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Abstract. This paper thoroughly investigates stochastic linear-quadratic optimal control prob-
lems with the Markovian regime switching system, where the coefficients of the state equation and
the weighting matrices of the cost functional are random. We prove the solvability of the stochastic
Riccati equation under the uniform convexity condition and obtain the closed-loop representation
of the open-loop optimal control using the unique solvability of the corresponding stochastic Riccati
equation. Moreover, by applying It\^o's formula with jumps, we get a representation of the cost func-
tional on a Hilbert space, characterized as the adapted solutions of some forward-backward stochastic
differential equations. We show that the necessary condition of the open-loop optimal control is the
convexity of the cost functional, and the sufficient condition of the open-loop optimal control is the
uniform convexity of the cost functional. In addition, we study the properties of the stochastic value
flow of the stochastic linear-quadratic optimal control problem. Finally, as an application, we present
a continuous-time mean-variance portfolio selection problem and prove its unique solvability.

Key words. stochastic linear-quadratic optimal control, Markovian regime switching, random
coefficient, stochastic Riccati equation, mean-variance portfolio selection
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1. Introduction. The stochastic linear-quadratic (SLQ) optimal control prob-
lem plays an important role in control theory, which has developed rapidly in recent
decades due to its wide range of applications. In the classical setting, the SLQ opti-
mal control problem can be solved elegantly via the Riccati equation under some mild
conditions on the weighting coefficients (see Yong and Zhou [23, Chapter 6]). Chen,
Li, and Zhou [3] investigated SLQ optimal control problems with indefinite weighting
control matrix and their applications in solving continuous-time mean-variance port-
folio selection problems in the 1990s. From then on, there has been increasing interest
in the so-called indefinite SLQ optimal control problems as well as in addressing their
applications (see Ait Rami, Moore, and Zhou [1], Li, Zhou, and Lim [13], and Zhang
and Yin [25]).
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950 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

To tackle SLQ optimal control problems with random coefficients, Bismut [2]
initially derived the existence and uniqueness of the solution of the stochastic Riccati
equation (SRE) using techniques of functional analysis. Kohlmann and Tang [11]
studied the multidimensional backward SREs and gave an application to the stochastic
optimal control problem. Tang [19] studied general SLQ optimal control problems
with random coefficients and proved the existence and uniqueness of related backward
SREs. Sun, Xiong, and Yong [17] studied the SLQ optimal control problems with
random coefficients, proved the solvability of the corresponding SRE, and obtained
the closed-loop representation of the open-loop optimal control. Li, Wu, and Yu
[12] analyzed a special type of indefinite SLQ problem with random coefficients and
studied related SREs. For more details about the efforts devoted to the SRE and
its connection with SLQ optimal control problems, we refer interested readers to
Kohlmann and Tang [10], Tang [20], etc.

Recently, there has been dramatically increasing interest in the SLQ optimal con-
trol problems with random jumps, such as Poisson jumps or the regime switching
jumps, which are of practical importance in various fields, such as economics, finan-
cial management, science, and engineering. In the past few years, researchers have
focused on models of financial markets whose key parameters are described by Markov
processes, such as stock returns, interest rates, and volatility. In particular, one could
face two market regimes in financial markets, one of which stands for a bull market
with price rises, while the other for a bear market with price drops. We call such
a formulation the regime switching model, where the market parameters depend on
market modes that switch among a finite number of regimes. More recently, appli-
cations of SLQ optimal control problems with regime switching models or Poisson
jumps have been extensively developed. For instance, Ji and Chizeck [9] formulated
a class of continuous-time linear-quadratic optimal control problems with Markov-
ian jumps. Zhou and Yin [28] studied a mean-variance portfolio selection with regime
switching. Liu, Yin, and Zhou [14] studied the near-optimal controls of regime switch-
ing linear-quadratic control problems. Hu and Oksendal [7] discussed SLQ optimal
control problems with Poisson jumps and partial information using the technique
of completing squares. Zhang, Elliott, and Siu [26] studied a stochastic maximum
principle for a Markov regime switching model and gave applications to finance. Yu
[24] studied a kind of backward SLQ optimal control problem with the infinite hori-
zon jump-diffusion. Song, Tang, and Wu [16] established the maximum principle
for progressive stochastic optimal control problems with random jumps. Zhang, Li,
and Xiong [27] investigated open-loop and closed-loop solvabilities for SLQ optimal
control problems with a Markovian regime switching system. Hu, Shi, and Xu [8] ap-
plied the constrained SLQ control with regime switching to a portfolio problem. For
some other important works, we refer the readers to [4, 6, 15, 21], and the references
therein.

In a real market, besides the Markov chain, it is more reasonable to allow the
market parameters to depend on the Brownian motion, due to the fact that the inter-
est rates, stock rates, and volatilities are affected by the uncertainties caused by the
Brownian motion. However, up to now, few results have been obtained on this topic.
In this paper, inspired by the continuous-time mean-variance portfolio selection prob-
lems, we are interested in studying this topic, i.e., the SLQ optimal control problems
with the Markovian regime switching system and random coefficients. Further, by
developing some ideas of Sun, Xiong, and Yong [17] and Li, Zhou, and Lim [13], we
establish the existence of an open-loop optimal control, prove the unique solvability
of the associated SRE, and apply the theoretical results shown in this paper to treat
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 951

a continuous-time mean-variance portfolio selection problem. Next, we present our
main results and difficulties in detail.

(i) We first introduce the associated SRE of Problem (M-SLQ) (see (2)) and
prove that the optimal state process of Problem (M-SLQ) is invertible un-
der the uniform convexity condition (7). Then, we show that a bounded
process \^P (\cdot , \alpha (\cdot )), together with two square-integrable processes \^\Lambda (\cdot ) and
\^\zeta (\cdot ), uniquely satisfies the associated SRE (5), thus establishing the unique
solvability of the associated SRE (see Theorem 3.1). Moreover, we derive
a closed-loop representation for the open-loop optimal control of Problem
(M-SLQ) using the unique solvability of the SRE (see Theorem 3.2).

(ii) In order to prove the above theoretical results, we prove some auxiliary re-
sults. We establish the equivalence between Problem (M-SLQ) and Problem
(M-SLQ)0, i.e., a control u\ast (\cdot ) \in \scrU [t, T ] is optimal for Problem (M-SLQ)0
if and only if it is optimal for Problem (M-SLQ) (see Proposition 3.6), and
based on the equivalence, we analyze the time-consistency of the optimal con-
trol (see Corollary 3.8). Then, we obtain a quadratic representation of the
stochastic value flow in terms of a bounded, left continuous, and \BbbS n-valued
process (see Theorems 3.11 and 3.12). In addition, by the technique of It\^o's
formula with jumps, we represent the cost functional of Problem (M-SLQ) as
a bilinear form, in terms of the adapted solutions of some forward-backward
stochastic differential equations (FBSDEs) in a suitable Hilbert space (see
Proposition 5.4).

(iii) As a financial application, we present an example of the continuous-time
mean-variance portfolio selection problem and prove the unique solvability of
the related mean-variance problem. Also, we derive the representation of the
unique optimal investment strategy (see Theorem 6.1), which further develops
the work of Li, Zhou, and Lim [13] to the Markovian regime switching system
with random coefficients.

Compared with Sun, Xiong, and Yong [17], the difficulties of this paper mainly come
from the solvability of the associated SRE, due to the presence of the Markovian
regime switching jumps.

(iv) First, due to the presence of random coefficients, the Riccati equation associ-
ated with Problem (M-SLQ) becomes a nonlinear BSDE, usually referred to
as the backward SRE. Furthermore, the backward SRE is driven by both the
Brownian motion and the martingales ( \widetilde Nkl(\cdot ))k,l\in \scrS generated by the Markov
chain thanks to the occurrence of Markovian regime switching jumps in the
model. Thus, the solvability of this BSDE is more complicated than that of
the model with deterministic coefficients and without the Markovian regime
switching jumps.

(v) Second, let (Xj(s), Yj(s),Zj(s),\Gamma 
j(s)) be the solution of the FBSDE com-

posed by the open-loop optimal state process and adjoint equation corre-
sponding to initial state (t, ej , \vargamma ). It is worth mentioning that the con-
struction of the fourth component \Gamma (s) for the solution of a matrix-valued
FBSDE (14) does not directly extend the dimensional by combining \Gamma j(s) as
(\Gamma 1(s), . . . ,\Gamma n(s)). Furthermore, the \Gamma -term of the solution to (10) associated
with the initial state (t, \xi , \vargamma ) is represented as \Gamma (s)\circ \xi , which is different from
that of (Y (s),Z(s)) = (Y(s)\xi ,Z(s)\xi ). See more details in Proposition 3.10.

(vi) Third, the existence of process P (t) that appeared in (42) of Sun, Xiong,
and Yong [17] for the representation of the value function follows directly
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952 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

by its definition \BbbE [M(T ) +
\int T

t
N(s)ds| Ft]. In our case, we have a similar

representation for the value function but with M(T ) and N(s) replaced by
functions that depend on the Markov chain \alpha (\cdot ) and Ft replaced by the \sigma -field
generated by the Brownian motion and the Markov chain \alpha (\cdot ). To solve our
problem, we need to prove that there exists a process P : [0, T ]\times \scrS \times \Omega \rightarrow \BbbS n
such that

P (t,\alpha (t)) =\BbbE 
\Bigl[ 
M(T,\alpha (T )) +

\int T

t

\bfitN (s,\alpha (s))ds
\bigm| \bigm| \bigm| Ft

\Bigr] 
.

This cannot be obtained directly from the definition of conditional expec-
tation and we give proof for this (see the proof of Theorem 3.11). In our
model, although the evolution of X(s) and Y(s) depends on the Markov chain
\alpha (\cdot ), Y(s)X(s) - 1 may not equal P (s,\alpha (s)). We further prove the equality
of P (s,\alpha (s)) = Y(s)X(s) - 1 (see the proof of Theorem 3.1), which plays an
important role in solving our problem.

The paper is organized as follows. In section 2, we present some preliminaries
and formulate Problem (M-SLQ) with random coefficients and regime switching. In
section 3, we state our main results, i.e., the solvability of the corresponding SRE,
the closed-loop representation of the open-loop optimal control, and some auxiliary
results. In section 4, we prove the invertibility of the optimal state process, the solv-
ability of the corresponding SRE, and the closed-loop representation of the open-loop
optimal control. In section 5, we strictly prove some auxiliary results in detail. In
section 6, we present an example of the continuous-time mean-variance portfolio selec-
tion problem under the Markovian regime switching system with random coefficients.
In section 7, we conclude the results.

2. Preliminaries. Let (\Omega ,F ,\BbbF ,\BbbP ) be a complete filtered probability space on
which a standard one-dimensional Brownian motion \{ W (t)\} t\geqslant 0 and a continuous-time
and finite-state Markov chain \{ \alpha (t)\} t\geqslant 0 are defined, where the processesW (\cdot ) and \alpha (\cdot )
are independent and \BbbF = \{ Ft\} t\geqslant 0 is the natural filtration of them with F0 containing
all \BbbP -null sets of F . Let \BbbF W = \{ FW

t \} t\geqslant 0 be the filtration generated by W (\cdot ) and
\BbbF \alpha = \{ F\alpha 

t \} t\geqslant 0 be the filtration generated by \alpha (\cdot ). We identify the state space of the
Markov chain \alpha (\cdot ) with a finite set \scrS \triangleq \{ 1,2 . . . ,D\} , where D \in \BbbN . Furthermore, the
generator of the Markov chain \alpha (\cdot ) under \BbbP is denoted by \lambda (t)\triangleq [\lambda kl(t)]k,l\in \scrS , where
\lambda kl(t) is the constant transition intensity of the Markov chain from state k to state l at
time t. For each fixed k, l \in \scrS , we let Nkl(t) be the number of jumps from state k into
state l up to time t and set \~\lambda kl(t) \triangleq 

\int t

0
\lambda kl(s)I\{ \alpha (s - )=k\} ds. Let N(t) \triangleq (Nkl(t))k,l\in \scrS 

and \widetilde N(t) \triangleq ( \widetilde Nkl(t))k,l\in \scrS , where \widetilde Nkk(t) \equiv 0 and \widetilde Nkl(t) = Nkl(t)  - \~\lambda kl(t) when
k \not = l.

Let T > 0 be a fixed terminal time. The trace of a square matrix M is denoted
by tr [M ], the set of all n \times n symmetric matrices is denoted by \BbbS n, the set of all
D \times D matrices M \triangleq (Mkl) with Mkl \in \BbbS n is denoted by \BbbM D(\BbbS n), and the set of
all D \times D matrices M \triangleq (Mkl) with Mkl \in \BbbR n\times m is denoted by \BbbM D(\BbbR n\times m). For
\BbbH = \BbbR n, \BbbR n\times m, or \BbbS n, denote by L2

F (\Omega ;\BbbH ) (resp., L\infty 
F (\Omega ;\BbbH )) the set of all F -

measurable, \BbbH -valued, and square integrable (resp., bounded) random variables. De-
note by L2

\BbbF (t, T ;\BbbH ) (resp., L\infty 
\BbbF (t, T ;\BbbH )) the set of all \BbbH -valued, \BbbF -progressive measur-

able stochastic processes \phi (s) with \BbbE 
\int T

t
| \phi (s)| 2ds <\infty (resp., esssups\in [t,T ]| \phi (s)| <\infty ),

and denote by L2
\BbbF (\Omega ;C([t, T ];\BbbH )) the set of all \BbbH -valued, \BbbF -adapted, and continu-

ous processes \phi (s) with \BbbE [sups\in [t,T ] | \phi (s)| 2] < \infty . Moreover, for \BbbG = \BbbM D(\BbbR n\times m) or
\BbbM D(\BbbS n), we denote by L2

\BbbF (t, T ;\BbbG ) the set of all \BbbG -valued \BbbF -progressively measurable

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 953

processes \phi (s) \triangleq (\phi kl(s)) \in \BbbG with \BbbE 
\int T

t

\sum D
k,l=1 | \phi kl(s)| 2\lambda kl(s)I\{ \alpha (s - )=k\} ds < \infty . For

\eta (s)\triangleq (\eta kl(s))\in \scrM D(\BbbR n\times n), we further define

\eta (s) \bullet d \widetilde N(s)\triangleq 
D\sum 

k,l=1

\eta kl(s)d \widetilde Nkl(s).

We now introduce the following state equation, which is the controlled Markov-
ian regime switching linear stochastic differential equation (SDE) over a finite time
horizon [t, T ]:

(1)

\left\{     
dX(s) =

\bigl[ 
A(s,\alpha (s))X(s) +B(s,\alpha (s))u(s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s))X(s) +D(s,\alpha (s))u(s)

\bigr] 
dW (s), s\in [t, T ],

X(t) = \xi , \alpha (t) = \vargamma ,

where A(t,\omega , i), B(t,\omega , i), C(t,\omega , i), andD(t,\omega , i) are given FW
t -measurable processes

for each i\in \scrS . We call (t, \xi , \vargamma ) an initial triple, which comes from the following set:

\scrD =
\bigl\{ 
(t, \xi , \vargamma ) | t\in [0, T ], \xi \in L2

Ft
(\Omega ;\BbbR n), \vargamma \in L2

F\alpha 
t
(\Omega ;\scrS )

\bigr\} 
.

In the state equation (1), the process u(\cdot ) comes from the control space \scrU [t, T ] \triangleq 
L2
\BbbF (t, T ;\BbbR m), called the control process, and the solution X(\cdot ) of (1) is called the state

process with (t, \xi , \vargamma ) and u(\cdot ). Let us state our SLQ optimal control problem.
Problem (M-SLQ). For any given initial triple (t, \xi , \vargamma ) \in \scrD , find a control

u\ast (\cdot )\in \scrU [t, T ] such that

J(t, \xi , \vargamma ;u\ast (\cdot )) = essinf
u(\cdot )\in \scrU [t,T ]

J(t, \xi , \vargamma ;u(\cdot ))\triangleq V (t, \xi , \vargamma ),(2)

where the cost functional is given as the following quadratic form:

J(t, \xi , \vargamma ;u(\cdot ))\triangleq \BbbE t

\biggl[ \bigl\langle 
G(\alpha (T ))X(T ),X(T )

\bigr\rangle 
+

\int T

t

\biggl\langle \biggl( 
Q(s,\alpha (s)) S(s,\alpha (s))\top 

S(s,\alpha (s)) R(s,\alpha (s))

\biggr) \biggl( 
X(s)
u(s)

\biggr) 
,

\biggl( 
X(s)
u(s)

\biggr) \biggr\rangle 
ds

\biggr] 
.

(3)

Note that \BbbE t[\cdot ]\triangleq \BbbE [\cdot | Ft] represents the conditional expectation with respect to (w.r.t.)
Ft. For the initial triple (t, \xi , \vargamma ), we call the control process u\ast (\cdot ) an open-loop opti-
mal control of Problem (M-SLQ) if it satisfies (2), call the corresponding state process
X\ast (\cdot )\equiv X(\cdot ; t, \xi , \vargamma ,u\ast (\cdot )) an open-loop optimal state process, and call the state-control
pair (X\ast (\cdot ), u\ast (\cdot )) an open-loop optimal pair . We call (t, \xi , \vargamma ) \mapsto \rightarrow V (t, \xi , \vargamma ) the stochas-
tic value flow of Problem (M-SLQ), because the space L2

Ft
(\Omega ;\BbbR n) becomes larger

when t increases.

Remark 2.1. In the cost functional (3), when the conditional expectation \BbbE t[\cdot ]
degenerates to the expectation \BbbE , we denote the related problem, cost functional, and
value function by Problem (M-SLQ)0, J0(t, \xi , \vargamma ;u(\cdot )), and V0(t, \xi , \vargamma ), respectively.
Clearly, V0(t, \xi , \vargamma ) =\BbbE [V (t, \xi , \vargamma )].

Definition 2.2. Problem (M-SLQ) is said to be (uniquely) open-loop solvable
for the initial triple (t, \xi , \vargamma )\in \scrD if there exists a (unique) u\ast (\cdot ) = u\ast (\cdot ; t, \xi , \vargamma )\in \scrU [t, T ]
(depending on (t, \xi , \vargamma )) such that J(t, \xi , \vargamma ;u\ast (\cdot ))\leqslant J(t, \xi , \vargamma ;u(\cdot )), a.s., \forall u(\cdot )\in \scrU [t, T ],
and is said to be (uniquely) open-loop solvable if it is (uniquely) open-loop solvable for
any (t, \xi , \vargamma )\in \scrD .
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954 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

(H) For any choice of i \in \scrS , A(t,\omega , i), C(t,\omega , i) \in L\infty 
\BbbF W (0, T ;\BbbR n\times n),

B(t,\omega , i), D(t,\omega , i) \in L\infty 
\BbbF W (0, T ;\BbbR n\times m), G(\omega , i) \in L\infty 

FW
T
(\Omega ;\BbbS n), Q(t,\omega , i) \in 

L\infty 
\BbbF W (0, T ;\BbbS n), S(t,\omega , i)\in L\infty 

\BbbF W (0, T ;\BbbR m\times n), and R(t,\omega , i)\in L\infty 
\BbbF W (0, T ;\BbbS m).

Under the condition (H), for any initial triple (t, \xi , \vargamma )\in \scrD and any control u(\cdot )\in 
\scrU [t, T ], the classical theory of SDEs (see Sun and Yong [18, Proposition 2.1]) implies
that the state equation (1) has a unique solution X(\cdot ) \equiv X(\cdot ; t, \xi , \vargamma ,u(\cdot )), which is
square-integrable and whose path is continuous. Moreover, to simplify our further
analysis, we introduce the following BSDE:

(4)

\left\{           
dM(s) = - 

\bigl[ 
M(s)A(s,\alpha (s)) +A(s,\alpha (s))\top M(s)

+C(s,\alpha (s))\top M(s)C(s,\alpha (s)) +\Phi (s)C(s,\alpha (s)) +C(s,\alpha (s))\top \Phi (s)

+Q(s,\alpha (s))
\bigr] 
ds+\Phi (s)dW (s) + \eta (s) \bullet d \widetilde N(s), s\in [t, T ],

M(T ) = G(\alpha (T )), \alpha (t) = \vargamma .

The solution of the above BSDE is denoted by the triple (M(\cdot ),\Phi (\cdot ), \eta (\cdot )), where
\eta (\cdot ) \triangleq (\eta kl(\cdot ))k,l\in \scrS \in \scrM D(\BbbR n\times n). Note that the terminal value G(\cdot ) is bounded, so
the theory of BSDEs combining It\^o's formula with jumps deduces the following result,
i.e., M(\cdot ) is bounded too.

Proposition 2.3. Under (H), the process M(\cdot ) is bounded, where (M(\cdot ),\Phi (\cdot ),
\eta (\cdot )) is the adapted solution of BSDE (4).

3. The main results. In this section, we state our main results, such as the
solvability of the corresponding SRE, the closed-loop representation of the open-loop
optimal control, and some auxiliary results.

3.1. Solvability of stochastic Riccati equation. As shown in Sun, Xiong,
and Yong [17], the solvability of the corresponding SRE deduces the closed-loop rep-
resentation of the open-loop optimal control, which is important to deal with the SLQ
problem. Therefore, the SRE plays a crucial role in studying our Problem (M-SLQ),
and our core goal is to establish the solvability of the corresponding SRE. For this,
we introduce the following SRE: for s\in [0, T ],

(5)\Biggl\{ 
d \^P (s,\alpha (s)) = - 

\bigl[ 
\^Q(s,\alpha (s)) + \^S(s,\alpha (s))\top \Theta (s,\alpha (s))

\bigr] 
ds+ \^\Lambda (s)dW (s) + \^\zeta (s) \bullet d \widetilde N(s),

\^P (T,\alpha (T )) =G(\alpha (T )), \alpha (0) = i0,

where i0 \in \scrS is the initial state of \alpha (\cdot ), and for any (s,\omega , i)\in [0, T ]\times \Omega \times \scrS ,

(6)

\^Q(s, i)\triangleq \^P (s, i)A(s, i) +A(s, i)\top \^P (s, i) +C(s, i)\top \^P (s, i)C(s, i)

+ \^\Lambda (s)C(s, i) +C(s, i)\top \^\Lambda (s) +Q(s, i),

\^S(s, i)\triangleq B(s, i)\top \^P (s, i) +D(s, i)\top \^P (s, i)C(s, i) +D(s, i)\top \^\Lambda (s) + S(s, i),

\^R(s, i)\triangleq R(s, i) +D(s, i)\top \^P (s, i)D(s, i), \Theta (s, i)\triangleq  - \^R(s, i) - 1 \^S(s, i).

Suppose that the cost functional J(0,0, i0;u(\cdot )) is uniformly convex in u(\cdot ), i.e., for
any choice of i0 \in \scrS , there is a positive constant \varepsilon such that

J(0,0, i0;u(\cdot ))\geqslant \varepsilon \BbbE 
\int T

0

| u(s)| 2ds \forall u(\cdot )\in \scrU [0, T ].(7)
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 955

Theorem 3.1. Under conditions (H) and (7), SRE (5) admits a unique adapted
solution ( \^P (\cdot , \alpha (\cdot )), \^\Lambda (\cdot ), \^\zeta (\cdot )) \in L\infty 

\BbbF (0, T ;\BbbS n) \times L2
\BbbF (0, T ;\BbbS n) \times L2

\BbbF (0, T ;\BbbM D(\BbbS n)). In
addition,

(8)

\^R(s,\alpha (s)) =R(s,\alpha (s)) +D(s,\alpha (s))\top \^P (s,\alpha (s))D(s,\alpha (s))\geqslant \varepsilon Im a.e. on [0,T], a.s.

The above theorem shows the solvability of SRE (5), based on which the following
closed-loop representation of the open-loop optimal control can be derived.

Theorem 3.2. Under conditions (H) and (7), Problem (M-SLQ) is uniquely
open-loop solvable and the unique open-loop optimal control \{ u\ast (s)\} s\in [t,T ] w.r.t. the
initial triple (t, \xi , \vargamma )\in \scrD has the following linear state feedback:

(9) u\ast (s) =\Theta (s,\alpha (s))X\ast (s), s\in [t, T ],

where \Theta (\cdot ) is defined in (6) and \{ X\ast (s)\} s\in [t,T ] is the solution of the following closed-
loop system:\left\{     

dX\ast (s) =
\bigl[ 
A(s,\alpha (s)) +B(s,\alpha (s))\Theta (s,\alpha (s))

\bigr] 
X\ast (s)ds

+
\bigl[ 
C(s,\alpha (s)) +D(s,\alpha (s))\Theta (s,\alpha (s))

\bigr] 
X\ast (s)dW (s), s\in [t, T ],

X\ast (t) = \xi , \alpha (t) = \vargamma .

Remark 3.3. Sun, Xiong, and Yong [17] studied SLQ optimal control problems
with random coefficients, proved the solvability of the corresponding SRE, and ob-
tained the closed-loop representation of the open-loop optimal control. Compared
with [17], on one hand, the above theorems further extend the results in [17] to the
framework within the Markovian regime switching, which is important in continuous-
time mean-variance portfolio selection problems (see section 6). On the other hand,
due to the presence of the Markovian regime switching jump in SRE (5), it is difficult
to directly prove the solvability of SRE (5). To overcome it, we derive some auxiliary
results first.

3.2. Some auxiliary results. To simplify the notation, from now on, for any
(s, i)\in [0, T ]\times \scrS , x, y, z \in \BbbR n, and u\in \BbbR m, let

F (s, i, x, y, z, u)\triangleq B(s, i)\top y+D(s, i)\top z + S(s, i)x+R(s, i)u,\widetilde F (s, i, x, y, z, u)\triangleq A(s, i)\top y+C(s, i)\top z +Q(s, i)x+ S(s, i)\top u,

F0(s, i, x, y, z)\triangleq F (s, i, x, y, z,0), \widetilde F0(s, i, x, y, z)\triangleq \widetilde F (s, i, x, y, z,0).

The following BSDE is called the associated adjoint equation of the state equation
(1): \left\{   dY (s) = - \widetilde F (s,\alpha (s),X(s), Y (s),Z(s), u(s))ds+ Z(s)dW (s)

+\Gamma (s) \bullet d \widetilde N(s), s\in [t, T ],
Y (T ) =G(\alpha (T ))X(T ), \alpha (t) = \vargamma ,

(10)

where (X(\cdot ), u(\cdot )) comes from (1). In order to prove the solvability of SRE (5), we
present an alternative characterization of Problem (M-SLQ)0 in terms of the state
equation (1) and the adjoint equation (10), and then show that Problems (M-SLQ)
and (M-SLQ)0 are equivalent.
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956 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

Theorem 3.4. Let (H) hold and let the initial triple (t, \xi , \vargamma ) \in \scrD be given. A
process u\ast (\cdot ) \in \scrU [t, T ] is an open-loop optimal control of Problem (M-SLQ)0 w.r.t.
(t, \xi , \vargamma ) if and only if the following two conditions hold:

(i) The mapping u(\cdot ) \mapsto \rightarrow J0(t,0, \vargamma ;u(\cdot )) is convex, i.e., J0(t,0, \vargamma ;u(\cdot ))\geqslant 0 \forall u(\cdot )\in 
\scrU [t, T ].

(ii) The following stationarity condition holds:

F (s,\alpha (s),X\ast (s), Y \ast (s),Z\ast (s), u\ast (s)) = 0, a.e. s\in [t, T ] a.s.,(11)

where the quadruple (X\ast (\cdot ), Y \ast (\cdot ),Z\ast (\cdot ),\Gamma \ast (\cdot )) is the solution of SDE (1) and
BSDE (10) with u(\cdot ) replaced by u\ast (\cdot ).

Remark 3.5. In the assertion (ii) of Theorem 3.4, the quadruple (X\ast (\cdot ), Y \ast (\cdot ),
Z\ast (\cdot ),\Gamma \ast (\cdot )) is essentially the solution of the following decoupled FBSDE:

(12)

\left\{           
dX\ast (s) =

\bigl[ 
A(s,\alpha (s))X\ast (s) +B(s,\alpha (s))u\ast (s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s))X\ast (s) +D(s,\alpha (s))u\ast (s)

\bigr] 
dW (s),

dY \ast (s) = - \widetilde F (s,\alpha (s),X\ast (s), Y \ast (s),Z\ast (s), u\ast (s))ds

+Z(s)dW (s) + \Gamma \ast (s) \bullet d \widetilde N(s), s\in [t, T ],
X\ast (t) = \xi , \alpha (t) = \vargamma , Y \ast (T ) =G(\alpha (T ))X\ast (T ).

Proposition 3.6. Under (H), for any given initial triple (t, \xi , \vargamma ) \in \scrD , a control
u\ast (\cdot )\in \scrU [t, T ] is optimal for Problem (M-SLQ)0 if and only if it is optimal for Problem
(M-SLQ).

Based on Theorem 3.4 and Proposition 3.6, we have the following results, which
are useful to prove Theorem 3.1 later. For this, denote by \tau an \BbbF -stopping time with
values in [0, T ] and denote by \scrT [a, b] the set of all \BbbF -stopping times valued in the
interval [a, b] with a, b\in [0, T ].

Corollary 3.7. Let (H) hold and suppose that u\ast (\cdot ) \in \scrU [t, T ] is an open-loop
optimal control w.r.t. the initial triple (t, \xi , \vargamma ) \in \scrD ; then V (t, \xi , \vargamma ) = J(t, \xi , \vargamma ;u\ast (\cdot )) =
\langle Y \ast (t), \xi \rangle , where the quadruple (X\ast (\cdot ), Y \ast (\cdot ),Z\ast (\cdot ),\Gamma \ast (\cdot )) is the adapted solution of
FBSDE (12) w.r.t. u\ast (\cdot ).

Corollary 3.8. Let (H) hold and suppose u\ast (\cdot )\in \scrU [t, T ] is an open-loop optimal
control w.r.t. the initial triple (t, \xi , \vargamma ) \in \scrD ; then for any stopping time \tau \in \scrT [t, T ],
the restriction u\ast (\cdot )| [\tau ,T ] \triangleq \{ u\ast (s);s \in [\tau ,T ]\} remains optimal w.r.t. (\tau ,X\ast (\tau ), \alpha (\tau )),
where X\ast (\cdot ) is the solution of the forward equation of (12).

Proposition 3.9. Let (H) and (7) hold; then for any \tau \in \scrT [0, T ),

J0(\tau ,0, \alpha (\tau );u(\cdot ))\geqslant \varepsilon \BbbE 
\int T

\tau 

| u(s)| 2ds \forall u(\cdot )\in \scrU [\tau ,T ].

As a direct consequence, Problem (M-SLQ) is uniquely solvable.

Next, we state some properties for the stochastic value flow V (t, \xi , \vargamma ), which are
important to prove Theorem 3.1 later. Recall that \{ ej\} nj=1 is the standard basis of \BbbR n.

Proposition 3.10. Let (H) hold. Suppose that Problem (M-SLQ) is solvable
at the initial triple (t, ej , \vargamma ) with 1 \leqslant j \leqslant n. Let the state-control pair \{ (Xj(s),
uj(s))\} s\in [t,T ] of SDE (1) be an open-loop optimal pair w.r.t. (t, ej , \vargamma ), and let \{ (Yj(s),
Zj(s),\Gamma 

j(s))\} s\in [t,T ] be the solution of the associated adjoint equation (10). Denote

\Gamma kl(s)\triangleq (\Gamma 1
kl(s), . . . ,\Gamma 

n
kl(s)) and
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 957

(13)
X(s)\triangleq (X1(s), . . . ,Xn(s)) , U(s)\triangleq (u1(s), . . . , un(s)) , s\in [t, T ],

Y(s)\triangleq (Y1(s), . . . , Yn(s)) , Z(s)\triangleq (Z1(s), . . . ,Zn(s)) , \Gamma (s)\triangleq 
\bigl( 
\Gamma kl(s)

\bigr) 
k,l\in \scrS .

Then the quintuple (\bfitX (\cdot ),\bfitU (\cdot ),\bfitY (\cdot ),\bfitZ (\cdot ),\Gamma (\cdot )) satisfies the following FBSDE:\left\{               

dX(s) =
\bigl[ 
A(s,\alpha (s))X(s) +B(s,\alpha (s))U(s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s))X(s) +D(s,\alpha (s))U(s)

\bigr] 
dW (s),

dY(s)= - \widetilde F (s,\alpha (s),X(s),Y(s),Z(s),U(s))ds+Z(s)dW (s)

+\Gamma (s) \bullet d \widetilde N(s), s\in [t, T ],

X(t) = In, \alpha (t) = \vargamma , Y(T ) =G(\alpha (T ))X(T ),

(14)

and

F (s,\alpha (s),X(s),Y(s),Z(s),U(s)) = 0, a.e. s\in [t, T ], a.s.(15)

In addition, for every \xi \in L\infty 
Ft

(\Omega ;\BbbR n), the state-control pair (X\xi ,U\xi ) = \{ (X(s)\xi ,
U(s)\xi )\} s\in [t,T ] is optimal w.r.t. (t, \xi , \vargamma ) and the triple (Y\xi ,Z\xi ,\Gamma \circ \xi ) = \{ (Y(s)\xi ,

Z(s)\xi ,\Gamma (s) \circ \xi )\} s\in [t,T ] with \Gamma (s) \circ \xi \triangleq (\Gamma kl(s)\xi )k,l\in \scrS solves the adjoint BSDE (10)
associated with the pair (X\xi ,U\xi ).

Based on the above results, we have the following theorems, which present a
quadratic form of the stochastic value flow into a bounded and left-continuous process.

Theorem 3.11. Let (H) hold. For any given t \in [0, T ] and \vargamma \in L2
F\alpha 

t
(\Omega ;\scrS ), if

Problem (M-SLQ) is solvable at the initial time t, then there is a process P : [0, T ]\times 
\scrS \times \Omega \rightarrow \BbbS n such that

(16) V (t, \xi , \vargamma ) = \langle P (t, \vargamma )\xi , \xi \rangle \forall \xi \in L\infty 
Ft

(\Omega ;\BbbR n).

Theorem 3.12. Let conditions (H) and (7) hold. Then the process P = \{ P (t, i);
(t, i)\in [0, T ]\times \scrS \} that appears in (16) is bounded and left-continuous.

Finally, based on Theorems 3.11 and 3.12, we introduce a stopped SLQ problem
and present some results for it, which is useful to the proof of Theorem 3.1 too. Recall
that \tau \in \scrT (0, T ] is an \BbbF -stopping time, and set

\scrD \tau \triangleq 
\bigl\{ 
(\sigma , \xi ,\vargamma ) | \sigma \in \scrT [0, \tau ), \xi \in L2

F\sigma 
(\Omega ;\BbbR n), \vargamma \in L2

F\alpha 
\sigma 
(\Omega ;\scrS )

\bigr\} 
.

Problem (M-SLQ)\tau . For any given (\sigma , \xi ,\vargamma ) \in \scrD \tau , find a control u\ast (\cdot ) \in \scrU [\sigma , \tau ]
such that

J\tau (\sigma , \xi ,\vargamma ;u\ast (\cdot )) = essinf
u(\cdot )\in \scrU [\sigma ,\tau ]

J\tau (\sigma , \xi ,\vargamma ;u(\cdot ))\triangleq V \tau (\sigma , \xi ,\vargamma ),

where the cost functional

J\tau (\sigma , \xi ,\vargamma ;u(\cdot ))\triangleq \BbbE \sigma 

\biggl[ \bigl\langle 
P (\tau ,\alpha (\tau ))X(\tau ),X(\tau )

\bigr\rangle 
+

\int \tau 

\sigma 

\biggl\langle \biggl( 
Q(s,\alpha (s)) S(s,\alpha (s))\top 

S(s,\alpha (s)) R(s,\alpha (s))

\biggr) \biggl( 
X(s)
u(s)

\biggr) 
,

\biggl( 
X(s)
u(s)

\biggr) \biggr\rangle 
ds

\biggr] 
with X(\cdot ) being the solution of (1) w.r.t. (\sigma , \xi ,\vargamma ) over [\sigma , \tau ]. Similar to Remark 2.1,
when the above conditional expectation \BbbE \sigma [\cdot ] degenerates to \BbbE , we denote the related
problem, cost functional, and value function by Problem (M-SLQ)\tau 0 , J

\tau 
0 (t, \xi , \vargamma ;u(\cdot )),

and V \tau 
0 (t, \xi , \vargamma ), respectively.
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958 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

Proposition 3.13. Let conditions (H) and (7) hold. Then

(i) Problem (M-SLQ)\tau is uniquely solvable at every \sigma \in \scrT [0, \tau );
(ii) if u\ast (\cdot )\in \scrU [\sigma ,T ] is an optimal control of Problem (M-SLQ) w.r.t. (\sigma , \xi ,\vargamma )\in 

\scrT [0, \tau )\times L\infty 
F\sigma 

(\Omega ;\BbbR n)\times L2
F\alpha 

\sigma 
(\Omega ;\scrS ), then the restriction .u\ast (\cdot )| [\sigma ,\tau ] of u\ast (\cdot ) on

the interval [\sigma , \tau ] is also an optimal control of Problem (M-SLQ)\tau w.r.t. the
same initial triple (\sigma , \xi ,\vargamma );

(iii) the stochastic value flow V \tau (\cdot ) of Problem (M-SLQ)\tau has the form
V \tau (\sigma , \xi ,\vargamma ) = \langle P (\sigma ,\vargamma )\xi , \xi \rangle \forall (\sigma , \xi ,\vargamma )\in \scrT [0, \tau )\times L\infty 

F\sigma 
(\Omega ;\BbbR n)\times L2

F\alpha 
\sigma 
(\Omega ;\scrS ), where

P (\cdot , \alpha (\cdot )) is the process that appears in (16).

4. Proof of the solvability of SRE. In this section, based on the auxiliary
results of subsection 3.2, we prove the solvability of SRE (5). First, we prove that SRE
(5) is uniquely solvable, and then we prove that the first component \^P (\cdot , \alpha (\cdot )) of SRE
(5) is exactly the process P (\cdot , \alpha (\cdot )) that appears in (16). Finally, as a by-product,
the open-loop optimal control is represented as linear feedback of the state. Next, we
use several lemmas to prove Theorem 3.1. Recall that SDE (1) is the state equation,
BSDE (10) is the associated adjoint equation, and \{ ej\} nj=1 is the standard basis of \BbbR n.

Lemma 4.1. Suppose the conditions (H) and (7) hold. Denote by \{ Xj(s)\} s\in [0,T ]

the (unique) open-loop optimal state process corresponding to the initial triple
(t, \xi , \vargamma ) = (0, ej , i0). Then the \BbbR n\times n-valued process \{ \bfitX (s)\} s\in [0,T ] with \bfitX (s) \triangleq 
(X1(s), . . . ,Xn(s)) is invertible.

Proof. Let uj(\cdot ) \in \scrU [0, T ] be the unique optimal control w.r.t. (0, ej , i0) so that
for s\in [0, T ], \left\{     

dXj(s) =
\bigl[ 
A(s,\alpha (s))Xj(s) +B(s,\alpha (s))uj(s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s))Xj(s) +D(s,\alpha (s))uj(s)

\bigr] 
dW (s),

X(0) = ej , \alpha (0) = i0.

Then, with \bfitU (s) = (u1(s), . . . , un(s)), one has for s\in [0, T ],

(17)

\left\{     
dX(s) =

\bigl[ 
A(s,\alpha (s))X(s) +B(s,\alpha (s))U(s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s))X(s) +D(s,\alpha (s))U(s)

\bigr] 
dW (s),

X(0) = In, \alpha (0) = i0.

We define the stopping time (at which, for the first time, X(\cdot ) is not invertible):

\theta (\omega ) = inf
\bigl\{ 
s\in [0, T ]; det(\bfitX (s,\omega )) = 0

\bigr\} 
,

where we use the convention that the infimum of the empty set is infinity. It should
be pointed out that if we prove that \BbbP (\theta =\infty ) = 1, i.e., the set \BbbO \triangleq \{ \omega \in \Omega : \theta (\omega )\leqslant T\} 
has probability zero, then we can get that X(\cdot ) is invertible.

Suppose the contrary and set \tau = \theta \wedge T . Then \tau is in \scrT (0, T ] too. When
\tau = \theta on \BbbO , we know that \bfitX (\tau ) is not invertible on \BbbO by the definition of \theta . Thus,
we can choose an F\tau -measurable, \BbbS n-valued, positive semidefinite random matrix H
with | H| = 1 on \BbbO such that H(\omega )\bfitX (\tau (\omega ), \omega ) = 0 for any \omega \in \Omega . Note that P =
\{ P (t, i); (t, i) \in [0, T ]\times \scrS \} is bounded, is left-continuous, and satisfies (16) according
to Theorems 3.11 and 3.12. For \sigma \in \scrT [0, \tau ] with s\in [\sigma , \tau ], we consider the equation

(18)

\left\{     
dX(s) =

\bigl[ 
A(s,\alpha (s))X(s) +B(s,\alpha (s))u(s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s))X(s) +D(s,\alpha (s))u(s)

\bigr] 
dW (s),

X(\sigma ) = \xi , \alpha (\sigma ) = \vargamma ,
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 959

and the following auxiliary cost functional:

(19) JH(\sigma , \xi ,\vargamma ;u(\cdot ))\triangleq J\tau (\sigma , \xi ,\vargamma ;u(\cdot )) +\BbbE \sigma 

\bigl[ 
\langle HX(\tau ),X(\tau )\rangle 

\bigr] 
.

Consider the problem of minimizing the cost functional (19) subject to the state
equation (18), called Problem (M-SLQ)H . Moreover, denote by VH(\cdot ) the associated
stochastic value flow. Then the following two assertions hold:

(i) For any choice of \sigma \in \scrT [0, \tau ) and \vargamma \in L2
F\alpha 

t
(\Omega ;\scrS ) with \alpha (\sigma ) = \vargamma ,

\BbbE 
\bigl[ 
JH(\sigma ,0, \vargamma ;u(\cdot ))

\bigr] 
\geqslant \BbbE 

\bigl[ 
J\tau (\sigma ,0, \vargamma ;u(\cdot ))

\bigr] 
\geqslant \varepsilon \BbbE 

\biggl[ \int \tau 

\sigma 

| u(s)| 2ds
\biggr] 

\forall u(\cdot )\in \scrU [\sigma , \tau ].

(ii) The restriction u\tau 
j (\cdot ) = .uj(\cdot )| [0,\tau ] over the time inverval [0, \tau ] is optimal for

both Problem (M-SLQ)\tau and Problem (M-SLQ)H w.r.t. the same initial
triple (0, ej , i0).

For the above assertion (i), in fact, the first inequality is true since H is positive semi-
definite, and the second inequality comes from the proof of assertion (i) of Proposition
3.13. Then, by Proposition 3.9, both Problems (M-SLQ)\tau and (M-SLQ)H are uniquely
solvable at any \sigma \in \scrT [0, \tau ).

For the above assertion (ii), on one hand, by assertion (ii) of Proposition 3.13, we
see that u\tau 

j (\cdot ) is optimal for Problem (M-SLQ)\tau w.r.t. the initial triple (0, ej , i0). On
the other hand, according to Theorem 3.4, in order to show that u\tau 

j (\cdot ) is an optimal
control for Problem (M-SLQ)H w.r.t. (0, ej , i0), it suffices to prove that the solution
(X\tau 

j (\cdot ), Y \tau 
j (\cdot ),Z\tau 

j (\cdot ),\Gamma j,\tau (\cdot )) of the FBSDE

(20)

\left\{                   

dX\tau 
j (s) =

\bigl[ 
A(s,\alpha (s))X\tau 

j (s) +B(s,\alpha (s))u\tau 
j (s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s))X\tau 

j (s) +D(s,\alpha (s))u\tau 
j (s)

\bigr] 
dW (s),

dY \tau 
j (s) = - \widetilde F (s,\alpha (s),X\tau 

j (s), Y
\tau 
j (s),Z\tau 

j (s), u
\tau 
j (s))ds

+Z\tau 
j (s)dW (s) + \Gamma j,\tau (s) \bullet d \widetilde N(s), s\in [0, \tau ],

X\tau 
j (0) = ej , \alpha (0) = i0, Y \tau 

j (\tau ) = [P (\tau ,\alpha (\tau )) +H]X\tau 
j (\tau ),

satisfies the following stationarity condition:

F (s,\alpha (s),X\tau 
j (s), Y

\tau 
j (s),Z\tau 

j (s), u
\tau 
j (s)) = 0, a.e. s\in [0, \tau ], a.s.(21)

Note that X\tau 
j (s) =\bfitX (s)ej for 0\leqslant s\leqslant \tau . Thus, by the choice of H, we have

(22) HX\tau 
j (\tau ) =H\bfitX (\tau )ej = 0.

It follows that the terminal value Y \tau 
j (\tau ) = P (\tau ,\alpha (\tau ))X\tau 

j (\tau ), which implies that
FBSDE (20) is exactly the FBSDE associated with Problem (M-SLQ)\tau . Then from
Theorem 3.4 again, the stationarity condition (21) follows from the fact that u\tau 

j (\cdot ) is
an open-loop optimal control of Problem (M-SLQ)\tau w.r.t. (0, ej , i0).

Now, for Problem (M-SLQ)H , by Theorem 3.11 and the above assertion (i), there
is a bounded, left-continuous, and \BbbS n-valued process PH(\cdot , i) such that

(23) VH(\sigma , \xi ,\vargamma ) = \langle PH(\sigma ,\vargamma )\xi , \xi \rangle \forall (\sigma , \xi ,\vargamma )\in \scrT [0, \tau )\times L\infty 
F\sigma 

(\Omega ;\BbbR n)\times L2
F\alpha 

\sigma 
(\Omega ;\scrS ).

Next, we prove that P (\cdot , \alpha (\cdot )) appearing in (16) equals to PH(\cdot , \alpha (\cdot )) appearing in
(23), i.e.,

(24) P (t,\alpha (t)) = PH(t,\alpha (t)), t\in [0, \tau ).
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960 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

By the above assertion (ii), we see that \{ (X\tau 
j (s), u

\tau 
j (s))\} s\in [0,\tau ] is the optimal

state-control pair for both Problem (M-SLQ)\tau and Problem (M-SLQ)H w.r.t. the
initial triple (0, ej , i0). Let

\bfitX \tau (s)\triangleq (X\tau 
1 (s), . . . ,X

\tau 
n(s)) , \bfitU \tau (s)\triangleq (u\tau 

1(s), . . . , u
\tau 
n(s)) , s\in [0, \tau ],

and take an arbitrary x \in \BbbR n. From Proposition 3.10, we have that the pair
(\bfitX \tau x,\bfitU \tau x) is the optimal state-control for both Problem (M-SLQ)\tau and Problem
(M-SLQ)H w.r.t. the initial triple (0, x, i0). Moreover, by Corollary 3.8, the pair
(\bfitX \tau (s)x,\bfitU \tau (s)x) with s \in [t, \tau ] remains optimal w.r.t. (t,\bfitX \tau (t)x,\alpha (t)) for every
t\in [0, \tau ). Thus, note that H\bfitX \tau (\tau ) = 0 by (22),

VH (t,\bfitX \tau (t)x,\alpha (t)) = JH (t,\bfitX \tau (t)x,\alpha (t);\bfitU \tau (t)x)

= J (t,\bfitX \tau (t)x,\alpha (t);\bfitU \tau (t)x) +\BbbE \langle H\bfitX \tau (\tau )x,\bfitX \tau (\tau )x\rangle 
= J (t,\bfitX \tau (t)x,\alpha (t);\bfitU \tau (t)x) = V (t,\bfitX \tau (t)x,\alpha (t)) .

Noting that \bfitX \tau (t) =\bfitX (t) when t\in [0, \tau ), we deduce from the above that

\langle PH(t,\alpha (t))\bfitX (t)x,\bfitX (t)x\rangle = VH (t,\bfitX \tau (t)x,\alpha (t))

= V (t,\bfitX \tau (t)x,\alpha (t)) = \langle P (t,\alpha (t))\bfitX (t)x,\bfitX (t)x\rangle .

Since x\in \BbbR n is arbitrary, it follows that

\bfitX (t)\top P (t,\alpha (t))\bfitX (t) =\bfitX (t)\top PH(t,\alpha (t))\bfitX (t), t\in [0, \tau ).

From the definition of \tau , we see that \bfitX is invertible on [0, \tau ), which implies that the
relation (24) holds. Thus, for some choice of i\in \scrS , one has

(25) P (t, i) = PH(t, i), t\in [0, \tau ).

However, on the other hand, PH(\tau , i) = P (\tau , i) + H, and both P (\cdot , i) and PH(\cdot , i)
are left-continuous. Finally, in (25), letting t \uparrow \tau yields a contradiction, P (\tau , i) =
P (\tau , i) +H, since | H| = 1 on \BbbO .

Note that under the conditions of Theorem 3.1, Problem (M-SLQ) is uniquely
solvable by Proposition 3.9. Let \{ (Xj(s), uj(s))\} s\in [0,T ] be the optimal pair and
\{ (Yj(s),Zj(s),\Gamma 

j(s))\} s\in [t,T ] be the adapted solution of the adjoint BSDE correspond-
ing to the initial triple (0, ej , i0) for each j = 1,2, . . . , n, respectively. Now, with
\Gamma kl(s)\triangleq (\Gamma 1

kl(s), . . . ,\Gamma 
n
kl(s)), Proposition 3.10 implies that the matrix-valued processes

(\bfitX (\cdot ),\bfitU (\cdot ),\bfitY (\cdot ),\bfitZ (\cdot ),\Gamma (\cdot )) defined by (13) satisfy FBSDE (14) with the initial triple
(0, In, i0) over [0, T ]. Moreover, the following stationarity holds:

F (s,\alpha (s),X(s),Y(s),Z(s),U(s)) = 0, a.e. s\in [0, T ], a.s.(26)

In addition, on one hand, from Lemma 4.1 we see that X(\cdot ) is invertible. On the
other hand, from Theorems 3.11 and 3.12, there is a process P : [0, T ]\times \scrS \times \Omega \rightarrow \BbbS n,
which is left-continuous and bounded, that satisfies (16).

Lemma 4.2. Suppose (H) and (7) hold. Then,

(27) P (s,\alpha (s)) =\bfitY (s)\bfitX (s) - 1, s\in [0, T ],

where P (\cdot , \alpha (\cdot )) is the process appearing in (16) and the pair (\bfitX (\cdot ),\bfitY (\cdot )) is defined
in (13).
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 961

Proof. For arbitrary x\in \BbbR n and s\in [0, T ], set that

X\ast (s) =\bfitX (s)x, u\ast (s) =\bfitU (s)x,

Y \ast (s) =\bfitY (s)x, Z\ast (s) =\bfitZ (s)x, \Gamma \ast (s) =\Gamma (s) \circ x.
Then, on one hand, Proposition 3.10 implies that the pair (X\ast (\cdot ), u\ast (\cdot )) is an open-loop
optimal pair w.r.t. the initial triple (0, x, i0) and that the triple (Y \ast (\cdot ),Z\ast (\cdot ),\Gamma \ast (\cdot ))
is the adapted solution to the adjoint BSDE associated with (X\ast (\cdot ), u\ast (\cdot )). On
the other hand, for every s \in [0, T ], Corollary 3.8 implies that the restric-
tion (X\ast (\cdot )| [s,T ], u

\ast (\cdot )| [s,T ]) of (X\ast (\cdot ), u\ast (\cdot )) over the interval [s,T ] remains opti-
mal w.r.t. (s,X\ast (s), \alpha (s)). Thus, from Corollary 3.7, we have V (s,X\ast (s), \alpha (s)) =
\langle Y \ast (s),X\ast (s)\rangle . Now, owing to (16), the above equation implies that

x\top \bfitX (s)\top P (s,\alpha (s))\bfitX (s)x= \langle P (s,\alpha (s))\bfitX (s)x,\bfitX (s)x\rangle = \langle P (s,\alpha (s))X\ast (s),X\ast (s)\rangle 
= V (s,X\ast (s), \alpha (s)) = \langle Y \ast (s),X\ast (s)\rangle = \langle \bfitY (s)x,\bfitX (s)x\rangle = x\top \bfitX (s)\top \bfitY (s)x.

Since x\in \BbbR n is arbitrary, we deduce that \bfitX (s)\top P (s,\alpha (s))\bfitX (s) =\bfitX (s)\top \bfitY (s). Then
the desired result follows from the fact that \bfitX (\cdot ) is invertible.

In the following, please keep in mind that P (\cdot , \alpha (\cdot )) represents the process that
appears in (16) and (\bfitX (\cdot ),\bfitU (\cdot ),\bfitY (\cdot ),\bfitZ (\cdot ),\Gamma (\cdot )) defined by (13) satisfies FBSDE (14)
with (0, In, i0) over [0, T ].

Lemma 4.3. Suppose (H) and (7) hold. Then, with the relation (27) and the
notation

(28)
\Theta (s,\alpha (s)) =U(s)\bfitX (s) - 1, \Lambda (s) =\Pi (s,\alpha (s)) - P (s,\alpha (s))[C(s) +D(s)\Theta (s,\alpha (s))],

\Pi (s,\alpha (s)) =Z(s)\bfitX (s) - 1, \zeta (s) = (\zeta k,l(s))k,l\in \scrS with

\zeta kl(s)\triangleq \Gamma kl(s)\bfitX 
 - 1(s), s\in [0, T ],

we have that the triple (P (\cdot , \alpha (\cdot )),\Lambda (\cdot ), \zeta (\cdot )) satisfies the following BSDE: for s\in [0, T ],

(29)\Biggl\{ 
dP (s,\alpha (s)) = - 

\bigl[ 
\^Q(s,\alpha (s)) + \^S(s,\alpha (s))\top \Theta (s,\alpha (s))

\bigr] 
ds+\Lambda (s)dW (s) + \zeta (s) \bullet d \widetilde N(s),

P (T,\alpha (T )) =G(\alpha (T )), \alpha (0) = i0,

where \^Q(\cdot ) and \^S(\cdot ) are defined in (6). Moreover, \Lambda (\cdot ) is symmetric, and

\^S(s,\alpha (s)) + \^R(s,\alpha (s))\Theta (s,\alpha (s)) = 0, a.e. s\in [0, T ], a.s.(30)

Proof. First, by the relation (16), we have

\langle G(\alpha (T ))\xi , \xi \rangle = V (T, \xi ,\alpha (T )) = \langle P (T,\alpha (T ))\xi , \xi \rangle \forall \xi \in L\infty 
FT

(\Omega ;\BbbR n) ,

which leads to that P (T,\alpha (T )) = G(\alpha (T )). Note that \bfitX (\cdot ) satisfies SDE (17) and
is invertible, so its invertibility (denoted by \bfitX  - 1(\cdot )) exists and satisfies the following
SDE:

d\bfitX (s) - 1 =\Xi (s,\alpha (s))ds+\Delta (s,\alpha (s))dW (s), s\in [0, T ],

where

\Xi (s,\alpha (s)) =\bfitX  - 1(s)
\bigl\{ \bigl[ 
C(s,\alpha (s)) +D(s,\alpha (s))\Theta (s,\alpha (s))

\bigr] 2  - A(s,\alpha (s))

 - B(s,\alpha (s))\Theta (s,\alpha (s))
\bigr\} 
,

\Delta (s,\alpha (s)) = - \bfitX  - 1(s)
\bigl[ 
C(s,\alpha (s)) +D(s,\alpha (s))\Theta (s,\alpha (s))

\bigr] 
.
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962 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

Applying It\^o's formula to the right-hand side of (27), we have

dP (s,\alpha (s))

= - F (s,\alpha (s),X(s),Y(s),Z(s),U(s))\bfitX  - 1(s)ds+Z(s)\Delta (s)ds

+\bfitZ (s)\bfitX  - 1(s)dW (s) +

D\sum 
k,l=1

\Gamma kl(s)\bfitX 
 - 1(s)d \widetilde Nkl(s)

+\bfitY (s)\Xi (s,\alpha (s))ds+\bfitY (s)\Delta (s,\alpha (s))dW (s)

=
\bigl[ 
 - A(s,\alpha (s))\top P (s,\alpha (s)) - C(s,\alpha (s))\top \Pi (s,\alpha (s))

 - Q(s,\alpha (s)) - S(s,\alpha (s))\top \Theta (s,\alpha (s))

+ P (s,\alpha (s))
\bigl[ 
(C(s,\alpha (s)) +D(s,\alpha (s))\Theta (s,\alpha (s)))2

 - A(s,\alpha (s)) - B(s,\alpha (s))\Theta (s,\alpha (s))
\bigr] 

 - \Pi (s,\alpha (s))(C(s,\alpha (s)) +D(s,\alpha (s))\Theta (s,\alpha (s))
\bigr] 
ds+

D\sum 
k,l=1

\zeta kl(s)d \widetilde Nkl(s)

+
\bigl[ 
\Pi (s,\alpha (s)) - P (s,\alpha (s))[C(s,\alpha (s)) +D(s,\alpha (s))\Theta (s,\alpha (s))]

\bigr] 
dW (s)

= - 
\bigl[ 
\^Q(s,\alpha (s)) + \^S(s,\alpha (s))\top \Theta (s,\alpha (s))

\bigr] 
ds+\Lambda (s)dW (s) + \zeta (s) \bullet d \widetilde N(s).

Note that P (s,\alpha (s)) is symmetric, i.e., P (s,\alpha (s)) = P (s,\alpha (s))\top for s \in [0, T ].
Comparing the diffusion coefficients of the above BSDEs satisfied by P (\cdot , \alpha (\cdot )) and
P\top (\cdot , \alpha (\cdot )), we obtain \Lambda (s) = \Lambda (s)\top for s \in [0, T ]. Further combining (26) and (28),
we get

\^S(s,\alpha (s)) + \^R(s,\alpha (s))\Theta (s,\alpha (s)) = F (s,\alpha (s),X(s),Y(s),Z(s),U(s))\bfitX  - 1(s) = 0.

This completes the proof.

Lemma 4.4. Suppose (H) holds, and there exists a constant \varepsilon > 0 such that (7)
holds. Then

\^R(s,\alpha (s)) =R(s,\alpha (s)) +D(s,\alpha (s))\top P (s,\alpha (s))D(s,\alpha (s))\geqslant \varepsilon Im, a.e. on [0, T ], a.s.
(31)

Proof. The procedure of the proof can be divided into three steps.
Step 1. Let us temporarily assume that processes \Theta (\cdot ) = \{ \Theta (s,\alpha (s))\} s\in [0,T ] and

\Lambda (\cdot ) = \{ \Lambda (s)\} s\in [0,T ] defined by (28) satisfy the following condition:

(32) esssup
\omega \in \Omega 

\int T

0

\bigl[ 
| \Theta (s,\omega ,\alpha (s))| 2 + | \Lambda (s,\omega )| 2

\bigr] 
ds <\infty .

Choosing an arbitrary control v(\cdot ) \in \scrU [0, T ], we consider the following SDE: for s \in 
[t, T ],

(33)\left\{     
dXv(s) =

\bigl\{ \bigl[ 
A(s,\alpha (s)) +B(s,\alpha (s))\Theta (s,\alpha (s))

\bigr] 
Xv(s) +B(s,\alpha (s))v(s)

\bigr\} 
ds

+
\bigl\{ \bigl[ 
C(s,\alpha (s)) +D(s,\alpha (s))\Theta (s,\alpha (s))

\bigr] 
Xv(s) +D(s,\alpha (s))v(s)

\bigr\} 
dW (s),

Xv(0) =0, \alpha (0) = i0.

By the standard SDE theory, we see that Xv(\cdot ), the solution of SDE (33), belongs to
space L2

\BbbF (\Omega ;C([0, T ];\BbbR n)). Hence,

(34) u(s)\triangleq \Theta (s,\alpha (s))Xv(s) + v(s)\in \scrU [0, T ].
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 963

According to u(\cdot ) defined in (34) and the uniqueness of SDEs, X(\cdot ), the solution of (1)
w.r.t. the initial triple (0,0, i0) over [0, T ] coincides with Xv(\cdot ), the solution of (33),
i.e., Xv(s) = X(s) for any s \in [0, T ]. Note that P (s,\alpha (s)) satisfies BSDE (29). By
applying It\^o's formula to \langle P (s,\alpha (s))Xv(s),Xv(s)\rangle first and then taking expectations
on both sides, we can get

(35)

\BbbE 
\bigl\langle 
G(\alpha (T ))Xv(T ),Xv(T )

\bigr\rangle 
=\BbbE 

\int T

0

\Bigl\{ 
 - 
\bigl\langle \bigl[ 
Q(s,\alpha (s)) + \^S(s,\alpha (s))\top \Theta (s,\alpha (s))

\bigr] 
Xv(s),Xv(s)

\bigr\rangle 
+ 2

\bigl\langle \bigl[ 
\^S(s,\alpha (s)) - S(s,\alpha (s))

\bigr] \top 
u(s),Xv(s,\alpha (s))

\bigr\rangle 
+
\bigl\langle 
D(s,\alpha (s))\top P (s,\alpha (s))D(s,\alpha (s))u(s), u(s)

\bigr\rangle \Bigr\} 
ds.

Substituting (35) into (3) with the initial triple (0,0, i0), we have

J(0,0, i0;u(\cdot )) =\BbbE 
\int T

0

\Bigl\{ 
 - 
\bigl\langle 
\^S(s,\alpha (s))\top \Theta (s,\alpha (s))Xv(s),Xv(s)

\bigr\rangle 
+2

\bigl\langle 
\^S(s,\alpha (s))\top u(s),Xv(s)

\bigr\rangle 
+
\bigl\langle 
\^R(s,\alpha (s))u(s), u(s)

\bigr\rangle \Bigr\} 
ds.

Combining (30) and (34), we further deduce that

J(0,0, i0;u(\cdot ))

=\BbbE 
\int T

0

\bigl\langle 
\^R(s,\alpha (s))

\bigl[ 
u(s) - \Theta (s,\alpha (s))Xv(s)

\bigr] 
, u(s) - \Theta (s,\alpha (s))Xv(s)

\bigr\rangle 
ds

=\BbbE 
\int T

0

\bigl\langle 
\^R(s,\alpha (s))v(s), v(s)

\bigr\rangle 
ds.

Finally, the condition (7) implies that J(0,0, i0;u(\cdot ))\geqslant 0 \forall u(\cdot )\in \scrU [0, T ]. Therefore,

(36)
\^R(s,\alpha (s)) =R(s,\alpha (s)) +D(s,\alpha (s))\top P (s,\alpha (s))D(s,\alpha (s))\geqslant 0, a.e. on [0, T ], a.s.

Step 2. Now we prove that without the additional condition (32), the above
result (36) still holds. The key method is to apply a localization technique so that the
preceding argument can be applied to a certain stopped SLQ problem. In detail, for
each k\geqslant 1, we define the following stopping time (with the convention inf\varnothing =\infty ):

\tau k = inf
\Bigl\{ 
t\in [0, T ];

\int t

0

\bigl[ 
| \Theta (s,\alpha (s))| 2 + | \Lambda (s)| 2

\bigr] 
ds\geqslant k

\Bigr\} 
\wedge T.

Take an arbitrary control v(\cdot )\in \scrU [0, T ] and consider the state equation (33) over the
interval [0, \tau k]. By the definition of \tau k, we have\int \tau k

0

\bigl[ 
| \Theta (s,\alpha (s))| 2 + | \Lambda (s)| 2

\bigr] 
ds\leqslant k,

which implies that Xv(\cdot ), the solution of (33) over [0, \tau k], belongs to
L2
\BbbF (\Omega ;C([0, \tau k];\BbbR n)). Hence u(s) \triangleq \Theta (s,\alpha (s))Xv(s) + v(s) \in \scrU [0, \tau k]. Then we can

proceed as in Step 1 to get that

J(0,0, i0;u(\cdot )) =\BbbE 
\int \tau k

0

\bigl\langle \bigl[ 
R(s,\alpha (s)) +D(s,\alpha (s))\top P (s,\alpha (s))D(s,\alpha (s))

\bigr] 
v(s), v(s)

\bigr\rangle 
ds.
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964 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

By the proof of assertion (i) of Proposition 3.13, we have that for any choice i0 \in \scrS ,
J(0,0, i0;u(\cdot ))\geqslant 0 for every u(\cdot )\in \scrU [0, \tau k], and note that v(\cdot )\in \scrU [0, T ] is arbitrary, so
(37)
\^R(s,\alpha (s)) =R(s,\alpha (s)) +D(s,\alpha (s))\top P (s,\alpha (s))D(s,\alpha (s))\geqslant 0, a.e. on [0, \tau k] , a.s.

Because the process \bfitX  - 1(\cdot ) is continuous, \bfitU (\cdot ) and \bfitZ (\cdot ) are square-integrable, and
the processes P (\cdot , \alpha (\cdot )), C(\cdot ), and D(\cdot ) are bounded, from (28) we have\int T

0

\bigl[ 
| \Theta (s,\alpha (s))| 2 + | \Lambda (s)| 2

\bigr] 
ds <\infty , a.s.

This implies that limk\rightarrow \infty \tau k = T almost surely. Hence (36) still holds by letting
k\rightarrow \infty in (37).

Step 3. In order to obtain the stronger property (31), we take an arbitrary but
fixed \epsilon \in (0, \varepsilon ) and consider the following stochastic LQ problem of minimizing:

J\epsilon (t, \xi , \vargamma ;u(\cdot ))

=\BbbE t

\biggl[ 
\langle G(\alpha (T )X(T ),X(T )\rangle 

+

\int T

t

\biggl\langle \biggl( 
Q(s,\alpha (s)) S(s,\alpha (s))\top 

S(s,\alpha (s)) R(s,\alpha (s)) - \epsilon Im

\biggr) \biggl( 
X(s)
u(s)

\biggr) 
,

\biggl( 
X(s)
u(s)

\biggr) \biggr\rangle 
ds

\biggr] 
,

where X(\cdot ) is the solution of state equation (1). Clearly, with \varepsilon replaced by \varepsilon  - \epsilon , the
conditions of Theorem 3.1 still hold for J\epsilon (t, \xi , \vargamma ;u(\cdot )). Thus, there is a process P\epsilon (\cdot )
such that

V\epsilon (t, \xi , \vargamma )\triangleq inf
u(\cdot )\in \scrU [t,T ]

J
\epsilon 
(t, \xi , \vargamma ;u(\cdot )) = \langle P\epsilon (t, \vargamma )\xi , \xi \rangle 

\forall (t, \xi , \vargamma )\in [0, T ]\times L\infty 
Ft

(\Omega ;\BbbR n)\times L2
F\alpha 

t
(\Omega ;\scrS ).

Then, by the previous discussion, we have

R(s,\alpha (s)) - \epsilon Im +D(s,\alpha (s))\top P\epsilon (s,\alpha (s))D(s,\alpha (s))\geqslant 0, a.e. on [0, T ], a.s.

Now, by the definition of J\epsilon (t, \xi , \vargamma ;u(\cdot )), we deduce that

V (t, \xi , \vargamma ) = inf
u(\cdot )\in \scrU [t,T ]

J(t, \xi , \vargamma ;u(\cdot ))

\geqslant inf
u(\cdot )\in \scrU [t,T ]

J\epsilon (t, \xi , \vargamma ;u(\cdot ))

= V\epsilon (t, \xi , \vargamma ) \forall (t, \xi , \vargamma )\in [0, T ]\times L\infty 
Ft

(\Omega ;\BbbR n)\times L2
F\alpha 

t
(\Omega ;\scrS ),

from which we see that P (t, \vargamma ) \geqslant P\epsilon (t, \vargamma ) for any t \in [0, T ] and \vargamma \in L2
F\alpha 

t
(\Omega ;\scrS ), and

therefore

\^R(s,\alpha (s))\geqslant R(s,\alpha (s)) +D(s,\alpha (s))\top P\epsilon (s,\alpha (s))D(s,\alpha (s))\geqslant \varepsilon Im, a.e. on [0, T ], a.s.

Finally, note that \epsilon \in (0, \varepsilon ) is arbitrary, so property (31) holds. This completes the
proof.

Based on the above preparations, we now can prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1. On one hand, from Lemma 4.3, we see that the bounded
process P (\cdot , \alpha (\cdot )) in (16) and the processes \Lambda (\cdot ) and \zeta (\cdot ) defined by (28) satisfy BSDE
(29) and relation (30). On the other hand, Lemma 4.4 implies that
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 965

\^R(s,\alpha (s)) =R(s,\alpha (s)) +D(s,\alpha (s))\top P (s,\alpha (s))D(s,\alpha (s))\geqslant \varepsilon Im, a.e. on [0, T ], a.s.,

which, together with relation (30), deduces that

(38) \Theta (s,\alpha (s)) = - \^R(s,\alpha (s)) - 1 \^S(s,\alpha (s)), a.e. on [0, T ], a.s.

Substituting (38) into BSDE (29) yields that

(39)\Biggl\{ 
dP (s,\alpha (s)) = [\^\Psi (s,\alpha (s)) - \^Q(s,\alpha (s))]ds+\Lambda (s)dW (s) + \zeta (s) \bullet d \widetilde N(s), s\in [0, T ],

P (T,\alpha (T )) = G(\alpha (T )), \alpha (0) = i0,

where \^Q(\cdot ) is defined by (6), and

\^\Psi (s,\alpha (s))\triangleq \^S(s,\alpha (s))\top \^R(s,\alpha (s)) - 1 \^S(s,\alpha (s)), s\in [0, T ].

Then SRE (5) follows easily from (39), and ( \^P (\cdot , \alpha (\cdot )), \^\Lambda (\cdot ), \^\zeta (\cdot )), the solution of SRE
(5), coincides with (P (\cdot , \alpha (\cdot )),\Lambda (\cdot ), \zeta (\cdot )), the solution of BSDE (39), i.e.,

\^P (s,\alpha (s)) = P (s,\alpha (s)), \^\Lambda (s) = \Lambda (s), \^\zeta (s) = \zeta (s), s\in [0, T ].

In the following, we still adopt (P (\cdot , \alpha (\cdot )),\Lambda (\cdot ), \zeta (\cdot )) in order to keep the consistency
of symbols.

It remains to prove that the processes \Lambda (\cdot ) and \zeta (\cdot ) are square-integrable. Note
that in BSDE (39), the matrix-valued processes A(\cdot ), C(\cdot ), Q(\cdot ), and P (\cdot , \alpha (\cdot )) are
all bounded and the process \^\Psi (\cdot ) is positive semidefinite, so we can choose a positive
constant K such that

(40)\left\{     
tr[P (s,\alpha (s))] + | P (s,\alpha (s))| 2 \leqslant K, tr[ \^Q(s,\alpha (s))]\leqslant K[1 + | \Lambda (s)| ],
tr[P (s,\alpha (s)) \^Q(s,\alpha (s))]\leqslant | P (s,\alpha (s))| \cdot | \^Q(s,\alpha (s))| \leqslant K[1 + | \Lambda (s)| ],
tr[ - P (s,\alpha (s)) \^\Psi (s,\alpha (s))]\leqslant \lambda max[ - P (s,\alpha (s))] tr[ \^\Psi (s,\alpha (s))]\leqslant K tr[ \^\Psi (s,\alpha (s))],

for Lebesgue almost every s,\BbbP -a.s. In the last inequality, we adopt Theorem 7.4.1.1
of Horn and Johnson [5]. In the following, we denote by the same letter K a generic
positive constant whose value may be different from line to line. Define for each m\geqslant 1
the stopping time (with the convention inf\varnothing =\infty )

(41) \lambda m = inf
\Bigl\{ 
t\in [0, T ];

\int t

0

\bigl[ 
| \Lambda (s)| 2 +

D\sum 
k,l=1

| \zeta kl(s)| 2\lambda kl(s)I\{ \alpha (s - )=k\} 
\bigr] 
ds\geqslant m

\Bigr\} 
,

which implies that limm\rightarrow \infty \lambda m =\infty almost surely. Then we have

(42)

P (t\wedge \lambda m, \alpha (t\wedge \lambda m)) = P (0, i0) +

\int t\wedge \lambda m

0

[ \^\Psi (s,\alpha (s)) - \^Q(s,\alpha (s))]ds

+

\int t\wedge \lambda m

0

\Lambda (s)dW (s) +

\int t\wedge \lambda m

0

\zeta (s) \bullet d \widetilde N(s).

From the definition of \lambda m, it is easy to see that the processes\Biggl\{ \int t\wedge \lambda m

0

\Lambda (s)dW (s)

\Biggr\} 
t\in [0,T ]

=

\biggl\{ \int t

0

\Lambda (s)1\{ s\leqslant \lambda m\} dW (s)

\biggr\} 
t\in [0,T ]

,\Biggl\{ \int t\wedge \lambda m

0

\zeta (s) \bullet d \widetilde N(s)

\Biggr\} 
t\in [0,T ]

=

\biggl\{ \int t

0

\zeta (s)1\{ s\leqslant \lambda m\} \bullet d \widetilde N(s)

\biggr\} 
t\in [0,T ]
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966 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

are matrices of square-integrable martingales w.r.t. the filtration \BbbF = \{ Ft; 0\leqslant t <\infty \} 
and \BbbF \alpha = \{ F\alpha 

t ; 0\leqslant t <\infty \} , respectively. Therefore, taking expectations on both sides
of (42), we have

\BbbE 
\bigl[ 
P (t\wedge \lambda m, \alpha (t\wedge \lambda m))

\bigr] 
= P (0, i0) +\BbbE 

\int t\wedge \lambda m

0

\bigl[ 
\^\Psi (s,\alpha (s)) - \^Q(s,\alpha (s))

\bigr] 
ds.

Thus, combining with (40), we see that

\BbbE 
\int t\wedge \lambda m

0

tr[ \^\Psi (s,\alpha (s))]ds(43)

=\BbbE tr
\bigl[ 
P (t\wedge \lambda m, \alpha (t\wedge \lambda m)) - P (0, i0)

\bigr] 
+\BbbE 

\int t\wedge \lambda m

0

tr[ \^Q(s,\alpha (s))]ds

\leqslant K
\Bigl[ 
1 +\BbbE 

\int t\wedge \lambda m

0

| \Lambda (s)| ds
\Bigr] 
.

On the other hand, for BSDE (39), applying It\^o's formula to P (s,\alpha (s))2 and denoting
\zeta 2(s)\triangleq (\zeta kl(s)

2), we have

d[P (s,\alpha (s))]2

=
\Bigl\{ 
P (s,\alpha (s))

\bigl[ 
\^\Psi (s,\alpha (s)) - \^Q(s,\alpha (s))

\bigr] 
+
\bigl[ 
\^\Psi (s,\alpha (s)) - \^Q(s,\alpha (s))

\bigr] 
P (s,\alpha (s))

+ \Lambda (s)2 +

D\sum 
k,l=1

\zeta 2kl(s)\lambda kl(s)I\{ \alpha (s - )=k\} 

\Bigr\} 
ds

+
\bigl[ 
P (s,\alpha (s))\Lambda (s) + \Lambda (s)P (s,\alpha (s))

\bigr] 
dW (t)

+

D\sum 
k,l=1

2P (s - )\zeta kl(s)d \widetilde Nkl(s) + \zeta 2(s) \bullet d \widetilde N(s).

Now, note (41), a similar argument shows that

\BbbE [P (s,\alpha (s))]2 = P (0, i0) +\BbbE 
\int t\wedge \lambda m

0

\Biggl\{ 
P (s,\alpha (s))

\bigl[ 
\^\Psi (s,\alpha (s)) - \^Q(s,\alpha (s))

\bigr] 
+
\bigl[ 
\^\Psi (s,\alpha (s)) - \^Q(s,\alpha (s))

\bigr] 
P (s,\alpha (s)) + \Lambda (s)2

+

D\sum 
k,l=1

\zeta kl(s)
2\lambda kl(s)I\{ \alpha (s - )=k\} 

\Biggr\} 
ds.

Combining with (40)--(43) and recalling the Frobenius norm, we have

\BbbE 
\int t\wedge \lambda m

0

| \Lambda (s)| 2ds+\BbbE 
\int t\wedge \lambda m

0

D\sum 
k,l=1

| \zeta kl(s)| 2\lambda kl(s)I\{ \alpha (s - )=k\} ds

= tr

\biggl[ 
\BbbE 
\int t\wedge \lambda m

0

[\Lambda (s)]2ds+\BbbE 
\int t\wedge \lambda m

0

D\sum 
k,l=1

[\zeta kl(s)]
2\lambda kl(s)I\{ \alpha (s - )=k\} ds

\biggr] 

=\BbbE | P (t\wedge \lambda m, \alpha (t\wedge \lambda m))| 2  - | P (0, i0)| 2 + 2\BbbE 
\int t\wedge \lambda m

0

tr[P (s,\alpha (s)) \^Q(s,\alpha (s))]ds

+ 2\BbbE 
\int t\wedge \lambda m

0

tr[ - P (s,\alpha (s)) \^\Psi (s,\alpha (s))]ds
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 967

\leqslant K +K\BbbE 
\int t\wedge \lambda m

0

[1 + | \Lambda (s)| ]ds+K\BbbE 
\int t\wedge \lambda m

0

tr[ \^\Psi (s,\alpha (s))]ds

\leqslant K +K\BbbE 
\int t\wedge \lambda m

0

| \Lambda (s)| ds\leqslant K + 2K2 +
1

2
\BbbE 
\int t\wedge \lambda m

0

| \Lambda (s)| 2ds,

where in the last inequality we employ the Cauchy--Schwarz inequality. Hence, we
obtain that

1

2
\BbbE 
\int t\wedge \lambda m

0

| \Lambda (s)| 2ds+\BbbE 
\int t\wedge \lambda m

0

D\sum 
k,l=1

| \zeta kl(s)| 2\lambda kl(s)I\{ \alpha (s - )=k\} ds\leqslant K + 2K2.

Because limm\rightarrow \infty \lambda m = \infty almost surely and K does not depend on m and t, we
conclude that the processes \Lambda (\cdot ) and \zeta (\cdot ) are square-integrable by letting m\rightarrow \infty first
and then t \uparrow T .

Proof of Theorem 3.2. Note that Propositions 3.9 and 3.10 imply that Problem
(M-SLQ) is uniquely open-loop solvable at any initial time t < T , and the open-loop
optimal control u\ast (\cdot ) w.r.t. (t, \xi , \vargamma ) is given by

u\ast (s) = (u1(s), . . . , un(s)) \xi , s\in [t, T ].

Therefore, for the sake of the optimal control w.r.t. any initial triple (t, \xi , \vargamma ) \in \scrD ,
it is sufficient to determine the open-loop optimal control uj(\cdot ) = \{ uj(s);s \in [0, T ]\} 
w.r.t. (0, ej , i0) for each j = 1, . . . , n. From Lemma 4.1, we see that the process
\bfitX (\cdot ) = \{ \bfitX (s); 0 \leqslant s \leqslant T\} is invertible. On the other hand, Lemma 4.3 tells us that
finding the open-loop optimal controls u1, . . . , un is equivalent to finding

\Theta (s,\alpha (s)) =\bfitU (s)\bfitX (s) - 1, s\in [0, T ].

The latter can be accomplished by solving SRE (5), whose solvability is obtained by
Theorem 3.1. In fact, from the proof of Theorem 3.1, we see that \Theta (\cdot ) is actually
determined by (38). Summarizing these observations, we conclude the closed-loop
representation (9).

5. Proof of some auxiliary results. In this section, we give the proofs to some
auxiliary results listed in subsection 3.2. For this, we let ( \~X(\cdot ), \~Y (\cdot ), \~Z(\cdot ), \~\Gamma (\cdot )) and
( \=X(\cdot ), \=Y (\cdot ), \=Z(\cdot ), \=\Gamma (\cdot )) be the adapted solutions of the following decoupled FBSDEs,
respectively:

\left\{                 

d \~X(s) =
\bigl[ 
A(s,\alpha (s)) \~X(s) +B(s,\alpha (s))u(s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s)) \~X(s) +D(s,\alpha (s))u(s)

\bigr] 
dW (s),

d \~Y (s) = - \widetilde F (s,\alpha (s), \~X(s), \~Y (s), \~Z(s), u(s))ds

+ \~Z(s)dW (s) + \~\Gamma (s) \bullet d \widetilde N(s), s\in [t, T ],
\~X(t) = 0, \alpha (t) = \vargamma , \~Y (T ) =G(\alpha (T )) \~X(T ),

(44)

\left\{     
d \=X(s) =A(s,\alpha (s)) \=X(s)ds+C(s,\alpha (s)) \=X(s)dW (s), s\in [t, T ],

d \=Y (s) = - \widetilde F0(s,\alpha (s), \=X(s), \=Y (s), \=Z(s))ds+ \=Z(s)dW (s) + \=\Gamma (s) \bullet d \widetilde N(s),
\=X(t) = \xi , \alpha (t) = \vargamma , \=Y (T ) =G(\alpha (T )) \=X(T ).

(45)

Then the adapted solution (X(\cdot ), Y (\cdot ),Z(\cdot ),\Gamma (\cdot )) of SDE (1) and BSDE (10) could
be written as the sum of ( \~X(\cdot ), \~Y (\cdot ), \~Z(\cdot ), \~\Gamma (\cdot )) and ( \=X(\cdot ), \=Y (\cdot ), \=Z(\cdot ), \=\Gamma (\cdot )), i.e., for
s\in [t, T ],
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968 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

(46)
X(s) = \~X(s)+ \=X(s), Y (s) = \~Y (s)+ \=Y (s), Z(s) = \~Z(s)+ \=Z(s), \Gamma (s) = \~\Gamma (s)+\=\Gamma (s).

In what follows, for any u(\cdot ), v(\cdot )\in \scrU [t, T ], we set\bigl[ \bigl[ 
u, v

\bigr] \bigr] 
t
=\BbbE t

\int T

t

\langle u(s), v(s)\rangle ds,
\bigl[ \bigl[ 
u, v

\bigr] \bigr] 
=\BbbE 

\int T

t

\langle u(s), v(s)\rangle ds.

Now, for any u(\cdot ) \in \scrU [t, T ] and \xi \in \scrX t \triangleq L2
Ft

(\Omega ;\BbbR n), we define two linear operators
\scrN t and \scrL t as follows: for s\in [t, T ],

[\scrN tu](s,\alpha (s)) = F (s,\alpha (s), \~X(s), \~Y (s), \~Z(s), u(s)),(47)

[\scrL t\xi ](s,\alpha (s)) = F0(s,\alpha (s), \=X(s), \=Y (s), \=Z(s)).

First, we present a representation of the cost functional, which is characterized as
a bilinear form on a Hilbert space in terms of the adapted solutions of some FBSDEs.
Let us present the following two lemmas first, whose proofs can be found in [22].

Lemma 5.1. Under (H), for any initial triple (t, \xi , \vargamma ) \in \scrD and a control u(\cdot ) \in 
\scrU [t, T ], we have

J(t, \xi , \vargamma ;u(\cdot )) = \langle Y (t), \xi \rangle +\BbbE 

\Biggl[ \int T

t

\bigl\langle 
F (s,\alpha (s),X(s), Y (s),Z(s), u(s)), u(s)

\bigr\rangle 
ds
\bigm| \bigm| \bigm| Ft

\Biggr] 
,

where the quadruple (X(\cdot ), Y (\cdot ),Z(\cdot ),\Gamma (\cdot )) is the solution of SDE (1) and BSDE (10).

Lemma 5.2. Let (H) hold; then the linear operator \scrN t defined in (47) is a bounded
self-adjoint operator and the linear operator \scrL t defined in (47) is a bounded operator.
Moreover, there exists a positive constant K, independent of (t, \xi , \vargamma ), such that\bigl[ \bigl[ 

\scrL t\xi ,\scrL t\xi 
\bigr] \bigr] 

\leqslant K\BbbE | \xi | 2 \forall \xi \in \scrX t.(48)

Remark 5.3. Denote by (\scrX (\cdot ),\scrY (\cdot ),\scrZ (\cdot ), \u \Gamma (\cdot )) the adapted solution of the follow-
ing FBSDE: \left\{       

d\scrX (s) =A(s,\alpha (s))\scrX (s)ds+C(s,\alpha (s))\scrX (s)dW (s),

d\scrY (s) = - \widetilde F0(s,\alpha (s),\scrX (s),\scrY (s),\scrZ (s))ds

+\scrZ (s)dW (s) + \u \Gamma (s) \bullet d \widetilde N(s), s\in [0, T ],
\scrX (0) = In, \alpha (0) = i0, \scrY (T ) =G(\alpha (T ))\scrX (T ).

It is easy to check that the process \scrX (\cdot ) is invertible (denote by \scrX  - 1(\cdot )) with \scrX  - 1(\cdot )
satisfying the following equation:\left\{   d\scrX  - 1(s) =\scrX  - 1(s)

\bigl[ 
C(s,\alpha (s))2  - A(s,\alpha (s))

\bigr] 
ds

 - \scrX  - 1(s)C(s,\alpha (s))dW (s), s\in [0, T ],
\scrX  - 1(0) = In, \alpha (0) = i0.

For every \xi \in L\infty 
Ft

(\Omega ;\BbbR n) and \eta (s)\triangleq (\eta kl(s))\in \scrM D(\BbbR n\times n), we set \eta (s)\circ \xi \triangleq (\eta kl(s)\xi ).
Now, on the other hand, the processes

\scrX (s)\scrX  - 1(t)\xi , \scrY (s)\scrX  - 1(t)\xi , \scrZ (s)\scrX  - 1(t)\xi , \u \Gamma (s) \circ \scrX  - 1(t)\xi 

are all square-integrable and satisfy FBSDE (45). Therefore, by the uniqueness of the
adapted solutions, one has that for s\in [t, T ],

\=X(s) =\scrX (s)\scrX  - 1(t)\xi , \=Y (s) =\scrY (s)\scrX  - 1(t)\xi ,
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 969

\=Z(s) =\scrZ (s)\scrX  - 1(t)\xi , \=\Gamma (s) = \u \Gamma (s) \circ \scrX  - 1(t)\xi .

Hence, for every \xi \in L\infty 
Ft

(\Omega ;\BbbR n), the operator \scrL t\xi could be represented in terms of

the quadruple (\scrX (\cdot ),\scrY (\cdot ),\scrZ (\cdot ), \u \Gamma (\cdot )) as follows:

(49) [\scrL t\xi ](s,\alpha (s)) = F0(s,\alpha (s),\scrX (s),\scrY (s),\scrZ (s))\scrX  - 1(t)\xi , s\in [t, T ].

This relation is useful in proving Theorem 3.12.

Now, we are ready to show the representation to the cost functional J0(t, \xi , \vargamma ;u(\cdot )).
Note that J0(t, \xi , \vargamma ;u(\cdot )) and J(t, \xi , \vargamma ;u(\cdot )) have the relation J0(t, \xi , \vargamma ;u(\cdot )) =
\BbbE J(t, \xi , \vargamma ;u(\cdot )), and from Proposition 2.3, the first component M(\cdot ) of BSDE (4)
is bounded.

Proposition 5.4. Let \scrN t and \scrL t be defined in (47) and M(\cdot ) be the first compo-
nent of the solution of BSDE (4). Then, under (H), the cost functional J(t, \xi , \vargamma ;u(\cdot ))
has the following representation:

(50) J(t, \xi , \vargamma ;u(\cdot )) =
\bigl[ \bigl[ 
\scrN tu,u

\bigr] \bigr] 
t
+ 2

\bigl[ \bigl[ 
\scrL t\xi ,u

\bigr] \bigr] 
t
+ \langle M(t)\xi , \xi \rangle \forall (t, \xi , \vargamma )\in \scrD .

Furthermore, the cost functional J0(t, \xi , \vargamma ;u(\cdot )) has the following representation:

(51) J0(t, \xi , \vargamma ;u(\cdot )) =
\bigl[ \bigl[ 
\scrN tu,u

\bigr] \bigr] 
+ 2

\bigl[ \bigl[ 
\scrL t\xi ,u

\bigr] \bigr] 
+\BbbE \langle M(t)\xi , \xi \rangle \forall (t, \xi , \vargamma )\in \scrD .

Proof. Fix any (t, \xi , \vargamma ) \in \scrD and u(\cdot ) \in \scrU [t, T ]. Let ( \~X(\cdot ), \~Y (\cdot ), \~Z(\cdot ), \~\Gamma (\cdot )),
( \=X(\cdot ), \=Y (\cdot ), \=Z(\cdot ), \=\Gamma (\cdot )), and (X(\cdot ), Y (\cdot ),Z(\cdot ),\Gamma (\cdot )) be the adapted solutions of FBSDE
(44), FBSDE (45), and SDE (1) and BSDE (10), respectively. Then the relation (46)
holds between them. By Lemma 5.1 and the definitions of \scrN t and \scrL t, we have

(52) J(t, \xi , \vargamma ;u(\cdot )) = \langle \~Y (t), \xi \rangle + \langle \=Y (t), \xi \rangle +\BbbE t

\int T

t

\bigl\langle 
[\scrN tu](s) + [\scrL t\xi ](s), u(s)

\bigr\rangle 
ds.

On one hand, applying It\^o's formula to \langle \~Y (s), \=X(s)\rangle on [t, T ] implies that

\BbbE t\langle G(\alpha (T )) \~X(T ), \=X(T )\rangle  - \langle \~Y (t), \xi \rangle 

= - \BbbE t

\int T

t

\bigl[ 
\langle Q(s,\alpha (s)) \~X(s), \=X(s)\rangle + \langle S(s,\alpha (s)) \=X(s), u(s)\rangle 

\bigr] 
ds.

On the other hand, applying It\^o's formula to \langle \=Y (s), \~X(s)\rangle on [t, T ] gives that

\BbbE t\langle G(\alpha (T )) \=X(T ), \~X(T )\rangle 

=\BbbE t

\int T

t

\bigl[ 
\langle B(s,\alpha (s))\top \=Y (s) +D(s,\alpha (s))\top \=Z(s), u(s)\rangle  - \langle Q(s,\alpha (s)) \=X(s), \~X(s)\rangle 

\bigr] 
ds.

So we have

\langle \~Y (t), \xi \rangle =\BbbE t

\int T

t

\bigl[ 
\langle F0(s,\alpha (s), \=X(s), \=Y (s), \=Z(s)), u(s)\rangle 

\bigr] 
ds=\BbbE t

\int T

t

\langle [\scrL t\xi ](s), u(s)\rangle ds.

Moreover, applying It\^o's formula to M(s) \=X(s), we have

d[M(s) \=X(s)](53)

= - 
\bigl[ 
A(s,\alpha (s))\top M(s) \=X(s) +C(s,\alpha (s))\top 

\bigl( 
M(s)C(s,\alpha (s))

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/3

1/
23

 to
 1

58
.1

32
.1

61
.1

80
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



970 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

+\Phi (s)
\bigr) 
\=X(s) +Q(s,\alpha (s)) \=X(s)

\bigr] 
ds

+
\bigl( 
M(s)C(s,\alpha (s)) +\Phi (s)

\bigr) 
\=X(s)dW (s) + (\eta (s) \circ \=X(s)) \bullet d \widetilde N(s).

Since M(T ) \=X(T ) = \=Y (T ), we see that the triple (M \=X, (MC +\Phi ) \=X,\eta \circ \=X) satisfies
the same BSDE as ( \=Y (\cdot ), \=Z(\cdot ), \=\Gamma (\cdot )). Thus, by comparing (45) and (53), we have

\=Y (s) =M(s) \=X(s), \=Z(s) =
\bigl( 
M(s)C(s,\alpha (s)) +\Phi (s)

\bigr) 
\=X(s),

\=\Gamma (s) = \eta (s) \circ \=X(s), s\in [t, T ].

It follows that \langle \=Y (t), \xi \rangle = \langle M(t)\xi , \xi \rangle . Substituting this relation into (52) implies result
(50). By taking expectation to (50), we can easily obtain (51).

Corollary 5.5. Under the condition (H), a control u\ast (\cdot )\in \scrU [t, T ] is optimal for
Problem (M-SLQ)0 w.r.t. (t, \xi , \vargamma )\in \scrD if and only if

\scrN t \geqslant 0, and \scrN tu
\ast +\scrL t\xi = 0.(54)

Moreover, if \scrN t is invertible and satisfies the positivity condition \scrN t \geqslant 0, then Prob-
lem (M-SLQ)0 is uniquely solvable at t, and the unique optimal control u\ast (\cdot ) w.r.t.
(t, \xi , \vargamma )\in \scrD is given by

u\ast (s) = - [\scrN  - 1
t \scrL t\xi ](s), s\in [t, T ].(55)

Proof. By Definition 2.2, we see that u\ast (\cdot ) \in \scrU [t, T ] is optimal for Problem
(M-SLQ)0 w.r.t. the initial triple (t, \xi , \vargamma ) if and only if

(56) J0(t, \xi , \vargamma ;u
\ast (\cdot ) + \lambda v(\cdot )) - J0(t, \xi , \vargamma ;u

\ast (\cdot ))\geqslant 0 \forall v(\cdot )\in \scrU [t, T ], \lambda \in \BbbR .

According to the representation (51), one has

J0(t, \xi , \vargamma ;u
\ast (\cdot ) + \lambda v(\cdot )) - J0(t, \xi , \vargamma ;u

\ast (\cdot )) = \lambda 2
\bigl[ \bigl[ 
\scrN tv, v

\bigr] \bigr] 
+ 2\lambda 

\bigl[ \bigl[ 
\scrN tu

\ast , v
\bigr] \bigr] 

+ 2\lambda 
\bigl[ \bigl[ 
\scrL t\xi , v

\bigr] \bigr] 
.

Hence, (56) is equivalent to

\lambda 2
\bigl[ \bigl[ 
\scrN tv, v

\bigr] \bigr] 
+ 2\lambda 

\bigl[ \bigl[ 
\scrN tu

\ast +\scrL t\xi , v
\bigr] \bigr] 

\geqslant 0 \forall v(\cdot )\in \scrU [t, T ], \forall \lambda \in \BbbR .

Therefore, we must have\bigl[ \bigl[ 
\scrN tv, v

\bigr] \bigr] 
\geqslant 0 and

\bigl[ \bigl[ 
\scrN tu

\ast +\scrL t\xi , v
\bigr] \bigr] 

= 0 \forall v \in \scrU [t, T ],

which implies that (54) holds. The converse assertion is obvious. Finally, the repre-
sentation (55) is a direct consequence of (54). This completes the proof.

Remark 5.6. It is noteworthy that in Corollary 5.5, the assumptions that \scrN t \geqslant 0
and \scrN t is invertible are equivalent to that \scrN t is uniformly positive, i.e., there is a
constant \varepsilon > 0 such that\bigl[ \bigl[ 

\scrN tu,u
\bigr] \bigr] 

\geqslant \varepsilon 
\bigl[ \bigl[ 
u,u

\bigr] \bigr] 
\forall u(\cdot )\in \scrU [t, T ].(57)

From Corollary 5.5, we see that the condition \scrN t \geqslant 0 (or equivalently, [[\scrN tu,u]]\geqslant 0 for
every u(\cdot ) \in \scrU [t, T ]) is necessary for the existence of an open-loop optimal control of
Problem (M-SLQ)0, and the condition (57), slightly stronger than \scrN t \geqslant 0, is sufficient
for the existence of an open-loop optimal control of Problem (M-SLQ)0. Moreover,
by (51), we have [[\scrN tu,u]] = J0(t,0, \vargamma ;u(\cdot )).
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 971

Based on the above discussions, we are in a position to prove some auxiliary
results presented in subsection 3.2.

Proof of Theorem 3.4. By Corollary 5.5, we see that u\ast (\cdot )\in \scrU [t, T ] is an open-loop
optimal control of Problem (M-SLQ)0 w.r.t. (t, \xi , \vargamma ) if and only if \scrN t \geqslant 0 and \scrN tu

\ast +
\scrL t\xi = 0 hold. According to (51), we see that \scrN t \geqslant 0 is equivalent to J0(t,0, \vargamma ;u(\cdot )) =
[[\scrN tu,u]]\geqslant 0 for any u(\cdot ) \in \scrU [t, T ], which is exactly the condition of the assertion (i)
of Theorem 3.4. From the definitions of \scrN t and \scrL t, one has

[\scrN tu
\ast +\scrL t\xi ](s,\alpha (s)) = F (s,\alpha (s),X\ast (s), Y \ast (s),Z\ast (s), u\ast (s)), s\in [t, T ],

where (X\ast (\cdot ), Y \ast (\cdot ),Z\ast (\cdot ),\Gamma \ast (\cdot )) is the solution of FBSDE (12). Therefore, \scrN tu
\ast +

\scrL t\xi = 0 is equivalent to stationarity condition (11).

Proof of Proposition 3.6. The sufficiency is obvious. Next we prove the ne-
cessity. Suppose that u\ast (\cdot ) \in \scrU [t, T ] is optimal for Problem (M-SLQ)0, and let
(X\ast (\cdot ), Y \ast (\cdot ),Z\ast (\cdot ),\Gamma \ast (\cdot )) be the adapted solution of FBSDE (12). In order to prove
that u\ast (\cdot ) is also optimal for Problem (M-SLQ), it suffices to show that for any set
\Lambda \in Ft,

\BbbE [L(t, \xi , \vargamma ;u\ast (\cdot ))1\Lambda ]\leqslant \BbbE [L(t, \xi , \vargamma ;u(\cdot ))1\Lambda ] \forall u(\cdot )\in \scrU [t, T ],(58)

where for any (t, \xi , \vargamma )\in \scrD and u(\cdot )\in \scrU [t, T ],

(59)
L(t, \xi , \vargamma ;u(\cdot ))\triangleq 

\bigl\langle 
G(\alpha (T ))X(T ),X(T )

\bigr\rangle 
+

\int T

t

\biggl\langle \biggl( 
Q(s,\alpha (s)) S(s,\alpha (s))\top 

S(s,\alpha (s)) R(s,\alpha (s))

\biggr) \biggl( 
X(s)
u(s)

\biggr) 
,

\biggl( 
X(s)
u(s)

\biggr) \biggr\rangle 
ds.

Note that in (59), X(\cdot ) is the solution of the state equation (1) w.r.t. u(\cdot ). For this,
we would like to fix an arbitrary control u(\cdot ) \in \scrU [t, T ] and an arbitrary set \Lambda \in Ft.
Define\widehat \xi (\omega ) = \xi (\omega )1\Lambda (\omega ), \widehat \vargamma (\omega ) = \vargamma (\omega )1\vargamma (\omega ), \widehat u(s) = u(s)1\Lambda (\omega ), \widehat u\ast (s) = u\ast (s)1\Lambda (\omega ),

and consider the following FBSDE: for s\in [t, T ],\left\{                 

d \widehat X\ast (s) = [A(s,\alpha (s)) \widehat X\ast (s) +B(s,\alpha (s))\widehat u\ast (s)]ds

+[C(s,\alpha (s)) \widehat X\ast (s) +D(s,\alpha (s))\widehat u\ast (s)]dW (s),

d\widehat Y \ast (s) = - \widetilde F (s,\alpha (s), \widehat X\ast (s), \widehat Y \ast (s), \widehat Z\ast (s), \widehat u\ast (s))ds

+ \widehat Z\ast (s)dW (s) + \widehat \Gamma \ast (s) \bullet d \widetilde N(s),\widehat X\ast (t) = \widehat \xi , \alpha (t) = \widehat \vargamma , \widehat Y \ast (T ) =G(\alpha (T )) \widehat X\ast (T ).

Then the solution ( \widehat X\ast (\cdot ), \widehat Y \ast (\cdot ), \widehat Z\ast (\cdot ), \widehat \Gamma \ast (\cdot )) of the above FBSDE is given by\widehat X\ast (\cdot ) =X\ast (\cdot )1\Lambda (\omega ), \widehat Y \ast (\cdot ) = Y \ast (\cdot )1\Lambda (\omega ), \widehat Z\ast (\cdot ) =Z\ast (\cdot )1\Lambda (\omega ), \widehat \Gamma \ast (\cdot ) = \Gamma \ast (\cdot )1\Lambda (\omega ).

Now, by Theorem 3.4, (X\ast (\cdot ), Y \ast (\cdot ),Z\ast (\cdot ),\Gamma \ast (\cdot )) satisfies (11). Hence, multiplying on
both sides of (11) by 1\Lambda , one has that F (s,\alpha (s), \widehat X\ast (s), \widehat Y \ast (s), \widehat Z\ast (s), \widehat u\ast (s)) = 0 for
any s \in [t, T ]. Again, applying Theorem 3.4 to the initial triple (t, \widehat \xi , \widehat \vargamma ), we conclude
that \widehat u\ast (\cdot ) is an open-loop optimal control of Problem (M-SLQ)0 w.r.t. the initial
triple (t, \widehat \xi , \widehat \vargamma ). Therefore, \BbbE [L(t, \widehat \xi , \widehat \vargamma ; \widehat u\ast (\cdot ))]\leqslant \BbbE [L(t, \widehat \xi , \widehat \vargamma ; \widehat u(\cdot ))].

Note that the state process X\ast (\cdot ) = X\ast (\cdot ; t, \xi , \vargamma ,u\ast (\cdot )) and the state process\widehat X\ast (\cdot ) =X\ast (\cdot ; t, \widehat \xi , \widehat \vargamma , \widehat u\ast (\cdot )) are related by X\ast (\cdot ; t, \xi , \vargamma ,u\ast (\cdot ))1\Lambda =X\ast (\cdot ; t, \widehat \xi , \widehat \vargamma , \widehat u\ast (\cdot )). It
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972 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

follows that L(t, \xi , \vargamma ;u\ast (\cdot ))1\Lambda =L(t, \widehat \xi , \widehat \vargamma ; \widehat u\ast (\cdot )). Similarly, we have L(t, \xi , \vargamma ;u(\cdot ))1\Lambda =
L(t, \widehat \xi , \widehat \vargamma ; \widehat u(\cdot )). Thus,

\BbbE [L(t, \xi , \vargamma ;u\ast (\cdot ))1\Lambda ] =\BbbE [L(t, \widehat \xi , \widehat \vargamma ; \widehat u\ast (\cdot ))]\leqslant \BbbE [L(t, \widehat \xi , \widehat \vargamma ; \widehat u(\cdot ))] =\BbbE [L(t, \xi , \vargamma ;u(\cdot ))1\Lambda ],

from which we see that (58) holds. This completes the proof.

Based on Theorem 3.4 and Proposition 3.6, we have Corollaries 3.7 and 3.8, whose
proofs can be found in [22].

Proof of Proposition 3.9. For any u(\cdot )\in \scrU [\tau ,T ], we define ue(s) = 0 when s\in [t, \tau )
and ue(s) = u(s) when s\in [\tau ,T ]. Using the same argument as in the proof of Corollary
3.8 with t= 0, one has

J0(\tau ,0, \alpha (\tau );u(\cdot )) = J0 (0,0, i0;ue(\cdot ))\geqslant \varepsilon \BbbE 
\int T

0

| ue(s)| 2 ds= \varepsilon \BbbE 
\int T

\tau 

| u(s)| 2ds.

Hence, by setting \tau \equiv t and from Remark 5.6, Corollary 5.5, and Proposition 3.6, we
obtain that Problem (M-SLQ) is uniquely solvable.

Proof of Proposition 3.10. By Theorem 3.4, it is easy to see that the first assertion
holds. Now, we consider the second assertion. Note that \xi \in L\infty 

Ft
(\Omega ;\BbbR n) is bounded, so

the pair (\BbbX (s),\BbbU (s))\triangleq (\bfitX (s)\xi ,\bfitU (s)\xi ) is square-integrable and satisfies the following
state equation: for s\in [t, T ],

(60)

\left\{     
d\BbbX (s) =

\bigl[ 
A(s,\alpha (s))\BbbX (s) +B(s,\alpha (s))\BbbU (s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s))\BbbX (s) +D(s,\alpha (s))\BbbU (s)

\bigr] 
dW (s),

\BbbX (t) = \xi , \alpha (t) = \vargamma .

Similarly, we see that the triple (\BbbY (s),\BbbZ (s), \u \Gamma (s)) \triangleq (\bfitY (s)\xi ,Z(s)\xi ,\Gamma (s) \circ \xi ) is the
adapted solution to the following adjoint BSDE associated with (\BbbX (\cdot ),\BbbU (\cdot )):\left\{     

d\BbbY (s) = - \widetilde F (s,\alpha (s),\BbbX (s),\BbbY (s),\BbbZ (s),\BbbU (s))ds
+\BbbZ (s)dW (s) + \u \Gamma (s) \bullet d \widetilde N(s), s\in [t, T ],

\BbbY (T ) =G(\alpha (T ))\BbbX (T ), \alpha (t) = \vargamma .

Furthermore, (15) deduces that

F (s,\alpha (s),\BbbX (s),\BbbY (s),\BbbZ (s),\BbbU (s))
= F (s,\alpha (s),X(s),Y(s),Z(s),U(s))\xi = 0, a.e. s\in [t, T ], a.s.

Thus, combining Theorem 3.4, the pair (\BbbX (\cdot ),\BbbU (\cdot )) is optimal w.r.t. the initial triple
(t, \xi , \vargamma ).

Proof of Theorem 3.11. Let \{ (Xj(s), uj(s))\} s\in [t,T ] and \{ (\bfitX (s),\bfitU (s))\} s\in [t,T ] be
as in Theorem 3.10; then the pair \{ (\bfitX (s)\xi ,\bfitU (s)\xi )\} s\in [t,T ] is optimal w.r.t. the initial
triple (t, \xi , \vargamma ). For simplicity of presentation, we denote

M(T,\alpha (T ))\triangleq \bfitX (T )\top G(\alpha (T ))\bfitX (T ),

\bfitN (s,\alpha (s))\triangleq 

\biggl( 
\bfitX (s)
\bfitU (s)

\biggr) \top \biggl( 
Q(s,\alpha (s)) S(s,\alpha (s))\top 

S(s,\alpha (s)) R(s,\alpha (s))

\biggr) \biggl( 
\bfitX (s)
\bfitU (s)

\biggr) 
,

and then we could rewrite

(61) L(t, \xi , \vargamma ;\bfitU \xi ) = \langle M(T,\alpha (T ))\xi , \xi \rangle +
\int T

t

\langle \bfitN (s,\alpha (s))\xi , \xi \rangle ds,
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 973

where L(\cdot ) is defined in (59). Now, on one hand, since the pair \{ (\bfitX (s)\xi ,\bfitU (s)\xi )\} s\in [t,T ]

is optimal w.r.t. (t, \xi , \vargamma ), from the definition (2) we have V (t, \xi , \vargamma ) =\BbbE [L(t, \xi , \vargamma ;\bfitU \xi ) | 
Ft]. On the other hand, note that SDE (60) works over [t, T ] where the initial value
\xi is Ft-measurable and \alpha (t) = \vargamma is F\alpha 

t -measurable, hence there is a process P :
[0, T ]\times \scrS \times \Omega \rightarrow \BbbS n such that

(62) P (t,\alpha (t)) =\BbbE 

\Biggl[ 
M(T,\alpha (T )) +

\int T

t

\bfitN (s,\alpha (s))ds
\bigm| \bigm| \bigm| Ft

\Biggr] 
.

In fact, for the special case of C = G = 1 and B = D = Q = S = R = 0, one can
calculate the solution of SDE (60) to obtain that

\BbbX (s) = \xi exp

\biggl\{ \int s

t

\Bigl[ 
A(r,\alpha (r)) - 1

2

\Bigr] 
dr+W (s) - W (t)

\biggr\} 
, s\in [t, T ].

Note that \BbbX (s) = \bfitX (s)\xi , and in this case M(T,\alpha (T )) = \bfitX (T )\top \bfitX (T ) and
\bfitN (s,\alpha (s))\equiv 0, so

\BbbE [M(T,\alpha (T ))| Ft] =\BbbE 
\biggl[ 
exp

\biggl\{ \int T

t

[2A(r,\alpha (r)) - 1]dr

\biggr\} \bigm| \bigm| \bigm| Ft

\biggr] 
.

Thus (62) holds because \alpha (\cdot ) is a Markov chain. Moreover, for the general situation,
one can still prove that (62) holds using a similar argument. Finally, by combining
(61)--(62) and noting that \alpha (t) = \vargamma , we have

V (t, \xi , \vargamma ) = \BbbE [L(t, \xi , \vargamma ;\bfitU \xi ) | Ft]

=
\Bigl\langle 
\BbbE 
\Bigl[ 
M(T,\alpha (T )) +

\int T

t

\bfitN (s,\alpha (s))ds
\bigm| \bigm| \bigm| Ft

\Bigr] 
\xi , \xi 

\Bigr\rangle 
= \langle P (t, \vargamma )\xi , \xi \rangle .

This completes the proof.

Proof of Theorem 3.12. First, we prove the boundedness of the process P =
\{ P (t, i); (t, i)\in [0, T ]\times \scrS \} . From Proposition 3.9, we have that for every t\in [0, T ), the
operator \scrN t defined in (47) satisfies

\bigl[ \bigl[ 
\scrN tu,u

\bigr] \bigr] 
= J0(t,0, \vargamma ;u(\cdot ))\geqslant \varepsilon \BbbE 

\int T

t

| u(s)| 2ds= \varepsilon 
\bigl[ \bigl[ 
u,u

\bigr] \bigr] 
\forall u(\cdot )\in \scrU [t, T ],(63)

which implies that the operator \scrN t is positive and invertible. Moreover, on one hand,
for any initial state \xi \in L\infty 

Ft
(\Omega ;\BbbR n), by Corollary 5.5, the related open-loop optimal

control is given by

u\ast 
t,\xi (s) = - [\scrN  - 1

t \scrL t\xi ](s), s\in [t, T ].

Then, by substituting u\ast 
t,\xi (\cdot ) into (51), one has

(64) \BbbE \langle P (t, \vargamma )\xi , \xi \rangle = V0(t, \xi , \vargamma ) =\BbbE \langle M(t)\xi , \xi \rangle  - 
\bigl[ \bigl[ 
\scrN  - 1

t \scrL t\xi ,\scrL t\xi 
\bigr] \bigr] 
,

where \scrN t and \scrL t are defined in (47) and M(\cdot ) is the solution of BSDE (4). Therefore,

(65) \BbbE \langle P (t, \vargamma )\xi , \xi \rangle \leqslant \BbbE \langle M(t)\xi , \xi \rangle .

On the other hand, combining (63) and (64) leads to

(66) \BbbE \langle P (t, \vargamma )\xi , \xi \rangle \geqslant \BbbE \langle M(t)\xi , \xi \rangle  - \varepsilon  - 1
\bigl[ \bigl[ 
\scrL t\xi ,\scrL t\xi 

\bigr] \bigr] 
.
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974 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

Thus, from Lemma 5.2, we have

(67) \BbbE \langle P (t, \vargamma )\xi , \xi \rangle \geqslant \BbbE \langle M(t)\xi , \xi \rangle  - \varepsilon  - 1K\BbbE | \xi | 2 =\BbbE 
\bigl\langle \bigl[ 
M(t) - \varepsilon  - 1KIn

\bigr] 
\xi , \xi 

\bigr\rangle 
,

where K is a positive constant as in Lemma 5.2. Note that \xi \in L\infty 
Ft

(\Omega ;\BbbR n) is bounded
and arbitrary, which, together with (65) and (67), implies that

M(t) - \varepsilon  - 1KIn \leqslant P (t, \vargamma )\leqslant M(t), (t, \vargamma )\in [0, T ]\times L2
F\alpha 

t
(\Omega ;\scrS ).

Therefore, the process P = \{ P (t, i); (t, i) \in [0, T ]\times \scrS \} is bounded as follows from the
above inequality and the fact that M(\cdot ) is bounded (see Proposition 2.3).

In the following, we prove that it is left-continuous. For simplicity but without
loss of generality, we only study the left-continuity at t = T , and the situation of
t\in (0, T ) could be proved similarly by considering the related Problem (M-SLQ). Note
that, owing to (65) and (66), for every initial triple (t, \xi , \vargamma ) \in [0, T )\times L\infty 

Ft
(\Omega ;\BbbR n)\times 

L2
F\alpha 

t
(\Omega ;\scrS ), we have

(68) \BbbE \langle M(t)\xi , \xi \rangle  - \varepsilon  - 1
\bigl[ \bigl[ 
\scrL t\xi ,\scrL t\xi 

\bigr] \bigr] 
\leqslant \BbbE \langle P (t, \vargamma )\xi , \xi \rangle \leqslant \BbbE \langle M(t)\xi , \xi \rangle .

Noting representation (49), we can rewrite [[\scrL t\xi ,\scrL t\xi ]] as follows:\bigl[ \bigl[ 
\scrL t\xi ,\scrL t\xi 

\bigr] \bigr] 
=\BbbE 

\int T

t

\Bigl\langle \bigl[ 
F0(s,\alpha (s),\scrX (s),\scrY (s),\scrZ (s))\scrX  - 1(t)

\bigr] \top 
\cdot 
\bigl[ 
F0(s,\alpha (s),\scrX (s),\scrY (s),\scrZ (s))\scrX  - 1(t)

\bigr] 
\xi , \xi 

\Bigr\rangle 
ds.

(69)

Again, note that \xi \in L\infty 
Ft

(\Omega ;\BbbR n) is bounded and arbitrary, which, together with (68)
and (69), implies that for any (t, \vargamma )\in [0, T ]\times L2

F\alpha 
t
(\Omega ;\scrS ),

M(t) - \varepsilon  - 1
\bigl[ 
\scrX  - 1(t)

\bigr] \top 
\times 
\int T

t

F0(s,\alpha (s),\scrX (s),\scrY (s),\scrZ (s))\top F0(s,\alpha (s),\scrX (s),\scrY (s),\scrZ (s))ds \scrX  - 1(t)

\leqslant P (t, \vargamma )\leqslant M(t).

Note that \scrX  - 1(t) and M(\cdot ) are Ft-measurable, and P (\cdot , \alpha (\cdot ))\in L\infty 
\BbbF (0, T ;\BbbS n). Hence,

by taking the conditional expectations w.r.t. Ft on both sides of the above inequality,
one has

M(t) - 1

\varepsilon 

\bigl[ 
\scrX  - 1(t)

\bigr] \top 
\times \BbbE 

\biggl[ \int T

t

F0(s,\alpha (s),\scrX (s),\scrY (s),\scrZ (s))\top F0(s,\alpha (s),\scrX (s),\scrY (s),\scrZ (s))ds
\bigm| \bigm| \bigm| Ft

\biggr] 
\scrX  - 1(t)

\leqslant P (t, i)\leqslant M(t).

Finally, letting t \uparrow T and using the dominated convergence theorem, we get that

lim
t\uparrow T

P (t, i) =M(T ) =G(i) = P (T, i).

Hence, the second purpose is obtained.

Proof of Proposition 3.13. First, we prove the assertion (i). For any fixed ini-
tial triple (\sigma , \xi ,\vargamma ) \in \scrT [0, \tau )\times L\infty 

F\sigma 
(\Omega ;\BbbR n)\times L2

F\alpha 
\sigma 
(\Omega ;\scrS ) and u(\cdot ) \in \scrU [\sigma , \tau ], denote by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 975

\{ X1(s)\} s\in [\sigma ,\tau ] the corresponding solution of state equation (1) w.r.t. (\sigma , \xi ,\vargamma ) over
[\sigma , \tau ]. Consider Problem (M-SLQ) for the initial triple (\tau ,X1(\tau ), \alpha (\tau )). By the
assumptions, there exists \varepsilon > 0 such that (7) holds. Hence, from Proposition 3.9
and representation (16), Problem (M-SLQ) is solvable at \tau and V (\tau ,X1(\tau ), \alpha (\tau )) =
\langle P (\tau ,\alpha (\tau ))X1(\tau ),X1(\tau )\rangle .

Now for Problem (M-SLQ), let v\ast (\cdot ) \in \scrU [\tau ,T ] be an open-loop optimal control
w.r.t. the initial triple (\tau ,X1(\tau ), \alpha (\tau )) and let \{ X\ast 

2 (s)\} s\in [\tau ,T ] be the corresponding
open-loop optimal state process. Define

[u\oplus v\ast ] (s) =

\Biggl\{ 
u(s), s\in [\sigma , \tau ),

v\ast (s), s\in [\tau ,T ],
and \widetilde X(s) =

\Biggl\{ 
X1(s), s\in [\sigma , \tau ),

X\ast 
2 (s), s\in [\tau ,T ].

Then, it is easy to see that [u \oplus v\ast ](\cdot ) \in \scrU [\sigma ,T ] and \widetilde X(\cdot ) satisfies the following
equation: \left\{     

d \widetilde X(s) =
\bigl[ 
A(s,\alpha (s)) \widetilde X(s) +B(s,\alpha (s))[u\oplus v\ast ](s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s)) \widetilde X(s) +D(s,\alpha (s))[u\oplus v\ast ](s)

\bigr] 
dW (s),\widetilde X(\sigma ) = \xi , \alpha (\sigma ) = \vargamma .

Furthermore, we have

J0 (\sigma , \xi ,\vargamma ; [u\oplus v\ast ](\cdot ))(70)

=\BbbE 
\biggl[ 
\langle G(\alpha (T ))X\ast 

2 (T ),X
\ast 
2 (T )\rangle 

+

\int T

\tau 

\biggl\langle \biggl( 
Q(s,\alpha (s)) S(s,\alpha (s))\top 

S(s,\alpha (s)) R(s,\alpha (s))

\biggr) \biggl( 
X\ast 

2 (s)
v\ast (s)

\biggr) 
,

\biggl( 
X\ast 

2 (s)
v\ast (s)

\biggr) \biggr\rangle 
ds

\biggr] 
+\BbbE 

\biggl[ \int \tau 

\sigma 

\biggl\langle \biggl( 
Q(s,\alpha (s)) S(s,\alpha (s))\top 

S(s,\alpha (s)) R(s,\alpha (s))

\biggr) \biggl( 
X1(s)
u(s)

\biggr) 
,

\biggl( 
X1(s)
u(s)

\biggr) \biggr\rangle 
ds

\biggr] 
=\BbbE 

\biggl[ 
V
\bigl( 
\tau ,X1(\tau ), \alpha (\tau )

\bigr) 
+

\int \tau 

\sigma 

\biggl\langle \biggl( 
Q(s,\alpha (s)) S(s,\alpha (s))\top 

S(s,\alpha (s)) R(s,\alpha (s))

\biggr) \biggl( 
X1(s)
u(s)

\biggr) 
,

\biggl( 
X1(s)
u(s)

\biggr) \biggr\rangle 
ds

\biggr] 
= J\tau 

0 (\sigma , \xi ,\vargamma ;u(\cdot )),

where in the last equation we employ relation (16) and the definition of J\tau 
0 . In

particular, when \xi = 0, from Proposition 3.9 we have

J\tau 
0 (\sigma ,0, \vargamma ;u(\cdot )) = J0(\sigma ,0, \vargamma ; [u\oplus v\ast ](\cdot ))\geqslant \varepsilon \BbbE 

\int T

\sigma 

\bigm| \bigm| [u\oplus v\ast ] (s)
\bigm| \bigm| 2ds\geqslant \varepsilon \BbbE 

\int \tau 

\sigma 

| u(s)| 2ds,

which combining Remark 5.6, Corollary 5.5, and Proposition 3.6 implies assertion (i)
holds.

Now, we consider assertions (ii) and (iii). Note that (70) still holds when
the expectation \BbbE replaced by the conditional expectation \BbbE \sigma [\cdot ]. Therefore,
J\tau (\sigma , \xi ,\vargamma ;u(\cdot )) \geqslant \langle P (\sigma ,\vargamma )\xi , \xi \rangle . For Problem (M-SLQ), assume that u\ast (\cdot ) \in \scrU [\sigma ,T ] is
an open-loop optimal control w.r.t. (\sigma , \xi ,\vargamma ), and denote by X\ast = \{ X\ast (s);\sigma \leqslant s\leqslant T\} 
the related open-loop optimal state process, i.e., for s\in [\sigma ,T ],

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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976 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG\left\{     
dX\ast (s) =

\bigl[ 
A(s,\alpha (s))X\ast (s) +B(s,\alpha (s))u\ast (s)

\bigr] 
ds

+
\bigl[ 
C(s,\alpha (s))X\ast (s) +D(s,\alpha (s))u\ast (s)

\bigr] 
dW (s),

X\ast (\sigma ) = \xi , \alpha (\sigma ) = \vargamma .

Then from Corollary 3.8, we see that for Problem (M-SLQ), the restriction .u\ast (\cdot )| [\tau ,T ]

of u\ast (\cdot ) on the interval [\tau ,T ] is optimal for the initial triple (\tau ,X\ast (\tau ), \alpha (\tau )). Moreover,
in (70), using .u\ast (\cdot )| [\sigma ,\tau ] and .u\ast (\cdot )| [\tau ,T ] to replace u(\cdot ) and v\ast (\cdot ), respectively, and
noting that u\ast (\cdot )| [\sigma ,\tau ] \oplus u\ast (\cdot )| [\tau ,T ] = u\ast (\cdot ), we deduce

J\tau 
\bigl( 
\sigma , \xi ,\vargamma ; u\ast (\cdot )| [\sigma ,\tau ]

\bigr) 
= J (\sigma , \xi ,\vargamma ;u\ast (\cdot )) =

\bigl\langle 
P (\sigma ,\vargamma )\xi , \xi 

\bigr\rangle 
.

Therefore, the assertions (ii) and (iii) hold.

6. Example. As presented in the introduction, in a realistic market, it is better
to allow the market parameters to depend on both the Markov chain and Brownian
motion, due to the interest rates, stock rates, and volatilities being affected by the
uncertainties caused by the Brownian motion. In this section, as an application of
our main results, we give an example of the continuous-time mean-variance portfolio
selection problem, which partially develops the work of Li, Zhou, and Lim [13] to
the Markovian regime switching system with random coefficients. For simplicity, we
would like to let m= n= 1.

Suppose there is a market in which two assets are traded over a finite horizon
[0, T ]. One of the assets is the bond whose asset price S0(\cdot ) is subject to the following
ordinary differential equation:\biggl\{ 

dS0(s) = r(s)S0(s)ds, s\in [0, T ],
S0(0) = S0 > 0,

where r(\cdot ) is a positive and bounded function, which represents the bond's interest
rate. The other one of the assets is stock whose asset price S1(\cdot ) satisfies the following
SDE: \biggl\{ 

dS1(s) = S1(s)
\bigl\{ 
b(s,\alpha (s))dt+ \sigma (s,\alpha (s))dW (s)

\bigr\} 
, s\in [0, T ],

S1(0) = S1 > 0, \alpha (0) = i0,

where b(s,\alpha (s)) is the appreciation rate and \sigma (s,\alpha (s)) is the volatility or the dispersion
of the stock. Assume that for any choice of i \in \scrS , both b(\cdot , i) and \sigma (\cdot , i) are in the
space L\infty 

\BbbF W (0, T ;\BbbR ), and there is a positive constant \delta such that \sigma (s,\alpha (s))2 \geqslant \delta for any
s\in [0, T ]. Assume that the trading of shares takes place continuously and transaction
costs and consumption are not considered. Then, a small investor's self-financing
wealth process X(\cdot ) satisfies the following SDE:

(71)\Biggl\{ 
dX(s) =

\bigl\{ 
r(s)X(s) + [b(s,\alpha (s)) - r(s)]u(s)

\bigr\} 
ds+ \sigma (s,\alpha (s))u(s)dW (s), s\in [0, T ],

X(0) =x0 > 0, \alpha (0) = i0,

where u(\cdot ) \in L2
\BbbF (0, T ;\BbbR ) is a portfolio of the investor, which may change over time

s\in [0, T ]. Note that u(s) = 0 implies that the investor invests his/her total wealth in
the bond at time s\in [0, T ].

As shown by Li, Zhou, and Lim [13], the mean-variance portfolio selection refers to
the problem of finding an allowable investment policy (i.e., a dynamic portfolio satis-
fying all the constraints) such that the expected terminal wealth satisfies \BbbE [X(T )] = d
while the risk measured by the variance of the terminal wealth is
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SLQ CONTROL PROBLEM WITH REGIME SWITCHING SYSTEM 977

Var(X(T )) =\BbbE 
\bigl[ 
X(T ) - \BbbE [X(T )]

\bigr] 2
=\BbbE 

\bigl[ 
(X(T ) - d)2

\bigr] 
.

Then we consider the following dynamic stochastic optimization:

(72)

\left\{     
min\BbbE 

\bigl[ 
(X(T ) - d)2

\bigr] 
,

s.t. \BbbE [X(T )] = d,

(X(\cdot ), u(\cdot )) satisfies (7.2).

Since (72) is a convex optimization problem, the equality constraint \BbbE [X(T )] = d can
be dealt with by introducing a Lagrange multiplier \mu \in \BbbR . Therefore, we have

\BbbE 
\bigl[ 
(X(T ) - d)2

\bigr] 
 - 2\mu (\BbbE [X(T )] - d) =\BbbE 

\bigl[ 
(X(T ) - (d+\mu ))2

\bigr] 
 - \mu 2 =\BbbE [X(T ) - \gamma ]2  - \mu 2,

where \gamma = d+ \mu . Now, if we set

\widetilde X(s) =X(s) - \gamma exp
\Bigl\{ 
 - 
\int T

s

r(s)ds
\Bigr\} 
,

then (72) can be transferred into the following problem:

(73)

\left\{                 

min\BbbE [ \widetilde X(T )2]

s.t. d \widetilde X(s) =
\Bigl\{ 
r(s) \widetilde X(s) + [b(s,\alpha (s)) - r(s)]u(s)

\Bigr\} 
ds

+ \sigma (s,\alpha (s))u(s)dW (s), s\in [0, T ],

\widetilde X(0) = x0  - \gamma exp
\Bigl\{ 
 - 
\int T

0

r(s)ds
\Bigr\} 
, \alpha (0) = i0.

It is easy to see that problem (73) is a special case of Problem (M-SLQ) with

G(\alpha (T )) = 1, A(s,\alpha (s)) = r(s), B(s,\alpha (s)) = b(s,\alpha (s)) - r(s),

D(s,\alpha (s)) = \sigma (s,\alpha (s)), s\in [0, T ],

and other coefficients are zero. Then the SRE associated to problem (73) is, for
s\in [0, T ],

(74)\Biggl\{ 
d \^P (s,\alpha (s)) = - 

\bigl[ 
\^Q(s,\alpha (s)) + \^S(s,\alpha (s))\top \Theta (s,\alpha (s))

\bigr] 
ds+ \^\Lambda (s)dW (s) + \^\zeta (s) \bullet d \widetilde N(s),

\^P (T,\alpha (T )) = 1, \alpha (0) = i0,

where i0 \in \scrS and for s\in [0, T ],

(75)

\^Q(s,\alpha (s))\triangleq 2r(s) \^P (s,\alpha (s)),

\^S(s,\alpha (s))\triangleq [b(s,\alpha (s)) - r(s)] \^P (s,\alpha (s)) + \sigma (s,\alpha (s))\^\Lambda (s),

\^R(s,\alpha (s))\triangleq \sigma (s,\alpha (s))2 \^P (s,\alpha (s)), \Theta (s,\alpha (s))\triangleq  - \^R(s,\alpha (s)) - 1 \^S(s,\alpha (s)).

Now, we point out that conditions (H) and (7) hold for this case. In fact, it is trivial
to verify condition (H). As for condition (7), by solving the linear SDE of (73), it is
easy to verify that there is a positive constant \varepsilon such that

\BbbE [ \widetilde X(T )2]\geqslant \varepsilon \BbbE 
\int T

0

| u(s)| 2ds \forall u(\cdot )\in \scrU [0, T ].

Therefore, Theorems 3.1 and 3.2 deduce the following conclusion concerning the mean-
variance portfolio selection problem.
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978 JIAQIANG WEN, XUN LI, JIE XIONG, AND XIN ZHANG

Theorem 6.1. SRE (74) admits a unique adapted solution ( \^P (\cdot , , \alpha (\cdot )), \^\Lambda (\cdot ),
\^\zeta (\cdot )) \in L\infty 

\BbbF (0, T ;\BbbR )\times L2
\BbbF (0, T ;\BbbR )\times L2

\BbbF (0, T ;\BbbR )) and the mean-variance problem (73)
is uniquely solvable. Moreover, the unique optimal investment strategy u\ast (\cdot ) has the
representation

u\ast (s) =\Theta (s,\alpha (s))X\ast (s), s\in [0, T ],

where \Theta (\cdot ) is defined in (75) and X\ast (\cdot ) is the solution of the closed-loop system: for
s\in [0, T ], \left\{           

dX\ast (s) =
\bigl\{ 
r(s) + [b(s,\alpha (s)) - r(s)]\Theta (s,\alpha (s))

\bigr\} 
X\ast (s)ds

+ \sigma (s,\alpha (s))\Theta (s,\alpha (s))X\ast (s)dW (s),

X\ast (0) = x(0) - \gamma exp

\Biggl\{ 
 - 
\int T

0

r(s)ds

\Biggr\} 
, \alpha (0) = i0.

Remark 6.2. The above result partially develops the mean-variance problems
of Li, Zhou, and Lim [13] to the Markovian regime switching system with random
coefficients, which is significantly different from that of Sun, Xiong, and Yong [17].
Note that we consider the one-dimensional state case of two assets (one bond and one
stock) to be just for simplicity, and the multidimensional case of m + 1 assets (one
bond and m stocks) can be proved using a similar argument.

7. Conclusion. This paper develops the work of Sun, Xiong, and Yong [17] to
the framework within the Markovian regime switching system, obtains the solvability
of SRE (5) with jumps and random coefficients, gets the closed-loop representation
of the open-loop optimal control, and gives a financial application of the continuous-
time mean-variance portfolio selection problem, which develops the work of Li, Zhou,
and Lim [13]. In addition, a new point of view for the uniform convexity of the cost
functional is presented, and the equivalence between Problem (M-SLQ)0 and Problem
(M-SLQ) is obtained. Note that it remains open if someone could get the closed-loop
solvability in this model.

Acknowledgments. The authors would like to thank the associate editor and
the anonymous referees for their insightful comments that improved the quality of
this paper.
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