
Manage Inventories with Learning on Demands and Buy-up
Substitution Probability

Zhenwei Luo
Faculty of Business, The Hong Kong Polytechnic University, Kowloon, Hong Kong,

zhen-wei.luo@polyu.edu.hk

Pengfei Guo*

College of Business, City University of Hong Kong, Kowloon, Hong Kong,
penguo@cityu.edu.hk

Yulan Wang
Faculty of Business, The Hong Kong Polytechnic University, Kowloon, Hong Kong,

yulan.wang@polyu.edu.hk

Abstract: Problem Definition: This paper considers a setting in which an airline com-
pany sells seats periodically, and each period consists of two selling phases, an early-bird-
discount phase and a regular-price phase. In each period, when the early-bird-discount seat
is stocked-out, an early-bird customer who comes for the discounted seat either purchases
the regular-price seat as a substitute (called buy-up substitution) or simply leaves. Method-
ology/Results: The optimal inventory level of the discounted seats reserved for early-bird
sale is a critical decision for the airline company to maximize its revenue. The airline com-
pany learns about the demands for both discounted and regular-price seats and the buy-up
substitution probability from historical sales data, which, in turn, are affected by past in-
ventory allocation decisions. In this paper, we investigate two information scenarios based
on whether or not lost sales are observable, and we provide the corresponding Bayesian
updating mechanism for learning about demand parameters and substitution probability.
We then construct a dynamic programming model to derive the Bayesian optimal inventory
level decisions in a multi-period setting. The literature finds that the unobservability of lost
sales drives the inventory manager to stock more (i.e., the Bayesian optimal inventory level
should be kept higher than the myopic inventory level) to observe and learn more about de-
mand distributions. Here, we show that when the buy-up substitution probability is known,
one may stock less, as one can infer some information about the primary demand for the
discounted seat from the customer substitution behavior. We also find that to learn about
the unknown buy-up substitution probability drives the inventory manager to stock less so
as to induce more substitution trials. Finally, we develop a SoftMax algorithm to solve our
dynamic programming problem. We show that the obtained stock more (less) result can be
utilized to speed up the convergence of the algorithm to the optimal solution. Managerial
Implications: Our results shed light on the airline seat protection level decision with learn-
ing about demand parameters and buy-up substitution probability. Compared with myopic
optimization, Bayesian inventory decisions that consider the exploration–exploitation trade-
off can avoid getting stuck in local optima and improve the profit. We also identify new
driving forces behind the stock more (less) result that complement the Bayesian inventory

*Corresponding Author.

1

This is the Pre-Published Version.
This is the accepted manuscript of the following article: Zhenwei Luo, Pengfei Guo, and Yulan Wang (2023) Manage Inventories with Learning on 
Demands and Buy-up Substitution Probability. Manufacturing & Service Operations Management 25(2), 563-580, which has been published in final 
form at https://doi.org/10.1287/msom.2022.1169.



management literature.

Keywords: Airline Seat Allocation; Early Bird Discount; Bayesian Inventory Management;
Newsvendor Model; SoftMax Algorithm

History: Received: November 2019; Accepted: October 2022 by Kamalini Ramdas, after 3
revisions.

1. Introduction

Airline companies often offer early-bird booking discounts to passengers. Customers who

book tickets early can get a cheaper rate, and those who purchase near the departure date

may have to pay a much higher price. This practice is based on market segmentation—

customers have different price sensitivities and time sensitivities—and offering early-bird

booking discounts can help to stimulate more demand to fill otherwise vacant seats. Ac-

cording to Shaw (1982), some customers, such as business travelers, are time-sensitive but

price-insensitive. They generally purchase late because of tight schedules and are willing to

pay a high fare. For convenience, we call these customers regular customers. Others, like

leisure or vacation travelers, are time-insensitive but price-sensitive. They prefer to purchase

early for a lower fare. We call these customers early-bird customers. To achieve market seg-

mentation, an advanced purchase deadline is usually set, and the discount fare is available

only before such a deadline. For example, Delta Air Lines states that “Most of our deeply

discounted products require advanced purchases of 3, 7, 14 or 21 days” 1. Japan Airlines

provides a SAKITOKU ticket scheme, which offers four options for early-bird customers

according to whether their purchase date is 75 days/ 55 days/ 45 days/ 28 days prior to

departure; see Figure 1 for an example from the Japan Airlines website2. In this study, we

only consider two different fare classes for simplicity. Such a two-fare setting is also com-

monly adopted in the airline revenue management literature; see, for example, Littlewood

(1972), Brumelle et al. (1990), and Cooper et al. (2006). Under the two-fare setting, there

is only one advanced purchase deadline, and we call the phase before the deadline the early-

bird-discount phase and the remaining phase the regular-price phase. Hotle et al. (2015)

1For the details, please see https://urldefense.com/v3/__https://www.delta.com/us/en/bookin

g-information/fare-classes-and-tickets/ticket-rules-restrictions__;!!KjDnqvtInNPT!jmo8B

FjDP9G9rdMHwFosBlAzXUB_j4eSNxTJAB1Z3HbK-DWRefl3YV4FbqkDHbIXe-LVF4KMqlJhByWuP9AR59AEUCka5W

o$.
2For the details, please see https://urldefense.com/v3/__https://www.jal.co.jp/jp/en/dom/wa

ribiki/super_sakitoku.html__;!!KjDnqvtInNPT!jmo8BFjDP9G9rdMHwFosBlAzXUB_j4eSNxTJAB1Z3HbK

-DWRefl3YV4FbqkDHbIXe-LVF4KMqlJhByWuP9AR59AEY7gys-o$. The data in Figure 1 was retrieved from
this website on Sep 17, 2022.
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show that the advanced purchase deadline can be used to induce price-sensitive consumers

to purchase in the early-bird-discount phase while leaving price-insensitive consumers in the

market. We thus assume that early-bird customers arrive only in the early-bird-discount

phase and that regular customers arrive only in the regular-price phase.

Figure 1: Illustration of Advanced Purchase Deadline: Japan Airlines

Because of fixed seat capacity, the allocation of seats among multiple fares becomes a

critical decision when airline companies aim to maximize their expected revenues.3 Such

a decision is also called a booking limit decision or seat protection level decision for seats

with different fares. Reserving too few seats for low-fare tickets may result in revenue loss by

losing some price-sensitive passengers, while reserving too many can lead to fewer passengers

purchasing high-fare seats.

To make the appropriate seat allocation decision, demand learning is essential. As Jack

Bovey, a revenue optimization manager at British Airways, has pointed out, “it was the first

step towards what will hopefully become an important part of how we forecast, and hence

price, flights” (The Alan Turing Institute, 2020). When conducting demand forecasting

for airline companies, one cannot ignore an important customer purchasing behavior: buy-

up substitution, which is customers’ substitution of regular-price seats for discounted seats

when the latter are sold out. In practice, discounted seats often sell out very quickly (U.S.

Department of Transportation, 2019). When customers come for a discounted seat but find

that it is out of stock, they may choose to buy the regular-price seat as a substitute. Buy-up

3Another revenue-maximizing approach is dynamic pricing. However, according to Belobaba (1987),
dynamic price change may lead to an irrational price war between competitors. Unlike price adjustment,
seat inventory control aims to properly allocate seats among multiple fares, which is easy to manipulate and
hidden from competitors, and it hence becomes a practically feasible strategy in revenue management.
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substitution is an important issue in the airline seat allocation problem (Belobaba, 1987),

given that buy-up substitution can lead to up to a 9% increase in airline revenue (Gallego et

al., 2009) and improve airline seat management (Cooper and Li, 2012). Ja et al. (2001) show

that the substitution rate ranges from 15% to 55%, and considering the substitution issue

can improve the accuracy of demand estimation by 9%− 20% (Ratliff et al. 2008). Ignoring

buy-up substitution could result in a severe spiral-down effect (Cooper et al., 2006): setting

a low protection level for high-fare seats (or reserving too many low-fare tickets) results in

a low estimation of the demand for high-fare seats, which causes an even lower protection

level for the high-fare seats in the following periods. As the early-bird customers arrive only

in the early-bird-discount phase, buy-up substitution happens only in this phase after the

discounted seats sell out; see Figure 2 for an illustration.
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Figure 2: Illustration of Substitution Demands in the Early-bird-discount Phase

The seat allocation problem can be formulated as a newsvendor-type model to derive the

optimal seat protection levels for seats at different fares; see, e.g., Littlewood (1972) and Be-

lobaba (1987). However, the information about demand and buy-up substitution probability

has to be learned from historical sales data, which are affected by past inventory allocation

decisions. Thus, how to allocate seats among different fares dynamically over multiple time

periods with learning about both demand distributions and buy-up substitution probability

becomes an important decision problem for the airline manager. In this study, we investigate

this problem and provide a solution.

For the sake of analytical tractability, we consider the following simplified but represen-

tative setting. An airline company has a fixed number of seats on a flight. Seats are sold

in two phases, an early-bird-discount phase followed by a regular-price phase. Early-bird

customers who prefer discounted seats arrive only in the early-bird-discount phase, while

regular customers who prefer regular-price seats arrive only in the regular-price phase. If

discounted seats stock out, unsatisfied early-bird customers either simply leave or purchase

regular-price seats as a substitute. We first develop a baseline single-period inventory man-

agement problem with buy-up substitution. By utilizing this baseline model, we show that

if the decision maker repeatedly makes the myopic optimization decision that maximizes

only the current-period expected profit, the learning-and-optimization process can be stuck

in local optima, leading to a severe profit loss.
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Next, we construct a dynamic programming model to investigate the optimal multi-period

inventory decisions by taking into account the associated exploration–exploitation tradeoff.

Depending on whether or not lost sales are observable, we have two information scenarios,

denoted as O and U , respectively. When lost sales are unobservable (U scenario), the sales

data provide only partial (censored) information on the actual demand. For example, if all

of the early-bird tickets, say 50 discounted seats, are sold out, then the airline company

can only know that the early-bird demand is at least 50. For each information scenario,

we derive the corresponding Bayesian updating formula and the Bellman equation of our

dynamic programming model to find the optimal inventory allocation decisions. However,

directly solving the dynamic programming of Bayesian inventory management suffers from

the curse of dimensionality. To facilitate insight generation and algorithm development, we

thus focus on the comparison between the Bayesian optimal inventory level and the myopic

inventory level.

First, we consider a setting in which the substitution probability is known but demand

parameters need to be estimated, and we obtain the following results:

(1) In the complete observation O scenario, the inventory manager does not need to in-

crease the inventory level to obtain more demand information. Thus, the Bayesian

optimal inventory level is equal to the myopic inventory level.

(2) In the partial observation U scenario, lost sales are unobservable. When lost sales

are not observed, there is a famous stock more result in the Bayesian inventory man-

agement literature—the Bayesian optimal inventory level should be set larger than the

myopic inventory level to better learn about demand distribution—without considering

substitution (Lariviere and Porteus, 1999) or by taking substitution into account but

assuming that the substitute product is always available (Chen and Plambeck, 2008).

Here, the buy-up substitution occurs when discounted seats stock out, but because of

limited seat capacity, the complete observation of the substitute demand cannot be

guaranteed. We show that under certain conditions, the unobservability of lost sales

becomes a stock less driving force, in that the Bayesian optimal inventory level should

be set lower than the myopic inventory level. The information about the primary de-

mand can be obtained not only directly through sales data but also indirectly from

the observations of buy-up substitution. Because the demand parameters can be in-

ferred from the substitution behavior of unsatisfied customers, discounted seats can be

stocked less to induce more substitution trials. Our numerical study reveals that such

a stock less result can happen under more general settings.

Next, we consider the setting in which both the demand parameters and substitution
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probability need to be estimated. To better learn about the substitution probability requires

stocking less discounted seats so that substitution can happen more frequently. Such a stock

less driving force is similar to the one in Chen and Plambeck (2008). Nonetheless, to observe

and learn more about the primary demand of early-bird customers may require stocking more

discounted seats. Because of the interplay between multiple driving forces that may work

in opposite directions, the result regarding whether to stock more or stock less is generally

ambiguous. Our extensive numerical results suggest that the final comparison result depends

on factors such as seat prices and the prior beliefs of the inventory manager.

As there are two types of discrete demands and buy-up substitution in our dynamic

programming model, the heuristic algorithms developed in papers such as Chen (2010) can-

not be simply applied here. Instead, we adopt the SoftMax algorithm (Goodfellow et al.,

2016) to find the heuristic solution to our dynamic programming model. Through testing

with simulated data sets, we find that the SoftMax algorithm performs very well and can

converge to the true parameters without being stuck in local optima. Our numerical experi-

ments indicate that compared with myopic optimization and the commonly used Thompson

sampling algorithm, the SoftMax algorithm is the most efficient in balancing the exploration

and exploitation of demand and buy-up substitution information and achieves the highest

convergence rate. We further demonstrate that utilizing the obtained stock more (less) result

can further speed up the convergence of the SoftMax algorithm to the optimal solution.

Our main contributions are threefold. First, our results can help airline companies to op-

timally determine the booking limit for discounted seats through Bayesian inventory manage-

ment. Second, we identify conflicting driving forces behind the Bayesian optimal inventory

level decision and show that the classic stock more result may not hold anymore, thus enrich-

ing the Bayesian inventory management literature. Third, we introduce a SoftMax algorithm

to find the heuristic solution of our dynamic programming problem. We demonstrate that

it outperforms the myopic optimization and the widely used Thompson sampling algorithm,

and that the stock more (less) result can be utilized to speed up algorithm convergence.

The remainder of this paper is organized as follows. The related literature is reviewed in

Section 2. In Section 3, we present a baseline single-period inventory model for optimizing

the booking limit of discounted seats in an airline setting. In Section 4, we develop a multi-

period inventory model with learning about demand parameters and the buy-up substitution

probability in the context of Bayesian inventory management. We then compare the Bayesian

optimal inventory level with the corresponding myopic one under various settings. The

heuristic analysis is conducted in Section 5, and concluding remarks are provided in Section

6. All of the proofs are relegated to the Online Appendix.
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2. Literature Review

Our study is closely related to the literature on Bayesian inventory management. In the early

stage of this research stream, researchers mainly consider settings with observable lost sales.

Scarf (1959) formulates a Bayesian inventory dynamic programming model with two state

variables (inventory level and demand parameter). Scarf (1960) shows that the problem can

be reduced to one state variable with a gamma demand distribution. Successive studies such

as Azoury (1985) and Miller (1986) extend Scarf’s method to other demand distributions.

Lovejoy (1990) provides myopic policies by reducing the single state to zero-dimensional

state space, i.e., a static optimization problem. Later researchers consider settings in which

lost sales are unobservable. Such demand censoring introduces difficulty to demand esti-

mation. According to Braden and Freimer (1991), only special types of distribution—the

so-called newsvendor distributions—allow parsimonious information updating. By utilizing

the newsvendor distribution and Scarf’s method of state-space reduction, Lariviere and Por-

teus (1999) obtain analytical results for the optimal inventory decision of a multi-period

newsvendor problem with unobservable lost sales, and identify a stock more result. Ding

et al. (2002) further consider general demand distributions in newsvendor inventory models

and show that the stock more result still holds when lost sales are unobservable. The proof

of this conclusion is rectified by Lu et al. (2005) and further simplified by Bensoussan et

al. (2009). Chen (2010) develops heuristics for a finite-horizon periodic-review inventory

control problem with unobservable lost sales. In Chen (2010), there only exists one kind of

demand, and simple inventory decisions associated with the observable lost sales scenario can

be used to approximate the Bayesian optimal solution. In contrast, we consider two types of

discrete demands together with buy-up substitution, and thus the heuristics in Chen (2010)

cannot be applied. Instead, we introduce a randomized policy, SoftMax (Goodfellow et al.,

2016), which can effectively utilize our stock more (less) result, as the heuristic solution of

our problem. Jain et al. (2015) and Bensoussan and Guo (2015) utilize stockout times to

estimate demand distribution for perishable and nonperishable products, respectively. Ben-

soussan et al. (2016) consider the incomplete inventory and demand information caused by

invisible demand, such as spoilage, damage, pilferage, and returns. They study the inven-

tory management problem with only sales information and develop an iterative algorithm

to approximate the solution to the problem. fChen et al. (2017) investigate the allocation

of limited inventory among multiple stores in the merchandise testing period, which aims to

optimize the learning about the demand parameter prior to the main selling period. Chen

and Wu (2019) consider a finite-horizon dynamic pricing problem with a fixed amount of

inventory where the demand is price-dependent and needs to be learned via Bayesian updat-

ing. In addition to the aforementioned studies that consider Bayesian inventory management
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for the multi-period inventory control problem, we note that there are studies that consider

profit maximization in a single-period setting with Bayesian learning and focus on issues

such as shrinkage and pricing; see, e.g., Li and Ryan (2011), Harrison et al. (2012), and Li

et al. (2021).

Among the studies of Bayesian inventory management, Chen and Plambeck (2008) is the

first to consider the substitution issue when stockout occurs. Our paper also considers the

substitution issue, but it differs greatly from Chen and Plambeck (2008). First, Chen and

Plambeck (2008) assume that the substitute product is always available when the customers’

desired product is sold out. However, in our setting, because of the fixed seat capacity, the

substitute product—the regular-price seat—is limited and thus not always available. Second,

the demand for the substitute product in Chen and Plambeck (2008) comes from stockout-

based substitution only, whereas in our study, such a demand comes from two sources, buy-up

substitution and the primary demand for the regular-price product.

Our work is also related to studies of inventory management with demand estimation from

censored observations. Some of these studies utilize the expectation-maximization algorithm

to estimate the demand and substitution parameters, including Anupindi et al. (1998), Kök

and Fisher (2007), Ulu et al. (2012), Vulcano et al. (2012), and Chen and Chao (2019);

some employ non-parametric demand learning, including Huh and Rusmevichientong (2009),

Feng and Shanthikumar (2017), Chen and Chao (2020), and Yuan et al. (2021); and some

develop operational statistics to integrate demand estimation and inventory optimization,

including Liyanage and Shanthikumar (2005) and Chu et al. (2008).

Our study is related to studies of the seat allocation problem in the airline revenue

management literature. According to McGill and van Ryzin (1999), the early-bird discount

selling strategy was first adopted by airline companies such as BOAC (now British Airways)

in the early 1970s. By using this strategy, airline companies can gain extra revenue from

selling seats that would otherwise go empty without offering discounts. Littlewood (1972)

provides an optimal rule for optimal seat inventory allocation from the perspective of benefit

maximization. Belobaba (1987) further extends this rule to multiple fare classes by using

the expected marginal seat revenue method. Pfeifer (1989) obtains a similar result with a

different approach. Using marginal analysis as in Belobaba (1987), Brumelle et al. (1990)

formally prove that a variant of Littlewood’s rule could be optimal under a general model

of the seat allocation problem. van Ryzin and McGill (2000) provide a simple adaptive

approach to optimize seat protection levels. Cooper et al. (2006) show that simply following

Littlewood’s rule without considering buy-up substitution can cause a serious spiral-down

effect, resulting in severe revenue loss. Cooper and Li (2012) further demonstrate the benefit

of incorporating buy-up substitution into airline seat management. However, all of these
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studies either do not consider demand learning or consider it but ignore the impact of the

inventory decision in the current period on the following periods (i.e., they do not consider the

exploration–exploitation tradeoff in demand learning). Our study is the first to incorporate

such a tradeoff in our solution to the airline seat allocation problem.

In our two-phase selling model, the first-phase price is lower than the second-phase price.

We note that in business practice, there also exist markdown situations in which the first-

phase price is higher than the second-phase price. Hu et al. (2015) study such a markdown

inventory management problem. In their paper, there are also two selling phases in each

period: a clearance phase (modeled as the first phase) with a markdown price and a regular-

sales phase (modeled as the second phase) with a full price. Customers who do not get the

product in the clearance phase can choose to buy it in the following regular-sales phase. The

key difference between the markdown model in Hu et al. (2015) and our early-bird discount

model is that the inventory used in their clearance phase is part of the unsold products from

the previous period; that is, they are not newly produced, and the leftover products from the

clearance phase cannot be sold in the following regular-sales phase. Thus, the selling periods

in their markdown model are inter-correlated, whereas the selling periods in our early-bird

discount model are independent. Another key difference is that Hu et al. (2015) consider

a static model in which there is no learning about demand distribution and substitution

parameters. In contrast, we consider learning about these parameters.

3. Single-Period Model

In this section, we first review a baseline single-period inventory management problem with

two selling phases. The optimal inventory decision can be expressed in a similar way as a

newsvendor-problem solution. Next, we consider a myopic optimization decision where the

company repeatedly makes the current-period optimal inventory decision along the timeline,

with demand parameters and substitution probability updated according to Bayes’ rule. We

show with a numerical example that the myopic optimization can get stuck in local optima.

3.1 Model Description

Previous studies on airline seat allocation problem mainly focus on a single period model;

see, e.g., Brumelle et al. (1990). For completeness, we briefly review this model and state it

with our notations. Consider a single selling period with two selling phases: an early-bird-

discount phase and a regular-price phase. The corresponding selling prices are denoted as p1

and p2, respectively, with p1 < p2. The primary demand from early-bird customers for the

discounted seat and the primary demand from regular customers for the regular-price seat
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are denoted by D1 and D2, respectively, which are discrete random variables. Let fi(·|θi)
be the probability mass function of Di, where θi is an unknown parameter with θi ∈ Θi

(i = 1, 2).4 Let M be the total number of available seats on the flight, which is a fixed

number. The firm’s objective is to determine the number of discounted seats, denoted as y,

to maximize its total expected profit over the two selling phases.

There exists a tradeoff associated with the inventory decision y. When the firm allocates

too few seats for early-bird-discount sales (i.e., y is very small), the primary demand for

discounted seats may not be fully satisfied. Some unsatisfied early-bird customers may

simply leave. Hence, the firm loses the opportunity to sell more. However, if the firm

allocates too many seats for early-bird-discount sales (i.e., y is very large), the firm may lose

the chance to force some unsatisfied early-bird customers to purchase regular-price seats as

substitution.

As the primary demand for the discounted seat is D1, the realized sales of the discounted

seat can be expressed as D1∧y, where a∧b = min(a, b). If there are leftover discounted seats

at the end of the early-bird-discount phase, they are sold in the regular-price phase as well.

Thus, the amount of inventory available for the regular-price sales is (M−y∧D1). Note that

the demand for regular-price seats comes from two sources: the substitution demand from

unsatisfied early-bird customers who buy regular-price seats as a substitute, denoted by a

random variable K, and the primary demand from regular customers (i.e., D2). We assume

that each unsatisfied customer’s substitution decision is a Bernoulli trial with probability α,

which is called the buy-up substitution probability. The random variable K then follows a

binomial distribution with parameters ((D1 − y)+, α), where x+ = max(0, x). Under given

values of θ1, θ2, and α, the firm makes the inventory-level decision to maximize its total

expected profit π(y|θ1, θ2, α) as follows:

max
y

π(y|θ1, θ2, α) = p1E[y ∧D1|θ1] + p2E[(K +D2) ∧ (M − y ∧D1)|θ1, θ2, α] (1)

s.t. 0 < y ≤ M.

We obtain the following result regarding π(y|θ1, θ2, α).

Proposition 1 The profit function π(y|θ1, θ2, α) is unimodal in y.

According to Brumelle et al. (1990), the optimal inventory level of the discounted seat

y∗ can be expressed as

y∗ = max

{
0 < y ≤ M : Pr(K +D2 > M − y|D1 ≥ y, θ1, θ2, α) <

p1 − αp2
(1− α)p2

}
. (2)

4In this study, we assume that D1 and D2 are independent given θ1 and θ2. However, θ1 and θ2 themselves
along with the buy-up substitution probability can be correlated in the inventory manager’s uncertain beliefs.
Such a model setup is consistent with the one in Brumelle et al. (1990).
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Note that when there are multiple optimal solutions, the above equation (2) yields the one

with the smallest value. It is worth pointing out that if the substitution probability α is

0 (i.e., K = 0 with probability 1), the optimal inventory level of the discounted seat y∗ is

equal to the one under Littlewood’s rule (Littlewood 1972).

We then conduct a sensitivity analysis of the optimal inventory level y∗ with respect to

the substitution probability α and obtain the following:

Proposition 2 The profit function π(y|θ1, θ2, α) is submodular in (y, α); that is, ∂[π(y +

1|θ1, θ2, α) − π(y|θ1, θ2, α)]/∂α < 0. Hence, y∗, the optimal inventory level of discounted

seats, decreases with the substitution probability α.

Proposition 2 shows that the inventory manager should set a lower inventory level for the

discounted seat as the substitution probability increases. The underlying reason is that with

a larger substitution probability, it becomes more likely that unsatisfied early-bird customers

will buy a regular-price seat.

3.2 Myopic Optimization

The above single-period model assumes that the demand parameters and substitution prob-

ability are known. In practice, such information is often unknown to the inventory manager.

When decisions are made repeatedly over multiple periods, unknown parameters can be

learned from past sales. The myopic optimization does not consider the future effects of

the current-period decision and maximizes only the expected profit in the current period,

along with learning about demand parameters and substitution probability according to

Bayes’ rule. We now provide a numerical example to show the drawback of the myopic

optimization: it can get stuck in a local optimum.

Example 1 (Local Optimality of Myopic Optimization) Consider an airline company

that offers an early-bird discount sale of a flight with a large-sized jet. The total number of

seats is M = 220. The regular price is set at p2 = 1200, and the early-bird-discount price

is p1 = 650. Both the primary demands for the discounted and regular-price seats, D1 and

D2, follow two-point distributions, which are known to the inventory manager. Specifically,

D1 takes the value 30 or 100 with equal probability 0.5, and D2 takes the value 60 or 120

also with equal probability 0.5. The substitution probability α is unknown and takes either a

low value 0.2 or a high value 0.8. The inventory manager holds a prior belief that (Pr(α =

0.2), P r(α = 0.8)) = (0.5, 0.5). Suppose that the true substitution probability is α = 0.8.

Now, suppose that the inventory manager adopts the myopic optimization for the seat

allocation problem that only maximizes the current-period expected profit. Then, based on
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the single-period optimal inventory decision stated in (2), the optimal inventory level in

period 1 can be calculated. In the following period 2, the inventory manager first updates the

belief about the substitution probability based on the observed sales data according to Bayes’

rule and then makes the optimal inventory allocation decision according to (2) again. Such a

procedure repeats itself in the remaining periods. Denote the optimal inventory level decision

in period i (i ≥ 1) as ymi .

In the first period, the optimal inventory decision for the discounted seats is ym1 = 100. In

this case, all primary demands for the discounted seats are satisfied. As such, no substitution

happens. The inventory manager’s belief remains the same as in the prior period. Hence,

the decision for the following periods is stuck at ymi = 100, i = 2, . . ., and the corresponding

expected profit per period is 150, 250. However, based on the true substitution probability

α = 0.8, the optimal inventory level is ymi = 1 (i ≥ 1) and the corresponding expected profit

per period is 170, 090, a 13.2% increase over the one under the myopic optimization.

The foregoing example reveals a major drawback of the myopic optimization: learning

about unknown system parameters can be stuck in a local optimum and thus cannot progress

at all. In the following section, we present a dynamic programming model that considers not

only the current-period profit but also the efficiency of learning about demand parameters

and substitution probability.

4. Multi-Period Model

We now consider a multi-period seat allocation problem with learning about demand distri-

bution parameters (i.e., θ1 and θ2) and substitution probability α. The firm’s objective is

to maximize the total discounted expected profit over N periods, where the discount factor

is denoted by δ (0 < δ ≤ 1). The setting in each period remains the same as that in the

single-period model; see §3.

Below, we first introduce two information scenarios and derive the Bayesian learning

formula for unknown parameters in each scenario. We then specifically consider two settings.

In the first setting, the inventory manager cares most about demand distributions and the

substitution probability α can be known from the prior knowledge and experience. Thus,

only the demand distribution parameters need to be learned. In the second setting, both

the demand distribution parameters and substitution probability need to be learned. For

each setting, we formulate the corresponding dynamic programming model for the optimal

inventory decisions. Recall that the decision variable is the inventory level of the discounted

seat y. We then conduct a comparison between the Bayesian optimal inventory level and

the myopic inventory level.

12



4.1 Bayesian Updating under Two Information Scenarios

In our study, we consider two information scenarios based on whether or not lost sales are

observable. When lost sales are observable (denoted as the O scenario), we have the com-

plete observations: the realized primary demand for the discounted seat x1, the substitution

demand from unsatisfied early-bird customers for the regular-price seat x21, and the realized

primary demand for the regular-price seat x22 are all observable. Such complete observa-

tions are feasible in the current e-commerce and big-data era, in which a firm can easily

track customers’ purchase behavior.

Given the discounted seat inventory level y, the demand parameter θi (i = 1, 2), and the

substitution probability α, the likelihood of observing demand realizations x1, x21, and x22

can be written as

f y
O(x1, x21, x22|θ1, θ2, α) =

{
f1(x1|θ1)f2(x22|θ2)

(
x1−y
x21

)
αx21(1− α)x1−y−x21 , if x1 > y;

f1(x1|θ1)f2(x22|θ2), if x1 ≤ y.
(3)

When lost sales are unobservable (denoted as the U scenario), sales of the discounted seat

s1, sales of the regular-price seat from the substitution demand s21, and sales of the regular-

price seat from the primary demand s22 are all observable. They are censored sales data of

demand realizations x1, x21, and x22, respectively. If s1 < y, no buy-up substitution occurs

and the sales of the regular-price seat are all from the primary demand. Otherwise, some

unsatisfied early-bird customers may choose to buy the regular-price seat as a substitute.

For example, if s1 = y, s21 < M − y, and s22 = M − y − s21, then only s21 unsatisfied

early-bird customers choose to buy the regular-price seat as a substitute. In such a case,

sales observations of the primary demands for both the discounted and regular-price seats

are censored. Thus, one needs to sum up all likelihoods over all possible values of D1 and

D2 that satisfy D1 ≥ y + s21 and D2 ≥ M − y − s21. Consequently, the resulting likelihood

is [
+∞∑

i=y+s21

f1(i|θ1)
(
i− y

s21

)
αs21(1− α)i−y−s21

]
·

[
+∞∑

j=M−y−s21

f2(j|θ2)

]
.

Similarly, we can analyze other cases. In summary, under the U scenario, the likelihood of

observing sales quantities (s1, s21, s22) is

f y
U(s1, s21, s22|θ1, θ2, α)

13



=



f1(s1|θ1)f2(s22|θ2), if s1 < y, s21 = 0 and s22 < M − s1;

f1(s1|θ1)

[
+∞∑

j=M−s1

f2(j|θ2)

]
, if s1 < y, s21 = 0 and s22 = M − s1;[

+∞∑
i=y+s21

f1(i|θ1)
(
i−y
s21

)
αs21(1− α)i−y−s21

]
f2(s22|θ2),

if s1 = y, s21 < M − y and s22 < M − y − s21;[
+∞∑

i=y+s21

f1(i|θ1)
(
i−y
s21

)
αs21(1− α)i−y−s21

]
·

[
+∞∑

j=M−y−s21

f2(j|θ2)

]
,

if s1 = y, s21 < M − y and s22 = M − y − s21;
+∞∑
i=M

i−y∑
k=M−y

f1(i|θ1)
(
i−y
k

)
αk(1− α)i−y−k,

if s1 = y, s21 = M − y and s22 = 0.

(4)

Let Iyscen denote the information set that contains all of the available information for a

given inventory level y under the information scenario scen, where scen ∈ {O,U}. Specif-

ically, under the O scenario, IyO = {(x1, x21, x22) : 0 ≤ x21 ≤ (x1 − y)+, x1, x21, x22 ∈ N+},
where N+ is the set of all nonnegative integers; that is, the information set contains all

possibilities of both the realized primary demands in two phases and the substitution de-

mand. Similarly, under the U scenario, IyU = {(s1, s21, s22) : 0 ≤ s1 ≤ y, 0 ≤ s21 ≤
(M − y) · I{s1=y}, 0 ≤ s22 ≤ M − s1 − s21, s1, s21, s22 ∈ N+}, where I{.} is the indicator

function; that is, the information set contains all possibilities of observed sales quantities.

Denote the joint prior distribution of θ1, θ2 and α in period i (i = 1, 2, . . . , N) as

ϕi(θ1, θ2, α). Given ϕi(θ1, θ2, α), the posterior distribution ϕi+1(θ1, θ2, α) derived based on

the information observed in period i serves as the prior in the following period i+ 1. Under

each information scenario scen ∈ {O,U}, given the observation in period i, ξ ∈ Iyscen, the

posterior distribution ϕi+1(θ1, θ2, α) can be derived by using the corresponding likelihood

function according to Bayes’ rule, as follows:

ϕi+1(θ1, θ2, α|ξ, y, ϕi) =
f y
scen(ξ|θ1, θ2, α)ϕi(θ1, θ2, α)∫ 1

0

∫
Θ1

∫
Θ2

f y
scen(ξ|θ′1, θ′2, α′)ϕi(θ′1, θ

′
2, α

′)dθ′2dθ
′
1dα

′
. (5)

Let vsceni (ϕi) denote the firm’s maximum total discounted expected profit from period i

to N under the information scenario scen when the prior distribution in period i is ϕi, where

i = 1, 2, . . . , N and scen ∈ {O,U}. Then, for i = 1, · · · , N − 1, we can write the Bayesian

dynamic optimality equations as

vsceni (ϕi) = max
0<y≤M

Eϕi(θ1,θ2,α)

π(y|θ1, θ2, α) + δ
∑

ξ∈Iyscen

vsceni+1 (ϕi+1)f
y
scen(ξ|θ1, θ2, α)

 , (6)
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and for i = N , we have

vscenN (ϕN) = max
0<y≤M

EϕN (θ1,θ2,α) {π(y|θ1, θ2, α)} . (7)

For ease of exposition, we use Gscen
i (y, ϕi) to denote the corresponding objective function

of vsceni (ϕi) (i = 1, · · · , N), which means that for i = 1, · · · , N − 1,

Gscen
i (y, ϕi) = Eϕi(θ1,θ2,α)

π(y|θ1, θ2, α) + δ
∑

ξ∈Iyscen

vsceni+1 (ϕi+1)f
y
scen(ξ|θ1, θ2, α)

 , (8)

and for i = N ,

Gscen
N (y, ϕN) = EϕN (θ1,θ2,α) {π(y|θ1, θ2, α)} . (9)

The myopic inventory level in period i (i = 1, · · · , N) maximizes only that period’s

expected profit and is denoted as ymi . Hence, it is the optimal solution of the corresponding

single-period model with a prior belief ϕi(θ1, θ2, α). For ease of exposition, we use G
m
i (y, ϕi)

and vmi (ϕi) to denote the firm’s objective function and the corresponding optimal value

function in period i under the myopic setting, respectively.

4.2 Only Demand Parameters Unknown

In this subsection, we consider the case in which the substitution probability α is known but

the demand parameters θ1 and θ2 are unknown and need to be estimated. Such a setting

allows us to have a better understanding of the driving forces that lead to a better estimation

of unknown demand parameters. We are particularly interested in whether the Bayesian

optimal inventory level should be kept larger than the myopic inventory level to obtain

better parameter estimates. Because α is known, ϕi(θ1, θ2, α), the prior joint distribution

in period i (i = 1, · · · , N) reduces to a two-variable distribution. Let ϕ′
i(θ1, θ2) denote the

marginal prior distribution of θ1 and θ2 in period i, where ϕ′
i(θ1, θ2) =

ϕi(θ1,θ2,α)∫
Θ1

∫
Θ2

ϕi(θ′1,θ
′
2,α)dθ

′
2dθ

′
1
.

Below, we first consider the O scenario in which we have complete observations. For

period i (i = 1, · · · , N), the impact of increasing the inventory level of the discounted seat

y by one unit satisfies

GO
i (y + 1, ϕ′

i)−GO
i (y, ϕ

′
i) = Eϕ′

i
π(y + 1|θ1, θ2, α)− Eϕ′

i
π(y|θ1, θ2, α)

= Gm
i (y + 1, ϕ′

i)−Gm
i (y, ϕ

′
i). (10)

Equation (10) implies that the marginal impact of increasing the inventory level y on the

objective function under the Bayesian inventory decision remains the same as that under the

myopic decision. It then follows that the Bayesian optimal inventory level is equal to the

myopic inventory level, which is formally stated in the following proposition.
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Proposition 3 When lost sales are observable and the substitution probability α is known,

for any period i (i = 1, · · · , N), given the same prior distribution ϕ′
i(θ1, θ2), the Bayesian

optimal inventory level is equal to the myopic inventory level; that is, yOi = ymi .

The underlying reason is that when we have complete observations, there is no need to

manipulate the inventory level to observe more demand information. Hence, the decision

maker only needs to maximize the current-period expected profit. Such an equality between

yOi and ymi serves as a benchmark for the following comparisons in other scenarios.

Next, we study the U scenario in which lost sales are unobservable. Studies that consider

only one type of primary demand (e.g., Lariviere and Porteus 1999, Ding et al. 2002) show

that the inventory manager will stock more to learn about the demand distribution; that is,

the Bayesian optimal inventory level is larger than the myopic inventory level. Here, we have

two types of primary demands, one for discounted seats and the other for regular-price seats.

A change in the inventory level y affects the observations of both primary demands D1 and

D2. Does the unobservability of lost sales still drive the inventory manager to stock more?

To separate out the driving forces caused by learning about each type of primary demand,

we consider the case in which only the parameter of one type of primary demands needs

to be estimated while that of the other type is known. Denote the marginal distribution of

θ1 (θ2) given the value of θ2 (θ1) as ϕ
′
i,1(θ1) :=

ϕ′
i(θ1,θ2)∫

Θ1
ϕ′
i(θ

′
1,θ2)dθ

′
1
(ϕ′

i,2(θ2) :=
ϕ′
i(θ1,θ2)∫

Θ2
ϕ′
i(θ1,θ

′
2)dθ

′
2
). The

following proposition shows that the stock more result holds.

Proposition 4 Consider that lost sales are unobservable and the substitution probability

α = 0. When the demand parameter θ1 (θ2) is unknown but θ2 (θ1) is known, for any period

i (i = 1, · · · , N), given the same prior distribution ϕ′
i,1(θ1) (ϕ′

i,2(θ2)), the Bayesian optimal

inventory level is no less (no larger) than the corresponding myopic inventory level; that is,

yUi ≥ ymi (yUi ≤ ymi ).

Proposition 4 indicates that the unobservability of lost sales is still a driving force for the

inventory manager to stock more considering either type of primary demand. Intuitively,

when only one type of primary demand needs to be learned while the other type is known,

we should stock more seats for the unknown demand to observe and learn more about its

distribution. In this specific sense, the well-known stock more result of other studies that

only consider one type of primary demand is generalized to the case of two types of primary

demand.

The result in Proposition 4 is obtained through assuming no buy-up substitution (α = 0).

Will the unobservable lost sales still drive the inventory manager to stock more when there is

buy-up substitution (α > 0)? The answer is no. We show that under certain circumstances,
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the inventory manager will stock less, in that the Bayesian optimal inventory level is lower

than the myopic inventory level, as illustrated below.

Proposition 5 Consider that both the demand parameter of D2 and substitution probability

α(> 0) are known but the demand parameter of D1, θ1, is unknown. The total number of

available seats M = 2, and the value of D1 cannot be 1, i.e., f1(1|θ1) = 0 for all θ1 ∈ Θ1.

Then, for any period i (i = 1, · · · , N), given the same prior distribution ϕ′
i,1(θ1), the Bayesian

optimal inventory level is no larger than the corresponding myopic inventory level; that is,

yUi ≤ ymi .

In Proposition 5, no matter whether the inventory level y is set as 1 or 2, given the same

realized primary demand for the discounted seat, the observed early-bird sales convey the

same demand information. For example, if the realized D1 is 0, the early-bird sales are 0 in

both the y = 1 and y = 2 cases. If the realized D1 is 2 or larger, then the early-bird sales

s1 = 1 in the case y = 1 and s1 = 2 in the case y = 2. Both s1 = 1 and s1 = 2 convey

the same demand information that D1 ≥ 2 because the demand cannot be 1. However,

the inventory manager can infer some information about the primary demand D1 from the

customer substitution behavior when y = 1. In other words, stocking fewer discounted seats

can induce more observations and learning about early-bird demand. Will such a stock less

phenomenon still occur under more general demand distributions with a large seat capacity

M? We now provide an example to show that the stock less result still occurs under more

general settings.

Example 2 (Stocking Less Caused by Unobservability of Lost Sales) Consider

the case in which the early-bird-discount price p1 = 700 and the regular price p2 = 1200.

The primary demand for the discounted seat D1 follows a truncated Poisson distribution

(0 ≤ D1 ≤ 300) with an unknown parameter θ1, where θ1 takes the value 160 or 270. The

primary demand for the regular-price seat D2 also follows a truncated Poisson distribution

(0 ≤ D2 ≤ 100) with parameter θ2 = 5. The buy-up substitution probability α is known and

α = 0.2. At the beginning of the first period, the inventory manager holds a prior belief that

θ1 equals 160 with probability 0.8 and equals 270 with probability 0.2. The manager aims to

determine the optimal number of discounted seats for the first period to maximize the total

expected profit over two periods (with a discount factor δ = 1). Denote the optimal inventory

levels of the discounted seat in the first period under the Bayesian inventory management

and the myopic optimization as yU1 and ym1 , respectively.

We then vary M , the total number of seats, between 80 and 200 with a step length of 20.

Table 1 lists the corresponding optimal inventory levels yU1 and ym1 . It shows that the stock
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Table 1: Optimal Inventory Levels (yU1 and ym1 ) under Different Values of M

M 80 90 100 110 120 130 140 150 160 170 180 190

yU1 48 62 74 87 99 113 126 138 150 162 166 169

ym1 52 65 77 90 102 115 128 140 151 162 166 169

yU1 − ym1 −4 −3 −3 −3 −3 −2 −2 −2 −1 0 0 0

less result occurs when M is no greater than 160. Table 1 also shows that the difference

between the two optimal inventory levels (i.e., yU1 − ym1 ) decreases as M increases. This

implies that an increase in the total number of seats weakens the manager’s incentive to

stock less in this example. Intuitively, as the total number of seats M increases, the manager

shall allocate more seats for early-bird-discount sale, i.e., the myopic optimal inventory level

ym1 becomes larger5. This results in more observations of the primary demand D1 and thus

reduces the manager’s exploration incentive. In this example, when M becomes sufficiently

large (M ≥ 170), the difference between the two optimal inventory levels becomes zero.

The above example shows that the stock less result can happen under general settings

when lost sales are unobservable and only the distribution of the primary demand for the

discounted seat is unknown and needs to be learned. It is worth pointing out that besides the

observed sales of the discounted seat s1, the observed substitution demand s21 also conveys

some information about the primary demand for the discounted seat D1, which can drive

the inventory manager to stock less. This is in sharp contrast to the stock more conclusion

drawn in the study of Chen and Plambeck (2008), which assumes that the substitute product

is always available. In Chen and Plambeck (2008), the substitution demand can be fully

observed and only the lost sales are unobservable, which pushes the inventory manager to

stock more to learn about the demand distribution. Here, the substitution demand cannot

be fully observed as the substitute product, the regular-price seat, is not always available

because of fixed seat capacity. Stocking fewer discounted seats provides more observations

and learning about the substitution demand. Hence, the stock more result may no longer

hold. The above results imply that the unobservable lost sales contain counter driving forces,

which make the relationship between the Bayesian optimal inventory level yUi and the myopic

inventory level ymi generally uncertain.

5This can be easily verified by checking the expression of π(y + 1|θ1, θ2, α) − π(y|θ1, θ2, α) presented in
the proof of Proposition 1 in the online Appendix.
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4.3 Demand and Substitution Parameters All Unknown

In this subsection, we consider the case in which the demand parameters θi (i = 1, 2)

and substitution probability α are all unknown. Let us first consider the O scenario in

which lost sales are observable. In this scenario, one can have complete observations of

realized demands to estimate demand parameters. However, given the need to estimate

the substitution probability, inventory levels should be set such that we can obtain more

observations about customer substitution behavior. In the O scenario, the marginal impact

of increasing the inventory level y by one unit under Bayesian inventory management and

that under myopic optimization have the following relationship, where the proof of inequality

(11) can be found in online Appendix:

GO
i (y + 1, ϕi)−GO

i (y, ϕi) ≤ Gm
i (y + 1, ϕi)−Gm

i (y, ϕi), (11)

Based on (11), we obtain the following result.

Proposition 6 When lost sales are observable and both the demand parameters and sub-

stitution probability are unknown, for any period i (i = 1, · · · , N), given the same prior

ϕi(θ1, θ2, α), the Bayesian optimal inventory level is no larger than the corresponding myopic

inventory level; that is, yOi ≤ ymi .

In comparison with the result stated in Proposition 3 where the substitution probability

is known, Proposition 6 reveals that learning about the unknown substitution probability

drives the inventory manager to stock less. Note that when lost sales are observable, reducing

y, the inventory level of the discounted seat, can induce more observations of substitution

demand while having no impact on the observations of the primary demands. Such a stock

less result is similar to the one obtained in Chen and Plambeck (2008). In this sense, our

study generalizes the stock less result from their setting of an unlimited capacity of the

substitute product with a single source of demand to a setting of a limited capacity of the

substitute product with two sources of demand.

Next, we consider the U scenario where lost sales are unobservable. Here, the driving

forces identified in §4.2 still play their roles. In addition, one may need to stock less to observe

and learn more about the substitution probability. The overall effect of those driving forces

on the optimal inventory decision becomes unclear. The relationship between the Bayesian

optimal inventory level and the myopic inventory level now depends on multiple factors,

including seat prices and prior beliefs of the inventory manager, as shown in the following

subsection.
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4.4 A Numerical Study

We now examine how the system parameters affect the occurrence of the stock more (less)

result when lost sales are unobservable. For the sake of comparison, we consider a two-

period setting, under which we can conveniently solve the dynamic programming model to

derive the Bayesian optimal inventory levels. Such a setting also allows us to capture the

key exploration–exploitation tradeoff.

Consider the case in which an airline company offers an early-bird discount sale of a

flight with a medium-sized jet. The total number of seats M = 120 and the regular price

p2 = 1200. The inventory manager aims to determine the optimal number of discounted

seats for the first period to maximize the total expected profit over the two periods (with

a discount factor δ = 1). The primary demands for the discounted and regular-price seats,

D1 and D2, follow the truncated Poisson distributions (0 ≤ D1 ≤ 300, 0 ≤ D2 ≤ 100) with

parameters λ1 and λ2, respectively. The two parameters λ1 and λ2 are correlated, and their

relationship is indicated by a parameter θ, which takes the value 1, 2, or 3. When θ = 1,

λ1 = 160 and λ2 = 5; when θ = 2, λ1 = 160 and λ2 = 20; and when θ = 3, λ1 = 270

and λ2 = 5. The buy-up substitution probability α takes either a low value 0.2 or a high

value 0.7. At the beginning of the first period, the inventory manager holds the prior beliefs

ũ = (Pr(θ = 1), P r(θ = 2), P r(θ = 3)) and w̃ = (Pr(α = 0.2), P r(α = 0.7)). Denote the

optimal inventory levels of the discounted seat in the first period under Bayesian inventory

management and myopic optimization as yU1 and ym1 , respectively.

We first fix the early-bird-discount price at p1 = 700 to investigate how varying prior

beliefs ũ and w̃ affect the occurrence of the stock more (less) result.

(i) ũ = (u1, 0, 1 − u1) (0 ≤ u1 ≤ 1) and w̃ = (1, 0) under which the distribution of D1 is

unknown.

In this case, λ2, the parameter of the primary demand for the regular-price seat D2, is

known (λ2 = 5). The buy-up substitution probability α = 0.2. λ1, the parameter of the

primary demand for the discounted seat D1, however, is unknown and needs to be estimated.

We then vary the prior belief ũ by changing the value of u1. Note that a prior belief with

a larger u1 leads to a lower expectation of D1. Table 2(a) shows that the optimal inventory

levels under both Bayesian inventory management and myopic optimization increase as u1

increases. When u1 = 0, the inventory manager does not need to learn about the demand

distribution, as λ1 is also known (λ1 = 270). In such a situation, the Bayesian optimal

inventory level yU1 is equal to the myopic inventory level ym1 , as shown in Table 2(a). As u1

increases from 0 to 0.1, the parameter of D1 becomes unknown, and the inventory manager

needs to increase the inventory level of the discounted seat to better learn about D1. Hence,

a stock more result occurs. However, when u1 takes larger values from 0.2 to 0.5, the myopic
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Table 2: Impact of System Parameters on Optimal Inventory Levels (yU1 and ym1 )

(a) Unknown D1: ũ = (u1, 0, 1− u1) and w̃ = (1, 0)

u1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

yU1 77 78 79 80 84 90 97 99 99 101 104

ym1 77 77 79 80 84 90 98 100 102 103 104

yU1 − ym1 0 +1 0 0 0 0 −1 −1 −3 −2 0

(b) Unknown D2: ũ = (u2, 1− u2, 0) and w̃ = (1, 0)

u2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

yU1 84 86 87 88 90 93 95 98 100 102 104

ym1 84 86 87 89 91 95 98 100 102 103 104

yU1 − ym1 0 0 0 −1 −1 −2 −3 −2 −2 −1 0

(c) Unknown α: ũ = (1, 0, 0) and w̃ = (w, 1− w)

w 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

yU1 1 1 1 1 8 52 95 96 97 97 104

ym1 1 1 1 1 8 52 98 100 102 103 104

yU1 − ym1 0 0 0 0 0 0 −3 −4 −5 −6 0

(d) Varying p1: ũ = ( 13 ,
1
3 ,

1
3 ) and w̃ = ( 12 ,

1
2 )

p1 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200

yU1 1 1 25 60 65 71 72 72 73 74 98 102 120

ym1 1 1 29 69 75 79 83 86 91 97 103 107 120

yU1 − ym1 0 0 −4 −9 −10 −8 −11 −14 −18 −23 −5 −5 0
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inventory level ym1 becomes larger such that the benefit brought by stocking more is less than

the loss caused by it, and thus the inventory manager has no incentive to stock more. At the

same time, because the myopic inventory level is not that large, the inventory manager has no

incentive to stock less as well. Consequently, the inventory manager does not manipulate the

inventory level (i.e., yU1 = ym1 ). When u1 further increases to 0.6, the myopic inventory level

ym1 becomes large enough. In this situation, reducing the inventory level of the discounted

seat can induce more substitution trials, from which the inventory manager can infer more

demand information, leading to a stock less result. Such a stock less result remains when

u1 takes the larger values from 0.7 to 0.9. The difference between the two inventory levels

yU1 and ym1 reaches the maximum at u1 = 0.8. However, as u1 continues to increase to 0.9,

the uncertainty on D1 weakens, and so does the incentive to stock less, shortening the gap

between yU1 and ym1 . Lastly, when u1 = 1, under which λ1 is known (λ1 = 160), the two

inventory levels yU1 and ym1 become equal again.

(ii) ũ = (u2, 1 − u2, 0) (0 ≤ u2 ≤ 1) and w̃ = (1, 0) under which the distribution of D2 is

unknown.

In this case, λ1, the parameter of D1 is known (λ1 = 160) and the buy-up substitution

probability α = 0.2. λ2, the parameter ofD2, however, is unknown and needs to be estimated.

We then vary the prior belief ũ by changing the value of u2. Note that a prior belief with a

larger u2 leads to a lower expectation on D2. Table 2(b) shows that the optimal inventory

levels under both the Bayesian inventory management and the myopic optimization increase

as u2 increases. Again, when u2 takes the value 0 or 1, λ2 becomes known, and thus the

Bayesian optimal inventory level yU1 is equal to the myopic inventory level ym1 , as the inventory

manager does not need to learn about the demand distribution. For other values of u2, λ2

is unknown. Table 2(b) reveals that to learn more about the unknown demand parameter

λ2 drives the inventory manager to stock less. Also, we observe that as u2 increases, the

difference between the two inventory levels yU1 and ym1 first increases, reaches the maximum

at u2 = 0.6, and then decreases.

(iii) ũ = (1, 0, 0) and w̃ = (w, 1− w) (0 ≤ w ≤ 1) under which α is unknown.

In this case, both demand parameters, λ1 and λ2, are known (λ1 = 160, λ2 = 5), but the

buy-up substitution probability α is unknown. We then vary w̃, the prior belief about α, by

changing the value of w. Note that a prior belief with a larger w leads to a lower expectation

on the buy-up substitution probability α. Table 2(c) shows that the optimal inventory levels

under both the Bayesian inventory management and the myopic optimization increase as w

increases. This also reconfirms the result stated in Proposition 2 that a larger substitution

probability incentivizes the inventory manager to reserve more regular-price seats. Again,

the Bayesian optimal inventory level yU1 is equal to the myopic inventory level ym1 when
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w takes the value 0 or 1, under which α is known. Recall from §4.3 that when lost sales

are observable, learning about the unknown substitution probability drives the inventory

manager to stock less so as to observe more substitution trials. Here, Table 2(c) reveals that

when lost sales are unobservable, the stock less result still prevails in our numeric setting.

We note that when w ≤ 0.5, the myopic inventory level ym1 is already very small. Under

this situation, the benefit brought by stocking less cannot compensate the loss caused by it.

Thus, the Bayesian optimal inventory level yU1 is equal to ym1 . However, when ym1 is large

(i.e, when w takes the value greater than 0.5), the value of stocking less to better observe

customers’ substitution behavior becomes sufficiently high, resulting in yU1 < ym1 . Such an

inventory level difference increases as w increases from 0.6 to 0.9.

A close look at the above three cases reveals that the prior beliefs about the demand

parameters and the substitution probability play a critical role in whether to stock more

or stock less. Besides the prior beliefs, the difference between the early-bird-discount price

p1 and the regular price p2 is another important factor that affects the optimal inventory

decisions. Recall that the regular price p2 = 1200. We now fix the prior beliefs to be

ũ = (1
3
, 1
3
, 1
3
) and w̃ = (1

2
, 1
2
) and then vary the early-bird-discount price p1 between 600

and 1200 with a step length of 50. Table 2(d) shows that the optimal inventory levels

under both the Bayesian inventory management and the myopic optimization increase as p1

increases. This is because the marginal profit from selling a discounted seat increases, leading

to more discounted seats reserved for the early-bird sale. Table 2(d) also reveals that under

our numeric setting, the stock less result is prevalent when both demand parameters and

substitution probability are unknown. However, there is no monotonic relationship between

the degree of stocking less (yU1 − ym1 ) and the profit margin difference in two selling phases

(p2 − p1).

Our numerical experiments demonstrate that the system parameters—the inventory man-

ager’s prior beliefs and seat prices—critically affect the inventory manager’s incentive to stock

more (less). For more general settings with multiple periods, we can utilize those driving

forces behind stocking more (less) to design heuristic algorithms to find solutions.

4.5 Comparison of Expected Profits under Two Information Sce-
narios

We now compare the system performances under the two information scenarios, which helps

us to understand the value of lost sales information. Note that the total discounted expected

profit from period i to N without any demand learning can be expressed as
∑N−i

n=0 δ
n ·π(y, ϕi).

We then have the following:
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Proposition 7 For period i (i = 1, · · · , N), given the same prior distribution ϕi,

(a) the objective functions under the two information scenarios satisfy the following rela-

tionship:
∑N−i

n=0 δ
n · π(y, ϕi) ≤ GU

i (y, ϕi) ≤ GO
i (y, ϕi);

(b) the optimality value functions under the two information scenarios satisfy the following

relationship:
∑N−i

n=0 δ
n ·max0<y≤M π(y, ϕi) ≤ vUi (ϕi) ≤ vOi (ϕi).

Proposition 7 shows that the inventory management with Bayesian learning can always

achieve a profit no less than that without any learning. Moreover, the profit is higher under

the more informative O scenario than under the less informative U scenario.

5. Solution Algorithm and Performance

Solving the dynamic programming problem with demand learning is subject to the curse of

dimensionality. Most studies that consider a general demand distribution focus on deriving

the comparison result regarding stock more and stock less (e.g., Ding et al. 2002, Chen and

Plambeck 2008). Few papers consider heuristics. We note that Chen (2010) uses the decisions

under the scenario where lost sales are observable to approximate the Bayesian optimal

solutions. In Chen (2010), there is only one type of demand, and the objective function of

the Bayesian dynamic programming is convex; hence, the state-space reduction technique

(see, e.g., Scarf 1959, Azoury 1985) can be used for some conjugate priors. However, in our

setting, there are two types of discrete demands along with the buy-up substitution. The

properties shown in Chen (2010) no longer hold, and thus, we cannot apply the heuristics of

Chen (2010).

To find solutions to our dynamic programming problem, we adopt the SoftMax algorithm

(see Goodfellow et al. 2016). Below, we first introduce our SoftMax algorithm and then test

it on a large data set (generated via simulation). We show that the SoftMax heuristic can

effectively avoid local optima traps that the myopic optimization may face. We also illustrate

that the SoftMax algorithm can effectively utilize the exploitation-exploration tradeoff by

comparing its performance with those associated with the myopic optimization and the

commonly used Thompson sampling algorithm. We then apply the obtained stock more

(less) result to speed up the convergence rate of the SoftMax algorithm.

5.1 SoftMax Algorithm

For a Bayesian inventory management problem, a good heuristic algorithm should properly

capture the tradeoff between exploitation and exploration. That is, it should not only con-

sider the profit maximization in the short run but also consider effective demand learning
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via stocking more (less) than the myopic decision level. In this sense, the SoftMax policy is

quite suitable. For a vector of expected profits corresponding to all feasible inventory levels,

the SoftMax policy converts it into a normalized probability distribution consisting of M

probabilities, which are proportional to the exponentials of the expected profits. Then, the

higher the expected profit of an inventory level is, the more likely this inventory level will

be generated. Furthermore, as the profit function π(y|θ1, θ2, α) in (1) is unimodal in y (see

Proposition 1), those inventory levels close to the myopic inventory level yield relatively high

expected profits, and thus they are more likely to be generated. This unimodality property

enables the SoftMax policy to well control the deviation of the generated solution from the

myopic inventory level for proper exploration. Under our model setting, the corresponding

SoftMax algorithm contains the following four steps.

SoftMax Algorithm

Step 1. In period i (i = 1, · · · , N), based on the prior belief ϕi(θ1, θ2, α), calculate Vi(y) ≜

Eϕi
π(y|θ1, θ2, α) for all y = 1, · · · ,M .

Step 2. Convert Vi(y) into a normalized probability P S(y) =
exp

(
Vi(y)

τi

)
∑

k exp
(

Vi(k)

τi

) , where τi is a

system parameter6, it decreases with i such that the chance for exploration decreases as

periods move on, and it approaches very close to 0 when ϕi(θ1, θ2, α) = 1 for some (θ1, θ2, α)

(i.e., we stop exploration after we identify the true parameters).

Step 3. Generate the Bayesian optimal inventory level using P S(·).
Step 4. Observe demand realizations and update the belief.

A critical issue in algorithm efficiency is to avoid being trapped in local optima. We now

test whether the proposed SoftMax algorithm can avoid getting stuck in local optima. Recall

Example 1 in §3.2, where the myopic optimization gets stuck in a local optimum. We now

apply our SoftMax algorithm to this example and assume that lost sales are unobservable.

We first simulate 1, 000, 000 sample paths based on the underlying true buy-up substitution

probability α = 0.8. Denote the average profit in period i, i.e., the average of the realized

profits in period i over all the sample paths, under the true buy-up substitution probability

(referred to as the clairvoyant optimum hereafter) as ATrue
i , and the corresponding average

profits under the SoftMax algorithm and myopic optimization as ASoftMax
i and AMyopic

i ,

respectively. For the SoftMax algorithm, we set the system parameter τi = 170090
30+50i

. Note

that the inventory level of the discounted seat y should not exceed the upper bound of

the primary demand for the discounted seat (i.e., 100). We thus generate the normalized

6In practice, the inventory manager can try different values of τi and test their performances using the
existing data or datasets from the similar flights to decide which parameter value to use.
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probability associated with an inventory level y as follows:

P S(y) =
exp

(
Vi(y)
τi

)
∑100

k=1 exp
(

Vi(k)
τi

) , y = 1, 2 · · · , 100.

Figure 3 depicts the average profits in each period associated with the clairvoyant opti-

mum, the SoftMax algorithm, and the myopic optimization. It shows that compared with

the myopic optimization, the SoftMax algorithm can avoid being stuck in local optima and

converge to the clairvoyant optimum quickly.
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Figure 3: Average Profits under the Clairvoyant Optimum, SoftMax Algorithm and Myopic
Optimization: Same Setting as Example 1 with Unobservable Lost Sales

5.2 Heuristic Performance

Here, we further examine the efficiency of our proposed SoftMax algorithm. Besides the

myopic optimization, we also consider the widely used Thompson sampling (also known

as Bayesian posterior sampling) algorithm, which samples the demand and substitution

parameters according to the prior belief.

We apply the SoftMax algorithm, myopic optimization, and Thompson sampling algo-

rithm to the following numeric setting to examine their performances. Consider that an

airline company offers an early-bird sale of a flight with a medium-sized jet and that lost

sales are unobservable (i.e., the U scenario). The total number of seats M = 120, the early-

bird-discount price p1 = 600 and the regular price p2 = 1200. The primary demands for

the discounted and regular-price seats, D1 and D2, follow truncated Poisson distributions
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(0 ≤ D1 ≤ 140, 0 ≤ D2 ≤ 160) with parameters λ1 and λ2, respectively. The two param-

eters λ1 and λ2 are correlated, and their relationship is indicated by a parameter θ, which

takes the value 1, 2 or 3. When θ = 1, λ1 = 20 and λ2 = 30; when θ = 2, λ1 = 20 and

λ2 = 100; and when θ = 3, λ1 = 80 and λ2 = 30. The buy-up substitution probability

α takes either a low value 0.2 or a high value 0.7. At the beginning of the first period,

the inventory manager holds the prior beliefs ũ = (Pr(θ = 1), P r(θ = 2), P r(θ = 3)) and

w̃ = (Pr(α = 0.2), P r(α = 0.7)). The underlying true parameter values are θ = 3 (i.e.,

λ1 = 80 and λ2 = 30) and α = 0.2, based on which we simulate 1, 000, 000 sample paths.

Recall that when lost sales are unobservable, there is no definite result regarding whether

to stock more or stock less (see §4). For such a scenario, as the inventory level is bounded

above by the seat capacity M , we just randomly generate the Bayesian optimal inventory

level yUi from 1 to M . Denote the average profit, i.e., the average of the realized profits in pe-

riod i over all the sample paths under the true demand parameters and buy-up substitution

probability, as ATrue
i , and the corresponding values under the SoftMax algorithm, myopic

optimization, and Thompson sampling algorithm as ASoftMax
i , AMyopic

i , and AThompson
i , re-

spectively. For the SoftMax algorithm, we set the system parameter τi =
max
θ,α

max
y

π(y|θ,α)

500+40i
, and

the normalized probability associated with an inventory level y is P S(y) =
exp

(
Vi(y)

τi

)
∑M

k=1 exp
(

Vi(k)

τi

) ,
y = 1, · · · ,M .
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Figure 4: Average Profits under the Clairvoyant Optimum, SoftMax Algorithm, Myopic
Optimization, and Thompson Sampling: Unobservable Lost Sales

Throughout our numerical experiments with various combinations of prior beliefs ũ and

w̃, we identify two representative patterns regarding the performances of the average profits

under the three optimization approaches. The first pattern occurs when the inventory man-

ager’s prior beliefs ũ and w̃ deviate significantly from the true values. We now consider the
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prior beliefs ũ =
(
3
4
, 1
8
, 1
8

)
and w̃ =

(
1
4
, 3
4

)
as an example for illustration. The corresponding

average profits in each period under the clairvoyant optimum, SoftMax algorithm, myopic

optimization, and Thompson sampling are depicted in Figure 4(a). Figure 4(a) shows that

in such a situation, compared with myopic optimization, the SoftMax algorithm not only

always yields a higher average profit but also converges to the optimal profit much faster. Al-

though the Thompson sampling algorithm results in the highest profit in the first period, its

speed of convergence to the optimal profit is slower than that of the SoftMax algorithm. This

implies that the way the Thompson sampling captures the exploration–exploitation tradeoff

(i.e., randomly generating demand and substitution parameters according to the prior be-

liefs) explores the demand information less efficiently than what the SoftMax algorithm does

(i.e., randomly generating the Bayesian optimal inventory level according to a normalized

probability distribution, which consists of probabilities proportional to the exponentials of

the expected profits corresponding to all feasible inventory levels).

The second pattern occurs when the prior beliefs are either uninformative or very close

to the true values. We now take the uninformative prior beliefs ũ =
(
1
3
, 1
3
, 1
3

)
and w̃ =

(
1
2
, 1
2

)
as an example for illustration. The corresponding average profits in each period under the

clairvoyant optimum, SoftMax algorithm, myopic optimization, and Thompson sampling are

depicted in Figure 4(b). Figure 4(b) shows that in this situation, the myopic optimization

results in a higher average profit in the first period than the SoftMax and Thompson sampling

algorithms, as the latter two are exploring the demand information via deviating from the

myopic inventory level.7 Again, Figure 4(b) shows that the SoftMax algorithm converges to

the optimal profit at a much faster speed than both the myopic optimization and Thompson

sampling algorithm do.

Next, we reconsider the above Bayesian inventory management problem by assuming

that lost sales can be observed (i.e., the O scenario). For such a scenario, the stock less

result holds (see Proposition 6). Then, the optimal inventory level is bounded above by the

myopic inventory level. We now integrate the stock less result into the SoftMax algorithm

and randomly generate the Bayesian optimal inventory level yUi from 1 to ymi . Then, the

normalized probability associated with an inventory level y becomes P S(y) =
exp

(
Vi(y)

τi

)
∑ym

i
k=1 exp

(
Vi(k)

τi

)
for y = 1, · · · , ymi and P S(y) = 0 for y = ymi + 1, · · · ,M . For comparison, we also run

the SoftMax algorithm without utilizing the stock less result, under which we consider all

possible inventory levels and P S(y) =
exp

(
Vi(y)

τi

)
∑M

k=1 exp
(

Vi(k)

τi

) , y = 1, · · · ,M . The system parameters

7There is an interesting pattern in Figure 4(b) that the average profit AMyopic
i decreases as we progress

from period 1 to period 2. This is because the myopic inventory level may happen to be very close to the
clairvoyant optimal one when the belief is quite imprecise but far away from it when the belief is relatively
accurate.
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τi under these two SoftMax algorithms are set to be the same with value τi =
max
θ,α

max
y

π(y|θ,α)

100+20i
.

Again, we simulate 1, 000, 000 sample paths based on the true demand and substitution

parameters. Denote the average realized profits in period i under the clairvoyant optimum,

the myopic optimization, the SoftMax algorithm utilizing the stock less result, and the

SoftMax algorithm without utilizing the stock less result as ATrue
i , AMyopic

i , ASoftMax
i , and

ASoftMaxAll
i , respectively.
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Figure 5: Average Profits under the Clairvoyant Optimum, Myopic Optimization, SoftMax
Algorithm Utilizing the Stock Less Result and SoftMax Algorithm without Utilizing the
Stock Less Result: Observable Lost Sales

By varying the combination of prior beliefs ũ and w̃, our numerical experiments show

that compared with the other algorithms, the SoftMax algorithm that utilizes the stock

less result updates the posterior beliefs to approach the true values of unknown parameters

more quickly; see the two representative patterns in Figure 5 for illustration. That is, the

utilization of the stock less result can help speed up the algorithm convergence to the optimal

solution.

6. Conclusion

In this study, we investigate an airline company’s optimal seat allocation decision when

it provides the early-bird booking discount under a multi-period setting. The capacity of

seats is fixed, and within each period, the company offers a price discount in the early-bird-

discount phase and charges the full price in the regular-price phase. When the discounted

seats are sold out, unsatisfied early-bird customers may purchase the regular-price seat as

a substitute. Setting a proper inventory level of the discounted seats is critical for the

29



company’s revenue management. However, an optimal seat inventory allocation requires

the inventory manager to have knowledge about the primary demands for the discounted

and regular-price seats and the buy-up substitution probability of those unsatisfied early-

bird customers, which are often unknown. Incorporating demand learning into the seat

inventory allocation then becomes important for the inventory manager. To that end, we

develop a dynamic inventory management model with Bayesian learning about both demand

parameters and buy-up substitution probability.

We examine two information scenarios based on whether or not lost sales are observable.

Under each scenario, we compare the Bayesian optimal inventory level of the discounted

seat with the corresponding myopic inventory level to examine whether the inventory man-

ager needs to stock more (less) to observe and learn more about demand distributions and

customer substitution behavior. When only demand parameters are unknown and there is

no buy-up substitution, we show that the unobservability of lost sales drives the inventory

managers to stock more to better learn about the primary demand, a result also observed in

previous studies on Bayesian inventory management, such as Lariviere and Porteus (1999)

and Ding et al. (2002). However, when buy-up substitution exists, unobservable lost sales

may drive the inventory manager to stock less. This is in sharp contrast to the stock more

result of Chen and Plambeck (2008). In our setting, the number of the substitute product,

regular-price seat, is limited, whereas in Chen and Plambeck (2008), the substitute prod-

uct is always available. Stocking fewer discounted seats can induce more substitution trials

and thus help the inventory manager to infer some information about the primary demand

from the observed substitution behavior. When both demand parameters and the buy-up

substitution probability are unknown, learning about the substitution probability drives the

inventory manager to stock less to induce more substitution events to occur, while learning

about the primary demands may induce the inventory manager to stock more. Whether to

stock more or stock less depends on multiple factors, including seat prices and the inventory

manager’s prior beliefs.

Last, we provide a SoftMax algorithm to find the optimal solution of our dynamic pro-

gramming problem. Our numerical experiments reveal that the proposed SoftMax algorithm

can effectively avoid being trapped in local optima, an issue that the myopic optimization

may not be able to escape. The SoftMax algorithm outperforms both the myopic optimiza-

tion and the Thompson sampling algorithm in the sense that it can converge much faster

to the optimal solution. We further demonstrate that the stock more (less) result can be

utilized to explore and exploit the demand information more efficiently and thus can improve

the convergence speed of the algorithm.

We conclude this paper by discussing some limitations and directions for future research.
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Our study considers a multi-period two-fare seat allocation problem. A direct extension is

to consider multiple fares with multiple advance purchase deadlines. Also, the prices are

fixed in our model. Future research can consider joint inventory and pricing decisions with

learning about demand distribution and substitution parameters. Finally, our model does

not consider customers’ no-show behaviour. It would be interesting to embed such behaviour

into the model and examine how it affects the seat allocation decisions.
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Online Appendix
“Manage Inventories with Learning on Demands and Buy-up Substitution

Probability”

Proof of Proposition 1: Through some derivation, we can show that

π(y + 1|θ1, θ2, α)− π(y|θ1, θ2, α) = (p1 − p2)
+∞∑

i=y+1

f1(i|θ1)

+ (1− α)p2

+∞∑
i=y+1

{
M−y−1∑

j=0

(
i− y − 1

j

)
αj(1− α)i−y−j−1

[
M−y−j−1∑

k=0

f1(i|θ1)f2(k|θ2)

]}

=(p1 − p2)
+∞∑

i=y+1

f1(i|θ1) + (1− α)p2

+∞∑
i=y+1

f1(i)Pr(K +D2 ≤ M − y − 1|D1 = i, θ1, θ2, α)

=(p1 − αp2)
+∞∑

i=y+1

f1(i|θ1)− (1− α)p2

+∞∑
i=y+1

f1(i)Pr(K +D2 > M − y − 1|D1 = i, θ1, θ2, α),

where Pr(·) denotes probability. If f1(i|θ1) = 0 for all i > y, then π(y + 1|θ1, θ2, α) −
π(y|θ1, θ2, α) = 0. Otherwise,

∑+∞
i=y+1 f1(i|θ1) > 0, and we can show that

π(y + 1|θ1, θ2, α)− π(y|θ1, θ2, α)

=
+∞∑

i=y+1

f1(i|θ1) [(p1−αp2)− (1− α)p2Pr(K +D2 > M − y − 1|D1 > y, θ1, θ2, α)]

≜
+∞∑

i=y+1

f1(i|θ1)G(y + 1|θ1, θ2, α).

Note that the above G(y|θ1, θ2, α) is exactly the marginal revenue defined in Brumelle et al.
(1990). According to Brumelle et al. (1990), G(y|θ1, θ2, α) is nonincreasing in y. Along with∑+∞

i=y+1 f1(i) > 0, we can then prove the proposition.

Proof of Proposition 2: Through some derivation, we can show that

π(y + 1|θ1, θ2, α)− π(y|θ1, θ2, α)

=(p1 − p2)
+∞∑

i=y+1

f1(i|θ1, θ2)

+ (1− α)p2

+∞∑
i=y+1

{
M−y−1∑

j=0

(
i− y − 1

j

)
αj(1− α)i−y−j−1

[
M−y−j−1∑

k=0

f1(i|θ1)f2(k|θ2)

]}

=(p1 − p2)
+∞∑

i=y+1

f1(i|θ1, θ2) + (1− α)p2

+∞∑
i=y+1

f1(i)Pr(K +D2 ≤ M − y − 1|D1 = i, θ, α),

1



where Pr(·) denotes probability. Consider the two substitution probabilities α1 and α2 with
α1 < α2. Denote the corresponding variables of K as K1 and K2, respectively. Obviously,
the variable K2 +D2 is stochastically larger than K1 +D2. Thus, we have

Pr(K1 +D2 ≤ M − y − 1|D1 = i, θ, α1) ≥ Pr(K2 +D2 ≤ M − y − 1|D1 = i, θ, α2).

Then, it is easy to verify that ∂[π(y+1|θ1,θ2,α)−π(y|θ1,θ2,α)]
∂α

< 0, based on which we can obtain
the result in Proposition 2.

Proof of Proposition 4: Under the U scenario, when the substitution probability is 0,
the amount of substitution demands s21 is always 0. Thus, the likelihood of observing sales
quantities (s1, s22) can be expressed as

f y
U(s1, s22|θ1, θ2, 0)

=



f1(s1|θ1)f2(s22|θ2), if s1 < y and s22 < M − s1;

f1(s1|θ1)
+∞∑

j=M−s1

f2(j|θ2), if s1 < y and s22 = M − s1;

+∞∑
i=y

f1(i|θ1)f2(s22|θ2), if s1 = y and s22 < M − y;

+∞∑
i=y

f1(i|θ1)
+∞∑

j=M−y

f2(j|θ2), if s1 = y and s22 = M − y.

When the demand parameter θ2 is known but θ1 is unknown, we can write f y
U(s1, s22|θ1)

as shorthand for f y
U(s1, s22|θ1, θ2, α). Below, we will first show that for i = 1, · · · , N − 1,

0 < y < M , and any ϕ′
i,1(θ1),

(a) when s1 < y and s22 < M − s1,

Eϕ′
n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f

y
U(s1, s22|θ1)

}
= f2(s22|θ2) · Eϕ′

n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f1(s1|θ1)

}
; (12)

(b) when s1 < y and s22 = M − s1,

Eϕ′
n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f

y
U(s1,M − s1|θ1)

}
=

[
+∞∑

j=M−s1

f2(j|θ2)

]
· Eϕ′

n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f1(s1|θ1)

}
;

(13)

(c) when s1 = y and s22 < M − y,

Eϕ′
n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f

y
U(y, s22|θ1)

}
= f2(s22|θ2) · Eϕ′

n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)

+∞∑
i=y

f1(i|θ1)

}

≤ f2(s22|θ2) · Eϕ′
n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f1(y|θ1) + vUn+1(ϕ

′
n+1,1)

+∞∑
i=y+1

f1(i|θ1)

}
; (14)

(d) when s1 = y and s22 = M − y,

Eϕ′
n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f

y
U(y,M − y|θ1)

}
=

[
+∞∑

j=M−y

f2(j|θ2)

]
· Eϕ′

n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)

+∞∑
i=y

f1(i|θ1)

}

2



≤

[
+∞∑

j=M−y

f2(j|θ2)

]
Eϕ′

n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f1(y|θ1) + vUn+1(ϕ

′
n+1,1)

+∞∑
i=y+1

f1(i|θ1)

}
. (15)

For above four relationships, we only prove the third one, i.e., (14), for illustration pur-
pose. The others can be proved following the same logic.

At first, the equality relationship in (14) is obvious as f2(s22|θ2) is independent of θ1. As
for the inequality “≤” relationship, according to the backward induction, we have that when
n = N − 1,

Eϕ′
N−1,1(θ1)

{
vUN(ϕ

′
N,1)f

y
U(y, s22|θ1)

}
=

∫
Θ1

max
0<y′≤M

{∫
Θ1

π(y′|θ′1)ϕ′
N−1,1(θ

′
1|y, s22, y, ϕ′

N−1,1)dθ
′
1

}[+∞∑
i=y

f1(i|θ1)f2(s22|θ2)

]
ϕ′
N−1,1(θ1)dθ1

=f2(s22|θ2) max
0<y′≤M


∫
Θ1

π(y′|θ′1)

[
+∞∑
i=y

f1(i|θ′1)

]
ϕ′
N−1,1(θ

′
1)

∫
Θ1

[
+∞∑
i=y

f1(i|θ1)

]
ϕ′
N−1,1(θ1)dθ1

dθ′1


∫
Θ1

[
+∞∑
i=y

f1(i|θ1)

]
ϕ′
N−1,1(θ1)dθ1

=f2(s22|θ2) max
0<y′≤M

{∫
Θ1

π(y′|θ′1)

[
+∞∑
i=y

f1(i|θ′1)

]
ϕ′
N−1,1(θ

′
1)dθ

′
1

}

≤f2(s22|θ2) max
0<y′≤M

{∫
Θ1

π(y′|θ′1)f1(y|θ′1)ϕ′
N−1,1(θ

′
1)dθ

′
1

}
+ f2(s22|θ2) max

0<y′≤M

{∫
Θ1

π(y′|θ′1)

[
+∞∑

i=y+1

f1(i|θ′1)

]
ϕ′
N−1,1(θ

′
1)dθ

′
1

}

=f2(s22|θ2)Eϕ′
N−1,1(θ1)

{
vUN(ϕ

′
N,1)f1(y|θ1)

}
+ f2(s22|θ2)Eϕ′

N−1,1(θ1)

{
vUN(ϕ

′
N,1)

+∞∑
i=y+1

f1(i|θ1)

}
.

So, the inequality relationship holds for period N − 1. Then, assume that it holds for period
n+ 1 (n = 1, · · · , N − 2), and let us check whether it holds for period n. We can show that

Eϕ′
n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f

y
U(y, s22|θ1)

}
= max

0<y′≤M

{∫
Θ1

π(y′|θ1)f y
U(y, s22|θ1)ϕ

′
n,1(θ1)dθ1

+ δ
∑
s′1

∑
s′22

∫
Θ1

vUn+2(ϕ
′
n+2(θ

′
1|s′1, s′22, y′|y, s22, y|ϕ′

n,1))f
y′

U (s′1, s
′
22|θ1)f

y
U(y, s22|θ1)ϕ

′
n,1(θ1)dθ1

}

= max
0<y′≤M

{∫
Θ1

π(y′|θ1)f y
U(y, s22|θ1)ϕ

′
n,1(θ1)dθ1

+ δ
∑
s′1

∑
s′22

∫
Θ1

vUn+2(ϕ
′
n+2(θ

′
1|y, s22, y|s′1, s′22, y′|ϕ′

n,1))f
y
U(y, s22|θ1)f

y′

U (s′1, s
′
22|θ1)ϕ′

n,1(θ1)dθ1

}

3



= max
0<y′≤M

{∫
Θ1

π(y′|θ1)f y
U(y, s22|θ1)ϕ

′
n,1(θ1)dθ1

+ δ
∑
s′1

∑
s′22

Eϕ′
n+1,1(θ1|s′1,s′22,y′,ϕ′

n,1)

[
vUn+2(ϕ

′
n+2,1(θ

′
1|y, s22, y, ϕ′

n+1,1))f
y
U(y, s22|θ1)

]
·
∫
Θ1

f y′

U (s′1, s
′
22|θ1)ϕ′

n,1(θ1)dθ1

}
≤ max

0<y′≤M

{
f2(s22|θ2)

∫
Θ1

π(y′|θ1)

[
f1(y|θ1) +

+∞∑
i=y+1

f1(i|θ1)

]
ϕ′
n,1(θ1)dθ1

+ δ
∑
s′1

∑
s′22

{
f2(s22|θ2)Eϕ′

n+1,1(θ1|s′1,s′22,y′,ϕ′
n,1)

[
vUn+2(ϕ

′
n+2,1(θ

′
1|y, s22, y, ϕ′

n+1,1))f1(y|θ1)
]

+ f2(s22|θ2)Eϕ′
n+1,1(θ1|s′1,s′22,y′,ϕ′

n,1)

[
vUn+2(ϕ

′
n+2,1(θ

′
1|y, s22, y, ϕ′

n+1,1))
+∞∑

i=y+1

f1(i|θ1)

]}
·
∫
Θ1

f y′

U (s′1, s
′
22|θ1)ϕ′

n,1(θ1)dθ1

}
≤ max

0<y′≤M

{
f2(s22|θ2)

∫
Θ1

π(y′|θ1)f1(y|θ1)ϕ′
n,1(θ1)dθ1

+ δ
∑
s′1

∑
s′22

f2(s22|θ2)Eϕ′
n+1,1(θ1|s′1,s′22,y′,ϕ′

n,1)

[
vUn+2(ϕ

′
n+2,1(θ

′
1|y, s22, y, ϕ′

n+1,1))f1(y|θ1)
]

·
∫
Θ1

f y′

U (s′1, s
′
22|θ1)ϕ′

n,1(θ1)dθ1

}
+ max

0<y′≤M

{
f2(s22|θ2)

∫
Θ1

π(y′|θ1)

[
+∞∑

i=y+1

f1(i|θ1)

]
ϕ′
n,1(θ1)dθ1

+ δ
∑
s′1

∑
s′22

f2(s22|θ2)Eϕ′
n+1,1(θ1|s′1,s′22,y′,ϕ′

n,1)

[
vUn+2(ϕ

′
n+2,1(θ

′
1|y, s22, y, ϕ′

n+1,1))
+∞∑

i=y+1

f1(i|θ1)

]

·
∫
Θ1

f y′

U (s′1, s
′
22|θ1)ϕ′

n,1(θ1)dθ1

}
=f2(s22|θ2)Eϕ′

n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)f1(y|θ1)

}
+ f2(s22|θ2)Eϕ′

n,1(θ1)

{
vUn+1(ϕ

′
n+1,1)

+∞∑
i=y+1

f1(i|θ1)

}
.

Hence, we prove (14). Then, through some derivation, we can obtain that

Eϕ′
i,1(θ1)

{∑
s1

∑
s22

vUi+1(ϕ
′
i+1,1)f

y
U(s1, s22|θ1)

}

≤

[
+∞∑

j=M−y

f2(j|θ2)

]
Eϕ′

i,1(θ1)

{
vUi+1(ϕ

′
i+1,1)f1(y|θ1)

}
+

[
+∞∑

j=M−y

f2(j|θ2)

]
Eϕ′

i,1(θ1)

{
vUi+1(ϕ

′
i+1,1)

+∞∑
i=y+1

f1(i|θ1)

}

4



+

M−y−1∑
s22=0

f2(s22|θ2)Eϕ′
i,1(θ1)

{
vUi+1(ϕ

′
i+1,1)f1(y|θ1)

}
+

M−y−1∑
s22=0

f2(s22|θ2)Eϕ′
i,1(θ1)

{
vUi+1(ϕ

′
i+1,1)

+∞∑
i=y+1

f1(i|θ1)

}

+

y−1∑
s1=0

M−s1−1∑
s22=0

f2(s22|θ2)Eϕ′
i,1(θ1)

{
vUi+1(ϕ

′
i+1,1)f1(s1|θ1)

}
+

y−1∑
s1=0

[
+∞∑

j=M−s1

f2(j|θ2)

]
Eϕ′

i,1(θ1)

{
vUi+1(ϕ

′
i+1,1)f1(s1|θ1)

}
=Eϕ′

i,1(θ1)

{∑
s1

∑
s22

vUi+1(ϕ
′
i+1,1)f

y+1
U (s1, s22|θ1)

}
,

which implies that yUi ≥ ymi .
Following the same procedure, we can prove that under the U scenario, when the demand

parameter θ1 is known and α = 0 but θ2 is unknown, for any period i (i = 1, · · · , N),
given the same prior distribution ϕ′

i,2(θ2), learning about θ2 requires yUi ≤ ymi . In this
situation, we write f y

U(s1, s22|θ2) as shorthand for f y
U(s1, s22|θ1, θ2, α). We can show that for

i = 1, · · · , N − 1, 1 < y ≤ M , and any ϕ′
i,2(θ), the following four relationships hold, based

on which we can obtain yUi ≤ ymi :
(a’) when s1 < y and s22 < M − s1,

Eϕ′
i,2(θ2)

{
vUi+1(ϕ

′
i+1,2)f

y
U(s1, s22|θ2)

}
= f1(s1|θ1) · Eϕ′

i,2(θ2)

{
vUi+1(ϕ

′
i+1,2)f2(s22|θ2)

}
;

(b’) when s1 < y and s22 = M − s1,

Eϕ′
i,2(θ2)

{
vUi+1(ϕ

′
i+1,2)f

y
U(s1,M − s1|θ2)

}
= f1(s1|θ1) · Eϕ′

i,2(θ2)

{
vUi+1(ϕ

′
i+1,2)

+∞∑
j=M−s1

f2(j|θ2)

}
;

(c’) when s1 = y and s22 < M − y,

Eϕ′
i,2(θ2)

{
vUi+1(ϕ

′
i+1,2)f

y
U(y, s22|θ2)

}
=

[
+∞∑
i=y

f1(i|θ1)

]
· Eϕ′

i,2(θ2)

{
vUi+1(ϕ

′
i+1,2)f2(s22|θ2)

}
;

(d’) when s1 = y and s22 = M − y,

Eϕ′
i,2(θ2)

{
vUi+1(ϕ

′
i+1,2)f

y
U(y,M − y|θ2)

}
=

[
+∞∑
i=y

f1(i|θ1)

]
· Eϕ′

i,2(θ2)

{
vUi+1(ϕ

′
i+1,2)

+∞∑
j=M−y

f2(j|θ2)

}

≤

[
+∞∑
i=y

f1(i|θ1)

]
· Eϕ′

i,2(θ2)

{
vUi+1(ϕ

′
i+1,2)

(
f2(M − y|θ2) +

+∞∑
j=M−y+1

f2(j|θ2)

)}
.

Proof of Proposition 5: Under the setting given in Proposition 5, D2 and α are both
known. Thus, we can write f y

U(s1, s21, s22|θ1) as shorthand for f y
U(s1, s21, s22|θ1, θ2, α). As

M = 2, the value of y can only be 1 or 2. Then, we can get the following relationship
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between the two likelihood functions f 1
U(s1, s21, s22|θ1) and f 2

U(s1, s21, s22|θ1) based on the
assumption that f1(1|θ1) = 0 for all θ1 ∈ Θ1:

f 2
U(s1, s21, s22|θ1)

=



f1(0|θ1)f2(0), if s1 = 0, s21 = 0 and s22 = 0,

f1(0|θ1)f2(1), if s1 = 0, s21 = 0 and s22 = 1,

f1(0|θ1)
+∞∑
j=2

f2(j), if s1 = 0, s21 = 0 and s22 = 2,

+∞∑
i=2

f1(i|θ1), if s1 = 2, s21 = 0 and s22 = 0,

=



f1(0|θ1)f2(0), if s1 = 0, s21 = 0 and s22 = 0,

f1(0|θ1)f2(1), if s1 = 0, s21 = 0 and s22 = 1,

f1(0|θ1)
+∞∑
j=2

f2(j), if s1 = 0, s21 = 0 and s22 = 2,

+∞∑
i=2

f1(i|θ1)(1− α)i−1f2(0) +
+∞∑
i=2

f1(i|θ1)(1− α)i−1
+∞∑
j=1

f2(j)

+
+∞∑
i=2

i−1∑
k=1

f1(i|θ1)
(
i−1
k

)
αk(1− α)i−k−1, if s1 = 2, s21 = 0 and s22 = 0,

=


f 1
U(0, 0, 0|θ1), if s1 = 0, s21 = 0 and s22 = 0,

f 1
U(0, 0, 1|θ1), if s1 = 0, s21 = 0 and s22 = 1,

f 1
U(0, 0, 2|θ1), if s1 = 0, s21 = 0 and s22 = 2,

f 1
U(1, 0, 0|θ1) + f 1

U(1, 0, 1|θ1) + f 1
U(1, 1, 0|θ1), if s1 = 2, s21 = 0 and s22 = 0.

Following the same logic in the proof of Proposition 4, we can prove the “stock less”
result.

Proof of Inequality (11): For i = 1, · · · , N − 1, we have that

GO
i (y + 1, ϕi)−GO

i (y, ϕi)

= Eϕi(θ,α)

{
π(y + 1|θ1, θ2, α)− π(y|θ1, θ2, α)

+ δ

+∞∑
x1=y+1

+∞∑
x22=0

[ x1−y−1∑
x21=0

vOS
i+1(ϕi+1)

(
x1 − y − 1

x21

)
αx21(1− α)x1−y−1−x21

−
x1−y∑
x21=0

vOS
i+1(ϕi+1)

(
x1 − y

x21

)
αx21(1− α)x1−y−x21

]
f1(x1|θ1)f2(x22|θ2)

}
.

Similar to the proof of Proposition 4 in Chen and Plambeck (2008), we can show that
for any period i = 1, · · · , N − 1, given the prior ϕi(θ, α),

Eϕi(θ,α)

{ +∞∑
x1=y+1

+∞∑
x22=0

x1−y−1∑
x21=0

vOS
i+1(ϕi+1)

(
x1 − y − 1

x21

)
αx21(1− α)x1−y−1−x21f1(x1|θ1)f2(x22|θ2)

}
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≤ Eϕi(θ,α)

{ +∞∑
x1=y+1

+∞∑
x22=0

x1−y∑
x21=0

vOS
i+1(ϕi+1)

(
x1 − y

x21

)
αx21(1− α)x1−y−x21f1(x1|θ1)f2(x22|θ2)

}
.

Thus, the inequality (11) holds.

Proof of Proposition 7: We can see that (a) implies (b) by taking the maximum over
the inequalities in (a). So, we only need to prove (a) here.

First, we use the backward induction to show that
∑N−i

n=0 δ
n · π(y, ϕi) ≤ GU

i (y, ϕi) for
i = 1, · · · , N . When i = N , it holds for sure. Assume the result holds for period i + 1
(i = 1, · · · , N − 1), which means that

∑N−i−1
n=0 δn · π(y, ϕi+1) ≤ GU

i+1(y, ϕi+1), and thus∑N−i−1
n=0 δn · max

0<y≤M
π(y, ϕi+1) ≤ vUi+1(ϕi+1). Now, for period i, we have

GU
i (y, ϕi)

=Eϕi(θ1,θ2,α)

{
π(y|θ1, θ2, α) + δ

y−1∑
s1=0

M−s1−1∑
s22=0

vUi+1(ϕi+1)f
y
U(s1, 0, s22|θ1, θ2, α)

+ δ

y−1∑
s1=0

vUi+1(ϕi+1)f
y
U(s1, 0,M − s1 − 1|θ1, θ2, α) + δ

M−y−1∑
s21=0

M−y−s21−1∑
s22=0

vUi+1(ϕi+1)f
y
U(y, s21, s22|θ1, θ2, α)

+ δ

M−y−1∑
s21=0

vUi+1(ϕi+1)f
y
U(y, s21,M − y − s21|θ1, θ2, α) + δvUi+1(ϕi+1)f

y
U(y,M − y, 0|θ1, θ2, α)

}

≥Eϕi(θ1,θ2,α)

{
π(y|θ1, θ2, α) + δ

y−1∑
s1=0

M−s1−1∑
s22=0

[
N−i−1∑
n=0

δn · π(y, ϕi+1)

]
f y
U(s1, 0, s22|θ1, θ2, α)

+ δ

y−1∑
s1=0

[
N−i−1∑
n=0

δn · π(y, ϕi+1)

]
f y
U(s1, 0,M − s1 − 1|θ1, θ2, α)

+ δ

M−y−1∑
s21=0

M−y−s21−1∑
s22=0

[
N−i−1∑
n=0

δn · π(y, ϕi+1)

]
f y
U(y, s21, s22|θ1, θ2, α)

+ δ

M−y−1∑
s21=0

[
N−i−1∑
n=0

δn · π(y, ϕi+1)

]
f y
U(y, s21,M − y − s21|θ1, θ2, α)

+ δ

[
N−i−1∑
n=0

δn · π(y, ϕi+1)

]
f y
U(y,M − y, 0|θ1, θ2, α)

}
≥Eϕi(θ1,θ2,α){π(y|θ1, θ2, α)}

+
N−i∑
n=1

δn
y−1∑
s1=0

M−s1−1∑
s22=0

π(y, ϕi+1(θ
′
1, θ

′
2, α

′|s1, 0, s22, y, ϕi))Eϕi(θ1,θ2,α){f
y
U(s1, 0, s22|θ1, θ2, α)}

+
N−i∑
n=1

δn
y−1∑
s1=0

π(y, ϕi+1(θ
′
1, θ

′
2, α

′|s1, 0,M − s1 − 1, y, ϕi))Eϕi(θ1,θ2,α){f
y
U(s1, 0,M − s1 − 1|θ1, θ2, α)}
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+
N−i∑
n=1

δn
M−y−1∑
s21=0

M−y−s21−1∑
s22=0

π(y, ϕi+1(θ
′
1, θ

′
2, α

′|y, s21, s22, y, ϕi))Eϕi(θ1,θ2,α){f
y
U(y, s21, s22|θ1, θ2, α)}

+
N−i∑
n=1

δn
M−y−1∑
s21=0

π(y, ϕi+1(θ
′
1, θ

′
2, α

′|y, s21,M − y − s21, y, ϕi))Eϕi(θ1,θ2,α){f
y
U(y, s21,M − y − s21|θ1, θ2, α)}

+
N−i∑
n=1

δnπ(y, ϕi+1(θ
′
1, θ

′
2, α

′|y,M − y, 0, y, ϕi))Eϕi(θ1,θ2,α){f
y
U(y,M − y, 0|θ1, θ2, α)}

=
N−i∑
n=0

δn · π(y, ϕi),

where the last equality is based on the law of total expectation, whose formal proof is similar
to that of Lemma 1(a) in Chen (2010).

Next, we use the backward induction to show GU
i (y, ϕi) ≤ GO

i (y, ϕi) (i = 1, · · · , N).
When i = N , it holds for sure. Assume that the result holds for period i+1 (i = 1, · · · , N−1),
which means that GU

i+1(y, ϕi+1) ≤ GO
i+1(y, ϕi+1), and thus vUi+1(ϕi+1) ≤ vOi+1(ϕi+1). Then, for

period i, we have

GU
i (y, ϕi)

=Eϕi(θ1,θ2,α)

{
π(y|θ1, θ2, α) + δ

y−1∑
s1=0

M−s1−1∑
s22=0

vUi+1(ϕi+1)f
y
U(s1, 0, s22|θ1, θ2, α)

+ δ

y−1∑
s1=0

vUi+1(ϕi+1)f
y
U(s1, 0,M − s1 − 1|θ1, θ2, α) + δ

M−y−1∑
s21=0

M−y−s21−1∑
s22=0

vUi+1(ϕi+1)f
y
U(y, s21, s22|θ1, θ2, α)

+ δ

M−y−1∑
s21=0

vUi+1(ϕi+1)f
y
U(y, s21,M − y − s21|θ1, θ2, α) + δvUi+1(ϕi+1)f

y
U(y,M − y, 0|θ1, θ2, α)

}
=Eϕi(θ1,θ2,α){π(y|θ1, θ2, α)}

+ δ

y−1∑
s1=0

M−s1−1∑
s22=0

vUi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 = s1, x21 = 0, x22 = s22, y, ϕi))

· Eϕi(θ1,θ2,α){f
y
U(s1, 0, s22|θ1, θ2, α)}

+ δ

y−1∑
s1=0

vUi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 = s1, x21 = 0, x22 ≥ M − s1, y, ϕi))

· Eϕi(θ1,θ2,α){f
y
U(s1, 0,M − s1 − 1|θ1, θ2, α)}

+ δ

M−y−1∑
s21=0

M−y−s21−1∑
s22=0

vUi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 ≥ y + s21, x21 = s21, x22 = s22, y, ϕi))

· Eϕi(θ1,θ2,α){f
y
U(y, s21, s22|θ1, θ2, α)}

+ δ

M−y−1∑
s21=0

vUi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 ≥ y + s21, x21 = s21, x22 ≥ M − y − s21, y, ϕi))
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· Eϕi(θ1,θ2,α){f
y
U(y, s21,M − y − s21|θ1, θ2, α)}

+ δvUi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 ≥ M,x21 ≥ M − y, x22 ≥ 0, y, ϕi))

· Eϕi(θ1,θ2,α){f
y
U(y,M − y, 0|θ1, θ2, α)}

≤Eϕi(θ1,θ2,α){π(y|θ1, θ2, α)}

+ δ

y−1∑
s1=0

M−s1−1∑
s22=0

vOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 = s1, x21 = 0, x22 = s22, y, ϕi))Eϕi(θ1,θ2,α){f
y
U(s1, 0, s22|θ1, θ2, α)}

+ δ

y−1∑
s1=0

vOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 = s1, x21 = 0, x22 ≥ M − s1, y, ϕi))

· Eϕi(θ1,θ2,α){f
y
U(s1, 0,M − s1 − 1|θ1, θ2, α)}

+ δ

M−y−1∑
s21=0

M−y−s21−1∑
s22=0

vOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 ≥ y + s21, x21 = s21, x22 = s22, y, ϕi))

· Eϕi(θ1,θ2,α){f
y
U(y, s21, s22|θ1, θ2, α)}

+ δ

M−y−1∑
s21=0

vOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 ≥ y + s21, x21 = s21, x22 ≥ M − y − s21, y, ϕi))

· Eϕi(θ1,θ2,α){f
y
U(y, s21,M − y − s21|θ1, θ2, α)}

+ δvOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1 ≥ M,x21 ≥ M − y, x22 ≥ 0, y, ϕi))Eϕi(θ1,θ2,α){f
y
U(y,M − y, 0|θ1, θ2, α)}

≤Eϕi(θ1,θ2,α){π(y|θ1, θ2, α)}

+ δ

y−1∑
x1=0

M−x1−1∑
x22=0

vOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1, x21, x22, y, ϕi))Eϕi(θ1,θ2,α){f
y
O(x1, x21, x22|θ1, θ2, α)}

+ δ

y−1∑
x1=0

+∞∑
x22=M−x1

vOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1, x21, x22, y, ϕi))Eϕi(θ1,θ2,α){f
y
O(x1, x21, x22|θ1, θ2, α)}

+ δ

M−y−1∑
x21=0

+∞∑
x1=y+x21

M−y−x21−1∑
x22=0

vOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1, x21, x22, y, ϕi))Eϕi(θ1,θ2,α){f
y
O(x1, x21, x22|θ1, θ2, α)}

+ δ

M−y−1∑
x21=0

+∞∑
x1=y+x21

+∞∑
x22=M−y−x21

vOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1, x21, x22, y, ϕi))Eϕi(θ1,θ2,α){f
y
O(x1, x21, x22|θ1, θ2, α)}

+ δ
+∞∑

x21=M−y

+∞∑
x1=y+x21

+∞∑
x22=0

vOi+1(ϕi+1(θ
′
1, θ

′
2, α

′|x1, x21, x22, y, ϕi))Eϕi(θ1,θ2,α){f
y
O(x1, x21, x22|θ1, θ2, α)}

=GO
i (y, ϕi),

where the last inequality can be formally proved by following the procedure stated in the
proof of Lemma 1(b) in Chen (2010). Here, we omit the details.
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