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Abstract: Nowadays, the concept of port state control is viewed as a safety net to safeguard maritime
security, protect the marine environment, and ensure decent working and living circumstances for
seafarers on board to a large extent. The ship can be detained for further checking if significant
deficiencies are discovered during a port state control inspection. There is much research on this topic,
but there have been few studies on the relationship between ship deficiencies and ship detention
decisions using unsupervised machine learning artificial intelligence techniques. Although the
previous methods or models are feasible for ship detention decisions, they all have shortcomings to
some extent, such as large training model errors caused by the imbalance of class labels in the dataset
and the fact that the training model cannot comprehensively consider all factors influencing ship
detention decision due to the complexity and diversity of the problem. Unsupervised algorithms
do not need to label all data in advance, and we can incorporate some fields related to port state
control inspection data that can be collected into the model to allow the computer to automatically
classify the ships at different risk levels according to relative criteria, e.g., the Tokyo memorandum of
understanding, which may result in more objective results, thus eliminating the influence of subjective
domain knowledge. It may also have more comprehensive coverage and more information on port
state control inspection and decision models. Therefore, this research explores and develops an
unsupervised algorithm based on k-means to improve port state control inspection decision-making
models using the six-years inspection data from the Tokyo memorandum of understanding. The
results show that the accuracy rate is around 50%.

Keywords: port state control; ship detention; machine learning in maritime transportation; unsuper-
vised learning

1. Introduction

Although maritime transport is relatively safe, accidents and casualties involving ma-
rine vessels can bring about great losses to the shipping industry and the whole society [1].
The International Maritime Organization (IMO) proposes and implements a number of
international regulations and conventions to ensure maritime safety and safeguard the
marine environment. Under this circumstance, port state control (PSC) inspection is re-
garded as a safety net to guard maritime safety by verifying that foreign visiting ships are
human-crewed and operated in compliance with international rules and protect the whole
marine environment.

The widely used ship risk profile (SRP) analysis considers ship flag, recognized
organization (RO), and company since they are crucial to ship management, operation,
and maintenance [2]. In return, a vessel’s performance in PSC inspections affects its flag
state, RO, and company reputation, as well as its performance in PSC memorandum of
understanding (MoU) assessments [3,4]. In this case, it is reasonable to conclude that, all
other things being equal, if the performance of the flag state/RO/company gets worse, the
ship should be estimated to perform worse in the PSC inspection (e.g., more deficiencies
and higher probability detection) [5].
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Before ships come to the port state, the PSC officers (PSCOs) first select the ships with a
higher risk of inspection. The results of an inspection mainly contain identified deficiencies
and ship detention [1]. A ship deficiency is a condition found not to be in compliance with
the requirements of the relevant convention, whereas ship detention is an intervention
action taken by the port state when the ship is unseaworthy [2]. To improve the accuracy
and efficiency of PSC inspection, this paper aims to propose a ship detention prediction
model based on K-Means clustering, a typical type of unsupervised machine learning AI
model, to serve as a decision support tool for ship selection, detention, and inspection
for the port states. The model includes general factors (i.e., ship age, gross tonnage, type,
depth, length, beam, flag performance, recognized organization performance, and company
performance), ship dynamic factors (i.e., times of changing flag and casualties in the last five
years), and ship inspection historical factors (i.e., total previous detention, last inspection
time, last deficiency number, and PSC follow-up inspection rate) into account to predict
ship detention probability. It solves the problem of an uneven distribution of detention
ships among all ships entering the port and may find perspectives from unknown angles
for the decision on PSC inspection.

2. Literature Review

As a complement to flag state control, PSC inspection, which is an inspection regime
for ports to inspect foreign visiting ships, was first implemented in 1982. Since then, it
has been viewed as the second line of defense against substandard vessels (while the first
line of defense is ship flag states). Despite widespread industry and academic acceptance
of the effectiveness of PSC inspections in raising the level of maritime transport safety,
port state authorities continue to confront significant obstacles [6]. One of the biggest
challenges is that the efficiency of port visiting ship classification methods for ship risk
levels is not that satisfactory due to some limitations such as PSC inspection data missing
and imbalance. Research on maritime transportation has attracted wide attention in recent
years [7–9]. Especially, there has been an increasing number of studies on PSC inspection.
Before conducting a PSC inspection, the decision of which ships should be selected for
inspection among all the coming ships is one of the critical issues faced by the port state
officers since limited time and resources need to be allocated to inspect the ships with
worse conditions so as to increase inspection efficiency. PSC inspection impacts, suggestions
for MoU management [10], factors impacting PSC inspection results, and ship selection
methods in PSC are the four primary categories [10] into which literature reviews pertaining
to PSC are typically divided. In this research, we focus on the literature related to ship
selection schemes for PSC inspection.

The outcome of a PSC inspection mostly consists of detention decisions and other
types of deficiencies. Several related studies reach a concordance that ship age, ship
flag, and ship type are the main determinants of ship deficiencies and detention [7–12].
More specifically, some studies have also identified the extent to which the target factors
would contribute to the deficiencies and detention [7]. Based on the target factors, various
innovative ship selection schemes for PSC inspection are proposed. Zhou and Sun [12]
proposed an automatically optimized and self-evolutional ship target system based on
the target factors using the generalized additive modeling (GAM) approach. Yang, Yang,
and Yin [13] created Bayesian networks to forecast the likelihood that bulk carriers will
be detained in seven significant European nations. The number of deficiencies, the type
of inspection, the recognized organization, and the vessel’s age was the main risk factors
affecting PSC inspections.

To increase the effectiveness of the onboard inspection, some academics have sug-
gested association rule mining techniques. Association rule mining techniques were devel-
oped by Tsou et al. [14] and used to determine the relationships between the defects of the
detained ships and the external causes, as well as the relationships between the deficiencies.
Chung et al. [15] examined the correlations between ship features and flaws found during
inspections (e.g., ship type, flag, and classification society). Additionally, Osman et al. [16]
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used association rule mining techniques to examine PSC patterns in Malaysian ports. The
location of the inspection, the flag state, the number of violations, the outcome of the
detention, and the risk profile of the ship were all taken into account.

To increase SRP effectiveness, increasingly sophisticated and precise ship selection
models have been created. A Bayesian network (BN) technique was used by Yang et al. [7]
to forecast ship detention. Afterward, Yang et al. [8] combined the Bayesian network
model with the game model between PSC port authorities and ship owners to present an
optimal PSC inspection scheme. A BN model was also used by Wang et al. [9] to forecast
how many problems will be found during a PSC inspection. Dinis et al. [10] developed a
BN-based ship risk assessment and maritime traffic monitoring model based on the static
risk factors adopted by the new inspection regime (NIR) and the SRP. Some scholars have
suggested many new types of models for ship selection for PSC inspection in addition to
the well-known BNs. For instance, a balanced random forest-based model was put forth
by Yan et al. [11] to forecast the likelihood of ship detention. The SRP and the suggested
detention prediction model were contrasted.

Based on the above review, it can be seen that among the previous research, there
are few studies on analyzing and improving PSC efficiency using unsupervised machine
learning methods. Unsupervised algorithms do not need to label all data in advance. We
can incorporate corresponding PSC inspection data that can be collected into the model to
allow the computer to automatically classify the ships at different risk levels according to
relative criteria such as the Tokyo MOU. Therefore, this research explores and develops
unsupervised algorithms to improve PSC inspection decision-making models.

3. Methodology

This research aims to classify foreign visiting ships by a clustering algorithm called
K-means based on unsupervised learning. The specific method is as follows: based on ship
inspection records (age, gross tonnage, length, depth, beam, type, flag performance, RO
performance, date of last initial inspection date, total detentions, last deficiency number,
total detentions, the number of flag changes, a casualty in last 5 years, and company)
obtained over a period of time (in Tokyo MOU for six years [2015–2020]), the K-means
algorithm is used to cluster the ships to different risk levels, and the large number of
ships coming to the port can be pre-divided into three categories (high-risk ships, standard
risk ships, and low-risk ships in SRP). After the clustering, the common deficiencies and
detention conditions of the ships in each group are first extracted. Then, the newly arrived
ships are matched and grouped, divided into corresponding groups, and the divided
groups are divided into subgroups. The ship’s characteristics, such as deficiencies and
detentions, are reported to the inspectors to guide them in a targeted inspection of the
newly arrived ship.

Model Evaluation Method

• Cluster quality

Clustering quality is generally determined by the separation of classes. The tighter the
intra-class and the smaller the inter-class distance, the higher the quality. We use Silhouette
Coefficient and Calinski-Harabaz Index in sklearn to evaluate cluster quality. Specifically,
this model looks at the corresponding scores of these two indicators.

• Comparison with training results with labeled data

Because the Tokyo MoU dataset is labeled, it is possible to directly summarize the
ship characteristics in each cluster to obtain the characteristics of the ships in the cluster
(deficiency and detention) and then recommend them to newly visited ships (that is, those
in the test set). By comparing the real deficiencies and detention conditions of newly visited
ships with the recommended ones, we can know the quality of the clustering algorithm.

The specific method is as follows: based on ship inspection records of TokyoMOU
six years (2015–2020). The ship’s characteristics, such as deficiencies and detentions, are
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reported to the inspector to guide him in a targeted inspection of the newly arrived ship.
The whole process can then be made into online learning: that is, every time a new ship
arrives, after the above operations are performed on it, it is added to the entire training
set database. For example: Suppose the original database contains n pieces of data and is
divided into k groups. Now, the n + 1 pieces of data are re-divided into k groups so that
this data set will continue to grow, and the division will become more and more accurate to
reflect the characteristics of ships.

4. Prediction Model
4.1. Remove Useless Features and Extract New Features

There are a total of 35 features in the data set. First, delete seven business irrelevant
features ‘Call_Sign’, ‘Inspection_Type,’ ‘Flag,’ ‘IMO number,’ ‘MMSI,’ ‘No,’ ‘Draft,’ delete
too many missing, meaning the small feature ‘Liquid,’ the feature ‘Tonnage’ and the ‘dead-
weight’ are highly correlated, only the feature ‘deadweight’ is saved, and the remaining
26 features, which including ‘Dead weight, Flag performance, RO performance, Com-
pany performance, deficiency no, detention, last deficiency no, total detention, casualty in
5 years, flag changing times, length, beam, depth, speed, last_36_months_avg_def_no (The
average number of deficiencies detected in the past 3 years), last_36_months_all_det_no
(The total number of detainees in the past 3 years), last_inspection_state (Was it checked or
not at last time), Ship Type_PSC’. Table 1 below introduces the meaning of each feature
and its processing method in the entire dataset.

Table 1. Feature explanation and processing method.

Feature Name Feature Meaning Missing Value Processing Method Encoding Method

‘Dead Weight’
Deadweight tonnage is a
measure of how much
weight a boat can carry

Yes Mean fill No encoding.

‘flag performance’ White, grey, black,
not listed No

“not listed” is filled
with the mode of the
feature in the
training set

Label encoding: w
white→1;
grey→2; black→3.

‘RO performance’ High, medium, low, very
low, not listed Yes “not listed” is

processed with mode

Label encoding: high→1;
medium→2; low→3.
very low→4.

‘Company performance’

The performance of
shipping businesses is
determined using the
company performance
matrix from the
Tokyo MoU

No “not listed” is filled
with mode

Label encoding: high→1;
medium→2; low→3;
very low→4.

‘deficiency no’ The number of defects in
this inspection No No encoding.

‘detention’ Whether this inspection
is detained No Label encoding.

‘last deficiency no’
Here is the number of
defects from the last
initial inspection

Yes filled with the mode of
the training set No encoding.

‘total detentions’ total number of detentions No No encoding.
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Table 1. Cont.

Feature Name Feature Meaning Missing Value Processing Method Encoding Method

‘casualty in 5 years’

A binary variable
indicating whether a ship
has had a casualty accident
in the past five years.

No

Casualty-in-5-years:
one-hot encoding: 1 for
each casualty that has
occurred in the previous
5 years, 0 otherwise.

‘flag changing times’ Number of ship flag
state changes No No encoding.

‘Length’(meter) The ship’s overall
maximum length Yes filled with the mean No encoding.

‘Beam’(meter) Hull width Yes filled with the mean No encoding.

‘Depth’(meter)
vertical distance between
the side upper deck and
the underside of the keel

Yes filled with the mean No encoding.

‘Speed’ the speed of the boat Yes filled with the mean No encoding.

‘last_36_months_avg_def_no’
Average number of defects
in initial inspection in the
past 36 months

No No encoding.

‘last_36_months_all_det_no’
Total number of detentions
at initial inspection in the
past 36 months

No No encoding.

‘last_inspection_state’

Whether the last initial
inspection was held or not,
its encoding method is a
binary variable. The
encoding method 1
indicates that it is held, and
0 means that it is not held.

No No encoding.

‘Classification Society’

NGO that creates and
upholds technical
guidelines for the design,
manufacture, and use of
ships and offshore
structures.

No One-hot encoding

‘Ship Type_PSC’

Bulk carriers, container
ships,
general/multipurpose
ships, passenger ships, oil
tankers, and other ship
categories are included in
the collection.

No

One-hot encoding: is
bulk carrier: 1 for bulk
carriers, 0 otherwise; is
container ship: 1 for
container ships, 0
otherwise; is general
cargo/multipurpose: 1
for such ships; is
passenger ship: 1 for
such ships; is tanker: 1
for such vessels; is other:
1 for other ship
categories, 0 otherwise.

Note: Flag performance, Recognized Organization (RO) performance and company performance are calculated
based on the flag black and white list, RO performance list and company performance list provided by the Tokyo
Memorandum of Understanding, respectively. Whitelisted flags perform better than greylisted flags and much
better than blacklisted flags. For ROs and companies, performance deteriorates in the order of “high”, “medium”,
“low” and “very low”. If the RO and Company’s performance is not listed, the performance status is recorded as
“Not Listed”.
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Having divided the dataset, we fill in, encode, and scale missing values. There are
3672 pieces of data in the data set, 60% of which are training sets, 20% are validation sets,
and 20% are test sets, i.e., there are 2202 pieces of data in the training set, 735 pieces of
data in the validation set, and 735 pieces of data in the test set. After processing the data,
we start to build the normal model with K = 3 using training data, because the traditional
classification number of the ships is 3 (high risk, standard risk, low risk) based on the ship
risk profile. Next, the test data were used to examine the performance of the new model.
The following Table 2 shows the results and performance of the 3 clusters using the test set.

Table 2. The performance evaluation of the model with K = 3.

Cluster/Features 1 2 3

No, of ships c 252 1680 1005

No. of ships in HRS (rate) HRS:225 (0.89) HRS:547 (0.33) HRS:494 (0.12)

No. of ships in SRS (rate) SRS:26 (0.10) SRS:809 (0.48) SRS:389 (0.49)

No. of ships in LRS (rate) LRS:1 (0.0039) LRS:324 (0.19) LRS:122 (0.39)

Clustering performance on
training set (accuracy) 0.89 0.33 0.39

Clustering performance on test
set (accuracy) 0.86 0.35 0.40

Average no. of deficiencies 11.83 3.96 2.30

Prediction performance on
training set (MSE) 79.25 15.86 8.50

Prediction performance on test
set (MSE) 75.16 16.00 8.16

Total number of detentions 71 42 3

Average detention rate 0.28 0.03 0.0030

Prediction performance on
training set (Brier score) 0.20 0.024 0.0030

Prediction performance on test set
(Brier score) 0.23 0.022 0.0043

Distribution of deficiency code

{‘01’: 234, ‘02’: 54, ‘03’: 254, ‘04’:
184, ‘05’: 176, ‘06’: 12, ‘07’: 631,
‘08’: 20, ‘09’: 228, ‘10’: 513, ‘11’:
339, ‘12’: 3, ‘13’: 69, ‘14’: 144, ‘15’:
83, ‘18’: 24, ‘99’: 14}

{‘01’: 395, ‘02’: 62, ‘03’: 515, ‘04’:
452, ‘05’: 286, ‘06’: 23, ‘07’: 1450,
‘08’: 97, ‘09’: 662, ‘10’: 1026, ‘11’:
866, ‘12’: 1, ‘13’: 199, ‘14’: 356, ‘15’:
88, ‘18’: 96, ‘99’: 76}

{‘01’: 119, ‘02’: 18, ‘03’: 167, ‘04’:
163, ‘05’: 125, ‘06’: 5, ‘07’: 481, ‘08’:
37, ‘09’: 272, ‘10’: 330, ‘11’: 235,
‘12’: 4, ‘13’: 94, ‘14’: 125, ‘15’: 28,
‘18’: 59, ‘99’: 45}

Prediction performance on
training set (MSE)
code_label

1.25 0.34 0.19

Prediction performance on test
set (MSE)
code_label

1.41 0.34 0.22

Distribution of detainable code

{‘01’: 36, ‘02’: 24, ‘03’: 41, ‘04’: 28,
‘05’: 23, ‘06’: 2, ‘07’: 72, ‘08’: 2, ‘09’:
2, ‘10’: 51, ‘11’: 33, ‘13’: 2, ‘14’: 24,
‘15’: 54, ‘18’: 1}

{‘01’: 8, ‘02’: 3, ‘03’: 8, ‘04’: 12, ‘05’:
9, ‘06’: 2, ‘07’: 31, ‘09’: 1, ‘10’: 13,
‘11’: 19, ‘13’: 1, ‘14’: 11, ‘15’: 22}

{‘07’: 2, ‘10’: 2, ‘14’: 2, ‘15’: 2}

Prediction performance on
training set (MSE)
detainable_code_label

0.19 0.0098 0.0020

Prediction performance on test
set (MSE)
detainable_code_label

0.27 0.0091 0.0043
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4.2. Model Evaluation and Results

When the K-means model was established, we then used the validation set to tune
the value of K and find the best value of K for our problem. The silhouette score is used
to evaluate the quality of different values of K. Candidate values of K vary from 2 to 14
are tried, and the evaluation results of the silhouette score are shown in Table 3. Based
on the Silhouette score, it can be easily found that the trend is increasing first and then
falling down with the peak value 9. After these steps, K = 9 was selected for the final model
establishment using the train and validation data sets. The performance comparison of
K = 3 and K = 9 has been concluded in the following Table 4. It can be concluded that
although the model with K = 3 has better performance in deficiency_no_mse, deten-
sion_mse, and some code lable_MSE, the cover and evaluation ranges are not that wide,
and the difference between K = 3 and K = 9 is not that much (The difference regarding
deficiency_no_mean mse, detension_mse, and some code lable_mse between K = 3 and
K = 9 are not that much). Hence, the Kmeans Model with K = 9 is outstanding. However,
this model can be improved and refined by inputting as much qualified data as possible.

Actually, very few unsupervised learning methods have been conducted for PSC
inspection because the data are scarce, and the available data are very likely to be imbal-
anced. Compared with another existing research that used principal component analysis
(PCA) [17], which transforms the first principal component as the largest possible variance.
Each succeeding component, in turn, has the highest variance possible under the constraint
that it is orthogonal to the preceding components. Our proposed method considers every
factor equally and will not be affected by the influence of subjective emotional factors or
domain knowledge and experience. In addition, the authors also suppose that the K = 9 is
reasonable because the status of each ship should be very different, although it does not
comply with the common domain knowledge.

Table 3. The silhouette score of the model with different K.

Number of Clusters Silhoutte_score

2 −0.0916

3 −0.0883

4 −0.0883

5 −0.0883

6 −0.0837

7 −0.0837

8 −0.0837

9 −0.0836

10 −0.0842

11 −0.0842

12 −0.0840

13 −0.0842

14 −0.0856
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Table 4. K-means models performance comparison of K = 3 and K = 9.

K = 3 K = 9

accuracy rate 0.41 0.47

deficiency_no_mse 18.73 19.86

detention_mse 0.54 0.61

detainable_code_label0_MSE 0.27 0.06

detainable_code_label1_MSE 0.01 0.10

detainable_code_label2_MSE 0.0043 0.26

detainable_code_label3_MSE \ 0.00

detainable_code_label4_MSE \ 0.0053

detainable_code_label5_MSE \ 0.0073

detainable_code_label6_MSE \ 0.54

detainable_code_label7_MSE \ 0.051

detainable_code_label8_MSE \ 0.032

code_label0_MSE 1.41 0.62

code_label1_MSE 0.34 0.91

code_label2_MSE 0.22 1.02

code_label3_MSE \ 0.18

code_label4_MSE \ 0.22

code_label5_MSE \ 0.31

code_label6_MSE \ 2.22

code_label7_MSE \ 0.43

code_label8_MSE \ 0.45

5. Conclusions and Future Work

PSC inspection is viewed as an effective way to contribute to the enhancement of
maritime safety and security and the prevention of marine pollution. Due to the limited time
and human resources, not every deficiency item listed by the Tokyo MoU can be inspected,
and even not every single ship could be selected to inspect. Therefore, it is worth developing
new algorithms and methods that can instruct PSCOs to improve inspection efficiency.

In this research, we have designed and developed k-means clustering unsupervised
learning methods for the efficient classification of ships coming to the port. Numerical
experiments show the performance of the k-means model is better than random guess
(accuracy rate: around 50%) and has wide coverage on the ship factors. Most importantly,
the classification has been refined to nine groups, which would give more insight into ship
risk prediction and analysis for PSC inspection. For the research limitation, the silhouette
ranges from −1 to +1, where a high value indicates that the object is well-matched to its
own cluster and poorly matched to neighboring clusters. However, the highest score of
this paper is −0.0836, which means the model has a lot of room for improvement. In future
research, this model can be refined by adding more features extracted from qualified data
and putting more real data into the model as much as possible.
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