantee that

our solution (obtained with only 10–30 out of 500 scenarios) is optimal for three out of four prob-

lem settings and lies within 3.6% of the optimum for the fourth one. Third, our overall approach

yields a Pareto improvement over state-of-the-art stochastic programming algorithms for all four

problems: higher-quality solutions, tighter lower bounds, and faster computational times.

In summary, this paper makes three main contributions. First, we develop an optimization-based

scenario reduction approach to approximate the recourse function in two-stage stochastic program-

ming, and a dedicated heuristic algorithm to solve the resulting scenario subset selection model.

Second, we propose a scenario assortment optimization approach to generate a lower bound by only

solving small-scale instances. In particular, we develop a new column-evaluation-and-generation

algorithm for large-scale optimization formulations with a prohibitive number of hard-to-evaluate

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
4

objective parameters. Third, we demonstrate, through extensive computational experiments, that

our solution outperforms scenario reduction benchmarks and is competitive with state-of-the-art

stochastic programming algorithms. These results do not imply that scenario reduction should re-

place advanced stochastic programming algorithms. Rather, this paper suggests a complementary

way to achieve high-quality solutions and strong performance guarantees through dimensionality

reduction, and proposes general-purpose models and algorithms to do so.

2. Literature review

Scenario reduction. Stochastic programming typically models uncertainty with discrete sce-

narios (???). Scenario reduction seeks the “best” set of K scenarios. Scenario reduction methods

can be classified into distribution-based approaches, which approximate the distribution of the

input parameters, and problem-driven approaches, which approximate the downstream stochastic

programming formulation.

Within distribution-based methods, the most common approach is sample average approximation

(SAA) that generates equiprobable scenarios through Monte Carlo sampling. SAA is asymptoti-

cally optimal, that is, its solution converges to the stochastic programming optimum as the number

of scenarios grows infinitely, and provides statistical guarantees on convergence rates (see, e.g.

??????). SAA convergence can be accelerated via variance reduction such as quasi-Monte Carlo,

antithetic, Latin hypercube and importance sampling (??????). SAA has shown considerable suc-

cess in transportation (??), supply chain management (?), health care (??), energy (?), etc. Yet, the

number of scenarios to guarantee near-optimality can grow prohibitively large for large-scale prob-

lems. Thus, SAA can produce optimistically-biased estimates and potentially suboptimal solutions

when evaluated out of sample (???).

In response, a branch of the distribution-based scenario reduction literature seeks “representa-

tive” scenarios by minimizing the distance to the input distribution (?). ? use non-linear optimiza-

tion to generate scenarios that satisfy user-specified statistical properties. ? extend this approach

to match distribution moments. ? minimize the Wasserstein metric to approximate continuous

stochastic processes. ? and ? formulate the scenario reduction problem with the Fortet-Mourier

metric, which they solve via heuristic algorithms. ? formulate the problem as a facility location

problem, and solve it with forward and backward heuristics. ? instead solve the scenario reduction

problem, based on a transportation distance, via integer optimization.

As opposed to distribution-based methods, problem-driven scenario reduction considers the

downstream optimization problem to capture the impact on expected costs. In unit commitment, ?

cluster scenarios based on a solution sensitivity index that encompasses generation costs and load

imbalances. In power systems expansion, ? aggregate scenarios around representative ones, using

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
5

such features as active power flows and investment costs. In portfolio selection, ?? combine many

scenarios to focus on relevant scenarios in a sub-area of the distribution. In a similar risk-averse

setting, ? seek “effective” scenarios (that impact the optimal objective value) while minimizing the

distance to the original distribution. Turning to general-purpose problem-driven scenario reduc-

tion methods, ? develop an iterative scenario expansion procedure guided by the model’s solutions

for problems with continuous recourse and right-hand side uncertainty. With binary uncertainty,

? identify, and eliminate, scenarios that do not impact the decisions. ? minimize the difference

between the optimal expected objective values of the problems with the reduced and full scenario

sets. ? minimize a loss function characterizing the error in the recourse function approximation,

both in and out of sample, over a pool of solutions. This leads to a non-convex loss minimization

problem, solved by heuristics. ? proposed a prescription divergence metric to partition a large

number of scenarios into a small number of clusters. This also leads to a non-convex problem,

solved by iterating between partitioning scenarios (given the cluster centroids) and updating the

centroids (given the scenario partition). In concurrent work, ? extended the p-median model from

? with a new distance metric that incorporates recourse-based deviations based on solutions to

small-scale instances of the problem, as opposed to merely minimizing the transportation distance

between input distributions.

Our paper extends this literature in three ways. First, we formalize a scenario subset selection

problem for scenario reduction, drawing connections with the sparse regression problem in ma-

chine learning. This problem is formulated via mixed-integer linear optimization and solved via

tailored algorithms. This differs from previous formulations based on semi-infinite programming

(?), clustering (?????), and non-convex optimization (??). Second, our approach is applicable to

a broad class of two-stage stochastic programs, including problems with mixed-integer recourse—a

notoriously challenging class of problems. This differs from settings with continuous recourse (e.g.,

?). Third, unlike all aforementioned papers, we derive a lower bound of the full stochastic program

to provide solution quality guarantees. This relates to the literature on scenario decomposition,

which we review next.

Scenario decomposition. Our lower-bounding scenario assortment optimization falls into the

scenario decomposition literature. The progressive hedging algorithm from ? dualizes nonanticipa-

tivity constraints, iterating between solving scenario-based relaxations and aggregating solutions

to restore nonanticipativity. It has been applied to stochastic integer programming (?), stochastic

binary programming (?), stochastic mixed-integer programming (?), and chance-constrained op-

timization (?). In this paper, we leverage scenario decomposition to derive a lower bound of the

stochastic program. This builds upon recent “scenario grouping” (SG) methods using, for instance,

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
6

k-means clustering (?) or adaptive partitioning (?). Closely related, ? propose an optimization-

driven scenario grouping method that maximizes the lower bound obtained by relaxing nonantici-

pativity across disjoint groups.

Our scenario assortment optimization (SAO) approach enhances the SG approach in two ways.

From a modeling standpoint, we allow each scenario to be “broken down” into several bundles,

so the SAO lower bound is at least as tight as the SG one. From a computational standpoint, we

develop a new, and generalizable, column-evaluation-and-generation algorithm to solve a SAO set

partitioning formulation, with hard-to-estimate objective parameters. Our results show that this

approach results in a tighter bound than an SG benchmark inspired from ?.

3. Upper bound: An optimization-based scenario reduction approach

We consider a two-stage stochastic program, where x ∈ X and y ∈ Y(x, ξ) denote first-stage and

second-stage decisions, uncertainty is characterized by a finite set of scenarios S each associated

with a realization ξs and a probability hs, and Q(·, ·) denotes the recourse function:

P(S,h) = min
x∈X

{
cTx+

∑
s∈S

hsQ(x, ξs)

}
, where: Q(x, ξs) = min

y∈Y(x,ξs)

{
qTy

}
. (1)

We assume that P(S,h) has relatively complete recourse, i.e., Y(x, ξs) 6= ∅ for all first-stage deci-

sions x and all scenarios s. However, we make no assumption on the structure of the first-stage and

second-stage problems, thus capturing two-stage stochastic continuous and integer programming.

We assume that S is finite, yet too large for Equation (1) to be solved directly. Throughout this

paper, we only solve instances with up to K scenarios, determined by the problem’s complexity, the

solution algorithm, and practical requirements. This section focuses on scenario reduction to derive

a solution to Equation (1); the next one turns to scenario assortment to derive a lower bound.

3.1. Scenario subset selection (SSS) model

We seek a subset S0 ⊆ S such that |S0| ≤ K, along with weights (ws)s∈S0
, so that the recourse

function estimated over S0 with the weight vector w approximates the recourse function estimated

over the full scenario set S with the probability vector h. Our scenario subset selection (SSS) model

minimizes the error in this approximation over a pool of feasible first-stage solutions X P ⊆X :

SSS(X P ,K) ∆ = min
w≥0

∑
x∈XP

∣∣∣∣∣∑
s∈S

hsQ(x, ξs)−
∑
s∈S

wsQ(x, ξs)

∣∣∣∣∣ :
∑
s∈S

1(ws 6= 0)≤K

 . (2)

Note that we restrict the weights ws to be nonnegative for interpretability purposes. However, we

do not restrict them to sum up to 1 in order to avoid unnecessarily constraining the SSS model.

Our SSS formulation relates to ?, who also approximate a recourse function to preserve the

ranking among the first-stage solutions in X P . Their formulation applies differentiated weights to

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
7

different solutions (to focus on “promising” regions) and penalizes solutions that perform better in

sample than out of sample (to avoid overconfident outliers). Our formulation is somewhat simpler.

From a modeling standpoint, it avoids tuning weights for different solutions and another one for

penalizing outliers. From a statistical standpoint, it does not rely on finding “good” solutions in

the pool X P , but instead reconstructs a global approximation of the recourse function. From a

computational standpoint, it can tackle general stochastic programs, as opposed to problems with

simple recourse or binary uncertainty as in ?.

Technically, our SSS model minimizes the absolute error from the “true” recourse function, under

scenario sparsity constraints. This connects to the sparse regression problem, which minimizes the

prediction error under feature sparsity constraints (?). With this interpretation, each “observation”

is a first-stage solution x ∈ X P , each “feature” is the recourse function in a scenario s ∈ S, and

the “outcome variable” is the expected recourse
∑

s∈S hsQ(x, ξs). Our setting results in highly

correlated features, leading to a challenging optimization problem.

We can reformulate SSS as the following mixed-integer optimization model, where M denotes a

large number and zs denotes a binary variable equal to 1 if s∈ S0 and 0 otherwise.

SSS(X P ,K) ∆ = min
∑
x∈XP

∣∣∣∣∣∑
s∈S

hsQ(x, ξs)−
∑
s∈S

wsQ(x, ξs)

∣∣∣∣∣ (3)

s.t. ws ≤Mzs ∀s∈ S (4)∑
s∈S

zs ≤K (5)

ws ≥ 0, zs ∈ {0,1} ∀s∈ S. (6)

Benchmarks

Sample average approximation (SAA): build S0 by uniformly sampling K scenarios from the set

S and assigning the same probability to each, that is, ws = 1
K

for all s∈ S0 (?).

Distribution-based scenario reduction (DSR): select a scenario subset S0 by minimizing the dis-

tance to the full distribution (ξs)s∈S . We define a distance from scenario s to scenario s′ as DDSR
ss′ =

hs ‖ξs− ξs′‖2. We define binary variables ζs′ equal to 1 if s′ ∈ S0, and ψss′ equal to 1 if scenario

s∈ S is mapped to s′ ∈ S0. The DSR is formulated as the following p-median problem (?), and we

recover S0 = {s′ ∈ S : ζ∗s′ = 1} and ws′ =
∑

s∈S hsψ
∗
ss′ for s′ ∈ S0.

min
ζ∈{0,1}S

ψ∈{0,1}S×S

{∑
s∈S

∑
s′∈S

DDSR
ss′ ψss′ :

∑
s′∈S

ζs′ ≤K, ψss′ ≤ ζs′ ∀s, s′ ∈ S,
∑
s′∈S

ψss′ = 1 ∀s∈ S

}
. (7)

The main difference between DSR and SSS lies in the objective function: DSR approximates the

input distribution whereas SSS approximates the recourse function of the optimization problem.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
8

All methods yield a scenario subset S0 of cardinality K and corresponding weights (ws)s∈S0
. We

then solve the stochastic programming problem P(S0,w). We evaluate the solution (denoted by x̃)

out of sample in view of the original stochastic program, P(S,h), by computing the total expected

cost across the full scenario set, i.e.: cT x̃+
∑

s∈S hsQ(x̃, ξs).

An illustrative example

To motivate our approach, assume that S comprises three equiprobable scenarios such that

ξ1 = 0, ξ2 = 40, ξ3 = 100. Suppose that Q(x, ξ) = maxy∈{0,100} 3 |y− ξ| ‖x‖2. The full problem is thus:

P(S,h) = min
x∈X

{
cTx+ 260‖x‖2

}
.

Suppose that we need to select two scenarios (K = 2). Since Q(·, ξ1) =Q(·, ξ3), SSS selects S0 =

{1,2} with w1 = 2
3

and w2 = 1
3
, or S0 = {2,3} with w2 = 1

3
and w3 = 2

3
. Either way, we obtain:

P(S0,w)SSS = min
x∈X

{
cTx+ 260‖x‖2

}
.

With SAA, each scenario is sampled (with replacement) with probability 0.5, so that:

P(S0,w)SAA =


minx∈X {cTx+ 300‖x‖2} if S0 = {1,1}, S0 = {1,3}, or S0 = {3,3},
minx∈X {cTx+ 240‖x‖2} if S0 = {1,2} or S0 = {2,3},
minx∈X {cTx+ 180‖x‖2} if S0 = {2,2}.

With DSR, we can select S0 = {1,3} with w1 = 2
3

and w3 = 1
3

(scenario 2 is mapped to scenario

1), or S0 = {2,3} with w2 = 2
3

and w3 = 1
3

(scenario 1 is mapped to scenario 2). We obtain:

P(S0,w)DSR =

{
minx∈X {cTx+ 300‖x‖2} if S0 = {1,3},
minx∈X {cTx+ 220‖x‖2} if S0 = {2,3}.

In this example, P(S0,w)SSS = P(S,h), so SSS returns the optimal solution to P(S,h). In

contrast, P(S0,w)SAA and P(S0,w)DSR may provide suboptimal solutions to P(S,h).

In this simplified setting, the SSS problem is solved to optimality (with a zero objective) and

the weights sum up to 1; as mentioned above, this needs not be the case. Moreover, this example

does not depend on the subset of solutions X P ; however, this is also not the case in general.

3.2. The solution pooling model

Our SSS problem (Equation (2)) approximates the recourse function over a pool of first-stage

solutions X P ⊆X . Ideally, we would set X P = X but this would lead to intractability in the SSS

model, as X is either infinite or exponentially large. We thus define a restricted pool X P of first-

stage solutions, with limited cardinality (denoted by P), in order for the resulting recourse function

approximation across X P to capture the overall recourse function over the entire set X .

We propose a simple pooling approach. We first start from a large solution subset XA ⊆ X .

Our pooling model then reduces XA into a “representative” subset X P ⊆ XA of cardinality P

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
9

to minimize the largest deviation from XA to X P , using a deviation function that captures the

absolute difference in the recourse functions: dx,x′,s = |Q(x, ξs)−Q(x′, ξs)|. Let ζx′ = 1 if x′ ∈X P ,

and ψx,x′ = 1 if x∈XA is mapped to x′ ∈X P . The pooling problem is formulated as:

min
ζ∈{0,1}X

A
, ψ∈{0,1}X

A×XA

{
∆P : ∆P ≥ dx,x′,sψx,x′ ∀x,x′ ∈XA,∀s∈ S,

ψx,x′ ≤ ζx′ ∀x,x′ ∈XA,∑
x′∈XA

ψx,x′ = 1 ∀x∈XA,

∑
x′∈XA

ζx′ = P

}
. (8)

The solution pooling model reduces to a facility location problem, and is thus NP-hard. We design

a two-step heuristic to solve it efficiently. We present and evaluate this heuristic in Appendix A.1.

3.3. Theoretical justification of the scenario reduction approach

Altogether, our scenario reduction approach involves (i) generating a large solution set XA ⊆ X ,

(ii) reducing it into a smaller pool X P ⊆XA (Equation (8)), and (iii) selecting a scenario subset

S0 via SSS (Equations (3)–(6)). We then solve P(S0,w) as an approximation of P(S,h).

Figure 1 illustrates the approximation (in blue) of the full recourse function (in green). The SSS

formulation minimizes the approximation error ∆, estimated in discrete points x ∈ X P (in red).

Our pooling procedure aims to map each point of XA (as a proxy for X) to a nearby neighbor in

X P , so that the recourse function approximation generalizes over XA \X P (as a proxy for X \X P).

Theorem 1 (proved in Appendix A.2) justifies this approach by bounding the difference between

the out-of-sample cost achieved by the solution of P(S0,w) and the optimum of P(S,h).

Lemma 1. Let w denote the optimal solution of SSS. There exists U that depends on the char-

acteristics of P(S,h), such that ws ≤U for all s∈ S.

Theorem 1. Let x̃ be an optimal solution of P(S0,w) and x∗ be an optimal solution of P(S,h).

Let ∆A = maxx∈X minxA∈XA ‖x−xA‖, and assume that the recourse function Q(·, ξs) is L-Lipschitz

continuous for all s∈ S. Using the notations from Lemma 1, we have:(
cT x̃+

∑
s∈S

hsQ(x̃, ξs)

)
−

(
cTx∗+

∑
s∈S

hsQ(x∗, ξs)

)
≤ 2

[
∆ +

(
1 +KU

) (
∆P +L∆A

)]
. (9)

In words, the error of the solution is bounded by (i) the error in the SSS recourse function

approximation over X P , (ii) the maximum pooling distance from XA to X P , and (iii) the covering

distance between XA and X . In an ideal case, (i) if the SSS is “perfect”, with a zero objective,

(ii) if the solution pooling process is “perfect”, with a zero objective, and (iii) if the pool XA is

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
10

Figure 1 One-dimensional visualization of the optimization-based scenario reduction procedure.

vast enough to “cover” the full solution space X , then the solution of P(S0,w) will be optimal in

view of P(S,h). Obviously, none of these conditions is exactly satisfied in practice. Yet, this result

motivates our approach to generate a vast subset XA initially, to build a representative subset

thereof ∆P (via pooling) and to optimize the recourse function approximation (via SSS).

Note that this result relies on an assumption of Lipschitz continuity of the recourse function in

each scenario. This condition is satisfied by two-stage stochastic linear programs with relatively

complete, continuous, bounded and fixed recourse, i.e., with constraints of the formWy= rs−U sx

where y ≥ 0 is a continuous variable and where the second-stage problem is feasible and bounded

(?). However, this condition can fail in general, especially in the presence of discrete second-stage

variables. Nonetheless, Theorem 1 provides a justification for the design of our scenario reduction

approach and, as our computational results show, our approach generates high-quality solutions in

the presence of continuous or discrete second-stage variables.

Let us conclude with a few remarks. First, the pooling process does not necessarily aim to build

high-quality solutions in X P . Whereas, in theory, it could be sufficient to approximate the recourse

function around the optimal region, insufficient variability may create instability in the recourse

function approximation, hence high generalization error. Instead, the pooling procedure starts with

a large set XA, and then builds a pool X P to be representative of the solution space X . To build

the initial set XA, one possibility would be to proceed by random sampling; however, it can be

challenging to generate random feasible solutions in constrained optimization. In our experiments,

we will build XA with |S| feasible solutions from deterministic scenario-based problems.

3.4. A heuristic for solving the SSS model

Our SSS problem (Equation (2)) reduces to the sparse regression problem in statistical learning,

known to be NP-hard (?). Moreover, as described earlier, the “features” are highly collinear,

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
11

resulting in significant computational challenges. In our experiments, off-the-shelf implementations

do not scale to even moderately large solution pools and scenario sets.

We thus design a bi-level heuristic that iterates between two local search operators (LSO) (Fig-

ure 2): an inner procedure (LSO I) that iteratively improves the solution within neighborhoods, and

a perturbation scheme (LSO II) to escape from local optima. We iterate between LSO I and LSO

II, until convergence. We outline the heuristic below, and detail the algorithm in Appendix A.4.

Figure 2 Overview of the bi-level heuristic, iterating between LSO I and LSO II.

LSO I. The inner local search procedure, itself, iterates until convergence between two modules:

1. Scenario-neighborhood model (SNM): expand each of the K scenarios into Ω “neighboring”

ones. Let us index the incumbent solution by {ŝ1, · · · , ŝK}. This model builds K disjoint

neighborhoods Sk ⊆ S, such that ŝk ∈ Sk and |Sk|= Ω for each k = 1, ...,K. The “neighbors”

are defined based on the recourse values, namely: Dsŝk = hs
∑
x∈XP

∣∣Q(x, ξs)−Q(x, ξŝk)
∣∣. We

define a variable αsk equal to 1 if scenario s is included in neighborhood k, and 0 otherwise.

We formulate SNM as follows, and retrieve each neighborhood as Sk = {s∈ S : αs,ŝk = 1}.

SNM(X P , ŝ1, · · · , ŝK ,Ω) = min
α∈{0,1}S×K

{∑
s∈S

K∑
k=1

Dsŝkαsk :
∑
s∈S

αsk = Ω, ∀k ∈ {1, · · · ,K},

K∑
k=1

αsk ≤ 1, ∀s∈ S

}
. (10)

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
12

2. Neighborhood-based scenario subset selection (NSSS): pick one scenario per neighborhood:

NSSS(X P ,S1, · · · ,SK) =min
w≥0

{ ∑
x∈XP

∣∣∣∣∣∑
s∈S

hsQ(x, ξs)−
∑
s∈S

wsQ(x, ξs)

∣∣∣∣∣ , (11)

s.t.
∑
s∈Sk

1(ws 6= 0) = 1,∀k ∈ {1, · · · ,K}

}
.

We update the scenario subset as {s ∈ S :ws 6= 0}. By design, the objective is non-increasing

across iterations. We continue until convergence, that is, until wŝk 6= 0 for all k= 1, · · · ,K.

The parameter Ω defines the size of the neighborhood at each inner iteration. If Ω is small, each

iteration will be fast, but the overall local search procedure can converge to a poor local optimum.

If Ω is large, each iteration will be more impactful but also slower. We calibrate it in Appendix A.4.

LSO II. We perturb the solution from LSO I by fixing K − 1 scenarios, and re-optimizing the

remaining scenario and all the weights ws. We still index the incumbent solution by {ŝ1, · · · , ŝK},
and define a partial scenario subset selection (PSSS) model as follows:

PSSS(X P , k, ŝ1, · · · , ŝK) =min
w≥0

{ ∑
x∈XP

∣∣∣∣∣∑
s∈S

hsQ(x, ξs)−
∑
s∈S

wsQ(x, ξs)

∣∣∣∣∣ , (12)

s.t.
∑

s∈S\{ŝ1,··· ,ŝk−1,ŝk+1,··· ,ŝK}

1(ws 6= 0) = 1

}
.

We repeat the process by re-optimizing each scenario from the incumbent solution. Whenever we

obtain a (strict) solution improvement, we move to LSO I. The algorithm terminates when all LSO

II re-optimizations do not find any improved solution over the sequence of K scenarios. As such,

either the LSO II procedure improves the objective function or the algorithm terminates.

4. Lower bound: A scenario assortment optimization approach

We complement our scenario reduction approach with a scenario assortment optimization (SAO)

approach to generate a lower bound of the full stochastic program P(S,h). We, again, impose that

no instance of the stochastic program can be solved with more than K scenarios.

4.1. Scenario assortment optimization (SAO) formulation

Our SAO approach seeks bundles (Sb)b∈B, each comprising up to K scenarios from S. We define

a parameter ηb ≥ 0 for each bundle and introduce a mapping from scenarios to bundles, where

βbs ≥ 0 denotes the weight of scenario s ∈ S into bundle b ∈ B. We ensure that
∑

b∈B ηb = 1 and∑
b∈B βbs = hs, that is, the total weight of each scenario across bundles remains unchanged. Note

that each scenario s∈ S can be “split” into multiple bundles, whenever βbs ∈ (0,1).

We then solve the stochastic program within each bundle, and sum the cost across all bundles.

This approach can be viewed as relaxing the nonanticipativity constraints across bundles. As

Proposition 1 shows, it yields a lower bound of P(S,h).

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
13

Proposition 1. Let us construct bundles (Sb)b∈B such that Sb ⊆S for all b∈B. We define non-

negative vectors (ηb)b∈B and (βbs)b∈B,s∈S such that
∑

b∈B ηb = 1 and
∑

b∈B βbs = hs for all s∈ S, and

βbs = 0 for all s /∈ Sb, b∈B. Then,
∑

b∈BP(Sb, ηb,βb) is a lower bound to problem P(S,h), where:

P(Sb, ηb,βb) = min
xb∈X

{
ηbc

Txb +
∑
s∈Sb

βbsQ(xb, ξs)

}
, ∀b∈B. (13)

The quality of this lower bound depends on the bundles Sb and the parameters ηb and βbs. Our

scenario assortment optimization (SAO) problem seeks the largest bound within this family:

max
(Sb)b∈B
(ηb)b∈B

(βbs)b∈B,s∈S

{∑
b∈B

P(Sb, ηb,βb) :
∑
b∈B

ηb = 1,

βbs = 0, ∀s /∈ Sb, b∈B,

|Sb| ≤K, ∀b∈B,∑
b∈B

βbs = hs, ∀s∈ S,

Sb ⊆S, ∀b∈B, ηb ≥ 0, ∀b∈B, βbs ≥ 0, ∀b∈B, s∈ S

}
. (14)

Baseline: scenario grouping (SG). The SG approach from ? also relaxes nonanticipativity

constraints. However, SG can only partition the full scenario set S into subsets Sb, whereas our

SAO approach allows to “break down” each scenario into several bundles (through the continuous

parameters ηb and βbs). Mathematically, the SG baseline can be obtained by fixing the weights to

the original probabilities hs, that is, ηb =
∑

s∈Sb
hs, and βbs = hs ·1(s∈ Sb), i.e.:

(SG) max
(Sb)b∈B

{∑
b∈B

P̃ (Sb) : |Sb| ≤K, Sb ⊆S, ∀b∈B, ∪b∈BSb = S, Sb ∩Sb′ = ∅, ∀b 6= b′ ∈B

}
,

where P̃ (Sb) = min
xb∈X

{∑
s∈Sb

hsc
Txb +

∑
s∈Sb

hsQ(xb, ξs)

}
, ∀b∈B. (15)

Solution approaches. ? proved that SG is NP-hard as soon as K ≥ 3 (hence, so is SAO).

Computationally, SAO and SG are highly challenging since they involve stochastic programs in

the objective function. Therefore, we reformulate them as structured optimization problems and

propose two decomposition algorithms to solve them:

1. Row generation benchmark (?). Our first reformulation enumerates all first-stage solutions in

X , with an exponential number of constraints for a first-stage linear programming or discrete

optimization structure. Accordingly, we design a row generation algorithm that iterates be-

tween a master problem (selecting bundles with a restricted set of first-stage solutions) and

a subproblem (expanding the set of first-stage solutions by solving a stochastic program for

each bundle). This benchmark is detailed in Appendix B.1.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
14

2. Column evaluation and generation. We propose a set partitioning reformulation that enumer-

ates all possible bundles. One challenge is that the cost parameters are themselves the solutions

of stochastic programs, hence hard to estimate. We propose a novel column evaluation scheme,

which iterates between an optimization step (to select bundles based on cost approximations)

and a column evaluation step (to update the cost parameters for selected bundles). We prove

that this algorithm converges to an optimum of any (solvable) optimization model. Another

challenge is that our set partitioning formulation has an infinite number of variables (due to

the continuous variables ηb and βbs). We thus propose a column-evaluation-and-generation

approach that embeds our column evaluation scheme into a column generation scheme.

4.2. Column-evaluation-and-generation algorithm

Set partitioning. Proposition 2 reformulates the SAO problem as a set partitioning problem.

Proposition 2. Let Ball be the set of all feasible bundles, with parameters ηb and βb. For each

b ∈ Ball, let Ob be the optimal objective of P(Sb, ηb,βb) (Equation (13)). Let yb ≥ 0 be a variable

denoting the weight assigned to each bundle b∈Ball. Equation (14) is equivalent to:

max
∑
b∈Ball

Obyb (16)

s.t.
∑
b∈Ball

ηbyb = 1 (17)∑
b∈Ball

βbsyb = hs ∀s∈ S (18)

yb ≥ 0 ∀b∈Ball. (19)

Let (y∗b)b∈Ball denote the optimal solution of Equations (16)–(19). We can transform it into the

SAO solution, by letting B= {b∈Ball : y∗b > 0} and P(Sb, y∗bηb, y∗bβb) = y∗bP(Sb, ηb,βb), ∀b∈B.

This formulation comes with two challenges (i) estimating the objective parameters Ob is com-

putationally intensive, requiring to solve a stochastic programming model with K scenarios (Equa-

tion (13)); and (ii) the set partitioning model is formulated as a semi-infinite optimization model

due to the infinite number of decision variables (yb)b∈Ball , itself due to the continuous variables ηb

and βbs. These two challenges motivate our solution algorithm, which combines column evaluation

(in response to challenge (i)) and column generation (in response to challenge (ii)).

Column evaluation. Note that we can easily derive an upper bound of Ob by solving a sim-

plified stochastic program over a subset XR ⊆X , of limited cardinality—so optimizing over XR is

computationally efficient. We then define a relaxation-approximation Ôb as follows:

Ôb = min
xb∈XR

{
ηbc

Txb +
∑
s∈Sb

βbsQ(xb, ξs)

}
≥Ob, ∀b∈Ball. (20)

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
15

Accordingly, our column evaluation scheme iteratively solves the set partitioning formulation

with a relaxation-approximation of the objective function, and evaluates the true objective param-

eters Ob for all selected bundles. It keeps track of an approximated parameter Õb ∈
{
Ob, Ôb

}
for

each bundle b ∈ Ball, and updates Õb by Ob for each selected bundle. As such, this approach calls

the “oracle” (to estimate Ob) with parsimony—for selected bundles as opposed to all bundles.

Specifically, the proposed column evaluation procedure alternates between two modules, updat-

ing at each iteration a relaxation bound and a lower bound.1

1. optimization: solve set partitioning model with the current estimates of objective parameters:

max
∑
b∈Ball

Õbyb, s.t. (17)–(19). (21)

Let ỹ be the optimal solution and B̃ ⊂ Ball be the set of bundles such that ỹb > 0. For any

feasible solution y of Equations (16)–(19), we have
∑

b∈Ball Õbỹb ≥
∑

b∈Ball Õbyb ≥
∑

b∈Ball Obyb,

due to the optimality of ỹ and the fact that Õb ≥ Ob. We obtain the following relaxation

bound (RB), which yields an upper bound of the SAO problem:

RB =
∑
b∈Ball

Õbỹb.

2. a column evaluation step, to replace the parameters Õb with the true parameters Ob for all

selected bundles b∈ B̃. To this end, we solve the stochastic program:

Õb←Ob = min
xb∈X

{
ηbc

Txb +
∑
s∈Sb

βbsQ(xb, ξs)

}
for all b∈Ball such that ỹb > 0. (22)

From Proposition 1, the following expression is a valid lower bound (LB) of the SAO problem,

hence a lower bound of the full stochastic program P(S,h):

LB =
∑
b∈B̃

Obỹb.

As such, the algorithm provides a feasible solution and an optimality gap for the SAO problem.

The critical observation is that, if Õb =Ob for all selected bundles b∈ B̃, then ỹ is an optimal solu-

tion of Equations (16)–(19). Theorem 2 establishes that the column evaluation procedure converges

finitely to the optimal solution of any (solvable) optimization model.

Theorem 2. Define OPT (c) = max{c>x : s.t. x,x ∈ X}. Let ĉ be a vector satisfying ĉi ≥

ci,∀i∈ {1, ..., n}. The following algorithm is finitely convergent to the optimum of OPT (c).

1 The relaxation bound can be viewed as “an upper bound of the SAO lower bound”. To avoid confusion with the
upper bound of the full stochastic program derived in Section 3, we refer to it as “relaxation bound”.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
16

1. Initialize c̃= ĉ.

2. Solve OPT (c̃) and retrieve its optimal solution x̃.

3. Update c̃i← ci for all i∈ {1, ..., n} such that x̃i > 0 and c̃i > ci.

4. If c̃i = ci for all i∈ {1, ..., n} such that x̃i > 0, stop. Otherwise, go to Step 2.

Although valid for any optimization model, this result is particularly useful for problems with

a very large number of decision variables, so estimating all objective parameters is prohibitively

expensive and the fraction of “active” solutions (with x̃i > 0) is small. In particular, this can be the

case for set partitioning formulations with an exponential number of variables. This is especially

relevant in our context, where the set partitioning formulation involves an infinite number of

variables and each objective parameter is the solution of a stochastic program.

The next question is how to solve the semi-infinite set partitioning model (Equation (21)) at

each iteration. This is the purpose of our column generation algorithm.

Column generation. Our column generation algorithm iterates between (i) a restricted master

problem (RMP) with a limited set of bundles B̃all ⊆Ball, and (ii) a pricing problem (PP) that adds

new bundles to the set B̃all. The restricted master problem is formulated as follows:

(RMP) max
∑
b∈B̃all

Õbyb (23)

s.t.
∑
b∈B̃all

ηbyb = 1 (24)

∑
b∈B̃all

βbsyb = hs ∀s∈ S (25)

yb ≥ 0 ∀b∈ B̃all. (26)

Let π ∈ R and λs ∈ R denote the dual variables of the master problem corresponding to con-

straints (24) and (25), respectively. The pricing problem is formulated as follows:

PP (XR, π,λ) = max Õ−πη−
∑
s∈S

λsβs (27)

s.t. Õ≤ ηcTx+
∑
s∈S

βsQ(x, ξs) ∀x∈XR (28)∑
s∈S

θs ≤K (29)

βs ≤ hsθs ∀s∈ S (30)

θs ∈ {0,1}, βs ≥ 0, η≥ 0,O ∈R ∀s∈ S. (31)

We iterate between the restricted master problem and the pricing problem, until the pricing

problem returns a non-positive reduced cost. At that point, the solution of the restricted master

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
17

problem solves the full set partitioning problem (Equation (21)) to optimality. However, the set par-

titioning formulation involves an infinite number of variables. This differs from traditional column

generation settings, which involve an exponential, but finite number of variables (??). Therefore,

the column generation algorithm does not guarantee finite convergence. Yet, we consistently obtain

strong convergence empirically (Section 6).

Column-evaluation-and-generation algorithm (Algorithm 1). The algorithm involves an

outer loop and an inner loop. Outer iterations involve column evaluation, alternating between

solving the set partitioning model and updating the objective parameters of all selected bundles.

Inner iterations relate to column generation, alternating between the restricted master problem

and the pricing problem. The inner loop terminates when the pricing problem does not return any

new bundle with a positive reduced cost.2 The outer loop terminates when all selected bundles are

evaluated with their true objective parameters. Meanwhile, the algorithm maintains a lower bound

LB, which provides, at any point in time, a solution guarantee for the full stochastic program.

Algorithm 1 Column-evaluation-and-generation for scenario assortment optimization.

Input: Initial set XR, initial set B̃all, Õb = Ôb, ∀b∈ B̃all, RB = +∞, LB =−∞, tolerance ε.

1: while RB−LB
LB

> ε or LB =−∞ do . Outer loop: column evaluation

2: while NOT(terminate) do . Inner loop: column generation

3: Solve RMP (Equations (23)–(26)) −→ solution ỹ, active bundles B̃, dual variables π,λ

4: Solve PP (Equations (27)–(31)) −→ b0 = arg maxb∈Ball

(
Õb−πηb−

∑
s∈S λsβbs

)
5: If Õb0 −πηb0 −

∑
s∈S λsβb0,s > 0, then update B̃all←B̃all ∪{b0}

6: Else, update RB =
∑

b∈B̃all Õby
∗
b and update terminate= TRUE

7: end while

8: Update Õb←Ob =P(Sb, ηb,βb), for all b∈ B̃, −→ solution x∗
b
, for all b∈ B̃

9: Update LB←max
{∑

b∈B̃Obỹb,LB
}

10: Expand restricted solution space XR←XR ∪{x∗b , b∈ B̃}

11: Update Õb←min
{
ηbc

Tx+
∑

s∈S βbsQ(x, ξs),x∈XR
}

, for all b∈ B̃all \ B̃

12: end while

Let us conclude with some remarks on the subset XR ⊂X . First, benchmark algorithms (such

as the row generation from ?) expand iteratively the subset XR to guarantee convergence. Our

column-evaluation scheme reduces the reliance on XR, by guaranteeing convergence for any subset

XR. The next question is how to design this subset XR in our algorithm. A large subset XR results

in more computationally intensive iterations; vice versa, a small subset XR makes the relaxation

2 Since the column generation algorithm is not guaranteed to terminate finitely for our semi-infinite set partitioning
formulation, an alternative termination criterion could be applied. We have not faced this situation in our experiments.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
18

approximation looser, leading to more iterations. We propose an acceleration strategy based on

adaptive relaxation, starting with a small subset XR and expanding it at each outer iteration

with all stochastic programming solutions (one for each active bundle). This approach (Line 10 of

Algorithm 1) tightens the relaxation approximation around “promising” solutions.

In summary, our scenario assortment optimization approach (SAO) relaxes the nonanticipativity

constraints to derive a lower bound of the full stochastic program, and the column-evaluation-

and-generation algorithm computes the tightest possible bound within this family. Ultimately, this

paper thus provides a solution and quality guarantee for large-scale stochastic programs, without

solving any instance with more than K scenarios. Moreover, the column-evaluation-and-generation

algorithm provides a stand-alone contribution of this paper to solve optimization problems where

the objective parameters are hard to estimate but a relaxation-approximation thereof (i.e., an upper

bound in maximization problems, a lower bound in minimization problems) is easily available.

5. Experimental setup

We now evaluate our approach to scenario reduction and scenario assortment optimization in

extensive computational case studies. All optimization models are solved with CPLEX 12.5 on a

workstation with a 32-core Intel Xeon CPU (3.0 GHz) and 128 GB RAM.

5.1. Problem settings

We evaluate our methods in two-stage production routing and facility location settings. For each

one, we define formulations with continuous and mixed-integer recourse. We thus consider four

problems: production routing problem with continuous recourse (PRP–CR), production routing

problem with mixed-integer recourse (PRP–IR), facility location problem with continuous recourse

(FLP–CR) and facility location problem with mixed-integer recourse (FLP–IR).

These four problems complement each other. First, stochastic programs with mixed-integer re-

course are much more challenging than with continuous recourse. Second, the two case study

settings exhibit different sources of complexity: the PRP–CR and PRP–IR are medium-scale prob-

lems (with hundreds of thousands of variables and constraints) but highly challenging due to the

combination of plant setup, routing, and inventory control decisions; in comparison, the FLP–CR

and FLP–IR are hard due to their very large scale (millions of variables and constraints).

Production routing problem. We consider a two-stage production routing problem (PRP)

under demand uncertainty. The PRP jointly optimizes production decisions (e.g., plant setup,

production quantities, and product inventories) and distribution decisions (e.g., routing). The two

variants are defined as follows (see Appendix C.1 for their formulation):

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
19

– PRP–CR: The decision-maker optimizes plant setup and vehicle routing decisions in the first

stage (before demand is observed), as well as production quantities, inventory management,

and distribution decisions in the second stage (?). We formulate the routing problem using

two-commodity network flows, inspired by ?.

– PRP–IR: The problem is equivalent to PRP–CR, except that routing decisions are made in

the second stage. That is, the decision-maker can adjust vehicle routes, along with production,

inventory and distribution plans, upon observing customer demand. This PRP variant is

highly relevant in practice, since firms often commit to customer appointments early on but

not necessarily to vehicle routes. However, it has not been tackled in the literature.

Facility location problem. We consider a two-stage facility location problem (FLP) under

demand uncertainty. The variants are defined as follows (see Appendix C.2 for their formulation):

– FLP–CR: The decision-maker optimizes facility setup in the first stage (before customer de-

mand is observed), and commodity distribution in the second stage.

– FLP–IR: The decision-maker optimizes facility setup in the first stage. Upon observing cus-

tomer demand, the decision-maker activates facilities along with optimizing distribution.

5.2. Problem complexity

For PRP–CR and PRP–IR, we generate problem instances following ?, with 10 customers, 10

time periods, 3 vehicles and 500 equiprobable scenarios. For FLP–CR and FLP–IR, we generate

problem instances with 300 customers, 200 candidate facilities and 500 equiprobable scenarios

(see Appendix C.2). The PRP–CR and PRP–IR comprise around 650,000 decision variables and

500,000 constraints; the FLP–CR and FLP–IR comprise around 30 million decision variables and

constraints. We make all instances available in the online supplement.

From a stochastic standpoint, this setup leads to challenging problems that cannot be solved with

simple deterministic variants. Indeed, Table 1 shows that, as compared to the best-known solution,

scenario-based solutions lead to expected out-of-sample gaps of 36.2–139.6% for the PRP–CR, of

21.6–84.3% for the PRP–IR, of 5.5–478.8% for the FLP–CR, and of 3.6–552.4% for the FLP–IR.

Table 1 Performance of optimized vs. scenario-based solutions.

Scenario-based solutions

Best Median Worst

Problem Best known Solution Gap Solution Gap Solution Gap

PRP–CR 502,080 683,699 36.17% 862,776 71.84% 1,202,730 139.55%
PRP–IR 752,394 914,564 21.55% 1,093,900 45.39% 1,386,622 84.29%

FLP–CR 7,763 8,188 5.48% 20,382 162.57% 44,913 478.81%
FLP–IR 6,887 7,132 3.56% 20,240 193.88% 44,931 552.40%

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
20

Before proceeding, we start by attempting to solve each problem with existing stochastic pro-

gramming algorithms. For problems with continuous recourse, we consider (i) direct CPLEX im-

plementation, (ii) Benders decomposition, and (iii) enhanced Benders decomposition (E-Benders),

using the lower bound lifting inequalities from ? for PRP–CR and Pareto-optimality cuts from

? and ? for FLP–CR. For problems with mixed-integer recourse, we consider (i) direct CPLEX

implementation, (ii) the integer L-shaped method from ?, and (iii) an enhanced integer L-shaped

method (E-L-shaped) that leverages standard Benders cuts, Pareto-optimality cuts, as well as, for

FLP–IR, tailored L-shaped cuts from ?. Collectively, these methods span traditional stochastic pro-

gramming algorithms (direct CPLEX implementation, Benders decomposition, integer L-shaped

method) and recent advanced ones (E-Benders, E-L-shaped).

Table 2 shows that the four problems under consideration are highly challenging from a com-

putational standpoint as well. Direct CPLEX implementation scales to 30 scenarios for PRP–CR

and FLP–CR. For FLP–IR and PRP–IR, CPLEX does not consistently find the optimal solution

within the 5-hour limit with 15 scenarios. Next, Benders decomposition and the integer L-shaped

method cannot derive optimal solutions with as few as 10 scenarios for PRP–IR, FLP–CR and

FLP–IR. With the full scenario set, CPLEX, Benders decomposition and the integer L-shaped

methods all fail to provide any reasonable solution and leave very large optimality gaps. The E-

Benders and E-L-shaped methods scale to 30 scenarios for PRP–CR, FLP–CR and FLP–IR, but

still leave an optimality gap of 1.3%–40.2% with the full scenario set. Overall, “simple” stochastic

programming methods (Benders, L-shaped) do not scale beyond 15–30 scenarios and “advanced”

ones (E-Benders, E-L-shaped) cannot tackle the full problem with 500 scenarios.

Table 2 Computational performance of stochastic programming algorithms.

10 scenarios 15 scenarios 20 scenarios 25 scenarios 30 scenarios 500 scenarios

Problem Benchmark CPU Opt CPU Opt CPU Opt CPU Opt CPU Opt CPU Solution LB Gap

PRP–CR
CPLEX 2 10 5 10 8 10 12 10 14 10 >300 2,230,621 449,730 79.8%
Benders 7 10 9 10 14 10 15 10 19 10 >300 546,032 393,345 28.0%

E-Benders 4 10 6 10 11 10 11 10 12 10 >300 505,636 490,748 2.9%

PRP–IR
CPLEX 21 10 85 9 195 6 183 6 254 3 >300 2,214,462 683,183 69.1%

L-shaped >300 0 >300 0 >300 0 >300 0 >300 0 >300 2,230,621 6,000 99.7%
E-L-shaped >300 0 >300 0 >300 0 >300 0 >300 0 >300 862,682 515,559 40.2%

FLP–CR
CPLEX 6 10 17 10 32 10 57 10 76 10 >300 44,931 0 100.0%
Benders >300 0 >300 0 >300 0 >300 0 >300 0 >300 37,298 557 98.5%

E-Benders 10 10 16 10 21 10 24 10 35 10 >300 7,770 7,668 1.3%

FLP–IR
CPLEX 38 10 78 7 151 4 260 2 >300 0 >300 44,931 0 100.0%

L-shaped >300 0 >300 0 >300 0 >300 0 >300 0 >300 37,565 304 99.2%
E-L-shaped 23 10 59 10 92 10 110 10 141 10 >300 6,957 6,786 2.5%

Results are averaged over 10 random samples of scenarios, out of a full set of 500 scenarios.
We report the average computational time (CPU, in minutes) and the number of instances solved to 1% optimality gap within
5 hours (Opt). With the full scenario set, we also report the solution, lower bound (LB), and optimality gap after 5 hours.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
21

6. Computational results

This section first compares the solutions from our optimization-based scenario reduction approach

to SAA and DSR. Second, we evaluate our scenario assortment optimization approach, along with

our column-evaluation-and-generation algorithm. Third, we assess our results against stochastic

programming benchmarks in terms of solutions, lower bounds, and computational times.

6.1. Results from scenario reduction: evaluation of solution quality

To apply our SSS approach, we generate 500 solutions in XA ⊆ X by solving one deterministic

problem in each scenario, i.e., XA = {x∗s : s ∈ S}, where x∗s ∈ arg minx∈X {cTx+Q(x, ξs)} ,∀s ∈ S

(see Appendix A.3 for additional results on this point). By default, we consider 90 solutions in X P

(see Appendix A.3), we set the parameter Ω in our heuristic so that Ω×K ∼ 100 (see Appendix A.4).

Main results. The SSS, DSR, and SAA methods yield a scenario subset S0 of cardinality K

and corresponding weights w. We then solve the stochastic programming problem P(S0,w), using

the most efficient algorithm for the problem and the scenario budget under consideration, shown

in bold in Table 2. Specifically, we use CPLEX with 10–20 scenarios and E-Benders with 25 or

more scenarios for the PRP–CR; we use CPLEX with 10 scenarios and E-Benders with 15 or more

scenarios for the FLP–CR; we always use CPLEX for the PRP–IR; and we always use E-L-shaped

for the FLP–IR. We evaluate the out-of-sample performance of SSS, DSR, and SAA. Figure 3

reports the out-of-sample expected costs, as a function of the number K of scenarios in S0. Given

the stochasticity of SAA, we run it 10 times for each value of K, and plot the average cost as

well its variability (via a box plot). To complement these observations, Table 3 reports the out-of-

sample cost for each method, as well as the variability over 10 runs for SAA (median, minimum,

maximum). In addition, we use the 10 runs of SAA to compute a statistical lower bound at the

95% confidence level (via a one-sided t-test) as well as a corresponding statistical optimality gap.

These results show that our SSS method provides significant improvements, as compared to

both benchmarks, and that these benefits are robust to the problem instance and the number of

scenarios. First, the SSS method reduces expected out-of-sample costs by up to 12.7% as compared

to SAA. In 14 out of 20 instances, SSS results in even stronger solutions than the best SAA solution

(out of 10 runs), by up to 2.1%. Second, it reduces expected costs by up to 13.8% as compared to

DSR. That is, approximating the input distributions does not necessarily yield the best solutions

to the downstream optimization. It is interesting to note, also, that DSR outperforms SAA for FLP

but not for PRP. This observation can be interpreted as a trade-off between generating “central”

scenarios (via DSR) for relatively stable problems (like FLP) versus generating “diverse” scenarios

(via randomization) for less stable problems (like PRP). Regardless, SSS provides strong and robust

benefits, with performance improvements across all problem instances.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
22

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

500000

525000

550000

575000

600000

10 15 20 25 30
Budget of scenarios

E
xp

ec
te

d
co

st Method
●

●

●

●

SAA (10 runs)
SAA (avg)
DSR
SSS

(a) PRP–CR.

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

770000

790000

810000

830000

10 15 20 25 30
Budget of scenarios

E
xp

ec
te

d
co

st Method
●

●

●

●

SAA (10 runs)
SAA (avg)
DSR
SSS

(b) PRP–IR.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

● ●

●

●
●

8000

10000

12000

10 15 20 25 30
Budget of scenarios

E
xp

ec
te

d
co

st Method
●

●

●

●

SAA (10 runs)
SAA (avg)
DSR
SSS

(c) FLP–CR.

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

7000

8000

9000

10000

10 15 20 25 30
Budget of scenarios

E
xp

ec
te

d
co

st Method
●

●

●

●

SAA (10 runs)
SAA (avg)
DSR
SSS

(d) FLP–IR.

Figure 3 Performance of all scenario reduction methods.

Finally, turning to the (statistical) optimality gap from SAA, we observe that, as expected, the

SAA upper bound decreases and the statistical lower bound increases as the number of scenar-

ios increases, resulting in a shrinking optimality gap. Yet, the statistical optimality gap remains

significant: 8.5–12.5% for PRP and over 29% for FLP with 10 scenarios; 2.2–3.5% for PRP and

13.5–15.3% for FLP with 30 scenarios. These results motivate our scenario assortment optimization

approach to generate tighter (and exact) solution guarantees (Section 6.2).

Computational budget. We now compare the three scenario reduction methods with fixed com-

putational budgets. For SSS, the computational time includes both the scenario reduction time

and the stochastic programming time. For DSR, we only account for the stochastic programming

time—ignoring the scenario reduction time. For SAA, we define four benchmarks. In the first three,

termed “SAA(10)”, “SAA(20)” and “SAA(30)”, we repeatedly sample 10, 20, and 30 scenarios,

respectively, and solve the resulting stochastic program, allowing for multiple replications until the

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
23

Table 3 Summary statistics comparing DSR, SAA and SSS.

SAA SSS assessment

Problem K SSS DSR Average Median Min. Max. Bound Gap vs. DSR vs. SAA

10 519,799 602,861 533,457 530,053 521,020 560,161 480,200 8.5% −13.8% −2.6%
15 515,534 593,268 521,562 518,420 509,593 545,126 487,910 4.4% −13.1% −1.2%

PRP–CR 20 510,392 589,226 512,365 511,277 502,444 526,616 487,407 3.1% −13.4% −0.4%
25 502,904 530,533 509,998 508,192 502,612 517,288 489,791 2.6% −5.2% −1.4%
30 502,903 527,098 507,402 506,074 502,767 514,859 491,762 2.2% −4.6% −0.9%

10 776,723 823,264 793,696 789,624 784,150 806,175 697,001 12.5% −5.7% −2.1%
15 762,369 828,029 780,548 778,998 769,625 794,570 712,844 8.0% −7.9% −2.3%

PRP–IR 20 763,182 822,674 770,262 768,564 756,458 783,795 718,282 5.3% −7.2% −0.9%
25 754,271 806,528 766,417 764,394 759,503 782,348 722,186 5.2% −6.5% −1.6%
30 755,081 799,079 763,670 761,501 754,294 778,268 728,629 3.5% −5.5% −1.1%

10 7,787 7,882 8,915 8,409 7,956 13,317 6,102 30.4% −1.2% −12.7%
15 7,769 7,905 8,366 8,018 7,791 11,309 6,507 19.7% −1.7% −7.1%

FLP–CR 20 7,769 7,860 8,205 8,119 7,793 9,043 6,455 20.7% −1.2% −5.3%
25 7,779 7,860 8,009 7,981 7,802 8,470 6,917 12.8% −1.0% −2.9%
30 7,777 7,860 8,152 7,937 7,788 8,994 6,754 15.3% −1.1% −4.6%

10 6,899 6,935 7,899 7,529 7,054 10,337 5,463 29.1% −0.5% −12.7%
15 6,904 6,943 7,526 7,215 6,948 9,977 5,926 17.2% −0.6% −8.3%

FLP–IR 20 6,897 6,901 7,413 7,184 6,919 8,598 5,729 20.8% −0.1% −7.0%
25 6,892 6,951 7,239 7,206 6,924 7,972 6,249 10.8% −0.8% −4.8%
30 6,887 6,922 7,274 7,162 6,923 7,940 6,099 13.5% −0.5% −5.3%

computational budget is exhausted. The fourth one, “SAA(hybrid)”, applies 10-scenario SAA, 20-

scenario SAA, and 30-scenario SAA, looping until the computational budget is exhausted. Table 4

reports the SSS solution, the DSR solution and the SAA solutions, all evaluated out of sample.

Table 4 Comparison of DSR, SAA and SSS under the same computational time budget.

Time SSS SAA(10) SAA(20) SAA(30) SAA(hybrid) SAA(best) vs. SSS DSR vs. SSS

PRP–CR 0.5 h 519,799 522,017 512,023 507,523 506,014 SAA(hybrid) −2.7% 527,098 +1.4%
1 h 502,903 521,102 507,456 505,148 504,134 SAA(hybrid) +0.2% 527,098 +4.8%

1.5 h 502,903 521,062 505,200 503,600 503,578 SAA(hybrid) +0.1% 527,098 +4.8%

PRP–IR 1 h 776,723 793,222 — — 793,046 SAA(10) +2.1% 823,264 +6.0%
3 h 762,369 785,078 770,023 — 770,832 SAA(20) +1.0% 822,674 +7.9%
5 h 754,271 784,423 765,217 763,829 770,832 SAA(30) +1.3% 799,079 +5.9%

FLP–CR 0.5 h 7,787 8,091 7,976 8,153 8,116 SAA(20) +2.4% 7,860 +0.9%
1 h 7,769 8,051 7,883 7,965 7,943 SAA(20) +1.5% 7,860 +1.2%

1.5 h 7,777 8,031 7,849 7,892 7,846 SAA(hybrid) +0.9% 7,860 +1.1%

FLP–IR 1 h 6,899 7,407 — — 7,887 SAA(10) +7.4% 6,935 +0.5%
3 h 6,897 7,146 7,448 — 7,235 SAA(10) +3.6% 6,901 +0.1%
5 h 6,887 7,097 7,125 7,284 7,040 SAA(hybrid) +2.2% 6,922 +0.5%

First, our SSS method reduces expected costs over even the best SAA strategy, in 11 out of 12

cases. That is, even if one picked the “best” SAA strategy (which is challenging by itself given the

variability of the “best” SAA strategy) and let the SAA algorithm run for the entire time budget,

the best solution would remain inferior to the one obtained with our SSS method—with a cost

differential of up to 7.4%. Similarly, the DSR method consistently results in higher costs than our

SSS method. The cost increases remain moderate for FLP but can be significant for PRP (up to

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
24

7.9%). Ultimately, these results show that our SSS model provides significant and robust benefits

over the SAA and DSR benchmarks, even after accounting for the scenario reduction time.

Effectiveness of SSS heuristic. Table 5 compares our heuristic given in Algorithm 2 (“SSS heuris-

tic”) to direct CPLEX (“SSS CPLEX”) toward solving the scenario subset selection (SSS) model.

For both methods, the table reports the solution of the SSS model (SSS.Sol), the computational

time (CPU, in minutes), the expected out-of-sample cost (Solution), and the difference to the av-

erage SAA solution (%SAA). We also report the difference of the SSS solutions (%SSS.Sol) and

PRP solutions (%Solution) between SSS CPLEX and SSS heuristic. For SSS CPLEX, we impose

a maximum runtime of 80 minutes (the longest time required by the heuristic).

Table 5 Comparison of SAA, SSS CPLEX and SSS heuristic for PRP.

SAA SSS CPLEX SSS heuristic CPLEX vs. heuristic

Problem K SAA.Avg SSS.Sol CPU Solution %SAA SSS.Sol CPU Solution %SAA %SSS.Sol %Solution
10 533,457 709,667 >80 522,568 2.0% 491,396 21 519,799 2.6% 31% 0.5%
15 521,562 438,992 >80 519,734 0.4% 354,770 31 515,534 1.2% 19% 0.8%

PRP–CR 20 512,365 241,772 >80 507,565 0.9% 228,149 39 510,392 0.4% 6% −0.6%
25 509,998 209,625 >80 507,143 0.6% 141,187 58 502,904 1.4% 33% 0.8%
30 507,402 126,789 >80 507,394 0.0% 109,817 51 502,903 0.9% 13% 0.9%
10 793,696 672,022 >80 789,273 0.6% 576,000 41 776,723 2.1% 14% 1.6%
15 780,548 517,660 >80 765,555 1.9% 373,847 33 762,369 2.3% 28% 0.4%

PRP–IR 20 770,262 280,836 >80 774,385 −0.5% 218,181 69 763,182 0.9% 22% 1.4%
25 766,417 223,755 >80 765,010 0.2% 161,799 75 754,271 1.6% 28% 1.4%
30 763,670 145,041 >80 761,789 0.2% 122,972 51 755,081 1.1% 15% 0.9%

“>80” means that CPLEX does not converge to the optimum in 80 minutes.
%SAA = (SAA.Avg − Solution) / SAA.Avg, where “Solution” comes from SSS CPLEX or SSS heuristic.
%SSS.Sol = (SSS.Sol of SSS CPLEX − SSS.Sol of SSS heuristic) / SSS.Sol of SSS CPLEX.
%Solution = (Solution of SSS CPLEX − Solution of SSS heuristic) / Solution of SSS CPLEX.

Note, first and foremost, the robust benefits of our SSS approach toward deriving high-quality

PRP solutions, especially with small scenario budgets. Indeed, the SSS heuristic leads to lower out-

of-sample costs in all 10 problem instances, and SSS CPLEX improves over the SAA benchmark

in all but one cases—with improvements of up to 2–3%. In addition, the SSS heuristic outperforms

SSS CPLEX in terms of computational times (less than 75 minutes) and SSS objective (6%–33%

lower). These improvements in the SSS solutions ultimately result in stronger PRP solutions: in 9

out of the 10 instances, SSS heuristic leads to a lower expected PRP cost, by up to 1.6%. These

results can be viewed as an empirical validation of our SSS formulation and our SSS heuristic.

We report in the appendix additional results to guide the design of XA and X P (Appendix A.3),

to assess the benefits of our two local search operators (LSO I and LSO II) in our SSS heuristic,

and to guide the setting of the parameter Ω (Appendix A.4).

6.2. Results from scenario aggregation: evaluation of lower bound

We now investigate the performance of our lower-bounding scenario assortment optimization and

our column-evaluation-and-generation algorithm. Figure 4 reports the relaxation bound RB and

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
25

the lower bound LB at each outer iteration, as well as the number of bundles generated. Note that

the column-evaluation-and-generation algorithm terminates in a few outer loop iterations (five for

PRP–CR and three for PRP–IR). At each outer iteration, the column generation procedure termi-

nates in a finite number of inner iterations, generating a total of 4,000–5,000 bundles. Ultimately,

the column-evaluation-and-generation algorithm returns valid lower bounds, with small optimality

gaps (measured as the difference between RB and LB) within the two-hour limit.

(a) PRP–CR (10 scenarios) (b) PRP–IR (10 scenarios)

Figure 4 Convergence of the column-evaluation-and-generation algorithm for SAO, with a two-hour time limit.

Next, Table 6 evaluates the quality of the lower bounds obtained with our SAO model and our

column-evaluation-and-generation (CEG) algorithm, against the scenario grouping model and our

SAO model solved with row generation. The table reports the lower bound (LB), the relaxation

bound (RB), and the convergence gap of each algorithm.

Note, first, that SAO does not necessarily outperform SG when solved with row generation.

Recall that the SAO model relaxes the SG model, leading to a theoretically better lower bound but

also to a more computationally challenging optimization. The net effects can be negative: for PRP,

in two cases out of four, SAO yields a looser bound than SG with the row generation algorithm.

However, our SAO model provides significant benefits when combined with our column-evaluation-

and-generation algorithm. Notably, for PRP–CR and FLP–CR, the row generation benchmarks

need 30 scenarios to converge to optimality, but our column-evaluation-and-generation algorithm

reaches optimality with only 20 scenarios. Altogether, these results show the strength of our column-

evaluation-and-generation algorithm toward computing strong lower bounds, which tighten those

from the row generation benchmarks, by up to 2% (e.g., PRP–CR and FLP–CR with 10 scenarios).

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
26

Table 6 Lower bounds obtained with the scenario assortment optimization (SAO) and scenario grouping (SG)

approaches, with the row generation (RG) and column-evaluation-and-generation (CEG) algorithms.

K = 10 K = 20 K = 30 K = 10

SG SAO SAO SG SAO SAO SG SAO SAO SG SAO SAO
(RG) (RG) (CEG) (RG) (RG) (CEG) (RG) (RG) (CEG) (RG) (RG) (CEG)

PRP–CR PRP–IR

LB 488,737 486,441 496,391 497,547 498,193 501,993 498,648 500,794 502,053 712,571 711,935 725,610
RB 502,558 512,688 503,716 501,316 502,566 502,122 498,648 500,794 502,053 759,346 767,523 760,679
RB−LB

RB
2.8% 5.1% 1.5% 0.8% 0.9% 0.0% 0.0% 0.0% 0.0% 6.2% 7.2% 4.6%

FLP–CR FLP–IR

LB 7,178 7,594 7,750 7,670 7,719 7,762 7,728 7,762 7,762 6,261 6,768 6,863
RB 7,862 7,777 7,764 7,712 7,763 7,762 7,728 7,762 7,762 7,015 6,910 6,887
RB−LB

RB
9.5% 2.4% 0.2% 0.6% 0.6% 0.0% 0.0% 0.0% 0.0% 12.0% 2.1% 0.4%

In Algorithm 4, we set |B|= 55 for K = 10, |B|= 25 for K = 20, and |B|= 17 for K = 30. In Algorithm 1, |B| is endogenous.
The time limit is two hours for PRP–CR and PRP–IR; one hour for FLP–CR and FLP–IR.

Table 7 Lower bounds obtained with the scenario assortment optimization approach, against all benchmarks.

PRP–CR PRP–IR FLP–CR FLP–IR

K = 10 K = 20 K = 30 K = 10 K = 10 K = 20 K = 30 K = 10

U 502,080 502,080 502,080 752,394 7,762 7,762 7,762 6,887
U−LB

U
1.1% 0.0% 0.0% 3.6% 0.2% 0.0% 0.0% 0.3%

U(K) 519,799 510,392 502,903 776,723 7,787 7,769 7,777 6,931
U(K)−LB

U(K)
4.5% 1.6% 0.2% 6.6% 0.5% 0.1% 0.2% 1.0%

LB−LC

LB
9.4% 10.4% 10.4% 5.9% 100.0% 100.0% 100.0% 100.0%

LB−L1
LB

49.4% 50.0% 50.0% 99.2% 94.6% 94.6% 94.6% 96.0%
LB−L2

LB
1.6% 2.7% 2.7% 28.9% 7.0% 7.1% 7.1% 5.1%

U denotes the best (known) overall solution; U(K) denotes the best solution obtained with K scenarios.
LC denotes the lower bound obtained with CPLEX (449,730 for PRP–CR, 683,138 for PRP–IR, 0 for FLP–CR, 0 for FLP–IR).
L1 denotes the lower bound obtained with Benders decomposition (251,102 for PRP–CR, 419 for FLP–CR) or the integer
L-shaped method (6,000 for PRP–IR, 274 for FLP–IR).
L2 denotes the lower bound obtained with enhanced Benders decomposition (488,660 for PRP–CR, 7,207 for FLP–CR) or the
enhanced integer L-shaped method (515,559 for PRP–IR, 6,515 for FLP–IR).
The time limit is two hours for PRP–CR and PRP–IR; one hour for FLP–CR and FLP–IR.

To evaluate the quality of the lower bound, Table 7 reports the gap from the lower bound

LB to the best known solution (U) and to the one obtained with the same number of scenarios

(U(K)). Comparisons between LB and U provide our best estimates of the optimality gap, whereas

comparisons between LB and U(K) reflect the optimality gaps that would be obtained with a fixed

scenario budget. Our lower bounds guarantee optimality for PRP–CR and FLP–CR, and guarantee

that the best known PRP–IR and FLP–IR solutions lie within 3.6% and 0.3% of the optimum,

respectively. When comparing with U(K), we obviously obtain larger optimality gaps, but these

remain reasonable—at most 6.6% for PRP and at most 1.0% for FLP. Ultimately, our SAO model,

combined with our column-evaluation-and-generation algorithm, provides novel lower bounds in

stochastic programming that can prove the optimality, or near-optimality of the solutions derived

from our optimization-based scenario reduction approach without ever solving the full problem.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
27

Finally, Table 7 compares the lower bound LB to the ones obtained with the stochastic program-

ming benchmarks: CPLEX (LC), Benders decomposition or the integer L-shaped method (L1), and

E-Benders or E-L-shaped (L2). For PRP–CR, Benders decomposition returns very loose bounds.

CPLEX provides a tighter lower bound, mainly due to the two-commodity flow formulation (?). By

leveraging problem-specific lower bound lifting inequalities, E-Benders generates a much stronger

bound. Yet, our SAO approach improves the bounds from all three methods, by 50% as compared

to Benders, by 9–10% as compared to CPLEX, and by up to 3% as compared to E-Benders. For

PRP–IR, the strongest bound is obtained with CPLEX, but our SAO approach tightens it by up to

6%. For the facility location problems, CPLEX, Benders decomposition and the integer L-shaped

method yield very loose bounds and, again, our SAO approach tightens the strongest bounds (vs.

E-Benders and E-L-shaped) by 5–7%.

Ultimately, these results demonstrate that our SAO approach generates strong lower bounds that

tighten the solution guarantees resulting from stochastic programming algorithms. In other words,

our methods not only improve scenario reduction, but also provide new optimality guarantees.

6.3. Comparison with stochastic programming algorithms

Figures 5 and 6 summarize our results for the production routing and facility location problems,

respectively. The figures show the incumbent solution (solid lines) and lower bound (dashed lines)

as a function of CPU time, for our method (SSS for the solution and SAO for the lower bound) and

the three stochastic programming benchmarks (i.e., CPLEX, Benders and E-Benders for PRP–CR

and FLP–CR, and CPLEX, L-shaped and E-L-shaped for PRP–IR and FLP–IR).

Note, first, that standard stochastic programming algorithms (CPLEX, Benders decomposition

and the integer L-shaped method) all converge slowly, returning poor solutions, loose bounds, or

both, echoing the results from Table 2. Next, the E-Benders and E-L-shaped methods provide

significant improvements by leveraging stronger cutting planes and other acceleration strategies,

both in terms of solution and lower bound. These results can be viewed as a validation of the

algorithms from ? for PRP–CR and from ? for FLP–IR.

In comparison, our scenario reduction methods consistently outperform all benchmarks. For all

problems, our SSS/SAO method yields the strongest solution as well as the tightest lower bound,

even when the benchmarks are allowed to run much longer. To summarize these results, Table 8

reports the incumbent solution, lower bound and optimality gap from each method at the time of

SSS/SAO termination. For PRP–CR, our SSS/SAO method yields a near-optimal solution (0.2%

gap) within one hour of computation, when E-Benders returns an inferior solution (by 0.9%) and a

looser lower bound (by 3.1%). For PRP–IR, our SSS/SAO approach leaves a 5% gap in two hours,

but improves the solution (by over 10%) and tightens the lower bound (by over 40%) as compared

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
28

1 10 100

450000

475000

500000

525000

550000

1 10 100

0

500000

1000000

1500000

2000000

2500000

Computational time (in minutes, log scale)

E
xp

ec
te

d
co

st

Method: CPLEX Benders E−Benders SSS/SAO Metric: Solution Lower bound

(a) PRP–CR (30 scenarios)

1 3 10 30 100 300

5e+05

1e+06

1 3 10 30 100 300

0

500000

1000000

1500000

2000000

Computational time (in minutes, log scale)

E
xp

ec
te

d
co

st

Method: CPLEX L−Shaped E−L−Shaped SSS/SAO Metric: Solution Lower bound

(b) PRP–IR (10 scenarios)

Figure 5 Comparison of the solutions and lower bounds obtained via scenario reduction and scenario assortment

(SSS/SAO) to benchmark stochastic programming algorithms, for the production routing problems.

to the best benchmark. For facility location problems, our SSS/SAO method reaches a provably

optimal solution (with a zero optimality gap) in 30–60 minutes. At that time, the E-Benders or

E-L-shaped methods yield inferior solutions (by 8–12%) and looser bounds (by 20–30%); when

allowed to run for five hours, the benchmarks leave 1% and 3% optimality gaps, respectively.

In conclusion, our scenario reduction and scenario assortment methods consistently provide a

Pareto improvement, as compared to state-of-the-art stochastic programming algorithms: better

solutions, tighter lower bounds, and faster computational times. Moreover, the proposed approach

does not rely on any particular structure, and is thus generally applicable to a broad class of

stochastic programming problems—including problems with mixed-integer recourse. Obviously,

this does not mean that the proposed scenario reduction method should replace stochastic pro-

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
29

10 30 100 300

5000

10000

10 30 100 300

0

10000

20000

30000

40000

Computational time (in minutes, log scale)

E
xp

ec
te

d
co

st

Method: CPLEX Benders E−Benders SSS/SAO Metric: Solution Lower bound

(a) FLP–CR (10 scenarios)

1 3 10 30 100 300

5000

10000

1 3 10 30 100 300

0

10000

20000

30000

40000

Computational time (in minutes, log scale)

E
xp

ec
te

d
co

st

Method: CPLEX L−Shaped E−L−Shaped SSS/SAO Metric: Solution Lower bound

(b) FLP–IR (10 scenarios)

Figure 6 Comparison of the solutions and lower bounds obtained via scenario reduction and scenario assortment

(SSS/SAO) to benchmark stochastic programming algorithms, for the facility location problems.

gramming algorithms. Instead, this paper provides evidence of an extra degree of freedom to tackle

very large-scale stochastic programming problems via optimization-based scenario reduction.

7. Conclusion

A core challenge in stochastic programming involves characterizing uncertainty while avoiding

the curse of dimensionality. This paper tackles this question by developing a new optimization

approach to scenario reduction that generates a high-quality solution and a tight lower bound by

only solving small-scale instances within a scenario budget—dictated by the problem’s complexity,

solution algorithms and practical requirements. The proposed approach comprises two elements:

1. A scenario subset selection (SSS) model that minimizes the recourse estimation over a pool of

solutions. The SSS is cast as a sparse regression problem, and solved using a tailored heuristic.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
30

Table 8 Summary of main results at the time of SSS/SAO convergence.

Problem Metric CPLEX Benders/L-shaped E-Benders/E-L-shaped SSS/SAO

PRP–CR

Solution 2,230,621 657,892 507,525 502,903
(+343.5%) (+30.8%) (+0.9%) (base)

Lower bound 449,730 212,623 486,352 502,053
(−10.4%) (−57.6%) (−3.1%) (base)

Gap 79.8% 67.7% 4.2% 0.2%
CPU (mins.) 60 60 60 60

PRP–IR

Solution 2,214,462 2,230,621 862,681 763,486
(+190.0%) (+192.2%) (+13.0%) (base)

Lower bound 683,183 6,000 515,559 725,610
(−5.8%) (−99.2%) (−28.9%) (base)

Gap 69.1% 99.7% 40.2% 5.0%
CPU (mins.) 120 120 120 120

FLP–CR

Solution 44,931 41,236 8,796 7,787
(+477.0%) (+429.5%) (+13.0%) (base)

Lower bound 0 345 6,085 7,750
(−100.0%) (−95.5%) (−21.5%) (base)

Gap 100.0% 99.2% 30.8% 0.5%
CPU (mins.) 30 30 30 30

FLP–IR

Solution 44,931 39,239 7,454 6,899
(+551.3%) (+468.8%) (+8.0%) (base)

Lower bound 0 241 4,816 6,863
(−100.0%) (−96.5%) (−29.8%) (base)

Gap 100.0% 99.4% 35.4% 0.5%
CPU (mins.) 60 60 60 60

2. A scenario assortment optimization approach that generates a lower bound of the full stochas-

tic program by relaxing nonanticipativity constraints. To maximize the lower bound, we

develop a new column-evaluation-and-generation algorithm that iterates between a column

generation step (to select scenario bundles) and a column evaluation step (to update the costs

of the selected bundles). This approach provides a generalizable algorithm for optimization

formulations featuring many decision variables and hard-to-evaluate objective parameters.

Computational results highlight the effectiveness of our methodological approach toward gen-

erating high-quality solutions and tight lower bounds for otherwise-challenging stochastic pro-

grams. First, our SSS model outperforms benchmarks based on sample average approximation and

distribution-based scenario reduction. Moreover, our scenario assortment optimization approach,

combined with our column-evaluation-and-generation algorithm, yields a tight lower bound in a

small number of iterations. Finally, our results are competitive with state-of-the-art stochastic pro-

gramming algorithms. Our methods even achieve Pareto improvements: stronger solutions, tighter

lower bounds, and faster computational times. These results are robust across problem settings

(production routing and facility location) and problem structure (continuous recourse and mixed-

integer recourse). Ultimately, these results demonstrate the value of our optimization-based scenario

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
31

reduction and scenario assortment optimization approaches, as a complement of advanced solution

algorithms, for solving large-scale stochastic programs and providing tight quality guarantees.

References

Adulyasak Y, Cordeau JF, Jans R (2015) Benders decomposition for production routing under demand

uncertainty. Operations Research 63(4):851–867.

Ahmed S (2013) A scenario decomposition algorithm for 0–1 stochastic programs. Operations Research

Letters 41(6):565–569.

Ahmed S, Luedtke J, Song Y, Xie W (2017) Nonanticipative duality, relaxations, and formulations for

chance-constrained stochastic programs. Mathematical Programming 162(1-2):51–81.

Arpón S, Homem-de Mello T, Pagnoncelli B (2018) Scenario reduction for stochastic programs with condi-

tional value-at-risk. Mathematical Programming 170(1):327–356.

Baldacci R, Hadjiconstantinou E, Mingozzi A (2004) An exact algorithm for the capacitated vehicle routing

problem based on a two-commodity network flow formulation. Operations Research 52(5):723–738.

Bertsimas D, Kallus N (2020) From predictive to prescriptive analytics. Management Science 66(3):1025–

1044.

Bertsimas D, King A, Mazumder R (2016) Best subset selection via a modern optimization lens. The Annals

of Statistics 44(2):813–852.

Bertsimas D, Mundru N (2022) Optimization-based scenario reduction for data-driven two-stage stochastic

optimization. Operations Research in press.

Birge J, Louveaux F (2011) Introduction to Stochastic Programming (Springer Science & Business Media).

Carøe CC, Schultz R (1999) Dual decomposition in stochastic integer programming. Operations Research

Letters 24(1-2):37–45.

Casey MS, Sen S (2005) The scenario generation algorithm for multistage stochastic linear programming.

Mathematics of Operations Research 30(3):615–631.

Crainic T, Hewitt M, Rei W (2014) Scenario grouping in a progressive hedging-based meta-heuristic for

stochastic network design. Computers & Operations Research 43:90–99.

Dantzig GB, Madansky A (1961) On the solution of two-stage linear programs under uncertainty. Proceed-

ings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, 165–176

(University of California Press Berkeley).

Dempster MAH (2006) Sequential importance sampling algorithms for dynamic stochastic programming.

Journal of Mathematical Sciences 133(4):1422–1444.

Desaulniers G, Desrosiers J, Solomon MM (2006) Column generation, volume 5 (Springer Science & Business

Media).

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
32

Drew SS, Homem-de-Mello T (2006) Quasi-Monte Carlo strategies for stochastic optimization. Proceedings

of the 2006 Winter Simulation Conference, 774–782 (IEEE).

Dupačová J, Gröwe-Kuska N, Römisch W (2003) Scenario reduction in stochastic programming. Mathemat-

ical Programming 95(3):493–511.

Fairbrother J, Turner A, Wallace SW (2018) Scenario generation for single-period portfolio selection problems

with tail risk measures: coping with high dimensions and integer variables. INFORMS Journal on

Computing 30(3):472–491.

Fairbrother J, Turner A, Wallace SW (2019) Problem-driven scenario generation: an analytical approach for

stochastic programs with tail risk measure. Mathematical Programming 1–42, URL http://dx.doi.org/

10.1007/s10107-019-01451-7.

Feng Y, Ryan SM (2016) Solution sensitivity-based scenario reduction for stochastic unit commitment.

Computational Management Science 13(1):29–62.

Gade D, Hackebeil G, Ryan S, Watson JP, Wets R, Woodruff D (2016) Obtaining lower bounds from

the progressive hedging algorithm for stochastic mixed-integer programs. Mathematical Programming

157(1):47–67.

Guo C, Bodur M, Aleman DM, Urbach DR (2021) Logic-based benders decomposition and binary decision

diagram based approaches for stochastic distributed operating room scheduling. INFORMS Journal on

Computing 33(4):1551–1569.

Heitsch H, Römisch W (2007) A note on scenario reduction for two-stage stochastic programs. Operations

Research Letters 35(6):731–738.

Henrion R, Römisch W (2018) Problem-based optimal scenario generation and reduction in stochastic pro-

gramming. Mathematical Programming 1–23, URL http://dx.doi.org/10.1007/s10107-018-1337-6.

Higle JL (1998) Variance reduction and objective function evaluation in stochastic linear programs. IN-

FORMS Journal on Computing 10(2):236–247.

Hochreiter R, Pflug GC (2007) Financial scenario generation for stochastic multi-stage decision processes as

facility location problems. Annals of Operations Research 152(1):257–272.

Homem-de-Mello T (2008) On rates of convergence for stochastic optimization problems under non–

independent and identically distributed sampling. SIAM Journal on Optimization 19(2):524–551.

Høyland K, Kaut M, Wallace SW (2003) A heuristic for moment-matching scenario generation. Computa-

tional Optimization and Applications 24(2-3):169–185.

Høyland K, Wallace SW (2001) Generating scenario trees for multistage decision problems. Management

Science 47(2):295–307.

Khassiba A, Bastin F, Cafieri S, Gendron B, Mongeau M (2020) Two-stage stochastic mixed-integer pro-

gramming with chance constraints for extended aircraft arrival management. Transportation Science

54(4):897–919.

http://dx.doi.org/10.1007/s10107-019-01451-7
http://dx.doi.org/10.1007/s10107-019-01451-7
http://dx.doi.org/10.1007/s10107-018-1337-6

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
33

King A, Wallace SW (2012) Modeling with Stochastic Programming (Springer Science & Business Media).

Kleywegt AJ, Shapiro A, Homem-de-Mello T (2002) The sample average approximation method for stochastic

discrete optimization. SIAM Journal on Optimization 12(2):479–502.

Koivu M (2005) Variance reduction in sample approximations of stochastic programs. Mathematical Pro-

gramming 103(3):463–485.

Laporte G, Louveaux FV (1993) The integer L-shaped method for stochastic integer programs with complete

recourse. Operations Research Letters 13(3):133–142.

Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Operations Research 53(6):1007–

1023.

Luedtke J (2016) Tutorial: Stochastic Integer Programming. XIV International Conference on Stochastic

Programming.

Magnanti TL, Wong RT (1981) Accelerating Benders decomposition: Algorithmic enhancement and model

selection criteria. Operations Research 29(3):464–484.

Mak WK, Morton DP, Wood RK (1999) Monte Carlo bounding techniques for determining solution quality

in stochastic programs. Operations Research Letters 24(1-2):47–56.

Narum BS (2020) Problem-based scenario generation in stochastic programming with binary distributions-

Case study in Air Traffic Flow Management. Master’s thesis, Norwegian University of Science and

Technology.

Nemirovski A, Shapiro A (2006) Scenario approximations of chance constraints. Probabilistic and Randomized

Methods for Design under Uncertainty, 3–47 (Springer).

Park J, Stockbridge R, Bayraksan G (2021) Variance reduction for sequential sampling in stochastic pro-

gramming. Annals of Operations Research 300(1):171–204.

Parpas P, Ustun B, Webster M, Tran QK (2015) Importance sampling in stochastic programming: A Markov

chain Monte Carlo approach. INFORMS Journal on Computing 27(2):358–377.

Penuel J, Smith JC, Yuan Y (2010) An integer decomposition algorithm for solving a two-stage facility

location problem with second-stage activation costs. Naval Research Logistics 57(5):391–402.

Pflug GC (2001) Scenario tree generation for multiperiod financial optimization by optimal discretization.

Mathematical Programming 89(2):251–271.

Prochazka V, Wallace SW (2018) Stochastic programs with binary distributions: structural properties of

scenario trees and algorithms. Computational Management Science 15(3-4):397–410.

Prochazka V, Wallace SW (2020) Scenario tree construction driven by heuristic solutions of the optimization

problem. Computational Management Science 17:277–307.

Ralph D, Xu H (2011) Convergence of stationary points of sample average two-stage stochastic programs: A

generalized equation approach. Mathematics of Operations Research 36(3):568–592.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
34

Rockafellar T, Wets R (1991) Scenarios and policy aggregation in optimization under uncertainty. Mathe-

matics of Operations Research 16(1):119–147.

Römisch W (2009) Scenario reduction techniques in stochastic programming. International Symposium on

Stochastic Algorithms, 1–14 (Springer).

Ryan K, Ahmed S, Dey SS, Rajan D, Musselman A, Watson JP (2020) Optimization-driven scenario group-

ing. INFORMS Journal on Computing 32(3):805–821.

Schütz P, Tomasgard A, Ahmed S (2009) Supply chain design under uncertainty using sample average

approximation and dual decomposition. European Journal of Operational Research 199(2):409–419.

Seljom P, Tomasgard A (2021) Sample average approximation and stability tests applied to energy system

design. Energy Systems 12(1):107–131.

Shapiro A, Dentcheva D, Ruszczyński A (2014) Lectures on Stochastic Programming: Modeling and Theory

(SIAM).

Shapiro A, Homem-de-Mello T (2000) On the rate of convergence of optimal solutions of monte carlo ap-

proximations of stochastic programs. SIAM Journal on Optimization 11(1):70–86.

Shapiro A, Xu H (2008) Stochastic mathematical programs with equilibrium constraints, modelling and

sample average approximation. Optimization 57(3):395–418.

Sherali HD, Lunday BJ (2013) On generating maximal nondominated Benders cuts. Annals of Operations

Research 210(1):57–72.

Smith JC, Penuel J (2008) Solving a two-stage facility location problem with second-stage activation costs.

IIE Annual Conference. Proceedings, 1939 (Institute of Industrial and Systems Engineers (IISE)).

Song Y, Luedtke J (2015) An adaptive partition-based approach for solving two-stage stochastic programs

with fixed recourse. SIAM Journal on Optimization 25(3):1344–1367.

Sun M, Teng F, Konstantelos I, Strbac G (2018) An objective-based scenario selection method for transmis-

sion network expansion planning with multivariate stochasticity in load and renewable energy sources.

Energy 145:871–885.

Van Parys BP, Esfahani PM, Kuhn D (2021) From data to decisions: Distributionally robust optimization

is optimal. Management Science 67(6):3387–3402.

Wallace SW (2000) Decision making under uncertainty: Is sensitivity analysis of any use? Operations Research

48(1):20–25.

Wang K, Jacquillat A (2020) A stochastic integer programming approach to air traffic scheduling and oper-

ations. Operations Research 68(5):1375–1402.

Yoon S, Albert LA, White VM (2021) A stochastic programming approach for locating and dispatching two

types of ambulances. Transportation Science 55(2):275–296.

Zhou L, Geng N, Jiang Z, Jiang S (2022) Integrated multiresource capacity planning and multitype patient

scheduling. INFORMS Journal on Computing 34(1):129–149.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
35

Appendix A: Details on the optimization-based scenario reduction approach

A.1. Benefits of the heuristic algorithm for scenario pooling

Recall that our solution pooling model (Equation (8)) reduces to a facility location problem, and is thus

NP-hard. We propose a tailored two-step heuristic to solve it. In the first step, we optimize the “location”

decisions ζ (which determine X P). In the second step, we optimize the “mapping” decisions ψ.

Step 1. The first step relies on a greedy procedure to maximize the diversity of the solutions x ∈ X P .

We define d̄x,x′ =
∑

s∈S dx,x′,s, as the total distance between solutions x and x′. We initialize X P with the

solution that is farthest from all others in XA, i.e.: X P ←{x′′}, x′′ ∈ arg maxx∈XA{
∑

x′∈XA dx,x′}. We then

update X P iteratively to include solutions that are farthest from the current ones, i.e., X P ←X P ∪{x′′}, x′′ ∈

arg maxx∈XA\XP {
∑

x′∈XP dx,x′}. We repeat the process until |X P |=L.

Step 2. Given X P in Step 1, we fix variables ζx′ = 1 for all x′ ∈ X P , and ζx′ = 0 for all x′ /∈ X P . Then,

we solve the corresponding solution pooling model (Equation (8)), which determines ψ.

We evaluate this two-step heuristic for the production routing problem (see Section 5). Table 9 shows

that it generates much stronger solutions much faster, as compared to direct CPLEX implementation of

Equation (8). In all our test instances, CPLEX does not converge within a maximum runtime of one hour.

In contrast, our heuristic algorithm consistently terminates in less than one second. Moreover, the heuristic

algorithm generates much stronger solutions, reducing the objective value by 30%–60%.

Table 9 Performance of the heuristic algorithm for solution pooling, with |XS |= 500.

PRP–CR PRP–IR

|XP | 30 60 90 120 150 30 60 90 120 150

∆P (CPLEX) 973,333 954,613 967,601 1,126,479 1,126,479 1,179,871 1,191,264 945,642 1,191,264 1,191,264

∆P (Heuristic) 599,746 563,584 544,199 490,342 482,633 689,450 636,225 618,504 547,142 534,933

Gap 38% 41% 44% 56% 57% 42% 47% 35% 54% 55%

CPLEX terminates in one hour and the heuristic algorithm in less than one second for all the tests.
Gap = (∆P (CPLEX) − ∆P (Heuristic))/ ∆P (CPLEX).

A.2. Proof of statements

Proof of Lemma 1 We start with the following definitions:

RUs = max
x∈X

Q(x, ξs), ∀s∈ S (32)

RLs = min
x∈X

Q(x, ξs), ∀s∈ S (33)

RC = max

{
0,−min

s∈S
RLs

}
(34)

RM = max
s∈S

RUs . (35)

Note that the range [RLs ,R
U
s] for the recourse function for each scenario s is well defined because of our

assumptions that X is compact (if continuous) or finite (if discrete) and that the problem has relatively

complete recourse. The constants RC and RM are also well defined given the finiteness of the scenario set S.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
36

Let us define problem P ′(S,h), where the recourse function is replaced by Q+(x, ξs) =Q(x, ξs) +RC :

P ′(S,h) = min
x∈X

{
cTx+

∑
s∈S

hsQ
+(x, ξs)

}
= min

x∈X

{
cTx+

∑
s∈S

hsQ(x, ξs) +RC

}
.

Clearly, an optimal solution of P(S,h) is optimal for P ′(S,h), and vice versa. The main difference is that

the recourse function in P ′(S,h) is positive. We leverage this fact in the following claim.

Claim 1. We have ws ≤Us for all s∈ S, where:

Us = max
x∈XA:Q+(x,ξs)6=0

∑
σ∈S hσQ

+(x, ξσ)

Q+(x, ξs)
= max

x∈XA:Q(x,ξs)+RC 6=0

∑
σ∈S hσQ(x, ξσ) +RC

Q(x, ξs) +RC
. (36)

Assume, by contradiction, that there exists s′ ∈ S such that ws′ >Us′ . Then, we define a solution w′ as:

w′s =

{
ws if s 6= s′,

Us′ if s= s′.

Clearly, we have
∑

s∈S 1(w′s 6= 0) ≤
∑

s∈S 1(ws 6= 0) ≤ K, so w′ is a feasible solution to the SSS model.

Moreover, we show that it yields a smaller value of the objective function.

Let us denote by X P0 = {x∈X P :Q+(x, ξs′) = 0}. By definition of Us, we have, for all x∈X P \X P0 :

Us′Q
+(x, ξs′)≥

∑
s∈S

hsQ
+(x, ξs)≥

∑
s∈S

hsQ
+(x, ξs)−

∑
s 6=s′

wsQ
+(x, ξs). (37)

It comes: ∑
x∈XP

∣∣∣∣∣∑
s∈S

hsQ
+(x, ξs)−

∑
s∈S

wsQ
+(x, ξs)

∣∣∣∣∣
=

∑
x∈XP \XP

0

∣∣∣∣∣∑
s∈S

hsQ
+(x, ξs)−

∑
s6=s′

wsQ
+(x, ξs)−ws′Q+(x, ξs′)

∣∣∣∣∣
+
∑

x∈XP
0

∣∣∣∣∣∑
s∈S

hsQ
+(x, ξs)−

∑
s 6=s′

wsQ
+(x, ξs)−ws′Q+(x, ξs′)

∣∣∣∣∣
=−

∑
x∈XP \XP

0

[∑
s∈S

hsQ
+(x, ξs)−

∑
s6=s′

wsQ
+(x, ξs)−ws′Q+(x, ξs′)

]

+
∑

x∈XP
0

∣∣∣∣∣∑
s∈S

hsQ
+(x, ξs)−

∑
s 6=s′

wsQ
+(x, ξs)−ws′Q+(x, ξs′)

∣∣∣∣∣
>−

∑
x∈XP \XP

0

[∑
s∈S

hsQ
+(x, ξs)−

∑
s6=s′

wsQ
+(x, ξs)−Us′Q+(x, ξs′)

]

+
∑

x∈XP
0

∣∣∣∣∣∑
s∈S

hsQ
+(x, ξs)−

∑
s 6=s′

wsQ
+(x, ξs)−ws′Q+(x, ξs′)

∣∣∣∣∣
=

∑
x∈XP \XP

0

∣∣∣∣∣∑
s∈S

hsQ
+(x, ξs)−

∑
s 6=s′

wsQ
+(x, ξs)−Us′Q+(x, ξs′)

∣∣∣∣∣
+
∑

x∈XP
0

∣∣∣∣∣∑
s∈S

hsQ
+(x, ξs)−

∑
s 6=s′

wsQ
+(x, ξs)−Us′Q+(x, ξs′)

∣∣∣∣∣
=
∑

x∈XP

∣∣∣∣∣∑
s∈S

hsQ
+(x, ξs)−

∑
s∈S

w′sQ
+(x, ξs)

∣∣∣∣∣ .

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
37

The first equality is straightforward. The second equality stems from Equation (37) and the assumption

ws′ >Us′ . The third inequality comes from ws′ >Us′ . The last equality comes from the definition of Us′ in

(36). Ultimately, this result contradicts the optimality of w. This completes the proof of Claim 1.

Next, note that Us is upper bounded by U defined as follows:

Us ≤U =
RM +RC

m
, ∀s∈ S, where m= min

s∈S
min

x∈X :Q(x,ξs)+RC 6=0

(
Q(x, ξs) +RC

)
.

Note that m> 0 and, hence U is a finite constant that only depends on the stochastic program. We complete

the proof of Lemma 1 by combining the facts that ws ≤Us (Claim 1) and Us ≤U . �

Proof of Theorem 1 Let us denote by Λ the optimization loss, as follows:

Λ =

(
cT x̃+

∑
s∈S

hsQ(x̃, ξs)

)
−

(
cTx∗+

∑
s∈S

hsQ(x∗, ξs)

)
. (38)

Since x̃ is the optimal solution of P(S0,w), we have

cT x̃+
∑
s∈S

wsQ(x̃, ξs) = cT x̃+
∑
s∈S0

wsQ(x̃, ξs)≤ cTx∗+
∑
s∈S0

wsQ(x∗, ξs) = cTx∗+
∑
s∈S

wsQ(x∗, ξs). (39)

We obtain, from Equations (38) and (39):

Λ≤

(∑
s∈S

hsQ(x̃, ξs)−
∑
s∈S

wsQ(x̃, ξs)

)
−

(∑
s∈S

hsQ(x∗, ξs)−
∑
s∈S

wsQ(x∗, ξs)

)

≤

∣∣∣∣∣∑
s∈S

hsQ(x̃, ξs)−
∑
s∈S

wsQ(x̃, ξs)

∣∣∣∣∣+
∣∣∣∣∣∑
s∈S

hsQ(x∗, ξs)−
∑
s∈S

wsQ(x∗, ξs)

∣∣∣∣∣ . (40)

We process the two terms similarly. Let us denote by xA ∈ XA the closest neighbor of x∗ in XA, i.e.,

arg minxA∈XA ‖x∗−xA‖. Let ζ∗ be the optimal solution of the solution pooling model (Equation (8)). There

exists a unique xP ∈X P such that ψ∗
xA,xP = 1. It comes, from the triangular inequality:∣∣∣∣∣∑

s∈S

hsQ(x∗, ξs)−
∑
s∈S

wsQ(x∗, ξs)

∣∣∣∣∣≤∑
s∈S

hs
∣∣Q(x∗, ξs)−Q(xA, ξs)

∣∣
+
∑
s∈S

hs
∣∣Q(xA, ξs)−Q(xP , ξs)

∣∣
+

∣∣∣∣∣∑
s∈S

hsQ(xP , ξs)−
∑
s∈S

wsQ(xP , ξs)

∣∣∣∣∣
+
∑
s∈S

ws
∣∣Q(xP , ξs)−Q(xA, ξs)

∣∣
+
∑
s∈S

ws
∣∣Q(xA, ξs)−Q(x∗, ξs)

∣∣ . (41)

The first and last terms can be bounded above by the distance between x∗ and its closest neighbor in XA,

leveraging the Lipschitz continuity of the recourse function. Formally, we have:∑
s∈S

hs
∣∣Q(x∗, ξs)−Q(xA, ξs)

∣∣≤∑
s∈S

hs ·L‖x∗−xA‖ ≤
∑
s∈S

hs ·L∆A =L∆A

where the first inequality follows Lipschitz continuity, the second one comes from the definition of ∆A, and

the third one holds because
∑

s∈S hs = 1. Similarly, we have:∑
s∈S

ws
∣∣Q(x∗, ξs)−Q(xA, ξs)

∣∣≤∑
s∈S

ws ·L∆A ≤KUL∆A,

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
38

where the second inequality follows from Lemma 1 and from the fact that
∑

s∈S 1(ws 6= 0)≤K (Equation (2)).

The second and fourth terms can be bounded above due to the small distance between xA and its closest

neighbor in X P , resulting from the solution pooling model. Formally, we have:∑
s∈S

hs
∣∣Q(xA, ξs)−Q(xP , ξs)

∣∣=∑
s∈S

hsdxA,xP ,s ≤
∑
s∈S

hs∆
P = ∆P

where the first inequality follows the definition of dx,x′,s, the second one comes from Equation (8), and the

third one holds because
∑

s∈S hs = 1. Similarly, we have:∑
s∈S

ws
∣∣Q(xA, ξs)−Q(xP , ξs)

∣∣≤∑
s∈S

ws∆
P ≤KU∆P .

Finally, the third term of Equation (41) is bounded from the SSS model (Equation (2)):∣∣∣∣∣∑
s∈S

hsQ(xP , ξs)−
∑
s∈S

wsQ(xP , ξs)

∣∣∣∣∣≤ ∑
x∈XP

∣∣∣∣∣∑
s∈S

hsQ(x, ξs)−
∑
s∈S

wsQ(x, ξs)

∣∣∣∣∣≤∆. (42)

In summary, we can bound Equation (41) by ∆ +
(
1 +KU

)
∆P +

(
1 +KU

)
L∆A. By proceeding similarly

for the second term of Equation (40), we conclude that:

Λ≤ 2
[
∆ +

(
1 +KU

) (
∆P +L∆A

)]
. (43)

This completes the proof. �

A.3. Design of solution sample XA and of the solution pool X P

Design of XA. We generate solutions in XA ⊆X by solving one deterministic problem in each scenario,

that is XA = {x∗s : s∈ S} where x∗s ∈ arg minx∈X {cTx+Q(x, ξs)} ,∀s∈ S. Obviously, these solutions can be

of poor quality (?). Yet, given the variability in the realizations of uncertainty, these solutions do carry some

variability. From a computational standpoint, these solutions can be obtained efficiently via parallelization

and can be obtained deterministically (which avoids the need for multiple replications). Still, these solutions

are only used as a starting point into our SSS algorithm (akin to ?, for example).

For FLP, we can also use a random set of solutions in XA, by sampling each decision variable xi ∈ {0,1}

with a pre-defined probability (equal to the percentage of facilities built in the optimal solution). Results,

reported in Figure 7, validate our scenario-based approach for generating the initial pool of solutions: our of

the SSS solutions, the one obtained by constructing XA through the scenario-specific solutions outperforms

the one following random sampling. Most importantly, these results show the robustness of the overall scenario

reduction methodology to the initial set XA: SSS improves upon SAA in terms of average performance and

variability regardless of the set XA. That is, even if the starting point is of poor quality by itself, the SSS

method manages to build a strong scenario subset that leads to high-quality solutions.

Design of X P . Next, we reduce XA into a smaller “representative” pool X P (Equation (8)). Table 10

reports the sensitivity of our results with the size of the solution pool X P for the production routing problem

(Section 5). It reports the expected out-of-sample cost (Solution) from the SSS heuristic, the computational

time (CPU, in minutes), and the difference to the average SAA solution (%SAA). Note that larger solution

pools X P generally lead to better PRP solutions. This is consistent with the underlying principle of SSS:

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
39

(a) FLP–CR (b) FLP–IR

Figure 7 Comparison of the FLP–CR and FLP–IR solutions with SAA, SSS with random sampling of XA, and

SSS with scenario-based solutions in XA, using a budget of 10 scenarios.

the larger the solution set, the more closely SSS can approximate the recourse function over the full solution

space, leading to a better scenario subsets. However, these improvements come at a cost—longer computa-

tional times. In some cases, the increase in computational complexity can outweigh the benefits of a larger

solution pool, resulting in worse PRP solutions with a larger solution pool. Still, these results underscore

the robustness of the proposed method, as compared to the SAA benchmark: the proposed method reduces

the expected PRP costs in 36 out of the 40 problem instances. Based on these results, we choose a budget

of |X P |= 90 to balance strong PRP solutions and reasonable computational times.

Table 10 Sensitivity of SSS heuristic with the size of the solution pool XP .

SSS: |XP |= 60 SSS: |XP |= 90 SSS: |XP |= 120 SSS: |XP |= 150

Problem K Solution CPU %SAA Solution CPU %SAA Solution CPU %SAA Solution CPU %SAA

PRP–CR

10 525,420 7 1.5% 519,799 21 2.6% 515,943 42 3.3% 511,677 32 4.1%
15 520,234 13 0.3% 515,534 31 1.2% 512,166 65 1.8% 508,873 86 2.4%
20 518,455 23 −1.2% 510,392 39 0.4% 508,165 >120 0.8% 505,970 >120 1.2%
25 508,360 15 0.3% 502,904 58 1.4% 508,768 >120 0.2% 503,654 >120 1.2%
30 505,825 22 0.3% 502,903 51 0.9% 508,592 >120 −0.2% 502,080 >120 1.0%

PRP–IR

10 787,825 11 0.7% 776,723 41 2.1% 762,213 65 4.0% 774,728 93 2.4%
15 760,757 12 2.5% 762,369 33 2.3% 775,616 72 0.6% 775,636 >120 0.6%
20 771,302 26 −0.1% 763,182 69 0.9% 760,892 >120 1.2% 763,234 >120 0.9%
25 758,598 23 1.0% 754,271 75 1.6% 755,257 >120 1.5% 754,859 >120 1.5%
30 766,466 19 −0.4% 755,081 51 1.1% 758,613 >120 0.7% 752,394 >120 1.5%

“>120” means that the SSS heuristic does not terminate in 120 minutes.
%SAA = (Average SAA solution − Solution of SSS heuristic)/ Average SAA solution.

A.4. Details on the SSS heuristic

Algorithmic implementation. Our SSS heuristic, outlined in Section 3.4 and in Figure 2, relies on an

initial subset of scenarios. We can implement the algorithm in multiple parallel threads, each starting from a

different initialization. Ultimately, we select the solution that leads to the lowest SSS objective value, across

all threads. Algorithm 2 summarizes the overall algorithm, and Algorithm 3 presents a rule to generate

initialized solutions—with the goal of including diverse scenarios in each initial set.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
40

Algorithm 2 A heuristic for solving SSS.

Input: Limited solution pool X P , scenario budget K, initial scenario set K0, parameter Ω.

1: procedure SSS heuristic(X P ,K,K0,Ω) . One thread with an initialization

2: τ ← 0 . Iteration index

3: while Kτ 6=Kτ−1 do . Check if the solution is improved

4: while Kτ 6=Kτ−1 do . LSO I: Lines 4–9

5: (ŝ1, · · · , ŝK)←Kτ . Update the neighborhood centers

6: (S1, · · · ,SK)← SNM(X P , ŝ1, · · · , ŝK ,Ω) . Re-define scenario neighborhoods

7: Kτ+1←NSSS(X P ,S1, · · · ,SK) . Conduct local search

8: τ ← τ + 1

9: end while

10: for k= 1, · · · ,K do . LSO II: Lines 10–16

11: (ŝ1, · · · , ŝK)←Kτ . Update the incumbent solution

12: Kτ+1← PSSS(X P , k, ŝ1, · · · , ŝK) . Conduct local search

13: if Kτ+1 6=Kτ then

14: break . Stops LSO II if the solution is improved

15: end if

16: end for

17: τ ← τ + 1 and K̃ ←Kτ . Record the incumbent solution

18: end while

19: end procedure

Output: w̃← arg minw≥0

{∑
x∈XP

∣∣∑
s∈S hsQ(x, ξs)−

∑
s∈S wsQ(x, ξs)

∣∣ , s.t. ws = 0, ∀s /∈ K̃
}

Impact of LSO I and LSO II. Overall, Algorithm 2 solves the SSS model via two local search operators,

until convergence: an inner procedure (LSO I) that iteratively improves the solution within neighborhoods,

and a perturbation scheme (LSO II) to escape from local optima. Figure 8 shows a typical evolution of the

SSS objective function value over time by LSO I and II, for the production routing problem (see Section 5).

If we were only using LSO I, the algorithm would terminate when reaching the first local optimum, with

an SSS solution of 113,010. However, with LSO II, the algorithm terminates after 4 outer iterations and

16 overall iterations, with an SSS of 75,794. This demonstrates the benefits of LSO II for escaping the

local optimum—in this case, it improves the SSS solution by 32.9%. In all our experiments, the algorithm

terminates within just a few outer iterations, for all problems and all scenario budgets.

Selecting the value of Ω. Within the inner procedure (LSO I), the parameter Ω defines the size of the

neighborhood. If Ω is small, each iteration will be fast, but the local search can converge to a poor local

optimum. If Ω is large, each iteration will be more impactful but slower. We seek for a balance between

solution quality and computational time by adjusting the product of K×Ω. Results are reported in Table 11.

Initially, the SSS solution improves as Ω increases: a larger Ω defines a larger neighborhood, hence aids

the algorithm escape from local optima. However, as Ω increases further, the NSSS model becomes too

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
41

Algorithm 3 Scenario set initializations and multi-thread implementation.

Input: Limited solution pool X P , scenario budget K, parameter Ω, number of threads Θmax.

1: procedure SSS Initialization

2: Θ← 1 . Generate the initial scenario set for thread 1

3: K1
0←{s0}, where s0 is randomly sampled in the full scenario set S

4: for k← 2 to K do

5: K1
0←K1

0 ∪{s′}, s′ ∈ arg maxs∈S\K1
0

{∑
s′∈K1

0
Ds,s′

}
. Select scenarios to maximize coverage

6: end for

7: for Θ← 2 to Θmax do . Generate the initial scenario set for threads Θ∈ {2, · · · ,Θmax}

8: (ŝ1, · · · , ŝK)←KΘ−1
0

9: (S1, · · · ,SK)← SNM(X P , ŝ1, · · · , ŝK , b|S|/Kc) . Partition scenario set S into K pools

10: KΘ
0 ←{s′k, k= 1, · · · ,K} , s′k ∈ arg maxs∈Sk{Dsŝk}, k= 1, · · · ,K . Maximize difference from

previous solution

11: end for

12: end procedure

13: for Θ← 1 to Θmax do . Solve SSS for each initialization, using multi-thread parallelization

14: w̃Θ← SSS heuristic(X P ,K,KΘ
0 ,Ω) (Algorithm 2)

15: end for

Output: w̃ ∈ arg minΘ=1,··· ,Θmax

{∑
x∈XP

∣∣∑
s∈S hsQ(x, ξs)−

∑
s∈S w

Θ
s Q(x, ξs)

∣∣}

Figure 8 Benefit of LSO II (PRP–CR problem, K = 20, |XP |= 60).

computationally intensive at each iteration, and fails to terminate within the time limit. In turn, the solution

actually deteriorates while the algorithm becomes slower. These results suggests a “sweet spot” in the value of

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
42

Table 11 Computational times and SSS solution as a function of the parameter Ω, for different values of K.

K = 10 K = 20 K = 30

Ω CPU(min) SSS.Sol Ω CPU(min) SSS.Sol Ω CPU(min) SSS.Sol

K ×Ω = 50–60 5 15 507,731 3 31 256,553 2 47 123,427
K ×Ω = 90–100 10 21 491,396 5 39 228,149 3 51 109,817
K ×Ω = 140–150 15 >120 647,570 7 >120 326,315 5 >120 109,817

Ω such that K×Ω lies around 90–100, which leads to the strongest SSS solution in reasonable computational

times. Note, importantly, that this “sweet spot” is robust across all values of K.

Appendix B: Details on the scenario assortment optimization approach

B.1. A row-generation algorithm for SAO and SG

Recall that our scenario assortment optimization (SAO) problem extends the scenario grouping (SG) ap-

proach from ?. Both SAO and SG cannot be solved directly, because their objective functions call the

stochastic programming formulation (Equation (13)). In Section 4.2, we developed a new column-evaluation-

and-generation algorithm to solve the SAO model. In this appendix, we describe a benchmark decomposition

algorithm based on row generation, inspired by ?, which can be applied to SAO and SG (we focus the expo-

sition on SAO). This algorithm will be used as a benchmark to assess the results of the column-evaluation-

and-generation algorithm.

The first step involves reformulating SAO as a mixed-integer linear program (MILP), using an epigraph

representation. This is stated in Proposition 3. Equation (44) maximizes the lower bound; Equation (45)

retrieves the optimal solution for each bundle; Equation (46) enforces the budget of K scenarios per bundle;

Equations (47) and (48) state the assumptions of Proposition 1; Equation (49) ensures that βbs = 0 if s /∈ Sb;

Equation (50) defines the domain of all variables.

Proposition 3. Scenario assortment optimization (Equation (14)) is equivalent to the MILP:

MP (X) = max
∑
b∈B

Ob (44)

s.t. Ob ≤ ηbcTx+
∑
s∈S

βbsQ(x, ξs) ∀b∈B,x∈X (45)∑
s∈S

θbs ≤K ∀b∈B (46)∑
b∈B

ηb = 1 (47)∑
b∈B

βbs = hs ∀s∈ S (48)

βbs ≤ hsθbs ∀s∈ S, b∈B (49)

θbs ∈ {0,1}, βbs ≥ 0, ηb ≥ 0,Ob ∈R ∀s∈ S, b∈B. (50)

Yet, the problem remains intractable, because Equation (45) enumerates all feasible first-stage solutions

in X . Accordingly, the row-generation algorithm iterates between a master problem and a subproblem:

– Master problem MP (XR): we solve Equations (44)–(50) with a subset of feasible first-stage solutions

XR ⊆X (as opposed to the full set as in Equation (45)). This yields a “relaxation bound” (RB), i.e.,

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
43

an upper bound of MP (X). Let (θ∗,β∗,η∗,O∗) be the optimal solution of MP (XR). We retrieve the

incumbent bundles S∗b = {s∈ S : θ∗bs = 1} for all b∈B.

– Subproblem P(S∗b , η∗b ,β
∗
b): we solve the stochastic program for each bundle b ∈ B (Equation (13)). By

design, this problem involves at most K scenarios. Let x∗b be its optimal solution. We expand the

solution pool XR with all solutions x∗b , b ∈ B. We then compute
∑

b∈BP(S∗b , η∗b ,β
∗
b), which yields a

lower bound to MP (X), hence, from Proposition 1, to the full stochastic program P(S,h) (LB).

We iterate between the master problem and the subproblems, until RB = LB. In that case, the solution

provides the tightest possible bound from the scenario assortment approach (Equation (14)). Algorithm 4

summarizes this approach and Proposition 4 establishes its convergence.

Algorithm 4 Iterative row-generation algorithm for solving SAO (Equation (14)).

Input: Initial set XR, RB = +∞ (relaxation bound), LB =−∞ (lower bound), tolerance ε.

1: while RB−LB
LB

> ε or LB =−∞ do

2: Solve MP (XR); store the optimum (θ∗,β∗,η∗,O∗); update RB←MP (XR)

3: Solve P(S∗b , η∗b ,β
∗
b) for each b∈B; update LB←max

{∑
b∈BP(S∗b , η∗b ,β

∗
b),LB

}
4: XR←XR ∪{x∗b , b∈B} . Row generation: update solution set

5: end while

Output: LB

Proposition 4. Algorithm 4 converges to the optimal solution of Equation (14): if LB =RB, then the

optimal solution of MP (XR) is also optimal for MP (X). Moreover, the algorithm improves the relaxation

bound and the lower bound at each iteration, and terminates in a finite number of iterations if |X | is finite.

B.2. Proof of statements

Proof of Proposition 1 Let x∗ and x∗b be optimal solutions of P(S,h) and P(Sb, ηb,βb), respectively.

We have:

ηbc
Tx∗b +

∑
s∈Sb

βbsQ(x∗b , ξs)≤ ηbcTx∗+
∑
s∈Sb

βbsQ(x∗, ξs), ∀b∈B. (51)

By taking the summation over b∈B, it holds that

∑
b∈B

(
ηbc

Tx∗b +
∑
s∈Sb

βbsQ(x∗b , ξs)

)
≤
∑
b∈B

(
ηbc

Tx∗+
∑
s∈Sb

βbsQ(x∗, ξs)

)
. (52)

Since, by definition,
∑

b∈B ηb = 1 and
∑

b∈B βbs = hs for all s∈ S, we obtain:

∑
b∈B

(
ηbc

Tx∗b +
∑
s∈Sb

βbsQ(x∗b , ξs)

)
≤ cTx∗+

∑
s∈S

hsQ(x∗, ξs), (53)

indicating
∑

b∈BP(Sb, ηb,βb) is a valid lower bound to P(S,h). �

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
44

Proof of Proposition 2 Let Z1 and Z2 denote the optimal values of Equation (14) and of Equations (16)–

(19), respectively. Note that since Ball is the inclusive set of all possible bundles, we have B ⊆Ball.

Let us first consider an optimal solution to Equation (14), denoted as S∗b , η∗b , β∗bs for all b∈B. We define a

solution to Equations (16)–(19) as follows:

yb = 1, ∀b∈B

yb = 0, ∀b∈Ball \B.

By construction, this solution defines a feasible solution to the set partition formulation. Moreover, it achieves

the same objective function value, since
∑

b∈Ball Obyb =
∑

b∈BOb =
∑

b∈BP(S∗b , η∗b ,β
∗
b). Therefore, Z1 ≤Z2.

Conversely, let us consider an optimal solution of Equations (16)–(19). We extract a subset B∗ = {b ∈

Ball : y∗b > 0}. For each b ∈ B∗, we map it to only one b′ ∈ B (which is feasible as long as |B| ≥ |B∗|) by

setting Sb′ = Sb, ηb′ = y∗bηb, βb′s = y∗bβbs for all s∈ S. For any b′ ∈B such that no bundle from B∗ is mapped

into b′, we set Sb′ = ∅, ηb′ = 0, and βb′s = 0 for all s ∈ S. Then, we have the same objective function value∑
b′∈BP(S ′b, ηb′ ,βb′) =

∑
b∈B∗ P(Sb, ηb,βb)y∗b =

∑
b∈B∗ Oby

∗
b =

∑
b∈Ball Oby

∗
b . Therefore, Z1 ≥Z2. �

Proof of Theorem 2 Let x̃ denote an optimal solution to OPT (c̃). Upon convergence, we have c̃i = ci

for all i= 1, · · · , n such that x̃i > 0. Then, for all x∈X , the following holds:

c>x̃= c̃>x̃≥ c̃>x≥ c>x, (54)

where the first equality stems from the stopping criterion, the second inequality comes from the fact that x̃

solves OPT (c̃), and the third inequality is due to the fact that c̃≥ c. This proves that the algorithm returns

an optimal solution of OPT (c) upon termination.

Next, denote by y(k) the solution of the algorithm at the kth iteration, and assume that there exist k < l

such that y(k) = y(l). Denote by B̃ the set of bundles b ∈ Ball such that y
(k)
b = y

(l)
b > 0. Then, we know that

at the lth iteration, Õb =Ob for all b ∈ B̃. Therefore, the subsequent column evaluation step will no longer

update the objective parameters, and the algorithm terminates. Therefore, the column evaluation procedure

never cycles back to previously visited solutions. Since the solution space is finite and there is at most one

parameter update per variable, column evaluation terminates in a finite number of iterations. �

Proof of Proposition 3 Let Z1 and Z2 denote the optimal values of Equation (14) and of Equations (44)–

(50), respectively. Let us first consider an optimal solution to Equation (14), denoted as S∗b , η∗b , β∗bs. We define

a solution to Equations (44)–(50) as follows:

Ob =P(Sb, ηb,βb), ∀b∈B

θbs =

{
1 if s∈ S∗b
0 otherwise

ηb = η∗b , ∀b∈B

βbs = β∗bs, ∀b∈B, s∈ S.

By construction, this solution defines a feasible solution to MP (X). Moreover, it achieves the same objective

function value, since
∑

b∈BOb =
∑

b∈BP(S∗b , η∗b ,β
∗
b). Therefore, Z1 ≤Z2.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
45

Conversely, let us consider an optimal solution of Equations (44)–(50). We define a solution to Equa-

tion (14) by letting Sb = {s∈ S|θ∗bs = 1}, ηb = η∗b , βbs = β∗bs for all b∈B, s∈ S. By construction, this solution

is feasible to Equation (14). Meanwhile, we know from Equations (44)–(45) that O∗b = minx∈X{η∗bcTx +∑
s∈S β

∗
bsQ(x, ξs)} for all b ∈ B. This implies that O∗b = P(Sb, ηb,βb) for all b ∈ B, hence

∑
b∈BO

∗
b =∑

b∈BP(Sb, ηb,βb). Therefore, Z1 ≥Z2. �

Proof of Proposition 4 First, by design, the restricted set XR of feasible first-stage solutions gets ex-

panded from one iteration to the next. It is easy to see that, for any XR ⊆ X̂C , the master problem MP (XR)

is a relaxation of MP (X̂C). Therefore, the relaxation bound RB is non-increasing over the iterations.

Second, the solution
∑

b∈BP(S∗b , η∗b ,β
∗
b) is not necessarily non-decreasing over the iterations. However, by

design, we keep the best lower bound at each iteration (line 4 of Algorithm 4). Therefore, the lower bound

LB is non-decreasing over the iterations.

Next, let us consider an iteration, with a restricted solution pool XR, such that LB =RB. We show that

MP (XR) =MP (X).

– Since X P ⊆X , we clearly have RB =MP (XR)≥MP (X).

– By design, there exists a master problem solution derived in the iterations to date, denoted by

(θ∗,β∗,η∗,O∗), such that LB =
∑

b∈BP(S∗b , η∗b ,β
∗
b), with S∗b = {s ∈ S|θ∗bs = 1}. Let us introduce O′b =

P(S∗b , η∗b ,β
∗
b) = minx∈X{η∗bcTx +

∑
s∈S β

∗
bsQ(x, ξs)} for all b ∈ B. Then, (θ∗,β∗,η∗,O′) is a feasible

solution to MP (X), achieving an objective of
∑

b∈BO
′
b =LB. Therefore, MP (X)≥LB.

This shows that MP (XR) =MP (X).

Finally, we show that the restricted set XR is being updated until LB = RB. Suppose by contradiction

that, at a given iteration, the set XR can no longer be updated, that is, x∗b ∈ XR for all b ∈ B (where x∗b

denotes the optimal solution of P(S∗b , η∗b ,β
∗
b)). By definition, the optimal solution satisfies O∗b = η∗bcx

∗
b +∑

s∈S β
∗
bsQ(x∗b , ξs),∀b∈B. Since x∗b ∈XR, we have:

O∗b ≤ η∗bcTx+
∑
s∈S

β∗bsQ(x, ξs) ∀b∈B,x∈XR.

Hence, Equation (45) ofMP (XR) is satisfied, and the other constraints are also clearly satisfied. Therefore, we

have MP (X P) =
∑

b∈BP(S∗b , η∗b ,β
∗
b), hence RB =LB. As we showed earlier, this implies that the algorithm

terminates at that point.

In summary, the algorithm keeps updating the restricted set XR until termination. Over the iterations,

the relaxation bound RB is non-increasing and the lower bound LB is non-decreasing. When they match,

the algorithm terminates at the optimal solution of Equation (14). If the set of solutions in X is finite, the

algorithm terminates in a finite number of iterations. �

Appendix C: Formulation of the optimization problems

C.1. Production routing problems

Graph structure. Let G = (N ,E) denote a complete undirected graph, where N = {0, · · · , n} is the set

of nodes and E = {(i, j) : i, j ∈ N , i < j} is the set of edges. By convention, node 0 represents the plant

and Nc = N \ {0} represents customers. A transportation cost cij is incurred between nodes i and j. We

define the extended graph G = (N ,E) by adding node n+ 1, a copy of node 0, so that N =N ∪ {n+ 1},
E = E ∪ {{i, n+ 1}, i∈Nc}, and ci,n+1 = c0i,∀ i∈Nc.

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
46

Time horizon. We consider a discrete and finite time horizon, denoted by T = {1, · · · , T}.

Demand. Let S denote a set of demand scenarios, and let hs be the probability of scenario s. Let φits

denote the demand from customer i in time period t under scenario s. Following ?, we assume that all

random variables get realized simultaneously at the beginning of the second stage. A unit cost σi is incurred

if some demand of customer i is unmet at the end of a period (backlogging is not allowed).

Inventory and replenishment. At the beginning of the planning horizon, an initial inventory Ii0 is

available at node i. Let also Ii0s = Ii0 for i∈N , s∈ S. In each period, a production capacity of C is available.

A fixed plant setup cost f is incurred if production takes place, and it associates with a unit production

cost u. A set of F identical vehicles of capacity Q can be dispatched from the plant to deliver inventory to

customers. Inventory can be held both at the plant and at the customer nodes. The inventory held at node

i cannot exceed Li. A unit inventory holding cost ρi is incurred in each period.

The following decision variables are common to PRP–CR and PRP–IR. The first-stage decisions include

plant setup decisions (defined by a variable yt equal to 1 if production takes place in period t, and 0

otherwise) and customer appointments (defined by a variable zit equal to 1 if node i will be visited in period

t, and 0 otherwise). The second-stage decisions include the production quantities pts, the delivery quantities

qits, the amount of unmet demand eits, and the inventory level Iits (by the end of the period), for period

t ∈ T , customer i ∈Nc and scenario s ∈ S. As stated earlier, the main difference lies in whether the routing

decisions are made in the first stage or the second stage; accordingly, they will be modeled by means of

scenario-agnostic variables χijt in PRP–CR and scenario-dependent variables χijts in PRP–IR.

PRP–CR formulation. In PRP–CR, the firm pre-commits to the vehicles’ routes in the first stage. We

thus add a first-stage variable χijt equal to 1 if a vehicle travels from node i to node j in period t. We

add auxiliary first-stage flow variables v̄ijt equal to the vehicle load on edge {i, j} ∈ E , and v̄jit equal to the

empty space on the vehicle on edge {i, j} ∈ E i.e., v̄jit =Q− v̄ijt (see ? for more descriptions on these variable

definitions). We define their second-stage counterparts as vijts and vjits.

Since the routing decisions are made in the first stage but customer demand is materialized in the second

stage, the routing decisions cannot capture the delivery quantity at each node. Yet, in the two-commodity

flow formulation, we need to capture the flows of the vehicle loads. To address this issue, we assume a very

small delivery quantity ε�Q for each customer. This is equivalent to making routing decisions without load

consideration in the first stage, and then adjusting load quantities upon observing demand realizations.

The PRP–CR is formulated as follows, where Mts = min{C,
∑

i∈Nc

∑T

t′=t φit′s} and M ′its =

min{Li,Q,
∑T

t′=t φit′s} denote Big-M parameters.

PRP–CR(S,h) = min
∑
t∈T

fyt +
∑

(i,j)∈E

cijχijt

+
∑
s∈S

hsQs(χ,y,z), (55)

s.t.
∑

j∈N ,i<j

χijt +
∑

j∈N ,i>j

χjit = 2zit ∀i∈Nc, ∀t∈ T (56)

∑
j∈N

(v̄jit− v̄ijt) = 2εzit ∀i∈Nc, ∀t∈ T (57)

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
47

∑
j∈Nc

v̄0jt =
∑
j∈Nc

εzjt ∀t∈ T (58)∑
j∈Nc∪{n+1}

v̄j0t = FQ−
∑
j∈Nc

εzjt ∀t∈ T (59)∑
j∈Nc∪{0}

v̄n+1,j,t = FQ ∀t∈ T (60)

v̄ijt + v̄jit =Qχijt ∀i, j ∈ E , ∀t∈ T (61)

v̄ijt ≥ 0, v̄jit ≥ 0 ∀{i, j} ∈ E , ∀t∈ T (62)

yt, zit ∈ {0,1} ∀i∈N , ∀t∈ T (63)

χijt ∈ {0,1} ∀{i, j} ∈ E , ∀t∈ T , (64)

where for each s∈ S,

Qs(χ,y,z) = min
∑
t∈T

(
upts +

∑
i∈N

ρiIits +
∑
i∈Nc

σieits

)
(65)

s.t. I0,t−1,s + pts =
∑
i∈Nc

qits + I0ts ∀t∈ T (66)

Ii,t−1,s + qits + eits = φits + Iits ∀i∈Nc, ∀t∈ T (67)

I0ts ≤L0 ∀t∈ T (68)

Iits +φits ≤Li ∀i∈Nc, ∀t∈ T (69)

pts ≤Mtsyt ∀t∈ T (70)

qits ≤M ′itszit ∀i∈Nc, ∀ t∈ T (71)∑
j∈N

(vjits− vijts) = 2qits ∀i∈Nc, ∀t∈ T (72)

∑
j∈Nc

v0jts =
∑
j∈Nc

qjts ∀t∈ T (73)∑
j∈Nc∪{n+1}

vj0ts = FQ−
∑
j∈Nc

qjts ∀t∈ T (74)∑
j∈Nc∪{0}

vn+1,j,t,s = FQ ∀t∈ T (75)

vijts + vjits =Qχijt ∀i, j ∈ E , ∀t∈ T (76)

vijts ≥ 0, vjits ≥ 0 ∀{i, j} ∈ E , ∀t∈ T (77)

eits, pts, Iits, qits ≥ 0 ∀i∈N , ∀t∈ T . (78)

Equation (55) minimizes the cost of the first-stage decisions and the expected cost of the second-stage

decisions. Equation (56) requires the number of incident edges to be 2 if customer i is visited in period t.

Equations (57)–(61) are typical flow constraints in the two-commodity flow formulation. Equations (62)–(64)

define the domain of the first-stage variables.

For each scenario, Equation (65) minimizes the total cost of production, inventory, and unmet demand.

Equations (66) and (67) enforce the inventory flow balance at the plant and customer nodes, respectively.

Equations (68) and (69) impose the maximum inventory level. Equation (70) allows a positive production

quantity only if the plant is set up. Equation (71) allows a positive delivery quantity only if the corresponding

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
48

customer is visited. Equations (72)–(76) define feasible flows from the plant to the customers with the

capacitated vehicles. Equations (77) and (78) define the domain of the second-stage variables.

PRP–IR formulation. In PRP–IR, the firm has flexibility to route the vehicles after observing customer

demand. We thus add a second-stage variable χijts equal to 1 if a vehicle travels from node i to node j in

period t in scenario s. We add a customer reservation cost g for each customer appointment in the first stage

(otherwise, the problem becomes over-simplified as the decision-maker can simply make appointments with

all customers in the first stage). We only define the second-stage auxiliary flow variables vijts and vjits. The

recourse function becomes Qs(y,z), and the problem is formulated as follows.

PRP–IR(S,h) = min
∑
t∈T

(
fyt + g

∑
i∈Nc

zit

)
+
∑
s∈S

hsQs(y,z), (79)

s.t. Equation (63),

where for each s∈ S,

Qs(y,z) = min
∑
t∈T

 ∑
(i,j)∈E

cijχijts +upts +
∑
i∈N

ρiIits +
∑
i∈Nc

σieits

 (80)

s.t. Equations (66)–(75), (77)–(78)

vijts + vjits =Qχijts ∀i, j ∈ E , ∀t∈ T (81)∑
j∈N ,i<j

χijts +
∑

j∈N ,i>j

χjits = 2zit ∀i∈Nc, ∀t∈ T (82)

χijts, χjits ∈ {0,1} ∀{i, j} ∈ E , ∀t∈ T . (83)

C.2. Facility location problems

Notations. We consider a facility location problem under demand uncertainty. Let N be the set of cus-

tomers, V be the set of potential facility locations, and S be set of demand scenarios. Each scenario s ∈ S
is associated with a probability hs such that

∑
s∈S hs = 1. We denote the demand from customer i ∈N in

scenario s∈ S by dsi ≥ 0.

The first-stage problem involves determining whether to build each facility j ∈ V. Let fj denote the

construction cost of facility j ∈ V and let uj denote its capacity. The second-stage involves optimizing

operations with the constructed facilities. We denote the unit transportation cost from facility j ∈ V to

customer i∈N by cij . Each unit of unmet demand incurs a penalty cost σi.

We define the following decision variables

yj =

{
1 if facility j ∈ V is built

0 otherwise.

xsij = amount shipped from facility j ∈ V to customer i∈N in scenario s∈ S.

esi = amount of unmet demand from customer i∈N in scenario s∈ S.

FLP–CR formulation. Equation (84a) minimizes the first-stage cost and the expected second-stage cost.

Equation (84b) defines the domain of the first-stage variables. For each scenario, Equation (84c) minimizes

the total cost of transportation and unmet demand. Equation (84d) defines the unmet demand as the total

demand dsi minus the shipment amount received from the facilities. Equation (84e) limits the capacity uj at

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
49

each constructed facility. Equation (84f) are valid inequalities to tighten the formulation. Equations (84g)

and (84h) define the domain of the second-stage variables.

FLP–CR(S,h) = min
∑
j∈V

fjyj +
∑
s∈S

hsQs(y) (84a)

s.t. yj ∈ {0,1} ∀j ∈ V, (84b)

where for each s∈ S,

Qs(y) = min
∑
i∈N

∑
j∈V

cijx
s
ij +

∑
i∈N

σie
s
i (84c)

s.t.
∑
j∈V

xsij + esi = dsi ∀i∈N (84d)∑
i∈N

xsij ≤ ujyj ∀j ∈ V (84e)

xsij ≤ dsiyj ∀i∈N , j ∈ V (84f)

xsij ≥ 0 ∀i∈N , j ∈ V (84g)

esi ≥ 0 ∀i∈N . (84h)

FLP–IR formulation. In some cases, constructing facilities is not the “final word”. Instead, some facility

location problems have binary second-stage variables in order to activate facilities (??). For instance, in

the context of relief shelter location, facilities are first deployed at the strategic level. Following a natural

disaster, each shelter must then be staffed and equipped prior to being ready for operations. In this instance,

scenarios represent natural disasters, and shelter activation involves a cost gj . Accordingly, we define the

following additional second-stage binary variables:

zsj =

{
1 if facility j ∈ V is active in scenario s∈ S
0 otherwise.

The problem is then formulated as follows, where Equation (85g) imposes that a facility cannot be active

unless a facility has been built.

FLP–IR(S,h) = min
∑
j∈V

fjyj +
∑
s∈S

hsQs(y) (85a)

s.t. yj ∈ {0,1} ∀j ∈ V, (85b)

where for each s∈ S,

Qs(y) = min
∑
i∈N

∑
j∈V

cijx
s
ij +

∑
i∈N

σie
s
i +
∑
j∈V

gjz
s
j (85c)

s.t.
∑
j∈V

xsij + esi = dsi ∀i∈N (85d)∑
i∈N

xsij ≤ ujzsj ∀j ∈ V (85e)

xsij ≤ dsizsj ∀i∈N , j ∈ V (85f)

zsj ≤ yj ∀j ∈ V (85g)

xsij ≥ 0 ∀i∈N , j ∈ V (85h)

esi ≥ 0 ∀i∈N (85i)

zsj ∈ {0,1} ∀j ∈ V. (85j)

Zhang, Jacquillat, Wang and Wang: Optimized scenario reduction
50

Experimental setup. We sample customer and facility locations uniformly within a rectangle area with

width X and height Y , defined as R= {(α,β)∈R2 : 0≤ α≤X,0≤ β ≤ Y }. We set X = Y = 10. In different

scenarios, we sample a “horizontal” region H = {(α,β) ∈ R2 : x1 ≤ α ≤ x2,0 ≤ β ≤ Y } (x1 ≤ x2) and a

“vertical” region V = {(α,β)∈R2 : 0≤ α≤X,y1 ≤ β ≤ y2} (y1 ≤ y2). We then assume that demand is “high”

(sampled uniformly between 30 and 40) in H∩V (orange in Figure 9); “medium” (between 20 and 30) in

H\ (H∩V) (green); “low” (between 10 and 20) in V \ (H∩V) (blue); and zero in R\ (H∪V) (grey). We set

the unit transportation cost cij as the Euclidean distance between facility j ∈ V to customer i ∈N times a

factor uniformly sampled between 0.8 and 1.2. We uniformly sample facility capacity uj between 50 and 500.

We uniformly sample the unmet penalty cost σi between 20 and 30. In FLP–CR, we set the construction

cost fj = 100 + ujγ1, where γ1 ∼ U([0.8,1.2]). In FLP–IR, we set the construction cost fj = 50 + ujγ2 and

the activation cost gj = 50 +ujγ2, where γ2 ∼U([0.4,0.8]).

Figure 9 Examples of customer demand patterns for different scenarios in the facility location problems.

	Introduction
	Literature review
	Upper bound: An optimization-based scenario reduction approach
	Scenario subset selection (SSS) model
	The solution pooling model
	Theoretical justification of the scenario reduction approach
	A heuristic for solving the SSS model
	Lower bound: A scenario assortment optimization approach
	Scenario assortment optimization (SAO) formulation
	Column-evaluation-and-generation algorithm

	Experimental setup
	Problem settings
	Problem complexity

	Computational results
	Results from scenario reduction: evaluation of solution quality
	Results from scenario aggregation: evaluation of lower bound
	Comparison with stochastic programming algorithms

	Conclusion
	Details on the optimization-based scenario reduction approach
	Benefits of the heuristic algorithm for scenario pooling
	Proof of statements
	Design of solution sample XA and of the solution pool XP
	Details on the SSS heuristic

	Details on the scenario assortment optimization approach
	A row-generation algorithm for SAO and SG
	Proof of statements

	Formulation of the optimization problems
	Production routing problems
	Facility location problems

