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Abstract. We study the Wasserstein Hamiltonian flow with a common noise on the density
manifold of a finite graph. Under the framework of the stochastic variational principle, we first
develop the formulation of stochastic Wasserstein Hamiltonian flow and show the local existence of
a unique solution. We also establish a sufficient condition for the global existence of the solution.
Consequently, we obtain the global well-posedness for the nonlinear Schr\"odinger equations with
common noise on a graph. In addition, using Wong--Zakai approximation of common noise, we prove
the existence of the minimizer for an optimal control problem with common noise. We show that its
minimizer satisfies the stochastic Wasserstein Hamiltonian flow on a graph as well.

Key words. stochastic Hamiltonian flow on graph, density manifold, Wong--Zakai
approximation, optimal transport
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1. Introduction. The Wasserstein Hamiltonian flow defined on the cotangent
bundle of a probability density manifold, also known as the Wasserstein manifold in
the literature, has been studied in the past few years (see, e.g., [27, 3, 23, 13]). Its re-
lationship with the Hamiltonian ordinary differential equations (ODEs) has also been
well demonstrated via optimal transport theory (see, e.g., [39, 11, 12]). Furthermore,
it has been used in the theoretical or numerical analysis of the nonlinear Schr\"odinger
equation (see, e.g., [34, 35, 36, 11, 16]), mass optimal transport (see, e.g., [5, 24,
16, 14]), and the Schr\"odinger bridge problem (see, e.g., [30, 29, 9, 18]). Extending
Wasserstein Hamiltonian flow to account for random perturbations is challenging be-
cause not all types of noise can be used to perturb the dynamics on a density manifold
in which the nonnegativity of the probability density function and mass conservation
must be preserved. Recently, using the concept of common noise, also referred as en-
vironment or system noise [7, 6], a stochastic version of Wasserstein Hamiltonian flow
is introduced to understand the collective dynamical behavior on a density manifold
of the stochastic Hamiltonian ODE defined on continuous phase space [17]. However,
little is known if the underlying space becomes discrete, such as a finite graph or a
spatial discretization of a continuous space, due to several significant challenges that
arise in the discrete space.

Unlike the continuous space, where stochastic Hamiltonian ODEs can be identified
and interpreted as the particle dynamics corresponding to the stochastic Wasserstein
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WHF WITH COMMON NOISE ON GRAPH 485

Hamiltonian flow, such a particle correspondence has not been established in the dis-
crete space, which prevents adopting many well-developed techniques to the discrete
case. For example, the particle version of stochastic Hamiltonian ODEs has been
used as a push-forward map, a crucial tool in the analysis, to study the dynamical
properties on the density manifold [12]. This tool is hard to generalize to a general
graph partially because not all of the graph can be embedded into a continuous space
[18]. Due to the loss of particle formulation, it is still unclear what kind of noise or
random perturbation on the finite graph can be used as a functional replacement of
the white noise in the continuous space. In addition, low regularity of noise and the
discrete structure of a graph make it harder to analyze the dynamical properties of a
Hamiltonian system on a graph.

In this paper, we propose two different strategies to establish the Wasserstein
Hamiltonian flow with common noise on the finite graph and investigate their math-
ematical properties. The first approach is based on the discrete version of the gen-
eralized stochastic variational principle, which provides a formulation to construct a
stochastic Wasserstein Hamiltonian flow with given initial values. We use the stop-
ping time technique to show its local well-posedness. Using the Poisson bracket, we
provide a sufficient condition on the energy terms in the variational principle to ensure
the global well-posedness for the resulting system. We further demonstrate that both
the nonlinear Schr\"odinger equation and the logarithmic Schr\"odinger equations with
common noise on a graph satisfy this sufficient condition. Thus they possess global
solutions uniquely. In this consideration, it is observed that the Fisher information
plays a fundamental role in obtaining the global existence result. This study on sto-
chastic Wasserstein Hamiltonian flows on a graph will be useful for designing novel
structure-preserving numerical schemes for stochastic Hamiltonian partial differential
equation, such as the stochastic nonlinear Schr\"odinger equation which emerged from
nonlinear optics (see, e.g., [4, 22, 26, 15]), and their related stochastic optimal control
problems [17, 19].

The second approach to derive the boundary value formulation of Wasserstein
Hamiltonian flow with common noise on a graph is proposed in the framework of
stochastic optimal control. Using the Wong--Zakai approximation [41, 40] of common
noise and von Neumann's minimax theorem [37], we prove the existence of a minimizer
for the stochastic optimal control problems. Under suitable assumptions, we show
that their critical point satisfies Wasserstein Hamiltonian flow with common noise on
a graph. In addition, the system obtained by the stochastic optimal control approach
exhibits highly consistent formulation as do those constructed by using the stochastic
variational principle. Yet, they have interesting differences, especially when the local
well-posedness for the latter one is no longer valid. In our investigation, these two
strategies are complementary to each other in exploring the properties of stochastic
Wasserstein Hamiltonian flow on a graph. In particular, we present two stochastic
OT(optimal transport) formulations to show the influence of common noise. When
the diffusion coefficient in the constraint does not depend on the control (the velocity
v), the limit of the stochastic OT problem with Wong--Zakai approximation could
be characterized by the stochastic Wasserstein Hamiltonian flow, but its \theta -connected
component (see [31, 24]) may be different from the deterministic case. In contrast,
when the diffusion coefficient in the constraint depends on the control, then the limit
of the stochastic OT problem with Wong--Zakai approximation is still unclear and its
\theta -connected component is the same as the deterministic case.

The organization of this paper is as follows. In section 2, we discuss what the
common noise is and why it is used in our study. In section 3, we review the basic
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486 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

notations of the deterministic Wasserstein Hamiltonian flow on a finite graph and the
discrete optimal transport theory. In section 4, we present the discrete generalized
stochastic variational principle to derive the stochastic Wasserstein Hamiltonian flow
on a graph and study several properties of the stochastic Wasserstein Hamiltonian
flow. In section 5, we give an alternative way based on stochastic optimal control
to derive the stochastic Wasserstein Hamiltonian flow on a graph. Meanwhile, we
show the existence of the minimizer and derive its equation using the Wong--Zakai
approximation.

2. Common noise. In this section, we borrow some examples to explain what
common noise is and why it is a good choice for us to consider here.

The first example is a mean-field game model (see, e.g., [7]). Consider an N -player
differential game; the state of each player Xi(t) is a stochastic process described by a
stochastic differential equation

dXi(t) = b(t,Xi(t), \mu (t), \alpha i)dt+ \sigma (t,Xi(t), \mu (t))dBi(t) + \sigma 0(t,Xi(t), \mu (t))dW (t),

where b, \sigma ,\sigma 0 are given functions, \alpha i is a control variable, \mu (t) = 1
N

\sum N
j=1 \delta Xi(t), and

Bi(i= 1, . . . ,N) and W are a one-dimensional independent Brownian motion defined
on a completed probability space (\Omega ,\BbbP ,\scrF ). In this model, the Brownian motion Bi

is called the idiosyncratic noise, which is introduced to model random perturbations
to each individual, while W is a stochastic perturbation independent of individuals
(i.e., the same W for all Xi(t)) and it is used to model the common disturbance to all
players, hence it is called common noise. When N \rightarrow \infty , \mu tends to a random measure
reflecting the aggregate behavior of all players. \mu is independent of Bi while depending
on the common noise W , because the effect from Bi is averaged out but not that for
W . In this sense, \mu (t) is a random measure flow perturbed by the common noise W .
Conditioned on W , the model recovers the standard mean-field game formulation (see
the pioneering works [28, 25]).

The second example is the stochastic nonlinear Schr\"odinger equation which
emerged from nonlinear optics, hydrodynamics, and plasma physics. For instance,
in the molecular monolayers arranged in Scheibe aggregates [4, 22], the thermal fluc-
tuations of the phonons are included, which results in a stochastic nonlinear dynamical
model given by

du= i\Delta udt+ \lambda i| u| 2udt+ iu \circ dWt.

Here \lambda \in \BbbR is a constant, W is a Wiener process on an infinite-dimensional space, and
\circ means that the stochastic integral is taken in the Stratonovich sense. The numerical
simulations based on this stochastic model coincide with experimental results reported
in [33] when temperatures are lower than 3K.

Another model, called the nonlinear Schr\"odinger equation with random disper-
sion,

du= i\Delta u \circ dWt + i\lambda | u| 2u,

is proposed to describe the propagation of signal (see, e.g., [1]), in which W is a
standard one-dimensional Brownian motion. In a recent study [17], by using the
Madelung transformation u =

\surd 
\rho eiS and the stochastic variational principle on the

density manifold, it is found that the mathematically equivalent systems in terms of \rho ,
S, and W for the above two stochastic nonlinear Schr\"odinger equations can be estab-
lished. Under this viewpoint, W is a random noise acting on the density function \rho .
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WHF WITH COMMON NOISE ON GRAPH 487

Therefore, it is a common noise, because it perturbs the entire density, not an indi-
vidual particle. In the mean-field game model and nonlinear Schr\"odinger equations,
both \mu and \rho remain probability density functions, despite the perturbations by the
common noise W . In other words, nonnegativity as well as mass can be preserved
under common noise perturbations. Inspired by those examples, we select common
noise to establish the stochastic Wasserstein Hamiltonian flow on graphs.

3. Discrete optimal transport and discrete Wasserstein Hamiltonian
flow. In this section, we introduce the notations and some known results for the
discrete optimal transport problem and Wasserstein Hamiltonian flow [11, 16].

Consider a graph G= (V,E,\omega ) with a node set V = \{ ai\} Ni=1, an edge set E, and
\omega jl are the weights of the edges: \omega jl = \omega lj > 0 if there is an edge between aj and
al, and 0 otherwise. Below, we will write (i, j) \in E to denote the edge in E between
the vertices ai and aj . Throughout the paper, we assume that G is an un-directed,
connected graph with no self-loops or multiple edges.

Let us denote the set of discrete probabilities on a graph by \scrP (G),

\scrP (G) =

\left\{   (\rho )Nj=1 :

N\sum 
j=1

\rho j = 1, \rho j \geq 0 for aj \in V

\right\}   ,

and let \scrP o(G) be its interior (i.e., all \rho j > 0 for aj \in V ). Let \BbbV j be a linear potential
on each node aj , and \BbbW jl = \BbbW lj an interactive potential between nodes aj , al. The
total linear potential \scrV and interaction potential \scrW are given by

\scrV (\rho ) =
N\sum 
i=1

\BbbV i\rho i, \scrW (\rho ) =
1

2

N\sum 
i,j=1

\BbbW ij\rho i\rho j .

We let N(i) = \{ aj \in V : (i, j) \in E\} be the adjacency set of node ai and \theta ij(\rho ) be
the density dependent weight on the edge (i, j)\in E. Consider the probability weight
\theta which is defined by \theta ij(\rho ) = \Theta (\rho i, \rho j) with a continuous differentiable, symmetric,
and concave function \Theta : [0,\infty ) \times [0,\infty ) \rightarrow [0,\infty ) satisfying min(s, t) \leq \Theta (s, t) \leq 
max(s, t), s, t \geq 0. Two typical examples considered in this paper are the average
mean \theta Aij(\rho i, \rho j) =

\rho i+\rho j

2 and the logarithmic mean \theta Lij(\rho i, \rho j) =
\rho i - \rho j

log(\rho i) - log(\rho j)
. For

more choices of the probability weight functions, we refer to [8, 9, 16, 31].
Define the discrete Lagrange functional on a graph by

(3.1) \scrL (\rho , v) =
\int 1

0

\biggl[ 
1

2
\langle v, v\rangle \theta (\rho )  - \scrV (\rho ) - \scrW (\rho ) + \alpha L(\rho ) - \beta I(\rho )

\biggr] 
dt,

where \rho (\cdot )\in \scrP o(G) and the vector field v is a skew-symmetric matrix on E. The inner
product of two vector fields u, v is defined by

\langle u, v\rangle \theta (\rho ) :=
1

2

\sum 
(j,l)\in E

ujlvjl\theta jl(\rho )\omega ij .

The parameter \beta \geq 0, the discrete Fisher information [11, 17], is defined by

(3.2) I(\rho ) =
1

2

N\sum 
i=1

\sum 
j\in N(i)

\widetilde \omega ij | log(\rho i) - log(\rho j)| 2\widetilde \theta ij(\rho ),
and the discrete entropy is L(\rho ) =

\sum N
i=1(log(\rho i)\rho i  - \rho i), where \alpha \in \BbbR , (\widetilde \omega , \widetilde \theta ) can be

another pair of weight and density dependent weight on G.
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488 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

The overall goal of the discrete variational problem is to find the minimizer of
\scrL (\rho , v) subject to the discrete continuity equation on a graph

d\rho i
dt

+ div\theta G(\rho v) = 0,

where the discrete divergence of the flux function \rho v is defined as

div\theta G(\rho v) := - 

\left(  \sum 
l\in N(j)

\surd 
\omega jlvjl\theta jl

\right)  .

As shown in [16], the critical point (\rho , v) of \scrL satisfies v=\nabla GS :=
\surd 
\omega jl(Sj - Sl)(j,l)\in E

for some function S defined on G. As a consequence, the minimization problem leads
to the discrete Wasserstein--Hamiltonian Hamiltonian system onG whose Hamiltonian
is \scrH (\rho ,S) = 1

2\scrK (S,\rho ) + \scrF (\rho ) with \scrK (S,\rho ) := 1
2 \langle \nabla GS,\nabla GS\rangle \theta (\rho ) and \scrF (\rho ) := \beta I(\rho ) +

\scrV (\rho ) + \scrW (\rho ). In particular, if \beta = 0, \scrV = 0, and \scrW = 0, the infimum of 2\scrL (\rho , v)
induces the Wasserstein metric on a finite graph, which is a discrete version of the
Benamou--Brenier formula [10]

W (\rho 0, \rho 1) := inf
v

\left\{   
\sqrt{} \int 1

0

\langle v, v\rangle \theta (\rho )dt :
d\rho 

dt
+ div\theta G(\rho v) = 0, \rho (0) = \rho 0, \rho (1) = \rho 1

\right\}   .

4. Wasserstein Hamiltonian flow with common noise on graph. In this
section, we first use the discrete version of the generalized stochastic variational prin-
ciple in [17] to derive the discrete Wasserstein Hamiltonian flow with common noise.
Then we study both the local and global existence of the unique solution for the
stochastic Wasserstein Hamiltonian flow on a graph.

Let us briefly introduce the generalized stochastic variational principle or Hamil-
tonian principle as follows. Define W\delta the linear Wong--Zakai approximation [41]
of a standard Wiener process W , i.e., W\delta (t) = W (tk) +

t - tk
\delta (W (tk+1)  - W (tk)) for

t \in [tk, tk+1) with tk = k\delta , on a complete filtered probability space (\Omega ,\BbbP , (\scrF )t\geq 0,\scrF ).
Define the dominated energy and perturbed energy as

\scrH 0(\rho ,S) =\scrK (S,\rho ) +\scrF (\rho ) - \alpha L(\rho ),

\scrH 1(\rho ,S) = \eta 1\scrK (S,\rho ) + \eta 2I(\rho ) + \eta 3\scrV (\rho ) + \eta 4\scrW (\rho ) - \eta 5L(\rho )

with different noise intensities \eta i \in \BbbR , i = 1, . . . ,5. We would like to remark that
by taking different values for the noise intensities, the above general form covers
many well-known problems, such as the stochastic optimal transport on graph, the
stochastic Schr\"odinger equation, and the Schr\"odinger equation with white noise on a
graph. Consider the following stochastic variational principle with the Wong--Zakai
approximation W\delta ,

\scrI (\rho 0, \rho T ) = inf\{ \scrS (\rho t,\Phi t)| \Delta \rho t\Phi t \in \scrT \rho t\scrP o(G), \rho (0) = \rho 0, \rho (T ) = \rho T \} ,(4.1)

whose action functional is given by the dual coordinates

\scrS (\rho t,\Phi t) = \langle \rho (0),\Phi (0)\rangle  - \langle \rho (T ),\Phi (T )\rangle +
\int T

0

\langle \partial t\Phi (t), \rho t\rangle +\scrH 0(\rho t,\Phi t)dt

+

\int T

0

\scrH 1(\rho t,\Phi t) \.W\delta dt.
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WHF WITH COMMON NOISE ON GRAPH 489

Here \langle \cdot , \cdot \rangle is the standard inner product in \BbbR N . Denote (\Delta \rho )
\dagger as the pseudoinverse

of \Delta \rho (\cdot ) :=  - div\theta G(\rho \nabla (\cdot )), and \scrT \rho \scrP o(G) as the tangent space at \rho \in \scrP o(G). In
particular, when \eta 1 = 0, the above generalized Hamiltonian principle becomes the
classical variational problem with random potential in Lagrangian formalism.

By using the Lagrange multiplier method, one may verify that the critical point
of (4.1) satisfies the following discrete stochastic Wasserstein Hamiltonian flow:

d\rho 

dt
=

\partial 

\partial S
\scrH 0(\rho ,S) +

\partial 

\partial S
\scrH 1(\rho ,S)dW\delta (t),

dS

dt
= - \partial 

\partial \rho 
\scrH 0(\rho ,S) - 

\partial 

\partial \rho 
\scrH 1(\rho ,S)dW\delta (t).

Moreover, if \rho 0, \rho T , are \scrF 0 and \scrF T measurable functions and \scrH 0,\scrH 1 satisfies some
growth conditions such as those given in [17], the limit of the above Wasserstein Hamil-
tonian flow with aWong--Zakai approximation converges to the stochastic Hamiltonian
flow in the Stratonovich sense:

d\rho 

dt
=

\partial 

\partial S
\scrH 0(\rho ,S) +

\partial 

\partial S
\scrH 1(\rho ,S) \circ dW (t),

dS

dt
= - \partial 

\partial \rho 
\scrH 0(\rho ,S) - 

\partial 

\partial \rho 
\scrH 1(\rho ,S) \circ dW (t).(4.2)

However, we would like to remark that it is difficult to rigorously show that (4.2) is
the critical point of (4.1) when \delta \rightarrow 0.

4.1. Properties of Wasserstein Hamiltonian flow with common noise.
In this part, we consider the initial value problem of (4.2) with \rho (0)\in \scrP o(G) which is
\scrF 0--measurable. Let us first consider the local well-posedness of (4.2). For simplicity,
we may take \theta ij(\rho ) =

\rho i+\rho j

2 , \widetilde \theta ij(\rho ) = \rho i - \rho j

log(\rho i) - log(\rho j)
since the proof for the general case

is analogous. In the rest of this paper, we also assume that \BbbV i,\BbbW ij , i, j = 1, . . .N , are
deterministic finite numbers, i.e., the linear potential and interaction potential are
finite.

Proposition 4.1. Let \rho (0) \in \scrP o(G) and S(0) \in \BbbR N be \scrF 0-measurable. Then
there exists a stopping time \tau \ast (\rho (0), S(0))> 0 such that either

\tau \ast (\rho (0), S(0)) =+\infty or lim
t\rightarrow \tau \ast 

N
min
i=1

\rho i(t) = 0 or lim
t\rightarrow \tau \ast 

S(t) =\infty , a.s.

Proof. Let c > 1. Denote smooth truncation functions \theta 1, \theta 2 such that

\theta 1c (x) := 1, x\in [0, c], \theta 1c (x) = 0, x\in [2c,\infty ),

\theta 2c (x) := 1, x\in [1/c,1], \theta 2c (x) = 0, x\in [0,1/2c].

The support of \theta 1c is chosen as [0,2c] and that of \theta 2c is [ 1
2c ,1]. Define \phi 1

c(S, t), \phi 
2
c(\rho , t)

by

\phi 1
c(S, t) = \theta 1c (\| S\| \scrC ([0,t];\BbbR N )), \phi 2

c(\rho , t) = \theta 2c

\biggl( 
N
min
i=1

min
s\in [0,t]

\rho i(s)

\biggr) 
.

Due to the relationship between the It\^o integral and Stratonovich integral, we consider
the following truncated equation with c > 0 large enough:
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490 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

d\rho c

dt
= \phi 1

c(S
c, t)\phi 2

c(\rho 
c, t)

\partial 

\partial S
\scrH 0(\rho 

c, Sc)dt+ \phi 1
c(S

c, t)\phi 2
c(\rho 

c, t)
\partial 

\partial S
\scrH 1(\rho 

c, Sc)dWt

 - 1

2
\phi 1
c(S

c, t)\phi 2
c(\rho 

c, t)
\partial 2

\partial S2
\scrH 1(\rho 

c, Sc)
\partial 

\partial \rho 
\scrH 1(\rho 

c, Sc)dt

+
1

2
\phi 1
c(S

c, t)\phi 2
c(\rho 

c, t)
\partial 2

\partial \rho \partial S
\scrH 1(\rho 

c, Sc)
\partial 

\partial S
\scrH 1(\rho 

c, Sc)dt,

dSc

dt
= - \phi 1

c(S
c, t)\phi 2

c(\rho 
c, t)

\partial 

\partial \rho 
\scrH 0(\rho 

c, Sc) - \phi 1
c(S

c, t)\phi 2
c(\rho , t)

\partial 

\partial \rho 
\scrH 1(\rho 

c, Sc)dWt

+
1

2
\phi 1
c(S

c, t)\phi 2
c(\rho 

c, t)
\partial 2

\partial S\partial \rho 
\scrH 1(\rho 

c, Sc)
\partial 

\partial \rho 
\scrH 1(\rho 

c, Sc)dt

 - 1

2
\phi 1
c(S

c, t)\phi 2
c(\rho 

c, t)
\partial 2

\partial \rho 2
\scrH 1(\rho 

c, Sc)
\partial 

\partial S
\scrH 1(\rho 

c, Sc)dt.(4.3)

The local Lipschitz continuity of \scrH 0(\rho 
c, Sc) and \scrH 1(\rho 

c, Sc) implies the existence and
uniqueness of the global mild solution for the truncated equation by the standard ar-
guments in [38] since \BbbV i and\BbbW ij are finite for i, j = 1, . . .N . Thus, for any T > 0, there
always exists a global mild solution (\rho c, Sc) \in \scrC ([0, T ];\BbbR N )\times \scrC ([0, T ];\BbbR N ). Now we
define the local solution of (4.3) as follows. For n\in \BbbN +, define the stopping time \tau n by

\tau n := inf\{ t\in [0, T ] : \| Sn\| \scrC ([0,t];\BbbR N ) \geq n\} \wedge inf

\biggl\{ 
t\in [0, T ] :

N
min
i=1

min
s\in [0,t]

\rho ni (s)\leq 
1

n

\biggr\} 
,

and \tau \infty := supn\in \BbbN \tau n. This is guaranteed by the fact that

Zn(t) := \| Sn\| \scrC ([0,t];\BbbR N ) +
1

N
min
i=1

min
s\in [0,t]

\rho ni (s)

<\infty 

defines an increasing, continuous, and \scrF t-adapted process with Zn(0) =
\| S(0)\| + 1

minN
i=1 \rho i(0)

.

For n \leq k, set \tau k,n := inf\{ t \in [0, T ] : Zk(t) \geq n\} . Then we have \tau k,n \leq \tau k and
thus \phi 1

n(S
k, t) = \phi 1

k(S
k, t) = 1, \phi 2

n(\rho 
k, t) = \phi 2

k(\rho 
k, t) on \{ t \leq \tau k,n\} . This leads to

(\rho k, Sk) = (\rho n, Sn) and Zk = Zn a.s. on \{ t\leq \tau k,n\} . We conclude that \tau k,n = \tau n, a.s.,
and define the local solution (\rho ,S) up to the stopping time \tau \infty by (\rho ,S) = (\rho n, Sn),
on \{ t\leq \tau n\} .

We would like to mention that in [11, 16], the global solution in deterministic case
(\eta 1 = \cdot \cdot \cdot = \eta 5 = 0) is obtained by using the energy conservation law if \scrF (\rho ) contains
the Fisher information \beta I(\rho ) with \beta > 0. In the stochastic case, the existence of a
global solution becomes more complicated and depends on the relationship between
the deterministic energy \scrH 0 and he perturbed energy \scrH 1.

To see this fact, applying It\^o's formula to \scrH 0, we obtain that before \tau n, it holds
that

\scrH 0(\rho 
n(t), Sn(t)) =\scrH 0(\rho 

n(0), Sn(0)) +

\int t

0

\partial \scrH 0

\partial \rho 

\top \partial \scrH 1

\partial S
dWs  - 

\int t

0

\partial \scrH 0

\partial S

\top \partial \scrH 1

\partial \rho 
dWs

 - 1

2

\int t

0

\Biggl( 
\partial \scrH 0

\partial \rho 

\top \partial 2\scrH 1

\partial S2

\partial \scrH 1

\partial \rho 
 - \partial \scrH 0

\partial \rho 

\top \partial 2\scrH 1

\partial S\partial \rho 

\partial \scrH 1

\partial S

\Biggr) 
ds

+
1

2

\int t

0

\Biggl( 
\partial \scrH 0

\partial S

\top \partial 2\scrH 1

\partial S\partial \rho 

\partial \scrH 1

\partial \rho 
 - \partial \scrH 0

\partial S

\top \partial 2\scrH 1

\partial \rho 2
\partial \scrH 1

\partial S

\Biggr) 
ds
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+

\int t

0

1

2

\biggl( 
\partial 2\scrH 0

\partial \rho 2

\biggr) 
\cdot 
\biggl( 
\partial \scrH 1

\partial S
,
\partial \scrH 1

\partial S

\biggr) 
ds

 - 
\int t

0

\biggl( 
\partial 2\scrH 0

\partial \rho \partial S

\biggr) 
\cdot 
\biggl( 
\partial \scrH 1

\partial S
,
\partial \scrH 1

\partial \rho 

\biggr) 
ds

+

\int t

0

1

2

\biggl( 
\partial 2\scrH 0

\partial S2

\biggr) 
\cdot 
\biggl( 
\partial \scrH 1

\partial \rho 
,
\partial \scrH 1

\partial \rho 

\biggr) 
ds.(4.4)

To get the global existence of the solution, it suffices to show

sup
n

\BbbE 

\Biggl[ 
sup

s\in [0,\tau n]

\scrH 0(\rho (s), S(s))

\Biggr] 
<\infty .

Therefore, a sufficient condition to ensure the global existence of the solution is that

| \{ \scrH 0,\scrH 1\} | + | \{ \scrH 1,\{ \scrH 0,\scrH 1\} \} | \leq c1\scrH 0 +C1 for some c1,C1 > 0,

where \{ \cdot , \cdot \} is the Poisson bracket. In particular, when \{ \scrH 0,\scrH 1\} = 0, \scrH 0 is an
invariant of the stochastic Wasserstein Hamiltonian flow. A typical example is \scrH 0

being a multiple of \scrH 1.

Theorem 4.1. Let \beta > 0, \alpha \in \BbbR , T > 0, \rho (0) \in \scrP o(G), and S(0) \in \BbbR d be \scrF 0-
measurable and have the finite second moment. Assume that there exists c1,C1 > 0
such that

| \{ \scrH 0,\scrH 1\} | + | \{ \scrH 1,\{ \scrH 0,\scrH 1\} \} | \leq c1\scrH 0 +C1.

Then there exists a unique global solution of (4.2) satisfying \rho (t)\in \scrP o(G), t\in [0, T ].

Proof. It suffices to prove that \rho (t) \in \scrP o(G), t \in [0, T ]. Let \alpha \geq 0. By applying
(4.4), taking expectation, and employing the Burkerholder inequality, we achieve that

\BbbE 

\Biggl[ 
sup

s\in [0,t]

\scrH 0(\rho (t), S(t))

\Biggr] 
\leq \BbbE [\scrH 0(\rho (0), S(0))] +C

\int t

0

\BbbE [\scrH 0(\rho (s), S(s)) +C \prime 
1]ds

+C\BbbE 

\Biggl[ \biggl( \int t

0

(\scrH 0(\rho (s), S(s)) +C \prime 
1)

2ds

\biggr) 1
2

\Biggr] 
.

Gronwall's inequality leads to

\BbbE 

\Biggl[ 
sup

t\in [0,T ]

\scrH 0(\rho (t), S(t))

\Biggr] 
\leq C(T,\rho (0), S(0)).

It follows that supt\in [0,T ]\scrH 0(\rho (t), S(t))<\infty , a.s. Due to the fact that

\scrH 0(\rho ,S) =
1

2
\scrK (\rho ,S) + \beta I(\rho ) + \scrV (\rho ) +\scrW (\rho ) - \alpha L(\rho ),

there always exists a constant C > 0 such that \scrH 0(\rho ,S) +C > 0. Therefore, if \beta > 0,
\alpha \geq 0, we obtain that

sup
t\in [0,T ]

\scrK (\rho (t), S(t))<\infty ,a.s., and sup
t\in [0,T ]

I(\rho (t))<\infty ,a.s.
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492 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

Let us define CKin := supt\in [0,T ]\scrK (\rho (t), S(t)). The fact that I is positive infinity on
the boundary and the definition of \scrK yield that

min
t\in [0,T ]

N
min
i=1

\rho i(t)> 0, max
ij\in E

| Si(t) - Sj(t)| \leq 
\sqrt{}     CKin

min
t\in [0,T ]

N
min
i=1

\rho i(t)

<\infty , a.s.

We conclude that \rho i(t)\in \scrP o(G), t\in [0, T ], a.s. The case that \alpha < 0 can be proven
by similar steps and the fact that x log(x) is uniformly bounded in [0,1].

Remark 4.1. Theorem 4.1 still holds for a more general Hamiltonian system
which does not contain the Fisher information but any other potential \BbbZ (\rho ) provided
that \BbbZ (\rho ) is smooth, bounded from below in \scrP o(G), and it approaches infinity at
the boundary of \scrP (G). We also would like to remark that other choices of \theta , \widetilde \theta are
available (see, e.g., [16]).

As shown in Theorem 4.1, the lower bound of the density \rho is a positive ran-
dom variable, a.s. We end this section with three examples of stochastic nonlinear
Schr\"odinger equations on G. When G is a lattice graph, the following examples can be
viewed as the spatial approximations of the stochastic nonlinear Schr\"odinger equation
on a continuous space [15].

Example 4.1 (nonlinear Schr\"odinger equation on graph with common noise [4,
22, 26, 15]). When nonlinear Schr\"odinger equation on a graph is perturbed by the
common noise, it reads

i
duj

dt
= - 1

2
(\Delta Gu)j + uj\BbbV j + uj

N\sum 
l=1

\BbbW jl| ul| 2 + \sigma juj \circ dWt.(4.5)

Here \sigma is a potential on G; \Delta G, the nonlinear Laplacian operator on G [11, 16], is
defined by

(\Delta Gu)j = - uj

\Biggl( 
1

| uj | 2

\Biggl[ \sum 
l\in N(j)

\omega jl\theta jl(\Im (log(uj)) - \Im (log(ul)))

+
\sum 

l\in N(j)

\widetilde \omega jl
\widetilde \theta jl(\Re (log(uj)) - \Re (log(ul))

\Biggr] 

+
\sum 

l\in N(j)

\omega jl
\partial \theta jl
\partial \rho j

| \Im (log(uj) - log(ul))| 2

+
\sum 

l\in N(j)

\widetilde \omega jl
\partial \widetilde \theta jl
\partial \rho j

| \Re (log(uj) - log(ul))| 2
\Biggr) 
,

where \Im and \Re are the imaginary and real parts of a complex number, respectively.
Denoting the complex form uj =

\surd 
\rho je

iSj(t), j = 1, . . . ,N, the Madelung system
on the graph becomes

d\rho i =
\sum 

j\in N(i)

\omega ij(Si  - Sj)\theta ij(\rho )dt,

dSi +

\left(  \sum 
j\in N(i)

1

2
\omega ij(Si  - Sj)

2 \partial \theta ij
\partial \rho i

+
1

8

\partial 

\partial \rho i
I(\rho ) +\BbbV i +

\sum 
j\in N(i)

\BbbW ij\rho j

\right)  dt+ \sigma idWt = 0.

(4.6)
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WHF WITH COMMON NOISE ON GRAPH 493

We verify that there exists a global unique solution to (4.5) in Example 4.1 as
follows. Notice that \scrH 0(\rho ,S) =

1
2\scrK (\rho ,S)+ 1

8I(\rho )+\scrV (\rho )+\scrW (\rho ), \scrH 1(\rho ,S) =
\sum N

i=1 \sigma i\rho i.
By calculating the derivatives of \scrH 0 and \scrH 1, we find that

\partial \scrH 0

\partial \rho i
=

1

2

\sum 
j\in N(i)

\partial \theta ij(\rho )

\partial \rho i
(Si  - Sj)

2\omega ij +
1

8

\sum 
j\in N(i)

\partial \widetilde \theta ij(\rho )
\partial \rho i

| log(\rho i) - log(\rho j)| 2\widetilde \omega ij

+
1

4

\sum 
j\in N(i)

\widetilde \theta ij(\rho )(log(\rho i) - log(\rho j))
1

\rho i
\widetilde \omega ij +\BbbV i +

N\sum 
j=1

\BbbW ij\rho j ,

\partial \scrH 0

\partial Si
=
\sum 

j\in N(i)

\omega ij\theta ij(\rho )(Si  - Sj),
\partial \scrH 1

\partial \rho i
= \sigma i,

\partial \scrH 1

\partial Si
=

\partial 2\scrH 1

\partial \rho i\partial Sj
=

\partial 2\scrH 1

\partial Si\partial Sj
= 0,

\partial 2\scrH 0

\partial Si\partial Sj
= - \omega ij\theta ij(\rho ),

\partial 2\scrH 0

\partial 2Si
=
\sum 

j\in N(i)

\omega ij\theta ij(\rho ).

Then it follows that

\{ \scrH 0,\scrH 1\} = - 
N\sum 
i=1

\partial \scrH 0

\partial Si

\partial \scrH 1

\partial \rho i
=

N\sum 
i=1

\sum 
j\in N(i)

\omega ij\sigma i(Sj  - Si)\theta ij(\rho ),

\{ \scrH 1,\{ \scrH 0,\scrH 1\} \} = - 
N\sum 

i,j=1

\partial \scrH 1

\partial \rho i

\partial 2\scrH 0

\partial Si\partial Sj

\partial \scrH 1

\partial \rho j

= - 
N\sum 
i=1

\sum 
j\in N(i)

\omega ij\theta ij(\rho )\sigma i\sigma j +

N\sum 
i=1

\sum 
j\in N(i)

\omega ij\theta ij(\rho )\sigma 
2
i .

By H\"older's and Young's inequalities, using the fact that I is nonnegative, \rho i \in [0,1],
and that \sigma i,\BbbV i, \omega ij ,\BbbW ij are finite numbers, we have

| \{ \scrH 0,\scrH 1\} | + | \{ \scrH 1,\{ \scrH 0,\scrH 1\} \} | \leq 
1

2

N\sum 
i=1

\sum 
j\in N(i)

\omega ij | \sigma i| (Sj  - Si)
2\theta ij(\rho )

+
1

2

N\sum 
i=1

\sum 
j\in N(i)

\omega ij | \sigma i| \theta ij(\rho ) +C(N,\sigma ,\omega )

\leq c1\scrH 0 +C(N,\sigma ,\omega ,\BbbV ,\BbbW ),

which implies that the condition of Theorem 4.1 holds, which completes the proof for
the unique global solution.

Example 4.2 (logarithmic Schr\"odinger equation with common noise on a graph
[20]). The logarithmic Schr\"odinger equation on a graph perturbed by the common
noise is

i
duj

dt
= - 1

2
(\Delta Gu)j + uj\BbbV j + uj

N\sum 
l=1

\BbbW jl| ul| 2  - uj log(| uj | 2) + \sigma juj \circ dWt.(4.7)

Here \sigma is a potential on G. Denoting the complex form uj =
\surd 
\rho je

iSj(t), j = 1, . . . ,N,
the Madelung system on a graph follows:
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494 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

d\rho i =
\sum 

j\in N(i)

\omega ij(Si  - Sj)\theta ij(\rho )dt,

dSi +

\left(  \sum 
j\in N(i)

1

2
\omega ij(Si  - Sj)

2 \partial \theta ij
\partial \rho i

+
1

8

\partial 

\partial \rho i
I(\rho ) +\BbbV i +

\sum 
j\in N(i)

\BbbW ij\rho j  - log(\rho i)

\right)  dt

+ \sigma idWt = 0.
(4.8)

Next, we show that (4.7) in Example 4.2 also satisfies the condition of Theorem
4.1. In this case, \scrH 0(\rho ,S) =

1
2\scrK (\rho ,S) - L(\rho ) + \scrV (\rho ) +\scrW (\rho ) + 1

8I(\rho ) and \scrH 1(\rho ,S) =\sum N
i=1 \rho i\sigma i. The verification is similar to that of (4.5). The main difference is that

\partial \scrH 0

\partial \rho i
=

1

2

\sum 
j\in N(i)

\partial \theta ij(\rho )

\partial \rho i
(Si  - Sj)

2\omega ij +
1

8

\sum 
j\in N(i)

\partial \widetilde \theta ij(\rho )
\partial \rho i

| log(\rho i) - log(\rho j)| 2\widetilde \omega ij

+
1

4

\sum 
j\in N(i)

\widetilde \theta ij(\rho )(log(\rho i) - log(\rho j))
1

\rho i
\widetilde \omega ij  - log(\rho i) +\BbbV i +

N\sum 
j=1

\BbbW ij\rho j .

By repeating the same steps in the case of (4.5), one can achieve that

| \{ \scrH 0,\scrH 1\} | + | \{ \scrH 1,\{ \scrH 0,\scrH 1\} \} | \leq c1\scrH 0 +C1

for some c1 > 0 and C1 > 0.

Example 4.3 (white noise dispersion nonlinear Schr\"odinger equation on a graph
[1, 2]). The stochastic dispersive Schr\"odinger equation reads

d\rho i =
\sum 

j\in N(i)

\omega ij(Si  - Sj)\theta ij(\rho ) \circ dWt,

dSi +

\left(  1

2

\sum 
j\in N(i)

\omega ij(Si  - Sj)
2 \partial \theta ij
\partial \rho i

+
1

8

\partial 

\partial \rho i
I(\rho )

\right)  \circ dWt +

\left(  \BbbV i +
\sum 

j\in N(i)

\BbbW ij\rho j

\right)  dt= 0,

(4.9)

which is equivalent to

i
duj

dt
= - 1

2
(\Delta Gu)j \circ dWt +

\Biggl( 
uj\BbbV j + uj

N\sum 
l=1

\BbbW jl| ul| 2
\Biggr) 
dt.

The existence of a unique local solution of (4.9) is done by Proposition 4.1. It
suffices to present an a priori bound of the solution to achieve the global existence.
Since I(\rho ) appears in the stochastic integral term, we denote \widetilde \scrH 0(\rho ,S) =

1
2\scrK (\rho ,S) +

1
8I(\rho ) and \scrH 1(\rho ,S) = \scrV (\rho ) +\scrW (\rho ). Similarly to Theorem 4.1, applying It\^o's formula

to \widetilde \scrH 0(\rho (t), S(t)), one can obtain a sufficient condition for the uniform boundedness

of \widetilde \scrH 0(\rho ,S), that is,

| \{ \widetilde \scrH 0,\scrH 1\} | + | \{ \widetilde \scrH 0,\{ \widetilde \scrH 0,\scrH 1\} \} | \leq c1\widetilde \scrH 0 +C1.(4.10)

Below we will verify the above condition. Calculating the derivatives yields that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

1/
23

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



WHF WITH COMMON NOISE ON GRAPH 495

\partial \widetilde \scrH 0

\partial \rho i
=

1

2

\sum 
j\in N(i)

\partial \theta ij(\rho )

\partial \rho i
(Si  - Sj)

2\omega ij +
1

8

\sum 
j\in N(i)

\partial \widetilde \theta ij(\rho )
\partial \rho i

| log(\rho i) - log(\rho j)| 2\widetilde \omega ij

+
1

4

\sum 
j\in N(i)

\widetilde \theta ij(\rho )(log(\rho i) - log(\rho j))
1

\rho i
\widetilde \omega ij ,

\partial \widetilde \scrH 0

\partial Si
=
\sum 

j\in N(i)

\omega ij\theta ij(\rho )(Si  - Sj),
\partial \scrH 1

\partial \rho i
=\BbbV i +

N\sum 
j=1

\BbbW ij\rho j ,

\partial \scrH 1

\partial Si
=

\partial 2\scrH 1

\partial \rho i\partial Sj
=

\partial 2\scrH 1

\partial Si\partial Sj
= 0,

\partial 2\scrH 1

\partial \rho i\partial \rho j
=\BbbW ij ,

\partial 2\widetilde \scrH 0

\partial Si\partial \rho j
= \omega ij

\partial \theta ij(\rho )

\partial \rho j
(Si  - Sj),

\partial 2\widetilde \scrH 0

\partial Si\partial \rho i
=
\sum 

j\in N(i)

\omega ij
\partial \theta ij(\rho )

\partial \rho i
(Si  - Sj),

\partial 2\widetilde \scrH 0

\partial Si\partial Sj
= - \omega ij\theta ij(\rho ),

\partial 2\widetilde \scrH 0

\partial 2Si
=
\sum 

j\in N(i)

\omega ij\theta ij(\rho ).

Then it holds that

\{ \widetilde \scrH 0,\scrH 1\} = - 
N\sum 
i=1

\partial \widetilde \scrH 0

\partial Si

\partial \scrH 1

\partial \rho i
=

N\sum 
i=1

\sum 
j\in N(i)

\omega ij\theta ij(\rho )(Sj  - Si)

\Biggl( 
\BbbV i +

N\sum 
k=1

\BbbW ij\rho j

\Biggr) 
,

\{ \widetilde \scrH 0,\{ \widetilde \scrH 0,\scrH 1\} \} = - 
N\sum 

i,j=1

\partial \widetilde \scrH 0

\partial \rho j

\partial 2\widetilde \scrH 0

\partial Si\partial Sj

\partial \scrH 1

\partial \rho i
+

\partial \widetilde \scrH 0

\partial Sj

\partial 2\widetilde \scrH 0

\partial Si\partial \rho j

\partial \scrH 1

\partial \rho i
+

\partial \widetilde \scrH 0

\partial Sj

\partial \widetilde \scrH 0

\partial Si

\partial 2\scrH 1

\partial \rho i\rho j
,

where

N\sum 
i,j=1

\partial \widetilde \scrH 0

\partial \rho j

\partial 2\widetilde \scrH 0

\partial Si\partial Sj

\partial \scrH 1

\partial \rho i

=

N\sum 
i=1

\sum 
j\in N(i)

1

2

\partial \theta ij(\rho )

\partial \rho i
(Si  - Sj)

2\omega ij( - \omega ij\theta ij)

\Biggl( 
\BbbV j  - \BbbV i +

N\sum 
k=1

\BbbW jk\rho k  - 
N\sum 

k=1

\BbbW ik\rho k

\Biggr) 

+

N\sum 
i=1

\sum 
j\in N(i)

1

8

\partial \widetilde \theta ij(\rho )
\partial \rho i

| log(\rho i) - log(\rho j)| 2\widetilde \omega ij( - \omega ij\theta ij)

\times 

\Biggl( 
\BbbV j  - \BbbV i +

N\sum 
k=1

\BbbW jk\rho k  - 
N\sum 

k=1

\BbbW ik\rho k

\Biggr) 

+

N\sum 
i=1

\sum 
j\in N(i)

1

4
\widetilde \theta ij(\rho )(log(\rho i) - log(\rho j))

1

\rho i
\widetilde \omega ij( - \omega ij\theta ij)

\times 

\Biggl( 
\BbbV j  - \BbbV i +

N\sum 
k=1

\BbbW jk\rho k  - 
N\sum 

k=1

\BbbW ik\rho k

\Biggr) 
and

N\sum 
i,j=1

\partial \widetilde \scrH 0

\partial Sj

\partial 2\widetilde \scrH 0

\partial Si\partial \rho j

\partial \scrH 1

\partial \rho i
+

\partial \widetilde \scrH 0

\partial Sj

\partial \widetilde \scrH 0

\partial Si

\partial 2\scrH 1

\partial \rho i\rho j

=

N\sum 
i=1

\sum 
j\in N(i)

\omega ij\theta ij(\rho )(Si  - Sj)
2\omega ij

\partial \theta ij
\partial \rho i

\Biggl( 
\BbbV j  - \BbbV i +

N\sum 
k=1

\BbbW jk\rho k  - 
N\sum 

k=1

\BbbW ik\rho k

\Biggr) 

+

N\sum 
i=1

\BbbW ij

\sum 
l\in N(i)

\theta il(\rho )(Si  - Sl)
\sum 

k\in N(j)

\theta jk(\rho )(Sj  - Sk).
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496 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

By H\"older's and Young's inequalities, the nonnegativity of I and the fact that \theta ij \leq 1,

letting sup(i,j)\in E | \partial \theta ij\partial \rho i
| <\infty , we have that

| \{ \widetilde \scrH 0,\scrH 1\} | +

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
N\sum 

i,j=1

\partial \widetilde \scrH 0

\partial Sj

\partial 2\widetilde \scrH 0

\partial Si\partial \rho j

\partial \scrH 1

\partial \rho i
+

\partial \widetilde \scrH 0

\partial Sj

\partial \widetilde \scrH 0

\partial Si

\partial 2\scrH 1

\partial \rho i\rho j

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c1\widetilde \scrH 0 +C1.

Next we estimate | 
\sum N

i,j=1
\partial \widetilde \scrH 0

\partial \rho j

\partial 2 \widetilde \scrH 0

\partial Si\partial Sj

\partial \scrH 1

\partial \rho i
| as follows. Let sup(i,j)\in E | \partial 

\widetilde \theta ij(\rho )
\partial \rho i

| <\infty and

sup(i,j)\in E | \partial \theta ij(\rho )\partial \rho i
| <\infty . Then it holds that\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

N\sum 
i,j=1

\partial \widetilde \scrH 0

\partial \rho j

\partial 2\widetilde \scrH 0

\partial Si\partial Sj

\partial \scrH 1

\partial \rho i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c2\widetilde \scrH 0 +C2 + | \scrB | ,

where

\scrB :=

N\sum 
i=1

\sum 
j\in N(i)

1

4
\widetilde \theta ij(\rho )(log(\rho i) - log(\rho j))

1

\rho i
\widetilde \omega ij( - \omega ij\theta ij)

\times 

\Biggl( 
\BbbV j  - \BbbV i +

N\sum 
k=1

\BbbW jk\rho k  - 
N\sum 

k=1

\BbbW ik\rho k

\Biggr) 

=
1

4

N\sum 
i=1

\sum 
j\in N(i)

\biggl( 
1

\rho i
+

1

\rho j

\biggr) 
(log(\rho j) - log(\rho i))\theta ij\widetilde \theta ij\omega ij\widetilde \omega ij

\Biggl( 
\BbbV j +

N\sum 
k=1

\BbbW jk\rho k

\Biggr) 
.

Thus, to let the condition (4.10) hold, we can impose the assumption

sup
(i,j)\in E

\bigm| \bigm| \bigm| \bigm| \partial \theta ij\partial \rho i

\bigm| \bigm| \bigm| \bigm| + sup
(i,j)\in E

\bigm| \bigm| \bigm| \bigm| \bigm| \partial \widetilde \theta ij\partial \rho i

\bigm| \bigm| \bigm| \bigm| \bigm| <\infty .(4.11)

Besides, one of the following additional conditions is required, that is, either\biggl( 
1

\rho i
+

1

\rho j

\biggr) 
| log(\rho j) - log(\rho i)| \theta ij(\rho )\widetilde \theta ij(\rho )\leq c3| log(\rho j) - log(\rho i)| 2\widetilde \theta ij(\rho ) +C3(4.12)

with some c3,C3 > 0, or

\BbbV j =\BbbV i, \BbbW ik =\BbbW jk, for all i, j, k\leq N.(4.13)

To satisfy (4.12), one may take the harmonic average \theta ij(\rho ) =
2

1
\rho i

+ 1
\rho j

.

We collect the above results for Example 4.3 in the following proposition.

Proposition 4.2. Let \beta > 0, \alpha \in \BbbR , T > 0, \rho (0) \in \scrP o(G), and S(0) \in \BbbR d be \scrF 0-
measurable and have a finite second moment. Under assumption (4.11), in addition,
suppose that either (4.12) or (4.13) holds. Then there exists a unique global solution
to (4.9).

We note that these examples are constructed by the critical points of stochastic
variational principles and have not been considered before. To the best of our knowl-
edge, the existing results on the existence of solutions for these three examples are
only obtained in continuous spaces.

We end this section by summarizing that for any initial values, the Wasserstein
Hamiltonian flow with common noise established here has local well-posedness up to
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WHF WITH COMMON NOISE ON GRAPH 497

a positive stopping time. Even though we conjecture that the system is the critical
point of a stochastic variational principle, it is however unclear how to prove this
rigorously. In fact, it is technically challenging to directly analyze the existence and
uniqueness of the minimizer, even if a stochastic variational principle can be iden-
tified. To address the shortcomings of this approach, we propose another approach
based on optimal control formulation to construct the boundary value formulation of
Wasserstein Hamiltonian flow with common noise in the next section.

5. Optimal control problem with common noise. Here we consider the
following variational principle in the framework of optimal control,

inf
\rho ,v

\biggl[ \int 1

0

1

2
\langle vt, vt\rangle \theta (\rho t)dt

\biggr] 
subject to d\rho (t) + div\theta G(\rho (t)v(t)) + div\theta G(\rho (t)\nabla G\Sigma ) \circ dWt = 0

and \rho (0, \omega ) = \rho a, \rho (1, \omega ) = \rho b,(5.1)

where \Sigma is a given vector field on G, \rho a and \rho b are given \scrF 0-measurable and \scrF 1-
measurable densities in \scrP o(G). Let \omega ij = 1 if (i, j) \in E. Via a discrete Hopf--Cole
transform (see, e.g., [18]), one can show that the critical point of (5.1) formally coin-
cides with that of the discretization of the stochastic Schr\"odinger bridge problem in
[17], i.e.,

inf\{ S(\rho t,\Phi t) : \Delta \rho t
\Phi t \in \scrT \rho t

\scrP o(G), \rho (0) = \rho a, \rho (1) = \rho b\} .

Recall that \Delta \rho t
= - div\theta G(\rho \nabla G(\cdot )), \scrT \rho t

\scrP o(G) is the tangent space of \scrP o(G) at \rho t, and

\scrS (\rho t,\Phi t) = \langle \rho (0),\Phi (0)\rangle  - \langle \rho (1),\Phi (1)\rangle +
\int 1

0

\langle \partial t\Phi (t), \rho t\rangle +\scrH 0(\rho t,\Phi t)dt

+

\int 1

0

\scrH 1(\rho t,\Phi t) \circ dW (t)

with \scrH 0(\rho ,S) =
1
4

\sum 
ij\in E(Si - Sj)

2\theta ij(\rho ),\scrH 1(\rho ,S) =
1
2

\sum 
ij\in E(\Sigma i - \Sigma j)(Si - Sj)\theta ij(\rho ).

By the Lagrangian multiplier method, the critical point of (5.1), if it exists, is expected
to satisfy

d\rho i(t) +
\sum 

j\in N(i)

\theta ij(\rho )(Sj  - Si)dt+
\sum 

j\in N(i)

\theta ij(\rho )(\Sigma j  - \Sigma i) \circ dWt = 0,

dSi(t) +
\sum 

j\in N(i)

1

2
(Sj  - Si)

2 \partial \theta 

\partial \rho i
(\rho i, \rho j)dt

+
\sum 

j\in N(i)

(Si  - Sj)(\Sigma i  - \Sigma j)
\partial \theta 

\partial \rho i
(\rho i, \rho j) \circ dWt = 0.

However, due to the low regularity of W , it seems difficult to directly show the exis-
tence of the minimizer of (5.1). To overcome the challenges, we consider an optimal
control problem perturbed by Wong--Zakai approximations of the Wiener process.

5.1. Optimal control perturbed by Wong--Zakai approximations. In this
part, we prove the existence of the minimizer of the optimal control problem with
Wong--Zakai approximations, which is formulated as
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498 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

inf
\rho ,v

\biggl[ \int 1

0

1

2
\langle vt, vt\rangle \theta (\rho t)dt

\biggr] 
subject to d\rho (t) + div\theta G(\rho (t)v(t)) + div\theta G(\rho (t)\nabla G\Sigma )dW

\delta 
t = 0

and \rho (0) = \rho a, \rho (1) = \rho b.(5.2)

It should be mentioned that the critical points of (5.2) and (4.1), if they exist,
share the same equation. However, it is not clear how to obtain the existence of the
minimizer of (4.1), which motivates us to investigate the minimizer of (5.2). To this
end, we first illustrate that the value of (5.2) is finite.

Given \rho a, \rho b \in \scrP (G), we define the feasible set CF (\rho 
a, \rho b) of pairs (\rho ,m) :

CF (\rho 
a, \rho b) =

\Biggl\{ 
\rho \in H1([0,1];\scrP (G)),m\in L2([0,1];\scrS N\times N )

\bigm| \bigm| \bigm| \bigm| \bigm| (\rho (0), \rho (1)) = (\rho a, \rho b),

d\rho i(t) +
\sum 

j\in N(i)

mijdt+
\sum 

j\in N(i)

(\Sigma j  - \Sigma i)\theta ij(\rho )dW
\delta (t) = 0.

\Biggr\} 

Here \scrS N\times N denotes the skew-symmetric matrix, N is the node number. We consider
an equivalent form of (5.2), i.e., inf\rho ,m\scrA (\rho ,m) over the set CF (\rho 

a, \rho b), where

\scrA (\rho ,m) :=

\int 1

0

1

4

\sum 
(i,j)\in E

L(\theta ij(\rho ),mij)dt.(5.3)

L(x, y) = y2

x if x > 0, L(x, y) = 0 if x = y = 0, and L(x, y) = \infty otherwise. The
equivalence between (5.2) and inf\rho ,m(5.3) is based on the following reasons.

(5.2) \geq inf\rho ,m (5.3): this part is straightly forward by defining mij = \theta ij(Si - Sj).
When \theta ij = 0, define mij = 0.

(5.2) \leq inf\rho ,m (5.3): For any fixed \rho , denote vij =
mij

\theta ij
, and \BbbH \rho = \{ [v]\subset \scrS N\times N | w \in 

[v] if and only if vij = wij for \theta ij(\rho ) \not = 0\} . Under the graph inner product \langle \cdot , \cdot \rangle \theta (\rho ), \BbbH \rho 

forms a finite-dimensional subspace. Thus \nabla G defines a linear map from the potential
functional space (consider L2(G) such that it is also a Hilbert space) to \BbbH \rho , and divG
defines a map from the matrix space to L2(G). Denote P\rho the orthogonal projection
in \BbbH \rho onto the range of \nabla G. Then for any feasible path (\rho t,mt), t \in [0,1], in (5.3),
one can always find a potential functional St such that P\rho t

vt =\nabla GSt. Thanks to the
fact that \BbbH \rho =Ran(\nabla G)\otimes Ker(divG), we have that (I - P\rho t

)vt \in Ker(divG) and thus
div(\rho tvt) = divG(\rho t\nabla GSt). As a consequence, (\rho t, St) also belongs to the feasible set
of (5.2).

Proposition 5.1. For any \rho a, \rho b \in \scrP (G), there is a path (\rho ,m)\in CF (\rho 
a, \rho b) such

that \scrA (\rho ,m)<\infty .

Proof. We use an induction argument on the number of nodes inG. First, consider
the case that the cardinality of V = \{ 1,2\} is 2, the edge E = \{ (1,2), (2,1)\} and \rho a \not = \rho b.
Define \rho 1(t) = \rho a1 , t\in [0,1 - \delta ], \rho 1(t) = \rho a1+(\rho b1 - \rho a1)

t - 1+\delta 
\delta , t\in [1 - \delta ,1]. Then it follows

that

\rho 1(t) - \rho 1(0) =

\int t

0

m21(s)ds+

\int t

0

1

2
(\Sigma 1  - \Sigma 2)dW

\delta (s).

Therefore, we get

m21(t) =
1

2
(\Sigma 2  - \Sigma 1) \.W \delta (t), t\in [0,1 - \delta ],

m21(t) = (\rho b1  - \rho a1)
1

\delta 
+

1

2
(\Sigma 2  - \Sigma 1) \.W \delta (t), t\in [1 - \delta ,1],
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WHF WITH COMMON NOISE ON GRAPH 499

where \.W \delta (t) = W (tk+1) - W (tk)
\delta , tk = k\delta , k\leq K  - 1,K\delta = 1, t\in [tk, tk+1]. Notice that\int 1

0

m2
21(s)ds=

1

4

\int 1 - \delta 

0

(\Sigma 2  - \Sigma 1)
2( \.W \delta (t))2ds

+

\int 1

1 - \delta 

\biggl[ 
(\rho b1  - \rho a1)

1

\delta 
+

1

2
(\Sigma 2  - \Sigma 1) \.W \delta (t)

\biggr] 2
ds

\leq 1

4
(\Sigma 2  - \Sigma 1)

2
K - 1\sum 
k=0

(Wtk+1
 - Wtk)

2

\delta 
+

1

4
(\Sigma 2  - \Sigma 1)

2 (WtK  - WtK - 1
)2

\delta 

+
(\rho b1  - \rho a1)

2

\delta 
+ (\rho b1  - \rho a1)(\Sigma 2  - \Sigma 1)

WtK  - WtK - 1

\delta 
\leq C(\delta )<\infty , a.s.

This covers the case n = 2. When n > 2, we use the concatenation arguments to
show the finiteness of (5.3). Namely, we need show that if there exists \rho \in \scrP (G)
such that CF (\rho 

a, \rho ) and CF (\rho , \rho 
b) have feasible paths then CF (\rho 

a, \rho b) also has a
feasible path. Because for any \rho a, \rho b, we can set an intermediate state (0, . . . ,0,1) and
show that there are feasible paths connecting \rho a and (0, . . . ,0,1), (0, . . . ,0,1), and
\rho b, respectively. By integrating these two paths continuously, we could construct a
feasible path from \rho a to \rho b.

Without loss of generality, we may assume that \rho b = (0, . . . ,0,1). If the support
of \rho a is the same as \rho b, then it follows that \rho a = \rho b, (\rho ,m)\in CF (\rho 

a, \rho b) as long as\sum 
j\in N(i)

mij(t) =
\sum 

j\in N(i)

(\Sigma i  - \Sigma j)\theta (\rho i, \rho j) \.W \delta (t).

Supposing that the support of \rho a has an intersection with the first N  - 1 nodes, we
iteratively construct a sequence \widetilde \rho 0, . . . , \widetilde \rho l0 satisfying \widetilde \rho 0 = \rho a, \widetilde \rho l0 = \rho b, the cardinality
of the support of \widetilde \rho l is strictly smaller than that of \widetilde \rho l - 1, and that there is a feasible
path connecting \widetilde \rho l - 1 with \widetilde \rho l in the interval [tl - 1, tl], where tl =

l
l0
.

Introducing the corresponding saddle scheme formally,

inf
\rho 
sup
\lambda 

\biggl[ 
\scrA (\rho ,m) - 

\int 1

0

\langle \lambda , \.\rho (t) + div\theta G(\rho (t)v(t)) + div\theta G(\rho (t)\nabla G\Sigma ) \.W \delta 
t \rangle dt

\biggr] 
with \rho (0) = \rho a and \rho (1) = \rho b, it can be seen that there exists \lambda \in BVloc([0,1];\BbbR N )
such that the critical point (\rho , v) of (5.2) satisfies

\theta ij(\rho )[vij  - (\lambda i  - \lambda j)] = 0 \forall (i, j)\in E,

\langle \.\lambda ,\rho \rangle  - 1

4

\sum 
ij

v2ij\theta ij(\rho ) +
1

2

\sum 
ij

(\Sigma i  - \Sigma j)(\lambda i  - \lambda j)\theta ij(\rho )dW
\delta (t) = 0, \scrL 1, a.e.

Denote Si = - \lambda i. When the optimal path does not intersect the boundary of \scrP (G),
the above equations become the stochastic Wasserstein Hamiltonian flow (see, e.g.,
[17]),

\.\rho =\nabla S\scrH 0(\rho ,S) +\nabla S\scrH 1(\rho ,S) \.W \delta ,

\.S = - \nabla \rho \scrH 0(\rho ,S) - \nabla \rho \scrH 1(\rho ,S) \.W \delta ,(5.4)

where\scrH 0(\rho ,S) =
1
4

\sum 
ij\in E(Si - Sj)

2\theta ij(\rho ),\scrH 1(\rho ,S) =
1
2

\sum 
ij\in E(\Sigma i - \Sigma j)(Si - Sj)\theta ij(\rho ).

Indeed, we have the following result.
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500 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

Proposition 5.2. Let \rho a, \rho b \in \scrP (G). Assume that (\rho ,m) \in CF (\rho 
a, \rho b) and that

S \in H1([0,1];\BbbR N ) satisfies

\langle \.S,\rho \rangle + 1

4

\sum 
ij

(Si  - Sj)
2\theta ij(\rho ) +

\sum 
ij

(\Sigma i  - \Sigma j)(Si  - Sj)\theta ij(\rho )dW
\delta (t)\leq 0, \scrL 1 a.e.

Then

(i) it holds that

\langle S(1), \rho b\rangle  - \langle S(0), \rho a\rangle \leq \scrA (\rho ,m).

(ii) Equality holds in (i) if and only if

mij = \theta ij(\rho )(\nabla GS)ij \forall (i, j)\in E,

\langle \.S,\rho \rangle + 1

4

\sum 
ij

(Si  - Sj)\theta ij(\rho ) +
\sum 
ij

(\Sigma i  - \Sigma j)(Si  - Sj)\theta ij(\rho )dW
\delta (t) = 0.

(iii) If \rho \in \scrP o(G), a.e., then (\rho ,S) satisfies (5.4), a.e.

Proof. By using integration by parts and H\"older's inequality, we get

\langle S(1), \rho b\rangle  - \langle S(0), \rho a\rangle 

=

\int 1

0

(\langle m,\nabla GS\rangle + \langle \rho , \.S\rangle )dt+
\int 1

0

\langle \nabla G\Sigma ,\nabla GS\rangle \theta (\rho )dW \delta (t)

\leq \scrA (\rho ,m) +

\int 1

0

\biggl( 
\langle \rho , \.S\rangle + 1

2
\| \nabla GS\| 2\theta (\rho ) + \langle \nabla G\Sigma ,\nabla GS\rangle \theta (\rho ) \.W \delta (t)

\biggr) 
dt

\leq \scrA (\rho ,m).

From the above estimate, the equality holds if and only if the conditions in (ii) hold.
If \rho \in \scrP o(G), a.e., we obtain

0 = \langle \rho , \.S +\nabla \rho \scrH 0(\rho ,S) +\nabla \rho \scrH 1(\rho ,S) \.W \delta \rangle 
= \langle \rho , \.S\rangle +\scrH 0(\rho ,S) +\scrH 1(\rho ,S) \.W \delta \leq 0,

which completes the proof.

Now we focus on the existence of the minimizer of (5.2).

Theorem 5.1. Let \rho a, \rho b \in \scrP (G). There exists (\rho \ast , v\ast ,m\ast ) such that (\rho \ast , v\ast )
minimizes (5.2) and (\rho \ast ,m\ast ) minimizes inf\rho ,m\scrA (\rho ,m).

Proof. By Proposition 5.1, there exists a path (\rho ,m) \in CF (\rho 
a, \rho b) such that

\scrA (\rho ,m)\leq C <\infty for some constant C > 0, which implies that \| m\| L2([0,T ];\scrS n\times n) \leq 2C.
Then the equation of \.\rho , together with the Poincar\'e--Wirtinger inequality, implies
that \rho \in H1([0,1];\BbbR N ). The intersection of CF (\rho 

a, \rho b) with any sublevel set, i.e.,
\{ (\rho ,S)| \scrA (\rho , \theta (\rho )\nabla GS)\leq c\} for some c\geq 0, of \scrA is a precompact set in the weak topol-
ogy of H1([0,1];\BbbR N ) \times L2([0,1];\scrS N\times N ). Notice that \scrA is nonnegative and weakly
lower semicontinuous on H1([0,1];\BbbR N ) \times L2([0,1];\scrS N\times N ) (see, e.g., [24]). Thus it
achieves its minimum at some path (\rho \ast ,m\ast )\in CF (\rho 

a, \rho b).

Next we define a measurable vector field v\ast as v\ast ij(t) =
m\ast 

ij(t)

\theta ij(\rho )
if \theta ij(\rho ) > 0, and

v\ast ij(t) = 0 otherwise. As a consequence, we have that 1
2

\int 1

0
\| v\ast \| 2\theta (\rho )dt=\scrA (\rho \ast ,m\ast )<\infty .

Then we show that (\rho \ast , v\ast ) is also a minimizer of (5.2). Let (\rho , v) be a feasible set of
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WHF WITH COMMON NOISE ON GRAPH 501

(5.2) and set mij = \theta ij(\rho )vij . It holds that \scrA (\rho ,m) = 1
2

\int 1

0
\| v\| 2\theta (\rho )dt <\infty and (\rho ,m)\in 

CF (\rho 
a, \rho b). From the property of (\rho \ast ,m\ast ), we have

\int 1

0
\| v\ast \| 2\theta (\rho \ast )dt\leq 

\int 1

0
\| v\| 2\theta (\rho )dt.

Now we are in a position to show the following duality property:

min
(\rho ,m)\in CF (\rho a,\rho b)

\scrA (\rho ,m) = sup
S

\Biggl\{ 
\langle S(1), \rho b\rangle  - \langle S(0), \rho a\rangle : sup

\rho 

\Biggl\{ 
\langle \.S,\rho \rangle + 1

4

\sum 
ij

v2ij\theta ij(\rho )

+
1

2

\sum 
ij

(\Sigma i  - \Sigma j)(Si  - Sj)\theta ij(\rho )dW
\delta (t)

\Biggr\} 
= 0

\Biggr\} 
.(5.5)

The key is using the minimax identity of the following Lagrange multiplier:

\scrL (\rho ,m,S) := \langle S(1), \rho b\rangle  - \langle S(0), \rho a\rangle +\scrA (\rho ,m)

 - 
\int 1

0

(\langle \.S,\rho \rangle + \langle m,\nabla GS\rangle + \langle \nabla G\Sigma ,\nabla GS\rangle \.W \delta (t))dt.

To ensure the boundedness of S, we consider a subset H1
R of H1([0,1];\BbbR n) which is

defined by H1
R := \{ S \in H1([0,1];\BbbR n) : \| S\| H1([0,1];\BbbR n) \leq R\} ,R > 0. We claim that the

following property holds,

inf
(\rho ,m)

sup
S\in H1

R

\scrL (\rho ,m,S) = sup
S\in H1

R

inf
(\rho ,m)

\scrL (\rho ,m,S),(5.6)

by applying the standard minimax theorem in [32, Theorem I.1.1.]. It suffices to
prove that H1

R is convex and compact in the weak topology, \scrA is convex in the weak
topology, \{ S \in H1

R : \scrL (\rho ,m,S) \geq C\} is closed convex set in H1
R, and \{ (\rho ,m) \in 

\scrC F (\rho a, \rho b) :\scrL (\rho ,m,S)\leq C\} is a convex set for any C \in \BbbR . All these conditions can be
verified since \scrL is convex in (\rho ,m) and linear in \lambda , and that H1([0,1];\BbbR N ) is compact
in L2([0,1];\BbbR N ). Furthermore, we also have that

sup
S\in H1

R

\scrL (\rho ,m,S) =\scrA (\rho ,m) +R\scrE (\rho ,m),(5.7)

where the nonnegative functional \scrE is defined by

\scrE (\rho ,m) := sup
S\in H1

1

\{ \langle S(1), \rho b\rangle  - \langle S(0), \rho a\rangle 

 - 
\int 1

0

(\langle \.S,\rho \rangle + \langle m,\nabla GS\rangle + \langle \nabla G\Sigma ,\nabla GS\rangle \theta (\rho ) \.W \delta (t))dt\} .

It can been seen that \scrE = 0 only if (\rho ,m)\in CF (\rho 
a, \rho b) and larger than 0 otherwise. By

making use of the lower continuity and convexity of \scrL and \scrE , it can be seen that for
any R> 0, there exists (\rho \ast ,R,m\ast ,R) such that it minimizes \scrA +R\scrE . Furthermore, the
set \{ (\rho \ast ,R,m\ast ,R)\} R>0 is precompact, which complete the proof by taking R\rightarrow \infty .

Lemma 5.1. The commutative property holds:

inf
(\rho ,m)

sup
S\in H1

\scrL (\rho ,m,S) = sup
S\in H1

inf
(\rho ,m)

\scrL (\rho ,m,S).(5.8)

Proof. Since (\rho \ast ,m\ast )\in CF (\rho 
0, \rho 1), we have that for any R> 0,

\scrA (\rho \ast ,m\ast ) = sup
S\in H1

R

\scrL (\rho \ast ,m\ast , S)\geq inf
(\rho ,m)

sup
S\in H1

R

\scrL (\rho ,m,S).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

1/
23

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



502 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

By (5.6), we get \scrA (\rho \ast ,m\ast ) \geq supS\in H1
R
inf(\rho ,m)\scrL (\rho ,m,S). Recall that (\rho \ast ,m\ast ) is the

minimizer of the optimal control problem with common noise. (5.7) and (\rho \ast ,m\ast ) \in 
CF (\rho 

0, \rho 1) implies that

\scrA (\rho \ast ,m\ast ) = sup
S\in \BbbH 1

R

\scrL (\rho \ast ,m\ast , S)\geq inf
\rho ,m

sup
S\in \BbbH 1

R

\scrL (\rho ,m,S)

=\scrA (\rho \ast ,R,m\ast ,R) +R\scrE (\rho \ast ,R,m\ast ,R)\geq \scrA (\rho \ast ,R,m\ast ,R).

Denote the accumulation point of \{ \rho \ast ,R,m\ast ,R\} by (\rho \ast ,\infty ,m\ast ,\infty ). It follows that
(\rho \ast ,\infty ,m\ast ,\infty )\in CF (\rho 

a, \rho b) and therefore that

\scrA (\rho \ast ,m\ast )\leq \scrA (\rho \ast ,\infty ,m\ast ,\infty ).

We conclude that

\scrA (\rho \ast ,m\ast ) =\scrA (\rho \ast ,\infty ,m\ast ,\infty ), limsup
R\rightarrow +\infty 

R\scrE (\rho \ast ,R,m\ast ,R) = 0.

It suffices to prove

inf
(\rho ,m)\in CF (\rho 0,\rho 1)

sup
S\in H1

\scrL (\rho ,m,S)\leq sup
S\in H1

inf
(\rho ,m)\in CF (\rho 0,\rho 1)

\scrL (\rho ,m,S).

By using (5.6), we obtain that

\scrA (\rho \ast ,\infty , S\ast ,\infty )\leq lim
R\rightarrow \infty 

sup
S\in H1

R

inf
(\rho ,m)

\scrL (\rho ,m,S)\leq sup
S\in H1

inf
(\rho ,m)

\scrL (\rho ,m,S),

and that

\scrA (\rho \ast ,\infty , S\ast ,\infty ) = sup
S\in H1

\scrL (\rho \ast ,\infty ,m\ast ,\infty , S)\geq inf
(\rho ,m)

sup
S\in H1

\scrL (\rho ,m,S),

which completes the proof.

Theorem 5.2. The dual property (5.5) holds.

Proof. For any (\rho ,m)\in H1([0,1],\BbbR N )\times L2([0,1],\scrS N\times N ), by (5.7) we have

sup
S\in H1

\scrL (\rho ,m,S) =\scrA (\rho ,m) + \BbbI CF (\rho a,\rho b)(\rho ,m),

where \BbbI CF (\rho a,\rho b)(\rho ,m) = 0 if (\rho ,m) \in CF (\rho 
a, \rho b), otherwise \BbbI CF (\rho a,\rho b)(\rho ,m) = \infty . By

using (5.8), we achieve that

inf
(\rho ,m)

sup
S\in H1

\scrL (\rho ,m,S) = inf
(\rho ,m)

\{ \scrA (\rho ,m) + \BbbI CF (\rho a,\rho b)(\rho ,m)\} 

= inf
(\rho ,m)\in CF (\rho 0,\rho 1)

\{ \scrA (\rho ,m)\} .

Notice that for a fixed S \in H1, using the H\"older inequality, we get

inf
(\rho ,m)

\scrL (\rho ,m,S) = \langle S(1), \rho b\rangle  - \langle S(0), \rho a\rangle  - 
\int 1

0

max(H( \.S,\nabla GS),0)dt,

where H( \.S,\nabla GS) := sup\rho \{ \langle \.S,\rho \rangle + 1
2\| \nabla GS\| 2\theta (\rho ) + \langle \nabla G\Sigma ,\nabla GS\rangle \theta (\rho ) \.W \delta (t))\} . Thus it

follows that

inf
(\rho ,m)\in CF (\rho 0,\rho 1)

\{ \scrA (\rho ,m)\} = sup
S\in H1

inf
(\rho ,m)

\scrL (\rho ,m,S)
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WHF WITH COMMON NOISE ON GRAPH 503

if H( \.S,\nabla GS) \leq 0, \scrL 1 a.e. It only needs to show the existence of \=S such that

H( \.\=S,\nabla G
\=S) = 0 and that \langle \=S(1), \rho b\rangle  - \langle \=S(0), \rho a\rangle \geq \langle S(1), \rho b\rangle  - \langle S(0), \rho a\rangle . To this end,

let \scrO := \{ H( \.S,\nabla GS) < 0\} and assume that \scrL 1(\scrO ) > 0. Define \=Si = Si + \alpha with
\alpha (t) = - 

\int t

0
\chi \scrO H( \.S,\nabla GS)ds. Thus, we get

\langle \=S(1), \rho b\rangle  - \langle \=S(0), \rho a\rangle  - 
\int 
\scrO 
H( \.\=S,\nabla G

\=S)dt= \langle S(1), \rho b\rangle  - \langle S(0), \rho a\rangle  - 
\int 
\scrO 
H( \.S,\nabla GS)dt

\geq \langle S(1), \rho b\rangle  - \langle S(0), \rho a\rangle ,

which completes the proof.

Now, we are able to describe the Hamiltonian structure of the minimizer. Follow-
ing the idea of [24], define \.S = \.Ssing + \.Sabs, where \.Sabs is the absolutely continuous
part (w.r.t. \scrL 1) of \.S and \.Ssing is the singular part (w.r.t. \scrL 1) of \.S, then we have
that

d\rho (t) + div\theta G(\rho (t)\nabla GS(t)) + div\theta G(\rho (t)\nabla G\Sigma )dW
\delta 
t = 0,

\langle \.Sabs, \rho \rangle + 1

4

\sum 
ij

(Si  - Sj)
2\theta ij(\rho ) +

\sum 
ij

(\Sigma i  - \Sigma j)(Si  - Sj)\theta ij(\rho )dW
\delta 
t = 0, \scrL 1 a.e.,\Biggl\langle 

d \.Ssing

d\mu 
,\rho 

\Biggr\rangle 
= 0 \forall \mu a.e., \mu \bot \scrL 1.

The singular means the singular part of \.S w.r.t. \scrL 1. When the optimal path does not
intersect the boundary of \scrP (G), we recover (5.4). We would like to remark that if the
minimizer (\rho ,S) is also predictable (see, e.g., [21]), then (5.4) converges to a stochastic
Wasserstein Hamiltonian flow driven by the standard Brownian motion when \delta \rightarrow 0
[17].

In the deterministic case, the \theta -connected components have been introduced in
[31, 24] to study whether the optimal transfer achieves the boundary of the density
manifold in optimal transport on a graph (see, e.g., [31, section 1], [24, section 3]). In
this part, we demonstrate that this approach may fail in the stochastic case, such as
(5.2). Let \rho \in \scrP (G). The nodes i, j \in V are called \theta -connected, if there exist integers
i1, . . . , ik \in V such that i1 = i, ik = j, (il, il+1)\in E, l\leq k - 1, and \theta i1i2(\rho ) \cdot \cdot \cdot \theta ik - 1ik(\rho )>
0. The largest \theta -connected set containing i is called the \theta -connected component of i.
All the \theta -components of \rho form a partition of V.

We use the following example to illustrate that \theta -connected component may not
characterize the optimal path.

Remark 5.1. Let V = \{ 1,2,3\} ,E = \{ (1,2), (2,3)\} . Let \rho a = (0,0,1) and \rho b =
(0, 12 ,

1
2 ). We cannot obtain that \rho connecting \rho a and \rho b lies on the boundary as in

the deterministic case. To see this fact, assume that (\rho ,m) \in C(\rho a, \rho b) with \rho 1 \not \equiv 0.
We have that

\.\rho 1 +m12 = (\Sigma 1  - \Sigma 2)\theta 12(\rho ) \.W \delta ,

\.\rho 2 +m21 +m23 = (\Sigma 2  - \Sigma 1)\theta 21(\rho ) \.W \delta + (\Sigma 2  - \Sigma 3)\theta 23(\rho ) \.W \delta ,

\.\rho 3 +m32 = (\Sigma 3  - \Sigma 2)\theta 32(\rho ) \.W \delta .

Then one may define (\widetilde \rho 1, \widetilde \rho 2, \widetilde \rho 3) = (0, \rho 1 + \rho 2, \rho 3) and

\widetilde m12 = (\Sigma 1  - \Sigma 2)\theta 12(\rho ) \.W \delta , \widetilde m23  - (\Sigma 2  - \Sigma 3) \.W \delta =m23  - (\Sigma 2  - \Sigma 3)\theta 23(\rho ) \.W \delta .
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504 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

Then it holds that \widetilde \rho (0) = \rho a, \widetilde \rho (1) = \rho b and \.\widetilde \rho 1 = 0. By the definition of \widetilde \rho , it could be
shown that

\.\widetilde \rho 2 + \widetilde m23 = (\Sigma 2  - \Sigma 3) \.W \delta ,

\.\widetilde \rho 3 + \widetilde m32 = (\Sigma 3  - \Sigma 2) \.W \delta .

Therefore, we have

\scrA (\rho ,m) =
1

2

\int 1

0

\biggl( 
m2

12

\theta 12(\rho )
+

m2
23

\theta 23(\rho )

\biggr) 
dt

and

\scrA (\widetilde \rho , \widetilde m) =
1

2

\int 1

0

((\Sigma 1  - \Sigma 2)\theta 12(\widetilde \rho ) \.W \delta )2

\theta 12(\widetilde \rho ) + (m23 +
1

2
\rho 1(\Sigma 2  - \Sigma 3) \.W \delta )2dt.

However, we may not have \scrA (\widetilde \rho , \widetilde m)\leq \scrA (\rho ,m).

In the next subsection, we consider an optimal control problem with a special
stochastic perturbation, where the \theta -connect method still works in the stochastic
case.

5.2. Optimal control problem with a special stochastic perturbation.
Now we consider a special perturbation of the optimal control problem, that is,

inf
\rho ,v

\biggl[ \int 1

0

1

2
\langle vt, vt\rangle \theta (\rho t)dt

\biggr] 
subject to d\rho (t) + div\theta G(\rho (t)v(t))dt+ div\theta G(\rho (t)v(t))dW

\delta 
t = 0

and \rho (0) = \rho a, \rho (1) = \rho b.(5.9)

Note that (5.9) is different from (5.2) since the diffusion term in the constraint involves
v(t).

Given \rho a, \rho b \in \scrP (G), we define the feasible set CF (\rho 
a, \rho b) of pairs (\rho ,m) such that

\rho \in H1([0,1];\scrP (G)),m\in L2([0,1];\scrS n\times n), (\rho (0), \rho (1)) = (\rho a, \rho b)

and

d\rho i(t) +
\sum 

j\in N(i)

mijdt+
\sum 

j\in N(i)

mijdW
\delta (t) = 0.

We consider the equivalent form of (5.9), inf\rho ,m\scrA (\rho ,m) over the set CF (\rho 
a, \rho b),

where \scrA is defined in (5.3).

Proposition 5.3. For any \rho a, \rho b \in \scrP (G), there is a path (\rho ,m)\in CF (\rho 
a, \rho b) such

that \scrA (\rho ,m)<\infty .

Proof. The proof is similar to that of Proposition 5.1. We use an introduction
argument on the nodes number of G. First, consider the case that the cardinality
of V = \{ 1,2\} is 2, the edge E = \{ (1,2), (2,1)\} , and \rho a \not = \rho b. Define \rho 1(t) = \rho a1 , t \in 
[0,1 - \delta ], \rho 1(t) = \rho a1 + (\rho b1  - \rho a1)

t - 1+\delta 
\delta , t\in [1 - \delta ,1]. Then it follows that

\rho 1(t) - \rho 1(0) =

\int t

0

m21(s)(1 + \.W \delta (s))ds.
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WHF WITH COMMON NOISE ON GRAPH 505

Therefore, we get

m21(t) = 0, t\in [0,1 - \delta ],

m21(t)(1 + \.W \delta (t)) = (\rho b1  - \rho a1)
1

\delta 
, t\in [1 - \delta ,1], \scrL 1 a.e.,

where \.W \delta (t) = W (tk+1) - W (tk)
\delta , tk = k\delta , k\leq K  - 1,K\delta = 1, t\in [tk, tk+1]. Notice that\int 1

0

m2
21(s)ds=

\int 1

1 - \delta 

1

\delta 2
(\rho b1  - \rho a1)

2

(1 + \.W \delta (s))2
ds\leq 

\int 1

1 - \delta 

(\rho b1  - \rho a1)
2

(\delta +WtK  - WtK - 1
)2
ds <\infty , a.s.

This covers the case n= 2. When n> 2, we use the concatenation arguments to show
the finiteness of \scrA as in the proof of Proposition 5.9.

Applying the Lagrange multiplier method, when the optimal path does not inter-
sect the boundary of \scrP (G), the critical point of (5.9) becomes the stochastic Wasser-
stein Hamiltonian flow (see [17]),

\.\rho =\nabla S\scrH 0(\rho ,S)(1 + \.W \delta )2,

\.S = - \nabla \rho \scrH 0(\rho ,S)(1 + \.W \delta )2,(5.10)

where \scrH 0(\rho ,S) =
1
4

\sum 
ij\in E(Si  - Sj)

2\theta ij(\rho ). Following the arguments in section (5.1),
one can obtain similar results in Theorems 5.1--5.2.

We would like to point out that in this particular case, we can use the \theta -connected
components to study whether the optimal transfer achieves the boundary of the den-
sity manifold in optimal transport on a graph. We use the following example to
illustrate the reason.

Remark 5.2. Let V = \{ 1,2,3\} ,E = \{ (1,2), (2,3)\} . Let \rho a = (0,0,1) and
\rho b = (0, 12 ,

1
2 ). We claim that \rho connecting \rho a and \rho b lies on the boundary as in

the deterministic case. Assume that (\rho ,m)\in CF (\rho 
a, \rho b) with \rho 1 \not \equiv 0. Then we have

\.\rho 1 +m12(1 + \.W \delta ) = 0,

\.\rho 2 + (m21 +m23)(1 + \.W \delta ) = 0,

\.\rho 3 +m32(1 + \.W \delta ) = 0.

Then one may define (\widetilde \rho 1, \widetilde \rho 2, \widetilde \rho 3) = (0, \rho 1 + \rho 2, \rho 3) and \widetilde m12 = 0, \widetilde m23 = m23. Then it
holds that \widetilde \rho (0) = \rho a, \widetilde \rho (1) = \rho b, and \.\widetilde \rho 1 = 0. By the definition of \widetilde \rho , it could be shown
that

\.\widetilde \rho 2 + \widetilde m23(1 + \.W \delta ) = 0,

\.\widetilde \rho 3 + \widetilde m32(1 + \.W \delta ) = 0.

Therefore, we have

\scrA (\rho ,m) =
1

2

\int 1

0

\biggl( 
m2

12

\theta 12(\rho )
+

m2
23

\theta 23(\rho )

\biggr) 
dt

and

\scrA (\widetilde \rho , \widetilde m) =
1

2

\int 1

0

m2
23

\theta 23(\widetilde \rho )dt= 1

2

\int 1

0

m2
23dt.

We have \scrA (\widetilde \rho , \widetilde m)<\scrA (\rho ,m), which leads to a contradiction.
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506 JIANBO CUI, SHU LIU, AND HAOMIN ZHOU

Next we show the relationship between (5.9) with a small perturbation \epsilon \.W \delta and
the classical optimal transport problem. By defining \^v = v(1 + \epsilon \.W \delta ), (5.9) can then
be rewritten as

inf
\rho ,\widehat v
\biggl[ \int 1

0

1

2

1

(1 + \epsilon \.W \delta )2
\langle \widehat vt,\widehat vt\rangle \theta (\rho t)dt

\biggr] 
subject to d\rho (t) + div\theta G(\rho (t)\widehat v(t)) = 0 and \rho (0) = \rho a, \rho (1) = \rho b.(5.11)

We show the \Gamma -convergence of

\scrA \epsilon n(\rho ,m) :=

\int 1

0

1

(1 + \epsilon n \.W \delta )2

\sum 
ij

m2
ij

\theta ij(\rho )
ds, \epsilon n \rightarrow 0.

For a given (\rho ,m)\in CF (\rho 
a, \rho b) and for a sequence (\rho \epsilon n ,m\epsilon n)\in CF (\rho 

a, \rho b) converging
to (\rho ,m), we have that

lim inf
n\rightarrow \infty 

\scrA \epsilon n(\rho n,mn)\geq lim inf
n\rightarrow \infty 

\int 1

0

1

(1 + \epsilon n| \.W \delta | )2
\sum 
ij

m2
ij

\theta ij(\rho )
ds\geq \scrA (\rho ,m).

By the dominated convergence theorem, it follows that

lim
\epsilon \rightarrow 0

inf
\rho ,\widehat v
\biggl[ \int 1

0

1

2

1

(1 + \epsilon \.W \delta )2
\langle \widehat vt,\widehat vt\rangle \theta (\rho t)dt

\biggr] 
\leq inf

\rho ,\widehat v limsup
\epsilon \rightarrow 0

\biggl[ \int 1

0

1

2

1

(1 + \epsilon \.W \delta )2
\langle \widehat vt,\widehat vt\rangle \theta (\rho t)dt

\biggr] 
= inf

\rho ,v

\biggl[ \int 1

0

1

2
\langle vt, vt\rangle \theta (\rho t)dt

\biggr] 
.

Combining the above estimates, we have that the limit of optimal control with com-
mon noise (5.11) is the classical optimal control a.s.

We would like to make a comparison between the variational problem (5.2) (its
critical point (5.4)), and (5.9) (its critical point (5.10)). First, formally speaking, the
limit of (5.2) on the continuous space is expected to be

inf
v

\int 1

0

1

2
\BbbE [| v(t,Xt)| 2]dt

subject to dX(t) = v(t,X(t))dt+\nabla \Sigma (X(t))dW \delta 
t

and X(0)\sim \rho (0) = \rho a, X(1)\sim \rho (1) = \rho b.

while that of (5.9) is expected to be

inf
v

\int 1

0

1

2
\BbbE [| v(t,Xt)| 2]dt

subject to dX(t) = v(t,X(t))dt+ v(t,X(t))dW \delta 
t

and X(0)\sim \rho (0) = \rho a, X(1)\sim \rho (1) = \rho b.

Here the expectation \BbbE is conditionally on W .
Second, the limit of the critical point of (5.4) on the density space is

d\rho =
\delta \scrH 0

\delta S
(\rho ,S)dt+

\delta \scrH 1

\delta S
(\rho ,S)dW \delta 

t ,

dS = - \delta \scrH 0

\delta \rho 
(\rho ,S) - \delta \scrH 1

\delta \rho 
(\rho ,S)dW \delta 

t .(5.12)
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Here \scrH 0(\rho ,S) =
\int 
\BbbR d

1
2 | \nabla S(x)| 2\rho (x)dx,\scrH 1(\rho ,S) =

\int 
\BbbR d \nabla S(x)\nabla \Sigma (x)\rho (x)dx. Then un-

der suitable conditions, one can expect that when \delta \rightarrow 0, the limit of (5.12) becomes
the stochastic Wasserstein Hamiltonian flow

d\rho =
\delta \scrH 0

\delta S
(\rho ,S)dt+

\delta \scrH 1

\delta S
(\rho ,S) \circ dWt,

dS = - \delta \scrH 0

\delta \rho 
(\rho ,S) - \delta \scrH 1

\delta \rho 
(\rho ,S) \circ dWt, a.s.

In contrast, the limit of (5.4) on the continuous space is

d\rho =
\delta \scrH 0

\delta S
(\rho ,S)(1 + \.W \delta 

t )
2dt,

dS = - \delta \scrH 0

\delta \rho 
(\rho ,S)(1 + \.W \delta 

t )
2dt.(5.13)

By taking \delta \rightarrow 0, it is still unclear how to define a suitable limit of (5.13) due to the
term lim\delta \rightarrow 0( \.W \delta )2. If the limit exists, what is the difference compared to the original
stochastic Wasserstein Hamiltonian flow? Those are interesting questions that can
be further investigated in the future. Understanding them can help to design better
numerical schemes by combining the stochastic Wasserstein Hamiltonian flow on a
graph and some structure-preserving temporal integration.

Third, for a fixed \delta > 0, one can use the \theta -connected components [31, 24] to study
whether the optimal transfer achieves the boundary of the density manifold for (5.10)
on the discrete graph. However, this method may fail for (5.4).

6. Conclusions. In this paper, using the notion of common noise, we establish
the initial value and two-point boundary value problems of stochastic Wasserstein
Hamiltonian flows on the finite graph. We show the local well-posedness of the initial
value problem always holds, up to a positive time, for stochastic Wasserstein Hamil-
tonian flow and provide a sufficient condition of its global well-posedness. For the
boundary value problem, by exploiting the Wong--Zakai approximation, we obtain
the existence of the minimizer of the optimal control problem perturbed by common
noise and derive its dual formula. However, many questions remain to be answered.
For example, how to show the existence of the minimizer of the optimal control prob-
lem driven by the other Wiener process (not common noise)? Does the minimizer
exist for the general variational principle with common noise? When considering the
lattice graphs, can we get some characterizations of the minimizer for the continuous
problem if the mesh size is reduced to zero? These questions are very important
for numerical computations of the stochastic Wasserstein Hamiltonian flow and its
related control problem. Although our focus is on using common noise in this paper,
we hope the results may shed light on the investigation of Wasserstein Hamiltonian
flow with other types of noise too.
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