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Abstract: Maritime transport plays an important role in global supply chain. To guarantee maritime 
safety, protect the marine environment, and enhance the living and working conditions of the seafarers, 
international codes and conventions are developed and implemented. Port state control (PSC) is a 
critical maritime policy to ensure that ships comply with the related regulations by selecting and 
inspecting foreign visiting ships visiting a national port. As the major inspection result, ship detention, 
which is an intervention action taken by the port state, is dependent on both deficiency/deficiencies 
(i.e., noncompliance) detected and the judgement of the inspector. This study aims to predict ship 
detention based on the number of deficiencies identified under each deficiency code and explore how 
each of them influences the detention decision. We innovatively view ship detention as a type of 
anomaly, which refers to data points that are few and different from the majority, and develop an 
isolation forest (iForest) model, which is an unsupervised anomaly detection model, for detention 
prediction. Then, techniques in explainable artificial intelligence are used to present the contribution 
of each deficiency code on detention. Numerical experiments using inspection records at the Hong 
Kong port are conducted to validate model performance and generate policy insights. 
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characteristic; ROC AUC: area under the ROC curve; SEEMP: Ship Energy Efficiency Management 
Plan; SHAP: Shapley additive explanation; SOLAS: International Convention for the Safety of Life at 
Sea; TAN: tree augmented naive Bayes; UNCTAD: United Nations Conference on Trade and 
Development; USCG: United States Coast Guard; XAI: explainable artificial intelligence 

1. Introduction  

Maritime transport is the backbone of globalized trade and the manufacturing supply chain [1−6]. 
Even during the difficult time due to the COVID-19, international shipping still takes significant 
responsibilities of transporting products and goods around the world [7−9]. Being the most dangerous 
transportation mode due to the adverse sea and weather conditions, the lack of rescue force at sea, and 
the nature of the goods transported (e.g., crude oil and chemicals), various international regulations 
and conventions on shipping activities are implemented to guarantee maritime safety [10−12], with 
the International Convention for the Safety of Life at Sea (SOLAS) as the most important [13−15]. 
Seafarers engaged in ocean shipping play a key role to the movement and growth of the maritime 
industry, and their working and living conditions as well as the health and medical care are mainly 
protected by the Maritime Labour Convention (MLC) [16−17]. In recent years, more policies and 
regulations on environmental sustainability are imposed on the maritime industry, with the Energy 
Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan 
(SEEMP) for all ships as representatives [18−21].  

Ships whose conditions are substantially below the standards required by the relevant convention 
or whose crew is not in conformity with the safe manning document are called substandard ships [22]. 
Ship flag state, which is the country under ship registration, is the first line of defense against 
substandard shipping. However, due to the internationality property of the shipping industry, it is 
believed that flag states cannot perform their duties well [22−24]. Under this condition, port state 
control, or PSC, is proposed as the second line of defence of substandard shipping, whose main goal 
is to inspect foreign visiting ships so as to eliminate substandard shipping. Currently, nine regional 
memorandums of understandings (MoUs) on PSC in addition to the United States Coast Guard (USCG) 
are established. 

Table 1. Deficiency code list of Tokyo MoU [25]. 

Code Item Code Item 
D1 Certificates & documentation D10 Safety of navigation 
D2 Structural condition D11 Life saving appliances 
D3 Water/Weathertight condition D12 Dangerous goods 
D4 Emergency system D13 Propulsion and auxiliary machinery 
D5 Radio communication D14 Pollution prevention 
D6 Cargo operations including equipment D15 International Safety Management (ISM) 
D7 Fire safety D18 Labour conditions 
D8 Alarms D99 Other 
D9 Working and living conditions 

For foreign visiting ships to a port, the port authority first selects ships of higher risks for 
inspection, and ship inspection is carried out by an inspector called PSC officer (PSCO). During an 
inspection, a condition found not to be in compliance with the requirements of the relevant conventions 
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is recorded as a deficiency [22]. Deficiency codes in different MoUs are slightly different. For example, 
the list of deficiency codes of Tokyo MoU, which is responsible for the Asia-Pacific region, is shown 
in Table 1. If the condition of the ship or its crew is substantially below the standards, an intervention 
action, named detention, can be taken by the port state. The detention decision is highly subjective to 
the deficiency/deficiencies detected onboard, and a deficiency leading to detention is called a 
detainable deficiency. Although lists of typical but not exhaustive detainable deficiencies under 
relevant regulations and conventions are provided in the PSC manuals published by the IMO and 
individual MoUs, the descriptions are relatively abstract. Therefore, the detention decision is still 
highly subject to professional judgements of PSCOs, where it is observed that a detainable deficiency 
code may not lead to detention sometimes.  

Meanwhile, as the economic loss of ship detention can be very high and ship schedule might be 
delayed due to detention, ship operators take various measures to reduce the detention risk of their 
ships, while PSCOs are also cautious to detain a ship. Therefore, it is observed that ship detention rate 
is very low at a port. Take the Hong Kong port which belongs to the Tokyo MoU as an example, the 
annual detention rate ranges from 2.96 to 3.67% between 2015 and 2019. In all the member states 
within the Tokyo MoU, the detention rate is below 5% in the recent decades [26]. Given the facts that 
only when a significant deficiency or several significant deficiencies are found will a ship be detained 
and the ship detention rate is very low, it is justifiable to regard ship detention as a type of ‘anomaly’ 
and ships without detention as normal behavior. This is because anomalies are pattern in data that do 
not conform to a well defined notion of normal behavior, where the normal behavior refers to the 
conditions (e.g., the types of deficiencies detected and the number of the deficiencies) of most of the 
ships which are not detained, and the nonconformity is the detection of the detainable deficiencies that 
warrant a detention. Given this setting, this study develops an anomaly detection approach based on 
isolation forest, or iForest, for ship detention prediction, with the number of deficiencies under each 
deficiency code as the input and ship detention as the prediction target. Managerial implications are 
generated from the anomaly detection model and the prediction results. 

2. Literature review 

As PSC plays a major role in international marine policy and management, and the inspection 
results, including deficiency and detention conditions, are important to both port authorities and ship 
operators, there are many studies on predicting ship deficiency and detention conditions. We review 
these two streams of literature in this section. 

Most of the related studies aim to predict ship deficiency condition, either from the perspective 
of the total number of deficiencies of an inspection or from the perspective of the number of 
deficiencies under each deficiency code. Early examples of ship deficiency number prediction based 
on machine learning models include [27,28] which use support vector machine and [29] which uses a 
combination of k-nearest neighbor and support vector machine. In recent years, there is a boom in 
developing more advanced machine learning models for ship deficiency number prediction. For 
example, to predict the total number of deficiencies a ship has, tree augmented naive Bayes (TAN), 
which is a type of Bayesian networks, is developed in [23], and an XGBoost model considering 
shipping domain knowledge is proposed in [30]. Tailored random forest models under the framework 
of smart “predict, then optimize” are developed to predict the number of deficiencies under each 
deficiency category of a ship, which are informed by the structure and property of the following PSCO 
assignment model [31].  
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In contrast, there are much fewer studies on developing ship detention prediction models, as this 
is not a trivial task due to its highly imbalanced nature, i.e., un-detained ships highly outnumber 
detained ships. The related literature includes a TAN Bayesian network developed in [32], a balanced 
random forest model proposed in [33], and a support vector machine calibrated in [34]. However, to 
the best of our knowledge, the above studies only use standard supervised machine learning models 
for ship deficiency number and detention prediction. In addition, although ship detention is led by the 
detection of detainable deficiency or deficiencies, how each deficiency code contribute to the detention 
decision is unclear. To bridge this gap, this study innovatively view ship detention as a type of anomaly 
in data and adopt an unsupervised anomaly detection model based on iForest for ship detention 
prediction. The prediction results are then explained by an explainable artificial intelligence (XAI) 
method based on SHAP. 

3. Research data 

The whole dataset used in this study contains 2943 initial inspection records at the Hong Kong 
port from 2015 to 2019 with at least one deficiency detected. As we aim to explore the influence of 
each deficiency code on the detention decision, the input features are the number of deficiencies under 
each deficiency code, which is considered as continuous. The distribution of the input features is given 
in Table 2. 

Table 2. Distribution of input features over the whole dataset. 

Deficiency code 01 02 03 04 05 06 07 08 
Mean  0.3123  0.0557  0.3782 0.3177 0.2508 0.0153  1.0527  0.0605 
Min 0 0 0 0 0 0 0 0 
Max 13 12 8 5 7 3 12 2 
Standard 
deviation 

0.8015  0.3691  0.7457 0.6508 0.5745 0.1359  1.3930  0.2496 

Deficiency code 09 10 11 12 13 14 15 18 
Mean  0.4757  0.7842  0.5814 0.0034 0.1549 0.2514  0.0849  0.0663 
Min 0 0 0 0 0 0 0 0 
Max 6 12 9 1 14 5 4 6 
Standard 
deviation 

0.7770  1.2401  0.9148 0.0582 0.6102 0.5771  0.3187  0.3410 

The prediction target is ship detention: -1 if detained and 1, otherwise. In our dataset, there are a 
total of 144 records with detention among all the 2943 initial inspection records, and the detention rate 
is 4.89%, showing that the dataset is highly imbalanced. There are several reasons for such a low 
detention rate. The main reason is that detention of a ship is a serious matter involving many issues 
and interested parties [22], given the complex structure of the international shipping industry. Even if 
the main purpose of PSC is to prevent a substandard ship proceeding to sea, hard efforts should be 
made to avoid a ship being unduly detained or delayed. If this happens, the port authority should be 
obliged to compensation for any loss or damage suffered [22]. Therefore, PSCOs are very cautious 
about the decision of detention. In addition, conscientious ship operators and managers also spare no 
effort to make sure that their ships are of satisfied conditions and are of a low probability to be detained 
in PSC inspection. 
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After examining the inspection records, we find that detention is mainly caused by the 
identification of at least one detainable deficiency. However, we also observe that a specific deficiency 
code can be regarded as a detainable deficiency in some records while not in others. Actually, to the 
best of the authors’ knowledge, there is no general rule of which deficiency is always detainable, and 
it is clearly stated in the procedure for PSC published by the IMO that “the PSCO should use 
professional judgement to determine whether to detain the ship” [22]. Therefore, it can be seen that 
detention highly depends on the experience, expertise, and the judgement of the PSCOs, in addition to 
the actual ship overall conditions. Hence, detained ships are highly likely to exhibit unique properties 
in their deficiencies detected, in terms of the total number of deficiencies, the specific types and 
combination of deficiency codes, and the number of deficiencies under each deficiency code, 
compared to ships that are not detained. Considering also that there are few detained ships, we regard 
ship detention as anomalies, and thus we adopt anomaly detection method for ship detention prediction 
in this study. 

4. Anomaly detection methods for ship detention prediction  

In this study, the prediction of ship detention is achieved by an anomaly detection method based 
on iForest model, which was proposed by [35,36]. iForest is unsupervised and is based on an ensemble 
of tree-based models. The assumptions of iForest are that the anomaly class is “few and different”: it 
only contains the minority of samples that are much fewer than normal samples, and the feature values 
of the anomaly samples are very different from the normal samples. The concept of anomaly in iForest 
is analogous to detention in PSC inspection, where the ships with detention only constitute a very small 
number of all the inspected ships (no more than 5%), while they are detained because several serious 
deficiencies/one or more detainable deficiencies/a large number of deficiencies are detected, which 
make them different from the majority of the inspected ships.  

The basic idea of iForest is to explicitly isolate anomalies, and thus one tree in iForest is also 
called an isolation tree (iTree). ‘Isolation’ means to separate a sample from the rest of the samples. In 
tree structure, it means splitting each sample to separate leave nodes. Given the “few and different” 
characteristics of anomalies, they are thus more likely to be split into a leaf node near the root, i.e., 
being isolated, thanks to their very different feature values, while the normal samples are more like to 
be split to deeper leaf nodes as they are similar to each other. In other words, a sample with a shorter 
path length from the root node to the leaf node it belongs to is more likely to be an anomaly in an iTree. 
Similarly, an example with a shorter average path length in the iForest model is more likely to be an 
anomaly. The proportion of the anomaly samples in the whole data set is denoted by   and is preset. 
The iForest model is constructed based on the concept of isolation in a binary tree structure, which is 
fundamentally different from other distance and density based measures for anomaly detection.  

Denote a training set containing n   samples and m  features by ( , )i iD y x  , m
i Rx  , 

1,...,i n . An iTree is constructed using a random subset of D  whose ratio to the whole dataset is 
denoted by   , (0,1)   , and a random subset of the m  features whose proportion to the total 

number of features is denoted by  , (0,1)  . The height of an iTree is limited to 2log ( )l n     . 

Using iForest for anomaly detection contains two stages, namely training stage and evaluating stage. 
The training stage constructs a certain number of iTrees, and the evaluating stage calculates the 
anomaly score of each sample. Specifically, in the training stage, a node in an iTree is split using a 
random feature and a random value between the minimum and maximum values of this feature, and 
the construction process terminates when the tree reaches the height limit l  , or all samples are 
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separated. As an iTree is of high uncertainty, iForest model is developing by formulating an ensemble 
of a total of T  iTrees. Therefore, we consider a total of three hyperparameters in the iForest model 
in our study:  ,  , and T . The procedure of constructing an iTree is given in Procedure 1, and the 

procedure of developing an iForest is given in Procedure 2. 

Procedure 1. Construction of an iTree 
Input Training set D   with n   samples and m   features,    (the proportion of the total 

number of samples used to construct an iTree),   (the proportion of the total number 

of features used to split a node), l  (the height limit of an iTree). 
Output An iTree ( )f t .  

Step 1. Formulate the input data set to the current iTree, which is constituted by n  random 
samples from D . Initialize the current tree height ' 0l  .  

Step 2. While 'l l , do 
Step 2.1. Randomly select a feature from the m   candidate features and denote the 

selected feature by 'm . Randomly select a value of feature 'm  and denote the 
selected value by ( ')v m . 

Step 2.2. Divide the current node into two child nodes, where the left child node contains 
samples with values for feature 'm  less than or equal to ( ')v m , and the right 
child node contains samples with values for feature 'm   larger than ( ')v m . 

Update ' ' 1l l  . 
Step 2.3. Repeat Step 2.1 and Step 2.2 in a depth-first manner on the child nodes. 

End while 
Return  iTree ( )f t . 

 
Procedure 2. Construction of an iForest 
Input Training set D   with n   samples and m   features, T   (the number of iTrees 

contained in the iForest model),  ,  , l . 

Output An iForest ( )f x .  

Step 1. Initialize the iForest model 0( )f x  . 

Step 2. For 1,...,t T : 
  Construct iTree ( )tf x  using Procedure 1. 

  Update ( ) ( ) ( )
1 1

tf x f x f x
t

t t
 


. 

Return  iForest ( )f x . 

In the evaluating stage, anomaly scores are calculated for the samples considering their positions 
on each iTree in the iForest constructed. The anomaly score of sample i   is denoted by ( )s i  , 

1,...,i n , and is calculated by 

1
( )

( )( ) 2

T
tt

h i

T c ns i




 ,                               (1) 

where ( )th i  is the path length of sample i  in iTree t , which is measured by the number of edges 

sample i   traverses in iTree t   from the root node to the leaf node it falls in, and ( )c n   is the 

normalizer calculated by 



3685 

Electronic Research Archive  Volume 30, Issue 10, 3679-3691. 

2( 1)
( ) 2 ( 1)

n
c n H n

n


   ,                             (2) 

where ( )H x   is the harmonic number that can be estimated by ln( ) 0.5772156649x    (Euler’s 

constant) [36]. ( )c n  is an estimation of the average path length of samples in the iForest given the 

total number of samples in the data set as n , and it is used to normalize the anomaly score calculated 
for each sample. Obviously, we have 0 ( ) 1s i   and 0 ( ) 1th i n   . Especially, the average path 

length of sample i  over all iTrees in the iForest model is 1
( )

( )

T

tt
i

h i
E h

T
  . There are three special 

cases for ( )s i  given ( )iE h  as follows: 

1) When ( ) 0iE h  , that is, the leaf nodes where sample i  lies in over the iForest model are 

very close to the root node, ( ) 1s i  , which indicates that sample i  is almost definitely an anomaly; 

2) When ( ) 1iE h n  , that is, the leaf nodes where sample i  lies in over the iForest model 

are nearly at the end of a tree and are very far from the root node, ( ) 0s i  , which indicates that 

sample i  is almost impossible to be an anomaly; and 
3) When ( ) ( )iE h c n , that is, the average path length of sample i  over the iForest model is 

close to the average path length of samples in the iForest, meaning that the current sample is quite 
normal among all the samples, ( ) 0.5s i   . In particular, if all the samples in the data set have 

( ) 0.5s i  , then the entire sample may not really have obviously distinct anomalies.  

Finally, in our problem, given the proportion of anomalies  , samples with the n   highest 
( )s i  are predicted to be anomalies. 

5. Numerical experiment 

The whole dataset containing 2943 records is randomly divided into training set (80%, 2354 
records, 114 detentions) and test set (20%, 589 records, 30 detentions). As the overall detention rate is 
about 5%, while the cost of ignoring a ship that should actually be detained can be very high, we set 
the proportion of anomaly samples, i.e.,  , to 0.1. One can find that the value of   is much larger 
than the ratio of detained ships in the whole data set which is 4.89%. The main reason of doing so is 
that ship detention is a very serious outcome to both the vessel and the port authority, as it is highly 
related to vessels’ navigation safety and management plannings. Therefore, the port authority may 
wish to identify as many ships that should be detained as possible at the cost of inspecting more ships 
and thus pay higher inspecting costs. Therefore, we set the value of   much higher than the overall 
detention rate over the whole dataset, with the aim at catching as many ships that should be detained 
as possible. Although iForest is unsupervised, we have a labeled dataset (i.e., ship detention condition 
is known in the dataset), so we use 10-fold cross validation with grid search on the training set for 
hyperparameter tuning. The metric is area under the ROC (receiver operating characteristic) curve 
(ROC AUC). The search space and the selected values of the hyperparameters are shown in Table 3. 

Table 3. Search spaces and selected values of hyperparameters in the iForest. 

Parameter Number of iTrees T  Sample subset ratio   Feature subset ratio   

Search space 
50 to 500 with 50 as the 
interval 

0.2 to 1 with 0.2 as the 
interval 

0.2 to 1 with 0.2 as the 
interval 

Selected value 450 0.2 0.2 
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Then, the iForest model is constructed using the selected hyperparameter values on the training 
set, and its performance is validated on the test set. The confusion matrix on the test set is shown in 
Table 4. 

Table 4. Confusion matrix of iForest on the test set. 

 Ships detained Ships not detained 
Predicted ships detained 21 33 
Predicted ships not detained 9 526 

The overall ROC AUC score is 0.82, indicating that the probability that a randomly chosen ship 
with detention is predicted to have a higher anomaly score than a randomly chosen ship without 
detention is 0.82, which is much better than random guessing. Furthermore, precision of the iForest 
model is 0.69, showing that 69% of the ships that are predicted to be detained are indeed detained. The 
ratio is much higher than the detention rate 4.89% on the whole data set, showing that the proposed 
iForest model is more efficient in catching ships that should be detained. Recall of iForest model is 0.82, 
indicating that 82% of the ships that are detained by the port authority are accurately predicted by the 
iForest model. Then, F1 score of the iForest model, which reaches a trade-off between precision and 
recall by calculating their harmonic mean, is 0.73. 

To explore the contribution of each deficiency code to the detention decision, we further use 
SHAP (Shapley additive explanations) method [37] on the training set to explain the importance of 
each deficiency code in the training set. The relative importance of the deficiency codes after 
normalizing is shown in Figure 1. 

 

Figure 1. Relative importance of deficiency codes based on SHAP. 

Figure 1 shows that code 04—emergency system contributes the most to ship detention, followed 
by code 01—certification & documentation, and code 09—working and living conditions. These three 
types of deficiency codes are very commonly detected in detained ships: among all the 714 ships with 
deficiency (deficiencies) under code 04, 98 are detained (detention rate at 13.73%); among all the 609 
ships with deficiency (deficiencies) under code 01, 94 are detained (detention rate at 15.44%); among 
all the 1009 ships with deficiency (deficiencies) under code 09, 87 are detained (detention rate at 8.62%). 
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Meanwhile, code 06—cargo operations including equipment and code 12—dangerous goods has the 
least contribution to ship detention. 

Although the above analysis is effective in identifying the main contributors to ship detention, it 
is not comprehensive due to the distribution of deficiency codes: deficiencies under some deficiency 
codes inherently receive more attention from the port states, and thus they are common in records no 
matter whether detention is observed. Consequently, their estimated contribution to ship detention can 
be weakened. The typical example is deficiency code 07—fire safety, which is a common detainable 
deficiency and is detected in 132 records among all the 144 records with detention. Meanwhile, it is 
also detected in 1519 records without detention, indicating that it is a popular deficiency code that are 
commonly detected on the inspected ships. Consequently, its universality among the inspection records 
heavily reduces its measured contribution to detention, and thus it only ranks at No. 9 among all 
deficiency codes. To alleviate this issue, we further consider the frequency of each deficiency code to 
be regarded as detainable deficiency in the training set when evaluating their importance. We calculate 
the product of such frequency and the relative importance score given by SHAP as the integrated 
importance for each deficiency code, which is shown in Figure 2. 

 

Figure 2. Integrated importance of deficiency codes based on SHAP and detainable 
deficiency frequency. 

Figure 2 shows that when combining SHAP with detainable deficiency, code 07—fire safety 
becomes the determinant deficiency code of ship detention, followed by code 10—safety of navigation, 
code 15—ISM, and code 01—certificate & documentation, which are more in compliance with the 
annual reports published by the Tokyo MoU [26,38,39]. Meanwhile, as deficiency codes 12 and 18 are 
not served as detainable deficiency in the training set, their integrated importance is zero. While taking 
the deficiency importance generated by SHAP and the combination of SHAP and detainable deficiency 
frequency into account, port authorities can conduct more targeted ship selection and inspection to 
improve the overall effectiveness of PSC before an inspection if combined with studies on predicting 
ship deficiency condition under different deficiency codes (e.g., in [31]) and during an inspection when 
the deficiencies of a ship are identified. In addition, the importance scores of deficiency codes can also 
shed light on the design of high-risk ship selection scheme by the port states and on the inspection 
focus during an inspection for PSCOs. Meanwhile, ship operators can maintain and self-inspect their 
ships more efficiently to reduce ship detention risk in PSC. 
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6. Conclusions 

PSC inspection is the safeguard of maritime safety, the marine environment, and seafarers’ rights. 
The outcome of an inspection includes deficiency and detention, while the detention decision highly 
depends on the deficiencies detected, regarding both the number of deficiencies and their types, and 
the judgement of PSCOs. This study aims to predict ship detention based on the deficiencies detected 
and explore how each deficiency code contributes to detention by innovatively viewing detention as a 
type of anomaly in data. An iForest model is constructed using 2943 PSC inspection records at the 
Hong Kong port from 2015 to 2019 with the number of deficiencies under each deficiency code as the 
input and ship detention as the prediction target. The overall ROC AUC score of the iForest model 
is 0.82, indicating it is much more accurate than random guessing. The prediction results are then 
explained by SHAP, and we found that code 04—emergency system, code 01—certification & 
documentation, and code 09—working and living are the main contributors to ship detention. If the 
probability of being a detainable deficiency of a deficiency code is considered, code 07—fire safety is 
the determinant deficiency code of ship detention, followed by code 10—safety of navigation, code 15 
—ISM, and code 01—certificate & documentation.  

The proposed iForest model is initially designed to be used by port authorities, and the specific 
practical applications including designing ship selection criteria, targeting high-risk ships, guiding 
onboard inspection process, and rationalizing detention decisions. If they are used by ship owners, it 
may not be necessarily a bad thing: as deficiency codes associated with a higher importance score are 
more likely to lead to detention and can thus be regarded to be more serious, it can promote ship owners 
and operators to pay more attention to these critical aspects on their ships to prevent them from being 
a substandard ship and thus being detained. Therefore, it can be expected that ship owners and 
operators would put more efforts to maintain their ships in better condition, especially in those critical 
aspects. This this way, the deterrence of PSC inspection has been exerted, as the ships’ conditions are 
improved, and thus the navigation safety is enhanced, and the marine environment is better protected. 

In addition to the prediction of ship detention in PSC, iForest based anomaly detection models 
can be applied to address other similar problems in maritime transport, such as ship anomaly sailing 
status detection and risk alarming. It can also be applied to address practical problems in other 
transportation modes, such as aircraft safety assessment and maintenance in air transportation and 
traffic accident warning in road transportation. Besides, iForest model is only sensitive to global 
anomaly points while is not sensitive to local anomaly points. This means that ships with overall 
distinct features are more easily identified, but if ships only have a few distinct features, they might 
not be accurately captured. It should also be noted that as iForest randomly selects features and values 
for node splitting, some features or many of the values of certain features might not be selected. This 
may reduce the reliability of the iForest model, indicating that iForest might not be suitable to address 
high-dimensional data with a large number of features and values. In addition, iForest is an 
unsupervised anomaly detection method which is initially designed to be applied to data sets without 
labels. Therefore, for data sets with labels available, supervised anomaly detection methods can also 
be used. 

This study is the pioneer that develops anomaly detection model for ship detention prediction, 
with SHAP model used for model explanation. The prediction and explanation results are beneficial to 
both port states and ship operators and can contribute to enhancing the role PSC plays to guarantee 
maritime safety, protect the marine environment, and guarantee good living and working conditions 
of seafarers. 
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This study is the pioneer that develops anomaly detection model for ship detention prediction, 
with SHAP model used for model explanation. The prediction and explanation results are beneficial to 
both port states and ship operators and can contribute to enhancing the role PSC plays to guarantee 
maritime safety, protect the marine environment, and guarantee good living and working conditions 
of seafarers. 
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