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Multi-UAV Navigation for Optimized Video
Surveillance of Ground Vehicles on Uneven Terrains

Andrey V. Savkin and Hailong Huang

Abstract—This paper addresses a trajectory planning problem
for a team of UAVs following several ground vehicles on uneven
terrain for video surveillance. A model predictive control-based
multi-UAV path planning algorithm is designed. A theoretical
justification of the path planning algorithm is provided. Extensive
simulation studies demonstrate the performance of the proposed
method.

Index Terms—Unmanned aerial vehicles, drones, ground traf-
fic monitoring, multi-UAV navigation, path planning, guidance,
video surveillance, uneven terrains, ground vehicles, optimal 3D
UAV navigation.

I. INTRODUCTION

Teams of unmanned aerial vehicles (UAVs) attracted a lot
of interest from both industry and academia in recent years.
UAVs have been successfully used in many defence and
commercial applications. These applications include but not
limited to cellular communication networks, wireless sensor
networks, environmental monitoring, mobile edge comput-
ing, emergency communications, military activities, rescue
and protection missions, target tracking, last-mile delivery,
eavesdropping and counter-eavesdropping; see e.g. [1]–[8] and
references therein. A challenging field for applications of
UAV teams is the surveillance of ground targets, consisting
of various problems of ground traffic surveillance, wildlife
monitoring, monitoring of agricultural fields, livestock surveil-
lance, disaster areas surveillance, and target surveillance for
policing and military purposes [9]–[16]. In these monitoring
tasks, a common scenario involves a team of UAVs with
video cameras monitoring several moving ground targets. A
typical requirement of such video surveillance problems is
to guarantee that all targets of interest or all points of the
monitored terrain area are observed by, at least, one UAV often
enough. A challenging generalization of such a requirement is
a situation in which UAVs are navigated over uneven terrains.
Such uneven terrains are ground areas which are impossible
to model with sufficient precision by a perfect plane. In such
situations, the line of sight (LoS) of video cameras mounted
on UAVs is often occluded by some points of the terrain.
Complex uneven terrains are especially widespread in urban
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environments containing numerous tall buildings and narrow
roads [14], [17]. It is expected that such scenarios will become
especially relevant due to the growing production of relatively
tiny UAVs operating at low altitudes [14].

There exist numerous recent publications that study var-
ious problems of UAV surveillance of ground targets and
areas. The papers [11] and [13] propose various UAV video
surveillance strategies that are based on Voronoi partitioning
groups of moving cars or pedestrians and navigating UAVs
towards centres of Voronoi cells. Fast path planning schemes
for a single UAV tracking targets were proposed in [18],
[19]. In [20], the problem of monitoring frontiers of quickly
spreading environmental disaster areas by a UAV team was
studied. The paper [21] proposes a path planning algorithm
for aerial surveillance that is based on a rapidly exploring
random tree approach. The publication [12] develops a multi-
UAV navigation algorithm for coordinated standoff tracking of
moving target groups. The paper [22] discusses the monitoring
of suspicious mobile targets using solar-powered fixed-wing
UAVs. All these publications do not properly address the issue
of uneven terrains where the LoS between a UAV and a target
is often occluded by some walls, buildings, hills etc.

The current paper addresses the problem of video moni-
toring several ground vehicles moving on uneven terrain by
a team of UAVs. The goal of the UAV team is to observe
the ground vehicles by keeping LoS between the UAVs and
the vehicles for as long as possible. Moreover, the UAVs are
navigated to keep distances to the ground vehicle as short
as possible to improve the quality of video surveillance. We
propose an effective navigation algorithm that maximizes some
objective function that takes into account both the time during
which LoS between the UAVs and the ground vehicles are
not occluded by the uneven terrain and the distances between
UAVs and vehicles that are seen from these UAVs. The main
contributions are summarized as follows. 1) The developed
navigation framework fully addresses the issue of non-flat
ground which may often block the LoS and make video
surveillance impossible. We do not know other publications in
the area fully addressing this important issue. 2) The proposed
navigation method uses the model predictive control (MPC)
framework [23] and constructs an almost optimal multi-UAV
trajectory, in the sense, that when some parameters of the
algorithm tend to infinity, the built trajectory asymptotically
converges to the optimum. 3) The proposed UAV navigation
scheme guarantees collision avoidance, i.e. the distance be-
tween any two of the UAVs is never less than some given
safety distance.
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II. INVESTIGATED PROBLEM

We study a multi-UAV team containing UAVs labelled
i = 1, . . . ,K, where K > 1. Let (xi(t), yi(t), zi(t)) be the
3D position of UAV i. We concentrate on the following very
common model of the motion of UAV i:

ẋi(t) = vi(t) cos(λi(t)),

ẏi(t) = vi(t) sin(λi(t)),

λ̇i(t) = ωi(t),

żi(t) = ui(t),

(1)

where λi(·) is the axis angle of UAV i in the horizontal plane;
vi(·), ωi(·) and ui(·) are control inputs of controlled plant (1),
that belong to the intervals 0 ≤ vi(·) ≤ ∆1, |ωi(·)| ≤ ∆2, and
|ui(·)| ≤ ∆3 with some given upper limits ∆1, ∆2 and ∆3.
Also, the following inequalities for the altitude zi(t) of UAV
i must always hold:

Zmin ≤ zi(t) ≤ Zmax, (2)

where 0 < Zmin < Zmax are given constants. Furthermore,
to avoid collisions between each other, any two UAVs i and h
(i ̸= h) must keep at least a safe distance δs away from each
other at any time:√

(xi − xh)2 + (yi − yh)2 + (zi − zh)2 ≥ δs, (3)

where δs > 0 is a given constant.
The UAVs fly over an uneven terrain modelled by a given

function p(x, y) such that (x, y, p(x, y) is a 3D position of a
point on the terrain. Notice that we consider a very general
case where the UAVs can fly at a lower altitude than the
terrains [24]. To avoid the problem of avoiding collision with
high segments of the ground, which is indeed a well-known
problem, we introduce the following obstacle avoidance re-
quirement:

zi(t) > p(xi(t), yi(t)) + sm ∀i, t, (4)

where the safety margin sm > 0 is given. It is obvious that if
(4) holds, then the UAVs cannot collude with the ground. We
also have L ground vehicles, indexed j = 1, . . . , L, that are
moving on the non-even terrain along some network of roads.
The goal of the UAVs is to monitor these ground vehicles.
Each UAV has a video camera pointed to the ground with
the visibility sector α ∈ (0, π), see Fig. 1. A vehicle at the
terrain location (x, y, z) is seen from UAV i with coordinates
(xi, yi, zi), if the following two conditions hold:

1) The vehicle is inside the UAV’s visibility cone, i.e.,√
(xi − x)2 + (yi − y)2 ≤ (zi − z) tan

(α
2

)
; (5)

2) LoS from the point (xi, yi, zi) to the point (x, y, z) is
not occluded by some terrain part, see Fig. 1.

Available information: There is some communication be-
tween the UAVs, so any UAV receives positions and headings
of other UAVs. Moreover, each UAV gets the coordinates and
velocities of all ground vehicles that are visible to other UAVs.
Furthermore, each UAV knows the altitude function a(x, y)
and the coordinates of the network of roads. Then control
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Fig. 1: The vision cone of a UAV.

inputs for all UAVs are calculated at one of the UAVs and
communicated to other UAVs.

The objective of the UAV team is to navigate itself so that
all ground vehicles are visible from the UAVs as much as
possible.

Let T > 0 be a given time. First, we state a problem for
the time interval [t0, t0+T ]. One assumption is that the UAVs
know the positions and the velocities of all ground vehicles
at t = t0. As we assume that there is some communication
between the UAVs so that each UAV gets the coordinates
and velocities of all ground vehicles that are visible by other
UAVs, this assumption obviously holds if each ground vehicle
is visible by at least one UAV at t = t0 which is quite typical
for realistic scenarios. Then the target speed can be estimated
from its coordinates. Notice that assumptions of this type are
common in problems of aerial ground target surveillance, see
e.g. [9], [10].

Moreover, we assume that all vehicles will move with
the same speeds over time interval [t0, t0 + T ]. As the
vehicles move along some road networks, for each vehi-
cle j there exist nj ≥ 1 its possible trajectories over
[t0, t0 + T ], and all those trajectories are known to the
UAVs; see Fig. 2. Let v(t) := (v1(t), . . . , vK(t)) , ω(t) :=
(ω1(t), . . . , ωK(t)) , u(t) := (u1(t), . . . , uK(t)) be the vectors
of control inputs of the system of K UAVs described by
(1). Any trajectory of the system (1) is defined by initial
conditions (xi(t0), yi(t0), zi(t0)), i = 1, . . . ,K and con-
trol inputs v(·), ω(·), u(·). We assume that initial conditions
zi(t0) satisfy the constraints (2), (3) and (4). Introduce the
functions Lj(t, v(·), ω(·), u(·)), j = 1, . . . ,M as follows:
Lj(t, v(·), ω(·), u(·)) := 1 if vehicle j at time t is seen
from at least one UAV, Lj(t, v(·), ω(·), u(·)) := 0 otherwise.
Moreover, define the functions Lij(t, v(·), ω(·), u(·)), i =
1, . . . ,K, j = 1, . . . ,M by Lij(t, v(·), ω(·), u(·)) := 1 if ve-
hicle j at time t is seen from UAV i, Lij(t, v(·), ω(·), u(·)) :=
0 otherwise.

Let β > 0 be a given constant. Now, we can introduce the
following optimal control problem:

L(v(·), ω(·), u(·)) := min
j=1,...,L

∫ t0+T

t0

Lj(t, v(·), ω(·), u(·))dt

+ β

L∑
j=1

K∑
i=1

∫ t0+T

t0

Lij(t, v(·), ω(·), u(·))dt

L(v(·), ω(·), u(·)) → sup,
(6)

where the supremum is taken over all possible UAV control
inputs v(·), ω(·), u(·). It is obvious that the first integral in (6)
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describes the time during which vehicle j is seen from at least
one UAV. The second term describes the sum of the lengths
of all time intervals during which some ground vehicle is
seen from some UAV. So in the optimization problem (6), the
objective function can be viewed as a measure of the quality
of monitoring L vehicles by the UAV team.

Fig. 2: Possible trajectories of vehicle j when it moves along
some road networks.

Definition II.1. A trajectory of the system (1) is called high
if for any i, ui(t) = Umax if zi(t) < Zmax, and ui(t) = 0 if
zi(t) = Zmax.

It is clear that a high trajectory always tends to Zmax

with the maximum allowed vertical speed and after it reaches
Zmax, it always satisfies the constraint zi(t) = Zmax.

Proposition II.1. For any trajectory of the system (1) defined
by some initial conditions and control inputs v(·), ω(·), u(·),
there exists a high trajectory defined by the same initial
conditions and some control inputs v∗(·), ω∗(·), u∗(·) such that
L(v∗(·), ω∗(·), u∗(·)) ≥ L(v(·), ω(·), u(·)).

Proof. Indeed, for a given trajectory with control inputs
v(·), ω(·), u(·), we introduce another trajectory defined by the
same initial conditions and the control inputs u∗

i (t) = Umax if
zi(t) < Zmax, and u∗

i (t) = 0 if zi(t) = Zmax, ω∗(·) = ω(·)
and u∗(·) = u(·). It is obvious that this new trajectory is
high. Moreover, the coordinates x and y are identical for these
two trajectories, and the z-coordinate of the second trajectory
is always more or equal to the z−coordinate of the original
trajectory. Therefore, if a vehicle at some time t is seen from
some UAV i on the original trajectory, it is also seen from the
same UAV on the second trajectory. This completes the proof
of Proposition II.1.

Proposition II.1 shows that optimal or close to optimal
solutions of the optimization problem (6) can be found in
the class of high trajectories. That might result in solutions
in which vehicles are seen from the UAVs but the distances
between the UAVs and the vehicles tend to be unnecessarily
large. Therefore, we propose another problem statement in
which the distances between the UAVs and the vehicles are
taken into account.

Let c > 0 be a given constant. We introduce the functions
Lc
ij(t, v(·), ω(·), u(·)), j = 1, . . . ,M , i = 1, . . . ,K as fol-

lows: Lc
ij(t, v(·), ω(·), u(·)) := 1

dij(t)
if vehicle j is seen from

UAV i at time t (here dij(t) is the distance between vehicle j
and UAV i at time t); Lc

ij(t, v(·), ω(·), u(·)) := −c if vehicle j

is not seen from UAV i at time t. Lc
ij(t, v(·), ω(·), u(·)) can be

regarded as a measure of the quality of surveillance (QoS) for
vehicle j provided by UAV i at time t. Moreover, we introduce
Lc
j(t, v(·), ω(·), u(·)) := maxi=1,...,L Lc

ij(t, v(·), ω(·), u(·)),
and it represents the best QoS achieved by the closest UAV for
vehicle j at time t. Let β > 0 and γ > 0 be given constants.
Now, we introduce the following optimal control problem:

Lc(v(·), ω(·), u(·)) :=

min
j=1,...,L

∫ t0+T

t0

Lc
j(t, v(·), ω(·), u(·))dt

+ β

L∑
j=1

K∑
i=1

∫ t0+T

t0

Lc
ij(t, v(·), ω(·), u(·))dt

− γ

∫ t0+T

t0

(|v(·)|+ |ω(·)|+ |u(·)|)dt,

Lc(v(·), ω(·), u(·)) → sup,

(7)

where the supremum is taken over all possible control inputs
v(·), ω(·), u(·). The third term of (7) describes the propulsion
energy of the UAVs and can be viewed as ”the utilization rate
of UAV resources” in terms of energy spent on surveillance.
It is obvious that with γ = 0 the optimization problem
(7) becomes close to (6) as c tends to infinity. More pre-
cisely, L(v∗(·), ω∗(·), u∗(·)) > L(v(·), ω(·), u(·)) for some
control inputs v(·), ω(·), u(·) and v∗(·), ω∗(·), u∗(·), implies
Lc(v∗(·), ω∗(·), u∗(·)) > Lc(v(·), ω(·), u(·)) if c is large
enough.

Problem Statement: Construct a path planning algorithm
for the system (1) of K UAVs that maximises the objective
function (7) s.t. the constraints (2), (3) and (4).

III. PATH PLANNING ALGORITHM

Take some whole number N > 0, and split the time interval
[t0, t0 + T ] into N subintervals of length h := T

N . Now
consider the set of functions vi(t), ωi(t), ui(t) that change
their values only at times t0, t0+h, . . . , t0+(N−1)h and keep
their values constant over subintervals [t0+ jh, t0+(j+1)h],
0 ≤ j ≤ N − 1. Take some parameters lω > 0, lv > 0 and
lu > 0. These parameters specify the levels of quantization of
the inputs of (1). Introduce the following collection of inputs:

ωi =
jω∆2

lω
∀jω = −lω,−lω + 1, . . . , lω

vi =
jv∆1

lv
∀jv = 0, 1, . . . , lv

ui =
ju∆3

lu
∀ju = −lu,−lu + 1, . . . , lu,

(8)

where i = 1, . . . ,K.
Introduce the following optimization procedure.
OS: Take inputs of (1) for i = 1, . . . ,K belonging the set

(8) and changing their values at tk, tk+h, . . . , tk+(N −1)h.
Calculate a corresponding trajectory of (1). Choose the inputs
(with N collections of inputs applied at tk, tk + h, . . . , tk +
(N −1)h) at which maximum for (7) s.t. (2), (3) and (4) over
all control inputs from the set (8) is achieved.

It is obvious that for any tk+ jh and any UAV i there exist
(2lω+1)(lv+1)(2lu+1) possibilities of different inputs from
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the set (8). Therefore, as we have N time subintervals and
K UAVs, we have [(2lω + 1)(lv + 1)(2lu + 1)]NK possible
sets of inputs. This set of possible inputs can be viewed as
some tree of options. When some of the constraints (2), (3)
and (4) does not hold, some branch of the tree is stopped, as
it is shown in Fig. 3. Specifically, when the constraint (2) is
violated, the corresponding branch is removed from the tree.
When the constraint (3) is violated at some two branches, we
can remove either branch. When the constraint (4) does not
hold, we remove the corresponding branch from the three as
well. Hence, due to the constraints, the optimization algorithm
usually deals with a much smaller number of input sets than
[(2lω + 1)(lv + 1)(2lu + 1)]NK .

≤ 𝛿𝑠

𝑍𝑚𝑎𝑥

Fig. 3: Illustration of branch cancellation due to the violation
of constraints (2), (3) and (4).

It should be pointed out that as the accuracy of the control
input parameters increases, the quality of the results provided
by the proposed algorithm will also increase, but the time com-
plexity of the algorithm will also increase and may become
unacceptable for providing real-time results for the UAVs. In
the following section, we conduct simulations with several
values of parameters to find a suitable trade-off between the
performance of the algorithm and its time complexity and
discuss this issue in detail.

Proposition III.1. When the parameters N, lω, lv, lu tend
to +∞, the inputs constructed by OS tend to the global
supremum of the optimization problem (7) for the UAVs (1)
s.t. (2), (3), (4).

Proof. Indeed, we can take control inputs v0(·), ω0(·), u0(·)
of the system (1) that is close enough to the global supremum
in (7). We can approximate these control inputs with any
small precision by piecewise constant inputs. This implies that
we can design a sequence of the collection (8) that tends to
v0, ω0, u0 when N, lω, lv, lu increase to +∞. This implies
that the value of (7) for the sequence built in OS tends to
supremum when the quantization parameters of the algorithm
tend to infinity. This completes the proof.

It should be emphasized that this framework results in
an asymptotically globally optimal solution. This means that
when the numbers of quantization levels of the method in-
crease to +∞, constructed UAV paths tend to be the paths
that deliver the global maximum.

The following MPC type procedure [23] will now be
applied.

MPC1: Let tk := kh for k = 0, 1, . . .. We obtain the
solution of the optimization problem (7) s.t. (2), (3), (4) on
the interval [tk, tk + T ] by the algorithm OS.

(a) Trajectory γ = 0.001
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(b) Objective function γ = 0.001

(c) Trajectory γ = 0.002
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(d) Objective function γ = 0.002

(e) Trajectory γ = 0.003

0 5 10 15 20 25 30

Time (s)

0

0.02

0.04

0.06

0.08

0.1

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

First two terms

The third term

Overall

(f) Objective function γ = 0.003

Fig. 4: Simulation results in Case 1.

MPC2: Inject the first input of the input sequence obtained
in MPC1.

MPC3: Return to MPC1, MPC2 at instant (k + 1).

IV. COMPUTER SIMULATIONS

We demonstrate the effectiveness of the developed algorithm
through simulations. We create some mountain-like environ-
ments in which groups of ground vehicles move.

We first consider the weight of γ which reflects the UAV
resource utilization rate. In a simulated environment (Case 1)
shown in Fig. 4, there are two UAVs and five vehicles, and
∆1 = 5 m/s. The simulation time is 30 seconds for these
cases, and other parameters are ∆2 = 0.5 rad/s, ∆3 = 0.5
m/s, lv = 1, lw = 1, lu = 1, dsafe = 10 m, α = π

2 ,
Zmax = 30 m, Zmin = 10 m, β = 0.1, h = 1 and N = 3.
We present the results of both the UAVs’ trajectories and the
objective function values under several values of γ. We can
see in Fig. 4 that when γ increases, i.e., more attention is paid
to the spent energy, the UAVs’ trajectories become flatter. The
corresponding cost is the reduction of the first two terms of (7),
which reflects the surveillance quality. In other words, results
for different values of γ in Fig. 4 show a trade-off between
the surveillance quality and the UAV resource utilization rate.

We are also interested in the computational time of our
algorithm for various values of lu, lv, lω and N using a
personal computer with an Intel Core i7-7500U CPU, and the
results are summarized in TABLE I. With the increase of N



5

TABLE I: Computational time of our algorithm with various
values of lu, lv, lω and N .

Line lu lv lω N Average time per step (second)
1 1 1 1 3 0.0072
2 1 1 1 4 0.44
3 1 1 1 5 3.08
4 2 1 1 3 0.15
5 3 1 1 3 1.07
6 1 1 2 3 0.14
7 1 1 3 3 1.12
8 1 2 1 3 0.036
9 1 3 1 3 0.45

(see Lines 1-3), the computing time increases a bit less than the
theoretical exponential relationship in Section III thanks to the
cancellation of invalid UAVs’ trajectories. With the increase of
lu (see Lines 1, 4 and 5), the computing time also increases.
But, the increasing rate is much smaller than that due to N .
This is because the effect of lu is the base, while N is the
exponent, which is consistent with the analyzed complexity in
Section III. The impact of lω is very similar to lu. As for lv (see
Lines 1, 8 and 9), it follows the same trend as lu and lω , but
the scale is smaller, which is also consistent with the result in
Section III. Indeed, the complexity of the presented algorithm
will become too large under large values of lu, lv, lω and N .
Small values of lu, lv, lω are also reasonable, especially for
inexpensive UAVs that do not have strong manoeuvrability. For
N , we should select it based on usage such as how frequently
the ground vehicles may adjust their movement. Moreover,
the presented algorithm is intended to run onboard. So, the
computing capability of the onboard computer also impacts
the selection of N .

To better illustrate the performance, we consider two bench-
mark methods. One is based on Voronoi partitioning [11], [13],
and the other is the standoff tracking method, i.e., the UAV
team stays away from the targets by a certain distance. The
basic idea of the first method is to first partition the targets
into some groups according to their positions and the positions
of UAVs and then drive the UAVs towards the centres of
the groups. For the second method, the UAVs keep a certain
formation and track the centroid of the targets. The proposed
method and benchmark methods are applied to Case 2 and
Case 3, and the initial conditions of the three methods in each
case are identical. γ takes 0.001, and all parameters are the
same as Case 1. The multi-UAV trajectories for these three
methods are shown in Fig. 5 and Fig. 6.

From Figs. 5d and 6d, we can see that the proposed method
outperforms the benchmark methods, and the outperformance
is more obvious for three UAVs, see Fig. 6d. The main
reason is explained as follows. The proposed method aims at
maximizing the worst-case QoS during the flight, reflected by
(7). However, the trajectories constructed by the benchmark
methods mainly track the centres of the groups of vehicles.
These trajectories can give a good performance of QoS in an
average manner. But, when we look at each vehicle individu-
ally, the worst case by the benchmark methods is worse than
that of the proposed method in general.

Notice that for comparisons we use the objective function

(a) Proposed algorithm (b) Benchmark algorithm 1

(c) Benchmark algorithm 2
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Fig. 5: Simulation results in Case 2. (a) Paths of the UAVs with
the proposed algorithm. (b) Paths of the UAVs with the first
benchmark algorithm. (c) Paths of the UAVs with the second
benchmark algorithm. (d) Objective function values.

(a) Proposed algorithm (b) Benchmark algorithm 1

(c) Benchmark algorithm 2
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Fig. 6: Simulation results in Case 3. (a) Paths of the UAVs with
the proposed algorithm. (b) Paths of the UAVs with the first
benchmark algorithm. (c) Paths of the UAVs with the second
benchmark algorithm. (d) Objective function values.

(7) and do not use some more general evaluation criteria, as the
main feature of this paper is that we consider the case of very
uneven terrain and the goal is to maximize the overall time
during which the ground vehicles are observed by the UAVs,
i.e. there exists the unblocked LoS between the UAVs and the
targets. To the best of our knowledge, there are no other papers
on UAV surveillance of ground targets that fully address this
issue. Therefore, other known measures of surveillance quality
do not fully capture the main issue addressed in this paper.
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V. CONCLUSION

In this correspondence, the problem of navigating a team
of UAVs for surveillance of ground vehicles on uneven terrain
was investigated. In the studied problem, UAVs with mounted
video cameras are to be navigated with the aim to monitor as
close as possible several ground vehicles moving on uneven
terrain. An effective and optimal in some sense collision-
free navigation algorithm was proposed. Propositions II.1 and
III.1 provided some theoretical justification of the multi-UAV
path planning algorithm as these rigorously proved statements
show that the solution delivered by this algorithm converges
to the optimal solution as some parameters tend to infinity.
The obtained navigation algorithm is also capable to design
safe collision-free UAV trajectories.
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