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Abstract. In this paper, we propose a numerical method to solve the classic L2-optimal trans-
port problem. Our algorithm is based on the use of multiple shooting, in combination with a
continuation procedure, to solve the boundary value problem associated to the transport problem.
Based on the viewpoint of Wasserstein Hamiltonian flow with initial and target densities, our algo-
rithm reflects the Hamiltonian structure of the underlying problem and exploits it in the numerical
discretization. Several numerical examples are presented to illustrate the performance of the method.
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1. Introduction. Optimal transport (OT) has a long and rich history, and it
finds applications in various fields, such as image processing, machine learning, and
economics (e.g., see [22, 29]). The first mass transfer problem, a civil engineering
problem, was considered by Monge in 1781. A modern treatment of this problem,
in terms of probability densities, was studied by Kantorovich in [18]. In this light,
the OT problem consists of moving a certain probability density into another, while
minimizing a given cost functional. Depending on whether (one or both of) the
densities are continuous or discrete, we have a fully discrete, or a semidiscrete, or a
continuous OT problem. In this work, we consider a continuous OT problem subject
to the cost given by the squared L2 norm. This is the most widely studied continuous
OT problem, and the formulation we adopt in this paper is based on an optimal control
formulation in a fluid mechanics framework, known as the Benamou--Brenier formula,
established in [3]. The starting point is to cast the OT problem in a variational form
as

inf
v

\biggl\{ \int 1

0

\langle v, v\rangle \rho dt : \partial t\rho +\nabla \cdot (\rho v) = 0, \rho (0) = \mu , \rho (1) = \nu 

\biggr\} 
,(1.1)

where \langle v, v\rangle \rho :=
\int 
\BbbR d | v| 2\rho dx with smooth velocity field v(t, x) \in \BbbR d, and \mu and

\nu are probability density functions satisfying
\int 
\BbbR d | x| 2\mu (x)dx,

\int 
\BbbR d | x| 2\nu (x)dx < +\infty .

This ensures the existence and uniqueness of the optimal map M\ast for the equiv-
alent Monge--Kantorovich problem of (1.1), i.e., infM

\int 
\BbbR d | M(x)  - x| 2\mu (x)dx with
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MULTIPLE SHOOTING METHOD FOR WGE A2919

M : \BbbR d \rightarrow \BbbR d transferring \mu to \nu (see, e.g., [29, Theorem 1.22]). Moreover, the
optimal map has the form M\ast (x) = \nabla \psi (x) = x+\nabla \phi (x), \mu -a.s., with a convex func-
tion \psi (x). From [3], we have that \nabla \phi (x) = v(0, x) and that the characteristic line
(X(t, x), v(t,X(t, x))) satisfies

\partial t\rho (t,X(t, x)) +\nabla \cdot (\rho (t,X(t, x))v(t,X(t, x))) = 0,

\partial tv(t,X(t, x)) +\nabla 
\Bigl( 1
2
| v(t,X(t, x))| 2

\Bigr) 
= 0.

When X(t, x) = x+ tv(0, x) is invertible, we obtain that \rho (t) = X(t, \cdot )\#\rho (0) and that
v(t, x) = v(0, X - 1(t, x)) = \nabla \psi (0, X - 1(t, x)). We refer to [5, 15, 29] and references
therein for results about regularity of M\ast and \psi . The optimal value in (1.1) is known
as the L2-Wasserstein distance square between \mu and \nu , and written as g2W (\mu , \nu ). The
formulation (1.1) is interpreted as finding the optimal vector field v to transport the
given density function \mu to the density \nu with the minimal amount of kinetic energy.
(We emphasize that the ``time variable"" t has no true physical meaning, and it serves
the role of a homotopy parameter.)

An alternative viewpoint for solving the minimization problem (1.1) is via the
Hamiltonian flow on the density manifold (see, e.g., [9, 11]). More precisely, by con-
sidering the Lagrange multiplier technique, we can look for the critical point (\rho , v, \lambda )
of the following:

\scrL (v, \rho , \lambda ) :=
\int 1

0

\int 
\BbbR d

| v(t, x)| 2\rho (t, x)dtdx

+

\int 1

0

\int 
\BbbR d

\lambda (t, x)(\partial t\rho (t, x) +\nabla \cdot (\rho (t, x)v(t, x)))dtdx.

Taking the variational derivative with respect to \rho , v, \lambda and using integration by parts,
we obtain, respectively,

\delta \scrL 
\delta \rho 

= | v(t, x)| 2  - \partial t\lambda (t, x) - v(t, x) \cdot \nabla v(t, x),

\delta \scrL 
\delta v

= 2v(t, x)\rho (t, x) - \nabla \lambda (t, x)\rho (t, x),

\delta \scrL 
\delta \lambda 

= \partial t\rho (t, x) +\nabla \cdot (\rho (t, x)v(t, x)).

Thus the critical point of \scrL satisfies the following equations:

(2v(t, x) - \nabla \lambda (t, x))\rho (t, x) = 0,

| v(t, x)| 2  - \partial t\lambda (t, x) - v(t, x) \cdot \nabla \lambda (t, x) = 0,

\partial t\rho (t, x) +\nabla \cdot (\rho (t, x)v(t, x)) = 0.

As a consequence, when \rho (t, x) remains positive, letting S(t, x) = 1
2\lambda (t, x) (namely

v(t, x) = \nabla S(t, x)), we obtain (up to a spatially independent function C(t)) the
following system in the unknowns (\rho , S):

(1.2)

\Biggl\{ 
\partial t\rho +\nabla \cdot (\rho \nabla S) = 0,

\partial tS + 1
2 | \nabla S| 

2 = 0,

subject to boundary conditions \rho (0) = \mu , \rho (1) = \nu . If S0 = S
\bigm| \bigm| 
t=0

is known, the opti-

mal value gW (\mu , \nu ), the L2-Wasserstein distance between \mu and \nu , equals
\sqrt{} 

2H(\mu , S0)
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A2920 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

with H(\rho , S) =
\int 
\BbbR d

1
2 | \nabla S| 

2\rho dx. Our approach in solving the OT problem is to find
some initial S0 (or v(0, x)) such that the trajectory starting at (\mu , S0) passes through
\nu at t = 1. This is the well-known geodesic equation between two densities \mu and \nu on
the Wasserstein manifold [31], and can also be viewed as a Wasserstein Hamiltonian
flow with the Hamiltonian H(\rho , S) [9].

Remark 1.1. Obviously, S is defined only up to an arbitrary constant. As a con-
sequence, the (\rho , S) formulation (1.2) of the boundary value problem cannot have a
unique solution. Because of this fact, we will in the end revert to using a formula-
tion based on \rho and v, but the Hamiltonian structure of (1.2) will guide us in the
development of appropriate semidiscretizations of the problem in the (\rho , v) variables.

In recent years, there have been several numerical studies concerned with approx-
imating solutions of OT problems, and many of them are focused on the continuous
problem considered in this work, that is, on computation of the Wasserstein distance
gW and the underlying OT map. A key result in this context is that the optimal
map is the gradient of a convex function u, which is the solution of the so-called
Monge--Amp\'ere equation, a nonlinear elliptic PDE subject to nonstandard boundary
conditions. We refer to [2, 4, 14, 17, 24, 27, 32] for a sample of numerical work on
the solution of the Monge--Amp\'ere equation. For different approaches, in the case of
continuous, discrete, and semidiscrete OT problems, and for a variety of cost func-
tions, we refer to [6, 12, 13, 21, 23, 25, 28, 30]. For instance, by adding a small Fisher
information regularization term into the dynamical setting of the Benamou--Brenier
formula, an optimization method was proposed in [21] to approximate the OT dis-
tance. In [28], a first-order primal-dual method was presented to solve the vector and
matrix optimal mass transport. In [26], the authors introduced a family of numerical
schemes based on entropic regularization and Sinkhorn's algorithm to approximate
the OT problem in the Kantorvich formulation. Recently, several aspects of numer-
ical methods, such as discretization of the forward-backward stochastic system and
optimization techniques for variational problem in order to solve the discrete mean
field game and mean field control problem, have been discussed in [20].

However, numerical approximation to the solution of the Wasserstein geodesic
equation, a two-point boundary value problem, has not been directly considered in the
existing literature. This is our main goal in the present paper. There are good reasons
to consider solving the geodesic equation: at once, one can recover the Wasserstein
distance, the OT map, and the ``time dependent"" vector field producing the optimal
trajectory. At the same time, there are also a number of obstacles that make the
numerical solution of the Wasserstein geodesic equation very challenging: the density
\rho needs to be nonnegative, mass conservation is required, and retaining the underlying
symplectic structure is highly desirable, too. Another hurdle, which is not at all
obvious, is that the Hamiltonian system (1.2) with initial values on the Wasserstein
manifold often develops singularities in finite time (see, e.g., [10]). These challenges
must be overcome when designing numerical schemes for the boundary value problem
(1.2).

In this paper, we propose computing the solution of (1.2) by combining a multiple
shooting method, in conjunction with a continuation strategy, for an appropriate
semidiscretization of (1.2). First, we consider a spatially discretized version of (1.2),
which will give a (large) boundary value problem of ODEs. To solve the latter, we
will use a multiple shooting method, whereby the interval [0, 1] is partitioned into
several subintervals, [0, 1] = \cup K - 1

i=0 [ti, ti+1], initial guesses for the density and the
velocity are provided at each ti, i = 0, . . . ,K  - 1, initial value problems are solved
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MULTIPLE SHOOTING METHOD FOR WGE A2921

on [ti, ti+1], and eventually enforcement of continuity and boundary conditions will
result in a large nonlinear system to solve for the density \rho and velocity v at each
ti. To solve the nonlinear system, we use Newton's method, and---to enhance its
convergence properties---we will adopt a continuation method to obtain good initial
guesses for the Newton's iteration.

Multiple shooting is a well-studied technique for solving two-point boundary value
problems of ordinary differential equations (TPBVPs of ODEs), and we refer the
reader to [19] for an early derivation of the method, and to [1] for a comprehensive
review of techniques for solving TPBVPs of ODEs, and relations (equivalence) be-
tween many of them. Our main reason for adopting multiple shooting is its overall
simplicity, and the ease with which we can adopt appropriate time discretizations
of symplectic type (on sufficiently short time intervals) in order to avoid finite time
singularities when solving (1.2) subject to given initial conditions. We would like to
remark that the convergence analysis of the multiple shooting method, together with
the space-time discretization and continuous method, is beyond the scope of the cur-
rent paper and will be studied in the future. With regard to the spatial discretization
of Wasserstein Hamiltonian flow, the convergence result of the Fisher information
regularization symplectic scheme has been obtained in [10].

The rest of this paper is organized as follows. In section 2, we briefly review the
continuous OT problem and introduce a spatial discretization to convert (1.2) into
Hamiltonian ODEs. First, we propose the semidiscretization for the (\rho , S) variables,
but then in section 3 we will revert it to the (\rho , v) variables, which are those with which
we end up working. The multiple shooting method, and the continuation strategy, are
also presented in section 3. Results of numerical experiments are presented in section
4.

2. Spatially discrete OT problems. In this section, we introduce the spatial
discretization of (1.2). First, we need to truncate \BbbR d to a finite computational domain,
which for us will be a d-dimensional rectangular box in \BbbR d: \scrO = [xL, xR]

d. We note
that truncating \BbbR d to a domain like \scrO is effectively placing some natural condition on
the type of densities \mu and \nu we envision having, namely they need to decay sufficiently
fast outside of the box \scrO (see [16]). Then, we propose the spatial discretization of
(1.2) by following the theory of the OT problem on a finite graph similarly to what
we did in [10].

Next, we let G = (V,E) be a uniform lattice graph with equal spatial step-size
\delta x = xR - xL

n in each dimension. Here V is the vertex set with N = (n + 1)d nodes
labeled by multi-index i = (ik)

d
k=1 \in V, ik \leq n + 1. E is the edge set: ij \in E if

j \in N(i) (read, j is a neighbor of i), where

N(i) = \cup d
k=1Nk(i), Nk(i) =

\Bigl\{ 
(i1, . . . , ik - 1, jk, ik+1, . . . , id)

\bigm| \bigm| | ik  - jk| = 1
\Bigr\} 
.

A vector field v on E is a skew-symmetric matrix. The inner product of two vector
fields u, v is defined by

\langle u, v\rangle \theta (\rho ) :=
1

2

\sum 
(j,l)\in E

ujlvjl\theta jl(\rho ),

where \theta is a weight function depending on the probability density. In this study, we
select it as the average of density on neighboring points, i.e.,

(2.1) \theta ij(\rho ) :=
\rho i + \rho j

2
if j \in N(i).
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A2922 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

For more choices, we refer the reader to [10] and references therein.
The discrete divergence of the flux function \rho v is defined as

div\theta G(\rho v) :=  - 
\biggl( \sum 

l\in N(j)

1

\delta x
vjl\theta jl

\biggr) N

j=1

.

Using the discrete divergence and inner product, a discrete version of the Benamou--
Brenier formula is introduced in [7],

W 2(\mu , \nu ) = inf\widetilde v
\biggl\{ \int 1

0

\langle \widetilde v, \widetilde v\rangle \theta (\rho )dt :
d\rho 

dt
+ div\theta G(\rho \widetilde v) = 0, \rho (0) = \mu , \rho (1) = \nu 

\biggr\} 
.(2.2)

Considering the critical point (\rho , v, \lambda ) of the Lagrange multiplier of (2.2),\int 1

0

\langle \widetilde v, \widetilde v\rangle \theta (\rho )dt+ \int 1

0

N\sum 
i=1

\lambda i

\Bigl( d\rho i
dt

+ div\theta G(\rho \widetilde v)| i\Bigr) dt,
we have that \Bigl( 

2\widetilde vij + \lambda j  - \lambda i
\delta x

\Bigr) 
\theta ij(\rho ) = 0,\sum 

j\in N(i)

| \widetilde vij | 2  - d\lambda i
dt

 - 
\sum 

j\in N(i)

\lambda i  - \lambda j
\delta x

\widetilde vij = 0.

When \theta ij(\rho ) > 0, ij \in E, we have \widetilde vij =
\lambda i - \lambda j

2\delta x , which leads to the gradient

structure of \widetilde vij . By letting \widetilde vij =
Si - Sj

\delta x for ij \in E, its critical point satisfies the
discrete Wasserstein Hamiltonian flow (cf. (1.2)),

d\rho i
dt

=
\sum 

j\in N(i)

1

(\delta x)2
(Si  - Sj)\theta ij(\rho ) =

\partial \scrH 
\partial Si

,

dSi

dt
=  - 1

2

\sum 
j\in N(i)

1

(\delta x)2
(Si  - Sj)

2 \partial \theta ij(\rho )

\partial \rho i
=  - \partial \scrH 

\partial \rho i
+ C(t)

(2.3)

with boundary values \rho (0) = \mu and \rho (1) = \nu . Here the discrete Hamiltonian is

\scrH (\rho , S) =
1

4

N\sum 
i=1

\sum 
j\in N(i)

| Si  - Sj | 2

(\delta x)2
\theta ij(\rho ).

We observe that (2.3) is a semidiscrete version of the Wasserstein Hamiltonian flow,
preserving the Hamiltonian and symplectic structure of the original system (1.2).
Likewise, the Wasserstein distance W (\mu , \nu ) can be approximated by

\sqrt{} 
2\scrH (\mu , S0),

where S0 is the initial condition of the spatially discrete S. Finally, define the density
set by

\scrP (G) =

\biggl\{ 
\rho = (\rho i)i\in V

\bigm| \bigm| \bigm| \sum 
i\in V

\rho i(\delta x)
d = 1, \rho i \geq 0, i \in V

\biggr\} 
,

where \rho i represents the density on node i. The interior of \scrP (G) is denoted by \scrP o(G).
In this study, (2.3) is the underlying spatial discretization for our numerical

method (see (3.2) below), in large part because of the following result which gives
some important properties of (2.3), and whose proof is in [10, Proposition 2.1].
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MULTIPLE SHOOTING METHOD FOR WGE A2923

Proposition 2.1. Consider (2.3) with initial values \mu and S0, and let T \ast be
the first time the system develops a singularity. Then, for any \mu \in \scrP o(G) and any
function S0 on V , there exists a unique solution of (2.3) for all t < T \ast , and it satisfies
the following properties for all t < T \ast .

(i) Mass is conserved:
N\sum 
i=1

\rho i(t) =

N\sum 
i=1

\mu 0
i .

(ii) Energy is conserved:
\scrH (\rho (t), S(t)) = \scrH (\mu , S0).

(iii) Symplectic structure is preserved:

d\rho (t) \wedge dS(t) = d\mu \wedge dS0,

i.e., the sum of oriented areas of projections onto the coordinate planes (\rho 1, S1),
. . . , (\rho N , SN ) is an integral invariant, where \wedge is the exterior product of two
differential forms.

(iv) The solution is time reversible: if (\rho (t), S(t)) is the solution of (2.3), then
(\rho ( - t), - S( - t)) also solves it.

(v) Time invariants \widetilde \rho \in \scrP o(G) and \widetilde S(t) =  - vt form an interior stationary
solution of (2.3) if and only if \scrH (\rho , S) is spatially independent (we denote
it as \scrH (\rho ) in this case) and \widetilde \rho is the critical point of min\rho \in \scrP o(G) \scrH (\rho ) and
v = \scrH (\widetilde \rho ).

The above discretization is motivated by the formulation presented in [8], where
the goal is to study OT on discrete structures, such as a graph. We use it as our spatial
discretization scheme. Hence, it inherits many properties of the original problem. For
more pros/cons of this choice, we refer the reader to [10] and references therein.

3. Algorithm. In this section, we first present the ideas of shooting methods,
then combine them with a continuation strategy to design our algorithm for approx-
imating the solution of the OT problem (1.1).

3.1. Single shooting. To illustrate the single shooting strategy, consider (2.3)
in the time interval [0, 1]. Assuming that it exists, denote with \rho (t, S0), t \in [0, 1], the
solution of (2.3) with initial values (\mu , S0). To satisfy the boundary value at t = 1,
one needs to find S0 such that the trajectory starting at (\mu , S0) passes through \nu at
t = 1, i.e.,

(3.1) \rho (1, S0) - \nu = 0.

To solve (3.1), root-finding algorithms must be used to update the current guess
of S0 to achieve better approximations. For example, when using Newton's method,
the updates are supposedly computed by

J(1, S(i))
\Bigl( 
S(i+1)  - S(i)

\Bigr) 
=  - (\rho (1, S(i)) - \nu ), i = 0, 1, . . . ,

where J(t, S) = \partial \rho (t,S)
\partial S is the Jacobian of \rho (t, S)  - \nu with respect to S. To ensure

successful computations in Newton's method, finding a good initial guess for S0 and
having an invertible Jacobi matrix are crucial. But, as we anticipated in Remark
1.1, the Jacobian matrix J(t, S) is singular, as otherwise a solution of (3.1) ought to
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be isolated, which can't be true, since adding an arbitrary constant will still give a
solution.

To remedy this situation, we revert to the (\rho , v) formulation and rewrite the
Hamiltonian system (2.3) into an equivalent form in terms of (\rho , v). More precisely,
letting vij = Si  - Sj , (2.3) becomes

d\rho i
dt

=  - 
\sum 

j\in N(i)

1

(\delta x)2
vij\theta ij(\rho ),

dvij
dt

=
1

2

\sum 
k\in N(j)

1

(\delta x)2
v2kj

\partial \theta jk(\rho )

\partial \rho j
 - 1

2

\sum 
k\in N(i)

1

(\delta x)2
v2ki

\partial \theta ik(\rho )

\partial \rho i
.

(3.2)

Since vij is the difference between Sj and Si, a constant shift in S has no impact
on the values of v = \{ vij\} . On the other hand, there are now many redundant
equations in (3.2), because \{ vij\} are not independent variables. For example, they
must satisfy vij =  - vji. Furthermore, there are a total of N = (n + 1)d unknown
values for S, while there are 2dn(n + 1)d - 1 unknowns for v on the lattice graph G.
Clearly, to determine S up to a constant, only N  - 1 values for v are needed. In other
words, there must be only N  - 1 independent v-equations in (3.2) to be solved, and
the remaining ones are redundant and must be removed so that the resulting system
leads to a nonsingular Jacobian.

There are different ways to remove the redundancies. To illustrate this in a simple
setting, let us consider the 1-dimensional case (d = 1), in which the lattice graph G
has n - 1 interior nodes and 2 boundary nodes. Each interior node has two neighbors
while a boundary node has only one neighbor. We have at least two options: either
keep all equations for vi,i+1, i = 1, . . . , (N  - 1), or keep the equations for vi,i - 1,
i = 2, . . . , N . Adopting the first choice, we have the following equations to solve:

d\rho i
dt

=
1

(\delta x)2
v(i - 1)i\theta (i - 1)i(\rho ) - 

1

(\delta x)2
vi(i+1)\theta i(i+1)(\rho ),

dvi(i+1)

dt
=

1

4

1

(\delta x)2
v2(i - 1)i  - 

1

4

1

(\delta x)2
v2i(i+1)

(3.3)

for all i = 1, . . . , N  - 1. If we take no-flux boundary conditions for (\rho , v), we have

v01 = 0, \theta 01 = 0. Finally, mass conservation gives the condition \rho N =
1 - \delta x

\sum N - 1
i=1 \rho i

\delta x .

Denoting v(0) = v0 = \{ v0i,i+1\} 
N - 1
i=1 = \{ S0

i+1  - S0
i \} 

N - 1
i=1 , and the solution of (3.3)

with initial values (\mu , v0) as \rho t = \rho (t, v0), vt = v(t, v0), we can revise the single
shooting strategy in terms of (\rho , v) as finding the initial velocity v0 such that \rho (1, v0) =
\nu . By applying Newton's method, we obtain

\^J(1, v(m))
\bigl( 
v(m+1)  - v(m)

\bigr) 
=  - (\rho (1, v(m)) - \nu ), m = 0, 1, . . . ,

where \^J(1, v(m)) =
\bigl[ 
\partial \rho t

\partial v0

\bigr] 
1,v(m) is the Jacobian of \rho (t, v(0))  - \nu with respect to v(0),

evaluated at t = 1, v = v(m). For later reference, and since \nu plays no role in the
definition of \^J , let us define the function

\^J(t, v0) =

\biggl[ 
\partial \rho 

\partial v0

\biggr] 
t,v

, t \geq 0 .

Now, the single shooting strategy we just outlined is plagued by a common short-
fall of single shooting techniques, namely that the initial guess v(0) must be quite
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MULTIPLE SHOOTING METHOD FOR WGE A2925

close to the exact solution. In the present context, this is further exacerbated by the
fact that (1.2) may develop singularities in finite time (see, e.g., [10]), and as a con-
sequence the choice of a poor initial guess may (and does) lead to finite time blow-up
of the solution of the initial value problem. To overcome this serious difficulty, we
now give a result showing that the function \^J(t, v0) remains invertible for sufficiently
short times, and later will exploit this result to justify adopting a multiple shooting
strategy.

Lemma 3.1. Let G be a 1-dimensional uniform lattice graph, and let t1 > 0 be
sufficiently small. Assume that (\rho , v) is the smooth solution of (3.3) satisfying \mu > 0.
Then, the function \^J(t, v0) is invertible for t \in (0, t1].

Proof. Direct calculation shows that the function \^J(t, v0) = \partial 
\partial v0 \rho (t, v

0) satisfies

d

dt

\partial \rho t
\partial v0

= B11
\partial vt
\partial v0

+B12
\partial \rho t
\partial v0

, \^J(0, v0) = 0n\times n,

d

dt

\partial vt
\partial v0

= B22
\partial vt
\partial v0

,

\biggl[ 
\partial vt
\partial v0

\biggr] 
t=0

= I,

where

(B11)ii =  - \rho i + \rho i+1

2(\delta x)2
, i = 1, . . . , n - 1,

(B11)i,i - 1 =
\rho i + \rho i - 1

2(\delta x)2
, i = 2, . . . , n,

(B11)nn =
1 - 

\sum n - 1
i=1 \rho i\delta x

2(\delta x)3
,

(B12)11 =  - v1
2(\delta x)2

, (B12)ii(\rho , v) =  - vi
2(\delta x)2

+
vi - 1

2(\delta x)2
, i = 2, . . . , n,

(B12)i,i - 1 =
vi - 1

2(\delta x)2
, (B12)i,i+1 =  - vi

2(\delta x)2
, i = 2, . . . , n - 1,

(B12)n,i =
vn

2(\delta x)2
, i = 1, . . . , n - 2, (B12)n,n - 1 =

vn
2(\delta x)2

+
vn - 1

2(\delta x)2
,

(B22)i,i+1 =  - 1

2(\delta x)2
vi+1, i = 1, . . . , n - 1, (B22)i,i - 1 =

1

2(\delta x)2
vi - 1, i = 2, . . . , n.

Since B11 is a lower triangular matrix, it is invertible if and only if

min
i\leq n

(\theta i,i+1(\rho )) > 0,

where \theta ij is defined in (2.1) and hence \theta i,i+1(\rho ) > 0 for as long as \rho remains positive.
Moreover, given the initial condition to the identity for \partial vt

\partial v0 , if t1 > 0 is sufficiently

small, the matrix \partial vt

\partial v0 remains invertible. Furthermore, since \^J(0, v0) = 0n\times n, we
conclude that for t > 0 sufficiently small,

\^J(t, v0) \approx tB11 +\scrO (t2),

which implies that \^J(t, v0) is invertible for t > 0, and sufficiently small.

Once v values become available, if desired we can reconstruct S on the lattice
graph G from the relation vij = Si  - Sj .

We conclude this section by emphasizing that the semidiscretization (3.2) is a spa-
tial discretization of the Wasserstein geodesic equations written in terms of (\rho , v) [10].
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A2926 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

However, this semidiscretization has been arrived at by designing a semidiscretization
scheme for the system (1.2) in the (\rho , S) variables, respecting the Hamiltonian nature
of the problem; see (2.3) and Proposition 2.1.

3.2. Multiple shooting method. As proved in Lemma 3.1, in the 1-dimensional
case the function \^J(t, v0) is invertible for sufficiently short times; however, for the
success of single shooting, this ought to be invertible at t = 1, a fact which is often vi-
olated. In addition, our numerical experiments indicate poor stability behavior when
using the single shooting method to solve the Wasserstein geodesic equations (2.3).
To mitigate these drawbacks, we propose using multiple shooting.

We partition the interval [0, 1] into the union of subintervals [tk, tk+1], k = 0, . . . ,
K  - 1, and let \delta t = maxk(tk+1  - tk). For example, we could take tk = k\delta t and
K\delta t = 1. To illustrate, we again take G as the d-dimensional uniform lattice graph.
In each subinterval [tk, tk+1], k = 0, . . . ,K  - 1, (2.3) is converted into equations in
terms of (\rho , v), just like the ones in (3.2),

d\rho k+1
i

dt
=  - 

\sum 
j\in N(i)

1

(\delta x)2
vk+1
ij \theta ij(\rho ),

dvk+1
ij

dt
=

1

2

\sum 
l\in N(j)

1

(\delta x)2
(vk+1

jl )2
\partial \theta lj(\rho )

\partial \rho j
 - 1

2

\sum 
m\in N(i)

1

(\delta x)2
(vk+1

mi )2
\partial \theta ik(\rho )

\partial \rho i
,

where i \in N is a multi-index for a grid point in d-dimensional lattice. The superscript
k+1 in \rho and v indicates that the corresponding variables are defined in the subinterval
[tk, tk+1]. Then, the multiple shooting method requires finding the values of \rho , v at
temporal points \{ tk\} K - 1

k=0 , i.e.,

(\widetilde v0, \widetilde \rho 1, \widetilde v1, . . . , \widetilde \rho K - 1, \widetilde vK - 1)T ,

such that the continuity conditions hold; that is, for k = 0, . . . ,K  - 2,

F2k+1(\widetilde \rho k, \widetilde vk, \widetilde \rho k+1) = \rho k+1(tk+1, \widetilde \rho k, \widetilde vk) - \widetilde \rho k+1 = 0,

F2k+2(\widetilde \rho k, \widetilde vk, \widetilde vk+1) = vk+1(tk+1, \widetilde \rho k, \widetilde vk) - \widetilde vk+1 = 0.

When k = 0 and k = K  - 1, the given boundary values \rho (0) = \mu and \rho (1) = \nu yield
that

F1(\mu , \widetilde v0, \widetilde \rho 1) = \rho 1(t1, \mu , \widetilde v0) - \widetilde \rho 1 = 0,

F2K - 1(\widetilde \rho K - 1, \widetilde vK - 1, \nu ) = \rho K(tK , \widetilde \rho K - 1, \widetilde vK - 1) - \nu = 0.

As is customary, we use Newton's method to find the root (\widetilde v0, \widetilde \rho 1, \widetilde v1, . . . , \widetilde \rho K - 1, \widetilde vK - 1)
of F = (Fw)

2K - 1
w=1 = 0. To this end, we first need to remove the redundant equations

for the velocity field v. The number of unknown variables in \rho is N  - 1 = (n+1)d - 1,
which is one fewer than the total number of nodes in G, because the total probability
must be one. The number of unknowns in S is N . The vector field v contains the
differences in S, hence the total number of independent variables in v is also N  - 1,
due to the connectivity of G. The following lemma ensures that we can always find
the N  - 1 components of v from which one can generate all the components of v on
the lattice graph G.

Lemma 3.2. Given a connected d-dimensional lattice graph G and a vector field
v which is generated by a potential S on G, there exists a subset consisting of N  - 1
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MULTIPLE SHOOTING METHOD FOR WGE A2927

components of v, denoted by \widehat v = (\widehat vw)N - 1
w=1 , such that any vij can be expressed as a

combination of the entries of \widehat v, i.e.,
vij =

N - 1\sum 
w=1

aw\widehat vw, where aw = 1, or  - 1, or 0 .(3.4)

Proof. Since G is connected, there is always a path on the graph passing through
all the nodes of G and with exactly N  - 1 edges. For convenience, we denote \widehat vw =\widehat viwiw+1

, the value of v on the edge iwiw+1 along the path. According to the assumption
that v is generated by a potential S, i.e., vij = Si  - Sj , we have that \widehat vw = Siw  - 
Siw+1

. Since \{ iw\} w\leq N - 1 is a permutation of the node set V , we could use Siw  - 
Siw+1 , w \leq N  - 1 to reconstruct other vij , ij \in E by the connectivity of G. For
example, we may assume that i = iw1 , j = iwL

for some w1, wL, L \leq N such that
iw1

iw2
, . . . , iwL - 1

iwL
belongs to the path passing through all the nodes; then vij =

Siw1
 - SiwL

=
\sum L - 1

l=1 Siwl
 - Siwl+1

=
\sum L - 1

l=1 \widehat vwl
. Therefore, all entries of v can be

expressed as the above combination of the entries (\widehat vw)N - 1
w=1 .

Remark 3.1. By using (3.3) and (3.5) for 1-dimensional and 2-dimensional prob-
lems, we have effectively made a specific choice of \widehat v in Lemma 3.2. For instance, the
choice of \widehat v in two dimensions is shown in Figure 3.1. Of course, other choices are
possible.

From the proof, we observe that the choice of \widehat v is not unique, since every path
going through all nodes of G using N - 1 edges will give a system with no redundancy.
The edges could be passed multiple times. Let us select one such choice and denote
it by (\widehat vw)N - 1

w=1 . For instance, in 2-dimensional lattice graph G, we choose the \widehat v that
generates the vector field (see Figure 3.1) as follows. Denote every node on G by
(i, j)n+1

i,j=1. For fixed i, (i, j)n+1
j=1 becomes a 1-dimensional lattice graph in the x2

direction. Following (3.3), we choose \widehat vw = v(i,j)(i,j+1) for w = n \times (i  - 1) + j,
j = 1, . . . , n, i = 1, . . . , n + 1, which gives (n + 1) \times n components of \widehat vw. Because of
the connectivity of G relative to the x1 direction, the last n components of \widehat vw are
chosen by \widehat vw = v(j,1)(j+1,1) for w = (n+ 1)\times n+ j, j = 1, . . . , n. For convenience, let

us denote the velocity on the related edges in this path by \{ viwiw+1\} N - 1
w=1 = \{ \widehat vw\} N - 1

w=1 .
Then the reduced Wasserstein system (2.3) becomes

d\rho k+1
iw

dt
=

\sum 
j\in N(iw)

vk+1
jiw

\theta iwj(\rho ),

dvk+1
iw

dt
=

1

2

\sum 
j\in N(iw)

1

(\delta x)2
(vk+1

iw,j )
2 \partial \theta iwj(\rho )

\partial \rho iw

 - 1

2

\sum 
m\in N(iw+1)

1

(\delta x)2
(vk+1

iw+1,m
)2
\partial \theta iw+1j(\rho )

\partial \rho iw+1

,

(3.5)

where vij satisfies (3.4) and the unknowns are (\rho , \widehat v) with
\rho k+1(tk, \rho (tk), \widehat v(tk)) = \rho (tk), \rho k+1(tk+1, \rho (tk), \widehat v(tk)) = \rho (tk+1),\widehat vk+1(tk, \rho (tk), \widehat v(tk)) = \widehat v(tk), \widehat vk+1(tk+1, \rho (tk), \widehat v(tk)) = \widehat v(tk+1).

We apply the multiple shooting method to (3.5), i.e., we look for the root Z =
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A2928 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

Fig. 3.1. The edges (in red) of \^v that generate the velocity in the 2-dimensional lattice graph.
The path is indicated by the arrows. Clearly, many edges are passed twice. (Figure in color online.)

(\widehat v0, \rho 1, \widehat v1, . . . , \rho K - 1, \widehat vK - 1) of F defined by

F2k+1(\rho 
k, \widehat vk, \rho k+1) = \rho k+1(tk+1, \rho 

k, \widehat vk) - \rho k+1 = 0,

F2k+2(\rho 
k, \widehat vk, \widehat vk+1) = \widehat vk+1(tk+1, \rho 

k, \widehat vk) - \widehat vk+1 = 0, k \leq K  - 2,

F2K - 1(\rho 
K - 1, \widehat vK - 1, \rho K) = \rho K(tK - 1, \rho 

K - 1, \widehat vK - 1) - \nu = 0,

(3.6)

where \rho 0 = \mu , \rho K = \nu .
The use of Newton's method to solve (3.6) gives

A(m)\Delta Z(m) =  - F (m),(3.7)

where m is the iteration index, \Delta Z(m) = Z(m+1)  - Z(m),

Z(m) = (v0,(m), \rho 1,(m), v1,(m), . . . , vK - 1,(m), \rho K - 1,(m))T ,

F (m) = (F1(Z
(m)), F2(Z

(m)), . . . , F2K - 1(Z
(m)))T , and A(m) is the Jacobian of F ,

whose structure is as follows, where the X correspond to nonzero (N  - 1)\times (N  - 1)
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MULTIPLE SHOOTING METHOD FOR WGE A2929

matrices: \left(                 

X X 0 0 0
X 0 X 0 0
0 X X X 0
0 X X 0 X

X X X 0
X X 0 X

. . .
. . .

X X X 0
X X 0 X

X X

\right)                 
.

Omitting the superscript m in the expressions of A(m), the blocks Aij , i, j = 1, . . . ,
2K  - 1 are easily seen to be the following. For i = 2, . . . ,K  - 1,

A2(i - 1)+1,2(i - 1) =
\partial \rho i(ti, v

i - 1, \rho i - 1)

\partial vi - 1
, A2(i - 1)+1,2(i - 1)+1 =

\partial \rho i(ti, v
i - 1, \rho i - 1)

\partial \rho i - 1
,

A2i,2(i - 1) =
\partial vi(ti, v

i - 1, \rho i - 1)

\partial vi - 1
, A2i,2(i - 1)+1 =

\partial vi(ti, \rho 
i - 1, \rho i - 1)

\partial \rho i - 1
,

A2(i - 1)+1,2i =  - I, A2i,2i+1 =  - I,

A11 =
\partial \rho 1(t1, v

0)

\partial v0
, A12 =  - I,

A21 =
\partial v1(t1, v

0)

\partial v0
, A23 =  - I,

and

A2K - 1,2K - 2 =
\partial \rho K(tK , v

K - 1, \rho K - 1)

\partial vK - 1
, A2K - 1,2K - 1 =

\partial \rho K(tK , v
K - 1, \rho K - 1)

\partial \rho K - 1
.

Below, we show invertibility of A(m) for \delta t sufficiently small.

Theorem 3.1. Let (\rho , v) be the unique solution of (3.2), and let Z\ast = (v(0), \rho (t1),
v(t1), . . . , \rho (tK - 1), v(tK - 1))

T be the exact solution evaluated at the multiple shooting
points. Assume that the initial vector Z(0) is sufficiently close to Z\ast , i.e., | Z((0)  - 
Z\ast | = \scrO (\epsilon ) for \epsilon > 0 sufficiently small, (\rho , v) is continuously differentiable in [0, 1]
satisfying (\rho , v) \in \scrC 2

b ([0, 1];\BbbR N )\times \scrC 2
b ([0, 1];\BbbR N\times \BbbR N ) and mint\in [0,T ] minNi=1 \rho i \geq c > 0,

and that \partial \rho (1,\rho 0,v0)
\partial v0 is invertible. Then, Newton's method of the multiple shooting

method (3.7) is quadratically convergent to Z\ast for \delta t sufficiently small.

Proof. By standard Newton's convergence theory, it will be enough to prove the
invertibility of Jacobian matrix A(0) for appropriately small \epsilon and \delta t. Rewrite A(0)

in partitioned form
\Bigl( 

A\prime 
11 A\prime 

12

ON - 1,N - 1 A\prime 
22

\Bigr) 
, where A\prime 

11 is a (2K  - 2)n \times n matrix, A\prime 
12 is a

(2K - 2)n\times (2K - 2)n matrix, and A\prime 
22 is a (N  - 1)\times (2K - 2)(N  - 1) matrix. Using

the property of determinant for the partitioned matrix and the fact that det(A\prime 
12) = 1,

and writing A in lieu of A(0), we have

det(A) = det

\biggl( 
0N - 1\times N - 1 A\prime 

22

A\prime 
11 A\prime 

12

\biggr) 
= det(A\prime 

12) det(0N - 1\times N - 1  - A\prime 
22(A

\prime 
12)

 - 1A\prime 
11)

= ( - 1)N - 1 det(A\prime 
22(A

\prime 
12)

 - 1A\prime 
11).
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A2930 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

So, we are left to show that det(A\prime 
22(A

\prime 
12)

 - 1A\prime 
11) \not = 0. The structure of A\prime 

12 implies
that

A\prime 
22(A

\prime 
12)

 - 1A\prime 
11 =

\biggl( 
\partial \rho K,(0)

\partial \rho K - 1,(0)
,
\partial \rho K,(0)

\partial vK - 1,(0)

\biggr) 
K - 1\prod 
i=2

\Biggl( 
\partial \rho i,(0)

\partial \rho i - 1,(0)

\partial \rho i,(0)

\partial vi - 1,(0)

\partial vi,(0)

\partial \rho i - 1,(0)
\partial vi,(0)

\partial vi - 1,(0)

\Biggr) \biggl( 
\partial \rho 1,(0)

\partial v0,(0)
,
\partial v1,(0)

\partial v0,(0)

\biggr) T

,

where \rho i,(0) = \rho i(tK , \rho 
i - 1,(0), vi - 1,(0)), vi,(0) = vk(tK , \rho 

i - 1,(0), vi - 1,(0)) for i = 2, . . . ,
K, and v1,(0) = v1(t1, v

0,(0)), \rho 1,(0) = \rho 1(t1, v
0,(0)).

Now, invertibility of the Jacobian matrix A (or A\prime 
22(A

\prime 
12)

 - 1A\prime 
11) follows from

invertibility of the Jacobian matrix at the exact solution \partial \rho (tK ,\rho 0,v0)
\partial v0 . To see this, due

to (3.8), the continuous differentiability of the exact solution, and the assumption
that | Z(0,(m))  - Z\ast | = \scrO (\epsilon ), we have that

A\prime 
22(A

\prime 
12)

 - 1A\prime 
11 =

\partial \rho (tK , \rho 
0, v0)

\partial v0
+\scrO (\epsilon ) +\scrO (\delta t).

Therefore, the invertibility of \partial \rho (tK ,\rho 0,v0)
\partial v0 with tK = 1 implies the invertibility of the

Jacobian matrix A. Combining with the assumption that \epsilon and \delta are sufficiently
small, we obtain that A(0) is invertible in a neighborhood of Z\ast , which, together with
the boundedness assumption on \rho , v, implies the quadratic convergence of Newton's
method.

Remark 3.2. Of course, the initial value problems for the multiple shooting method
must be integrated numerically. We have not accounted for this in Theorem 3.1. In
principle, many choices are available to integrate these initial value problems, for
instance, the symplectic integrators developed in [10] for Wasserstein Hamiltonian
flows without regularization by Fisher information. In practice, when the subinterval
number or the time step size is small enough, one could also use the classical Euler
method to reduce the computational cost.

3.3. Continuation multiple shooting strategy. In light of Theorem 3.1, and
notwithstanding the need for small \delta t, the multiple shooting method requires the
initial guess to be near the exact solution Z\ast . To make the method robust with
respect to the initial guess, we adopt a standard continuation strategy by introducing
a density function f(\mu , \nu , \lambda ), which is smooth with respect to a homotopy parameter
\lambda \in [0, 1] and satisfies

f(\mu , \nu , 0) = \mu , f(\mu , \nu , 1) = \nu .(3.8)

The specific choice of f in (3.8) depends on the initial and terminal distributions \mu 
and \nu . We illustrate below with two typical situations.

(a) ``Gaussian-type"" densities. If \mu (x) = K0 exp( - c| x  - b0| 2) and \nu (x) = K1

exp( - c| x - b1| 2) with
\int 
\scrO \mu dx =

\int 
\scrO \nu dx = 1, we choose

f(\mu , \nu , \lambda )(x) = K\lambda exp( - c| x - b0  - \lambda (b1  - b0)| 2)

with K\lambda chosen so that
\int 
\scrO fdx = 1. For \mu = K0 exp( - c0| x  - b0| 2), \nu =

K1 exp( - c1| x - b1| 2), we choose

f(\mu , \nu , \lambda )(x) = K\lambda exp( - (c0 + \lambda (c1  - c0))| x - b0  - \lambda (b1  - b0)| 2)

with K\lambda chosen so that
\int 
\scrO fdx = 1.
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MULTIPLE SHOOTING METHOD FOR WGE A2931

(b) For general \mu and \nu , we choose f as the linear interpolant of \mu and \nu , which
is automatically normalized. That is, we take

f(\mu , \nu , \lambda ) = (1 - \lambda )\mu + \lambda \nu .

Remark 3.3. For our method to succeed, it is actually important that the densities
be strictly positive (see Theorem 3.1). For this reason, and especially when the
densities \mu and \nu are exponentially decaying (like Gaussians do), we add a small
positive number, which we call shift , to the densities \mu and \nu and rescale them to
keep the total probabilities equal to 1. In the numerical tests in section 4, these are
the values r0 and r1 we use.

Using f , we consider the system (3.5) with \lambda dependent boundary conditions
given by \rho (0) = \mu and \rho (1) = f(\mu , \nu , \lambda ). Obviously, the problem with \lambda 0 = 0 is trivial
to solve (the identity map), and it can be used as the initial guess for the solution at
the value \lambda 1 = \Delta \lambda . By gradually increasing \lambda from 0 to 1, we eventually obtain the
solution for (2.3) with boundary conditions \mu and \nu , which is the original Wasserstein
geodesic problem we wanted to solve. This basic idea to use the solution with a smaller
value of \lambda as the initial guess for the boundary value problem when the larger value of
\lambda is well understood, and universal. In our context, it is important to note that this
works because the OT problem always has an optimal map as long as \mu and f(\mu , \nu , \lambda )
satisfy

\int 
\BbbR d | x| 2\mu dx,

\int 
\BbbR d | x| 2f(\mu , \nu , \lambda )dx < +\infty (e.g., see [29]). In turn, this implies the

existence of v or S (up to \rho t-measure 0 sets) for the boundary value problem (BVP).
In particular, this fact guarantees that a finite sequence \{ \lambda j\} j\leq L, \lambda L = 1, and Z\ast 

\lambda L

will be our approximation to the exact solution (\rho , v) at the multiple shooting points:

Z0
\lambda 0

:= (v0,(0), \rho 1,(0), . . . , vK - 1,(0), \rho K - 1,(0))\scrT .(3.9)

For instance, we may take vk,(0), k \leq K  - 1, as constant vectors, \rho k,(0), k \leq K  - 1,
from linear interpolation of \rho 0 = \mu and \rho 1 = f(\mu , \nu , \lambda 0), i.e.,

\rho k,(0) = tk\mu + (1 - tk)f(\mu , \nu , \lambda 0), k \leq K  - 1.

Finally, throughout all of our experiments, we enforced the following stopping
criterion for the Newton iteration:

(3.10)
| F (Z(m+1)) - F (Z(m))| 

F (Z(m))
< 10 - 5.

We summarize the steps in the following algorithm.

Remark 3.4. Based on the output of Algorithm 3.1, the Wasserstein distance (or
the Hamiltonian of (2.3)) can be easily obtained. From the first component v0,\ast of
Z\ast , we can reconstruct the initial values for S0 as follows. The first component v0,\ast =
(\widehat vw)N - 1

w=1 , \{ iwiw+1\} N - 1
w=1 generates the initial vector field. We first define the potential

S on a fixed node i0. Due to the connectivity of G, using Siw+1
= viw,iw+1

+ Siw , we
get the other initial values of S0. Then the Wasserstein distance can be evaluated as
W (\mu , \nu ) =

\sqrt{} 
2H(\mu , S0).

Remark 3.5 (barrier value for density). On rare occasions, we observed that
during the Newton's iteration the updates became negative, leading to a failure. To
avoid this phenomenon, we adopted a simple strategy, whereby we created a barrier
for the values of the densities, and reset to this barrier any value which went below it.
In our tests in section 4, use of this artificial barrier was needed only for Examples 4.8
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A2932 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

Algorithm 3.1

Input: Multiple shooting points tk, k = 0, . . . ,K, with t0 = 0 and tK = 1. Discrete
densities \mu , \nu , on the spatial grid of size \delta x, continuation parameter \lambda , max-
number of Newton's iterations Maxits.

Output: The minimizer Z\ast at the multiple shooting points.

1: Follow (3.9) and produce a initial guess Z
(0)
\lambda 0

;
2: Until \lambda j = 1 or too many continuation steps, do
3: for m = 1, 2, . . . , Maxits, while (3.10) not satisfied do

4: Solve J
(m)
\lambda j

d(m) =  - F (Z(m)
\lambda j

);

5: Z
(m+1)
\lambda j

= Z
(m)
\lambda j

+ d(m);
6: end for
7: \lambda j+1 = \lambda j +\Delta \lambda (see Remark 3.6);
8: put Z0

\lambda j+1
= Z\ast 

\lambda j
as the new initial guess;

9: j + 1 \rightarrow j, go back to step 2.

and 4.12. To see this, in Example 4.8, we used the barrier at 10 - 5, and in Example
4.12 the barrier was set at 10 - 3. Clearly, with this strategy the total mass of the
numerical solution is not exactly equal to 1, but the error incurred in the total mass
is at the same level of the barrier value.

Remark 3.6 (choosing continuation steps). We implemented a very simple and
conservative continuation strategy. In all of our tests, we first try to take \lambda = 1, to
see whether this simple continuation is really needed. If the method does not work
without continuation, we begin with a value \lambda 0 of \lambda for which multiple shooting works
(e.g., we usually take \lambda 0 = 0.1 as the initial step), and choose a value \Delta \lambda = 1 - \lambda 0

L with
given L (e.g., L = 10 or 20 is our usual choice). We then try to continue by taking
steps of size \Delta \lambda , though if the Newton's multiple shooting fails we decrease \Delta \lambda by
dividing the remaining interval by L again and/or increase the value of L by doubling
it. In all tests of section 4, except Examples 4.1, 4.2, 4.4, and 4.6, the continuation
strategy was used.

Remark 3.7 (choosing homotopy f(\mu , \nu , \lambda )). Finally, for all tests with Gauss-
ian type densities \mu , \nu , we use the Gaussian interpolation (a) in subsection 3.3 for
f(\mu , \nu , \lambda ). For other examples, we use the linear interpolation (b) in subsection 3.3
for f(\mu , \nu , \lambda ). To illustrate, in Example 4.8, we take f(\mu , \nu , \lambda ) as the normalization
of exp( - 5(x2  - 0.5  - 1.95\lambda )2  - 5(x1  - 1.5  - 0.95\lambda )2) + exp( - 5(x2  - 0.5  - 1.95\lambda )  - 
5(x1  - 1.5 + 0.95\lambda ))2 + r and obtain a sequence of \lambda 's starting from \lambda 0 = 0.1, with
\Delta \lambda = 0.9/20.

4. Numerical experiments. In this section, we apply Algorithm 3.1 to ap-
proximate the solution of several OT problems.1 Throughout the experiments, the
Jacobian in Newton's method is approximated by using a first order divided difference
approximation of the derivatives. In the experiments, we observe that the majority of
computational cost arose from assembling the Jacobian matrix. The spatial boundary
conditions for the density functions are set to be homogeneous Neumann boundary
conditions for all experiments except for Examples 4.1 and 4.2, which are subject to
periodic boundary conditions. Except for this, Example 4.2, and Example 4.1, we do

1The MATLAB version of our code is available at https://www.polyu.edu.hk/ama/profile/cuijb/
index.html.
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MULTIPLE SHOOTING METHOD FOR WGE A2933

not have the exact solutions of our test problems, so we display the evolution of the
density from \mu to \nu as an indication of the quality of the approximation. Below, we
present the convergence tests for Examples 4.1 and 4.2. To save on computational
cost of computing the Jacobian matrix, we adopt the quasi-Newton's iteration (using
the chord method) in these two examples.

Example 4.1. Here the spatial domain is the 1-torus \BbbT = [0, 1] subject to periodic
boundary conditions. Following the approach in [29], we define a smooth function
\phi (x) = \beta sin(2\pi x) with \beta = 1

32 (2\pi )
 - 2, take initial density \mu = det(I  - D2\phi (x)),

and target density \nu is the uniform distribution on \BbbT . The exact initial velocity is
v0(x) = 2\pi \beta cos(2\pi x). In Tables 1 and 2, We present the error to show the linear
convergence of the proposed method in space and time. We take the fixed temporal
step dt = 1/200 in Table 1 and the fixed spatial step dx = 1/256 in Table 2. In this
example, the single shooting method and a quasi-Newton approach (only one Jacobian
matrix was computed and factored and then used across all iterations) proved to be
adequate. We observe first order convergence with respect to both L2 and sup norms,
i.e., \| \widehat v0  - v0\| L\infty , \| \widehat v0  - v0\| L2 , where \widehat v is the initial function on the grids solved by
the single shooting method, and L\infty , L2 denote the discrete sup norm and L2 norm,
respectively.

Table 1
The spatial error in the velocity for Example 4.2.

dx \| \widehat v0  - v0\| L\infty \| \widehat v0  - v0\| L2 Iterations

1/16 0.99074 \ast 10 - 3 0.68763 \ast 10 - 3 4
1/32 0.49716 \ast 10 - 3 0.34615 \ast 10 - 3 4
1/64 0.25731 \ast 10 - 3 0.17476 \ast 10 - 3 4
1/128 0.14163 \ast 10 - 3 0.09056 \ast 10 - 3 5
1/256 0.08756 \ast 10 - 3 0.05118 \ast 10 - 3 10

Table 2
The temporal error in the velocity for Example 4.2. Here the temporal error is computed by

comparing \widehat v0 with the velocity calculated by taking dt = 1
1024

.

dt \| \widehat v0  - v0\| L\infty \| \widehat v0  - v0\| L2 Iterations

1/16 0.24555 \ast 10 - 5 0.16982 \ast 10 - 5 9
1/32 0.12078 \ast 10 - 5 0.08356 \ast 10 - 5 10
1/64 0.05843 \ast 10 - 5 0.04043 \ast 10 - 5 10
1/128 0.02727 \ast 10 - 5 0.01887 \ast 10 - 5 10
1/256 0.01169 \ast 10 - 5 0.00809 \ast 10 - 5 10

Example 4.2. Here the spatial domain is the 2-torus \BbbT 2 = [0, 1] \times [0, 1], subject
to periodic boundary conditions. Following the approach in [29], we define a smooth
function \phi (x1, x2) = \beta sin(2\pi x1) sin(2\pi x2), with \beta = 1

64 (2\pi )
 - 2, take initial density

\mu (x1, x2) = det(I  - D2\phi (x1, x2)), with target density \nu the uniform distribution on
\BbbT 2. In this case, the exact initial velocity can be explicitly given as

v0(x1, x2) = 2\pi \beta (cos(2\pi x1) sin(2\pi x2), sin(2\pi x1) cos(2\pi x2)).

In Tables 3 and 4 we measure the approximation error of our method with respect
to the spatial grid-size and temporal grid-size. In Table 3, dt = 1

160 is fixed. The
spatial grid size is set to be dx = 1

128 in Table 4. As it turns out, this was a very
easy problem to solve, because single shooting with a quasi-Newton approach solved
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A2934 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

it adequately. There was no need to adopt a continuation strategy, and we took 160
integration steps from 0 to 1. About 90\% of the computation time was spent on
calculating the Jacobian at the initial guess. From Tables 3 and 4, we observe first
order convergence with respect to both L2 and sup norms. This is in agreement with
the discrete scheme we used.

Table 3
The spatial error in the velocity for Example 4.2.

dx \| \widehat v0  - v0\| L\infty \| \widehat v0  - v0\| L2 Iterations

1/16 0.45963 \ast 10 - 3 4.21760 \ast 10 - 3 4
1/32 0.23729 \ast 10 - 3 0.11505 \ast 10 - 3 4
1/64 0.12211 \ast 10 - 3 0.05939 \ast 10 - 3 6
1/128 0.06371 \ast 10 - 3 0.03044 \ast 10 - 3 8

Table 4
The temporal error in the velocity for Example 4.2. Here the temporal error is computed by

comparing \widehat v0 with the velocity calculated by taking dt = 1
1024

.

dt \| \widehat v0  - v0\| L\infty \| \widehat v0  - v0\| L2 Iterations

1/16 0.11940 \ast 10 - 5 0.65367 \ast 10 - 5 8
1/32 0.05776 \ast 10 - 5 0.31629 \ast 10 - 5 8
1/64 0.02695 \ast 10 - 5 0.14760 \ast 10 - 5 8
1/128 0.01155 \ast 10 - 5 0.063257 \ast 10 - 5 8

4.1. 1-dimensional numerical experiments. Below we present results on 1-
dimensional OT problems, with one or both densities of Gaussian types. Namely, the
initial and terminal distributions \mu and \nu are normalizations of

(4.1) \widehat \mu = exp( - a0(x - b0)
2) + r0, \widehat \nu = exp( - a1(x - b1)

2) + r1,

scaled so that
\int 
\scrO \mu dx =

\int 
\scrO \nu dx = 1. (Here, \scrO is a subinterval of the real line.)

Example 4.3. Here we look at the performance of the multiple shooting method
when varying the (truncation of the real line to the) finite interval \scrO , and the shift
number r. The parameters of initial and terminal distributions \mu , \nu in (4.1) are
a0 = a1 = 15, b0 = 0.4, b1 = 1.4. We take K = 60 multiple shooting points, spatial
step size dx = 3 \times 10 - 2, N = 300 time steps per subinterval, r0 = r1 = 0.0001
in (4.1), and consider the intervals \scrO = [0, 2] or [ - 0.5, 2.5]. In Figure 4.1, we plot
the evolution of density. The top figures refer to \scrO = [0, 2] and show distortion in
the density evolution. The bottom row refers to \scrO = [ - 0.5, 2.5] and shows that the
computation is more faithful when the truncated domain is large enough.

Example 4.4. Here \scrO = [0, 2], the initial distribution is the uniform distribution
\mu = 1

2 , and the terminal distribution \nu is the normalized Gaussian density as the \^\nu 
used in Example 4.3 with a1 = 25, b1 = 1, r1 = 0. The number of multiple shooting
points is K = 60, the space stepsize dx = 5\times 10 - 2, and we take N = 20 integration
steps for the subinterval. Figure 4.2 shows the density evolution.

Remark 4.1. In general, we observed that when we refine the spatial step size, the
number of multiple shooting subintervals must increase in order to maintain nonnega-
tivity of the density at the temporal grids, and a successful completion of our multiple
shooting method, whereas the number of integration steps on each subinterval is not
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MULTIPLE SHOOTING METHOD FOR WGE A2935

Fig. 4.1. Example 4.3: evolution of \rho (t) for truncated interval [0, 2] (top) and [ - 0.5, 2.5] (bottom).

Fig. 4.2. Evolution of probability given \mu and \nu in Example 4.4.

as critical. See Table 5 for results on Example 4.4, which are typical of the general
situation.

Example 4.5. This is similar to Example 4.3, but the Gaussian has a much greater
variance. Let \scrO = [ - 0.5, 2.5], dx = 4\times 10 - 2, K = 80, N = 200, and the parameters
of initial and terminal Gaussian distributions \mu , \nu in (4.1) are a0 = a1 = 50, b0 =
0.4, b1 = 1.4, r0 = r1 = 0.0001. The evolution of the density is shown in Figure
4.3, and the sharper behavior of the density evolution with respect to Figure 4.1 is
apparent.
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Table 5
The relationship between dx, K and N in Example 4.4.

dx K N Success
1/16 10 20

\surd 

1/32 10 40
\surd 

1/64 10 80
\surd 

1/128 10 160 \times 
1/128 10 320 \times 

dx K N Success
1/16 10 20

\surd 

1/32 20 20
\surd 

1/64 20 20 \times 
1/64 40 20

\surd 

1/128 40 20
\surd 

Fig. 4.3. Evolution of probability density in Example 4.5.

Fig. 4.4. Evolution of probability density in Example 4.6 with r = 0.0001 (up) and oscillator
behaviors of probability density when r = 0.01 (down).
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MULTIPLE SHOOTING METHOD FOR WGE A2937

Example 4.6. This example is used to test Gaussian type distributions \mu and \nu 
with different variances. Let \scrO = [ - 0.5, 2.5], dx = 4\times 10 - 2, K = 80, N = 40, and let
the parameters of initial and terminal Gaussian distributions \mu , \nu be a0 = 15, a1 = 10,
b0 = 0.8, b1 = 1.6, r0 = r1 = 0.0001. The evolution of the density is shown in Figure
4.4. In this problem, we also exemplify the impact of the shifting number; as can be
seen in Figure 4.4, if the shifting number is not sufficiently small (r0 = r1 = 0.01, in
this case), one ends up with spurious oscillatory behavior (presently, in x = [0.4, 0.8]
and [1.7, 2.1]).

Fig. 4.5. Example 4.8: contour plots of \rho at t = 0, 0.2, 0.4, 0.6, 0.8, 1.

Fig. 4.6. Example 4.8: surface \rho at t = 0.8.D
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4.2. 2-dimensional numerical experiments. Here, we give computational
results for a computational domain \scrO which represents a truncation of \BbbR 2. In Ex-
amples 4.8--4.11, we always take K = 10 multiple shooting subintervals, \delta x = 0.2
as spatial step size, and N = 30 integration steps on each subinterval [ti, ti+1],
ti = i/K, i = 0, . . . ,K  - 1.

Fig. 4.7. Example 4.8: two components of the initial velocity.

In Examples 4.7 and 4.8, the initial and/or terminal distributions, \mu , \nu , are nor-
malizations of Gaussian type densities, namely

\widehat \mu = exp( - a0(x2  - b0)
2  - c0(x1  - d0)

2) + r0,\widehat \nu = exp( - a1(x2  - b1)
2  - c1(x1  - d1)

2) + r1.
(4.2)

Example 4.7. Spatial domain is \scrO = [ - 1, 3]\times [ - 1, 3]. Initial and terminal densi-
ties are from (4.2) with parameters a0 = 2.5, a1 = 5, b0 = 0.5, b1 = 1.5, c0 = 5, c1 =
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10, d0 = 0.3, d1 = 1.3, r0 = r1 = 0.001. Contour plots of the density evolution are in
Figure 4.8.

Fig. 4.8. Example 4.7: contour plots of \rho at t = 0, 0.2, 0.4, 0.6, 0.8, 1.

Example 4.8. Spatial domain is \scrO = [ - 1, 4] \times [ - 1, 4]. Initial density is the nor-
malization of the Gaussian type density \^\mu in (4.2), with parameters a0 = 5, b0 =
0.5, c0 = 5, d0 = 1.5, and r0 = 0.01. The terminal distribution is the normalization of\widehat \nu below (a two-bump Gaussian):

\widehat \nu = exp( - 5(x2  - 2.45)2  - 5(x1  - 2.45)2)

+ exp( - 5(x2  - 2.45)2  - 5(x1  - 0.55)2) + 0.01.

In Figure 4.5, we show the contour plots of the density at different times, from which
the formation of the two bumps is apparent. The surfaces of the density at t = 0.8 and
the two components of initial velocity are shown in Figures 4.6 and 4.7, respectively.

For the next set of examples, we choose the initial or terminal distributions as
the normalization of the Laplace distribution. We use a0, b0, c0, r0 or a1, b1, c1, r1 to
indicate the parameters of the Laplace type distribution given as

\widehat \mu = exp( - a0| x2  - b0|  - c0| x1  - d0| ) + r0,\widehat \nu = exp( - a1| x2  - b1|  - c1| x1  - d1| ) + r1.
(4.3)

Example 4.9. Spatial domain \scrO = [ - 1, 3]\times [ - 1, 3]. Initial and terminal densities
are normalizations of the Laplace distributions in (4.3) with parameters a0 = a1 =
5, b0 = 0.5, b1 = 1.5, c0 = c1 = 5, d0 = 0.6, d1 = 1.6, and r0 = r1 = 0.001. Contour
plots of the density evolution are in Figure 4.9.

Example 4.10. Spatial domain \scrO = [ - 1, 3]\times [ - 1, 3]. Initial density is the uniform
distribution. Terminal density is the normalization of the Laplace distribution \^\nu with
parameters a1 = 10, b1 = 1.5, c1 = 10, d = 1.6, and r = 0.01. The contour plots of the
density evolution are presented in Figure 4.10.
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Fig. 4.9. Example 4.9: contour plots of \rho at times t = 0, 0.2, 0.4, 0.6, 0.8, 1.

Fig. 4.10. Example 4.10: contour plots of \rho at times t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.

Example 4.11. Spatial domain \scrO = [ - 1, 3]\times [ - 1, 3]. Initial density is the normal-
ization of

\mu = (x1 + 1)2(x1  - 3)2 + (x2 + 1)2(x2  - 3)2.

Terminal distribution is the normalization of \^\nu in (4.3) with parameters a1 = 10, b1 =
1.5, c1 = 10, d1 = 1.6, and r1 = 0.01. The contour plots of the density evolution are
presented in Figure 4.11.

Example 4.12. Spatial domain \scrO = [xL, xR] \times [xL, xR], xL =  - 1, xR = 3. The
initial density and terminal distributions are normalized Gaussian densities with pa-
rameters a0 = a1 = 50, b0 = 0.5, b1 = 1.5, c0 = c1 = 50, d0 = 0.3, d1 = 1.3, and r1 =
r2 = 0.001. The contour plot of the density evolution is presented in Figure 4.12.D
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Fig. 4.11. Example 4.11: contour plots of \rho at times t = 0, 0.2, 0.4, 0.6, 0.8, 1.

Fig. 4.12. Example 4.12: contour plots of \rho at times t = 0, 0.2, 0.4, 0.6, 0.8, 1.
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5. Conclusions. In this paper, we proposed a new algorithm for the geodesic
equation with L2-Wasserstein metric on a probability set. Our algorithm is based on
the Benamou--Brenier fluid-mechanics formulation of the OT problem. Namely, we
view the geodesic equation as a boundary value problem with prescribed initial and
terminal probability densities. To solve the BVP, we adopted the multiple shooting
method and used Newton's method to solve the resulting nonlinear system. We further
adopted a continuation strategy in order to enhance our ability to provide good initial
guesses for Newton's method. Finally, we presented several numerical experiments on
challenging problems to display the effectiveness of our algorithm.

There are many interesting questions that remain to be addressed. Surely, adap-
tive techniques in space and time would be very desirable, especially if one wants
to extend our numerical method to the Wasserstein geodesic equations in higher di-
mension. The concern of truncating the spatial domain to a finite computational
domain has not been addressed in our work either, but this is clearly a problem of
paramount importance and will require a careful theoretical estimation of decay rates
of the densities involved. We expect to tackle some of these issues in future work.
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