
Abstract1—Intelligent vehicles need high bandwidth wireless 

communication links for safety and commercial communication. 

However, the new generations of wireless communication networks 

(WCNs), such as quasi-optic millimeter-wave (mmWave) (5G) and 

visible light optic (6G) WCNs, are exposed to blockage/scattering 

problems in highly dense (urban) areas. In this paper, we propose 

a reconfigurable intelligent surface (RIS)-equipped (unmanned 

aerial vehicle) UAV (RISeUAV) to secure an uninterrupted line-of-

sight (LoS) communication link for an intelligent vehicle. The 

vehicle can be a smart ambulance and needs a stable high-speed link 

for autonomous navigation, also for continuous 

monitoring/diagnosing of the health condition of a patient. A two-

stage method is proposed to address the NP-hardness and 

nonconvexity of planning an optimal trajectory for autonomous 

navigation of the RISeUAV limited to UAV motion and LoS 

constraints. In the first stage, the optimal tube path is determined 

by considering the energy consumption, LoS link, and UAV 

speed/acceleration constraints. In the second stage, an accurate 

RISeUAV trajectory is obtained through the secured tube path by 

considering the communication performance, passive 

beamforming, and nonholonomic constraint of the RISeUAV. 

Dynamic programming and successive convex approximation 

methods are used in the first and second stages, respectively. 

Simulation results show the accuracy/effectiveness of the method. 

Index Terms—Autonomous navigation, optimal trajectory, 

reconfigurable intelligent surfaces (RISs), intelligent vehicles, 

unmanned aerial vehicles (UAVs), wireless communication. 

I. INTRODUCTION

NMANNED AERIAL VEHICLES (UAVs) are exploited in

various civilian applications like parcel delivery, rescue

operation, traffic monitoring [1], surveillance and data collection 

[2], assets maintenance, etc. Task appointment and target 

allocation to a single UAV or multiple UAVs and consequently 

path planning have been the main research topic [3]. Also, the 

autonomy of UAVs flight for completing the assigned tasks with 

minimum energy consumption and computational burden while 

achieving a satisfactory level of performance has been studied 

[4], [5].  

As a key application, UAVs have been used to improve the 

performance of wireless communication networks (WCNs) [6]. 

In UAV-assisted WCNs, a UAV may act as an aerial active base 

station (BS) or aerial relay [7] to provide a direct link for user 

equipment. Also, UAVs can be used for data collection of widely 

distributed Internet-of-things (IoT) devices [8]. Optimal 

allocation [9], joint trajectory-power optimization [10], and 

positioning  [11] are among the issues that have attracted 

extensive attention. 

UAVs can support wireless communication for autonomous 

driving of intelligent vehicles in future smart cities thanks to 

their excellent 3D mobility. However, the overall loss of the 

quasi-optical millimeter-wave (mmWave) communication in the 
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fifth-generation (5G) WCNs is significantly higher than that of 

microwave networks for a point-to-point link due to shadowing 

and blockage [12]. Also, beyond the 5G, sixth-generation (6G) 

optical communications require unobstructed links.  

In the communication research community, efforts have been 

focused on solving problems with mmWave communication 

using massive multi-input multi-output (MIMO) BSs to secure 

robust ubiquitous connectivity, which makes the WCNs complex 

and energy-deficient. Nevertheless, the emerging reconfigurable 

intelligent surface (RIS) has been developed to enhance the 

spectral efficiency and spatial throughput of 5G WCNs exposed 

to path loss, coverage holes, and blockages [13]. RISs comprise 

reflective arrays or sub-wavelength metamaterial unit cells [14] 

that can be locally controlled to alter the amplitude and phase 

(shift) of the incident electromagnetic signal in a real-time 

reconfigurable manner [15]. The RIS can be mounted on the wall 

of buildings and using their intelligent reconfigurability, can 

produce favorable channel conditions for users by reflecting and 

beamforming the transmitted signal at the receiver side [16]. 

Further, the RIS does not have to possess signal processing 

capability which makes it energy efficient [17]. 

Enhanced UAV communication supported by stationary RISs 

also has gained attention in recent research works [18]. RISs are 

deployed to address the path loss issues of the UAV-assisted 

communication in the mmWave WCNs [19]. Along with the 

trajectory design and power minimization of UAVs [10], which 

are the concern of UAVs due to the limited onboard energy [20], 

the passive phase shift of RIS elements is an additive objective 

[21], which has been tackled in recent works [22], [23]. Lately, 

the RIS-equipped UAV (RISeUAV) technology has been 

considered in a few works for enhancing the flexibility and 

onboard energy efficiency of the next-generation WCNs [24], by 

reflecting in the sky and establishing clear/instant LoS links [25]. 

In this paper, we propose employ the RISeUAV to support 

LoS wireless communication for an intelligent vehicle in dense 

urban areas. The RISeUAV is used because the passive RIS 

avoids the complexity of the flying package and preserves the 

onboard energy. Besides, UAV communication (as an aerial 

active BS/relay in 5G-6G WCNs) might not be efficient in an 

obstructed environment, so the RISeUAV is a promising option 

with the aid of terrestrial cellular networks [26]. The intelligent 

vehicle can be an unmanned smart ambulance carrying a patient 

that needs a stable high bandwidth communication link for 

autonomous driving and continuously/remotely monitoring the 

patient’s health conditions.   

The real-time monitoring of patients involves the transmission 

of various clinical multimedia data, including videos, medical 

images, and vital signs, which requires the use of mobile 

networks with high-fidelity communication bandwidth [27]. 
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However, quasi-optic mmWave communication might be 

interrupted when the vehicle moves through an obstructed dense 

urban area. With the aid of the RISeUAV, it is possible to ensure 

critical emergency services in a moving smart ambulance [28]. 

This target is achievable since the reliability of RIS-aided 

communication has been analyzed [13] and validated through 

experimental tests by successfully modulating/transmitting a 

digital video file through an RIS-based transmitter [29]. The 

application of RISeUAV is not limited to health/safety issues 

and can also be utilized in other applications, e.g., maintaining a 

secure and robust LoS link for security/police vehicles in 5G and 

beyond in optical/visible light WCNs.  

The RISeUAV navigation should be designed as the optimal 

energy-efficient trajectory to successfully provide aerial LoS 

service for the mobile target (MT) (i.e., the intelligent vehicle). 

However, the modeling and formulation of the problem for 

maintaining the LoS link, while the RISeUAV trajectory is 

constrained by the MT movement, is a nontrivial task and has 

not been addressed in the literature. The problem statement and 

shortcomings of the existing literature are discussed as follows. 

1) The RISeUAV should fly at a relatively low altitude to

preserve the quality of the LoS communication links.

Therefore, the RISeUAV may fly through buildings in dense

urban areas. This constructs a problem of a 3D crash

avoidance trajectory planning by considering the UAV motion

constraints while following the MT. However, in most UAV-

assisted communications, 2D unobstructed path planning has

been considered for static or quasi-static targets [20]-[23]. For

example, the problem of finding the optimum trajectory of a

rotary-wing UAV, as an aerial BS to communicate with some

stationary ground nodes, was formulated as convex

programming [20]. However, the problem is solved after some

simplifications, e.g., at a fixed attitude through an

unobstructed path and at a constant speed.

2) For autonomous navigation, the optimal trajectory should be

designed in real time by the RISeUAV’s overhead controller

[30]. This makes the problem computationally challenging

since it is time-consuming to validate the 3D state-space for

finding the optimal collision-free path that satisfies the

problem constraints [31]. Besides, the valid state-space

dynamically changes and is time-varying in nature due to the

MT movement through the buildings, making the

optimization problem non-convex. Real-time obstacle

detection has been studied [32]. However, optimal path

planning in a dynamic environment is an open research topic.

3) The most critical problem is formulating the LoS service into

an optimization problem. To the best of our knowledge, no

work in the relevant literature has elaborated on this issue.

Considering the energy-efficient path and channel

performance as the objectives, maintaining valid LoS links

can be modeled in the optimization as a constraint. In this

light, spots, where RISeUAV does not provide an LoS link for

the MT, can be regarded as fictitious obstacles that must be

avoided. However, modeling these dynamic fictitious

obstacles as the constraints is NP-hard and nonconvex.

4) After validating the state space, the problem of finding the

optimal solution, i.e., energy-efficient trajectory, can be

reduced to the NP-hard traveling salesman problem (TSP)

with neighborhood. Also, the communication channel

performance and RIS phase shift for beamforming impose

additional objectives/constraints.

 Therefore, we deal with a multilateral problem with the non-

convex optimization and its convergence to a valid solution 

while considering the computational burden. To address these 

issues, the contributions of the paper are listed as follows. 

• This paper, for the first time, studies the application of a

RISeUAV to establish an uninterruptable LoS wireless

communication link for an intelligent vehicle. The navigation

is modeled as a real-time optimization problem to design the

trajectory that satisfies problem constraints.

• To tackle the computational hardness of the problem, a two-

stage navigation scheme is proposed by utilizing the receding

finite horizon model predictive control (MPC) and dynamic

programming (DP).

• In the first stage, energy consumption, LoS link, and

navigation issues are considered using a semi-rapidly

exploring tree (RRT) method. The optimal energy-efficient

tube path is planned based on the map route of the MT,

maneuver limits associated with the UAV (speed/acceleration

constraints), and the environment 3D plan with potential

blockage/obstacles to secure the LoS. The tube path provides

a permitted cylindrical space for the UAV flight through

which the UAV motion and LoS constraints are satisfied.

• In the second stage, an accurate UAV trajectory is obtained

through the tube path considering the RIS phase shift and

communication channel performance associated with the

BS−RIS−MT link. The problem is formulated and solved

using successive convex approximation.

• To obtain the exact optimal UAV trajectory, maximizing the

achievable rate by maximizing the channel gain is considered

through channel estimation and RIS reconfiguration. Further,

the RIS position is not fixed in our application, which

demands appropriate mathematical modeling for channel

estimation that is delineated and developed in this paper.

The remainder of this paper is organized as follows. In Section

II, the problem modeling and formulation are developed and the 

problem statement for UAV navigation is elaborated. In Section 

III, the proposed method for optimizing the 3D trajectory of the 

RISeUAV is presented. Computer simulations are conducted in 

Section IV to evaluate the performance of the proposed method. 

Finally, Section V concludes the paper.  

Notice that, in terms of the mathematic notation in the paper, 

variable 𝑡 indicates a continuous function of time, 𝜏 denotes a 

specific time instant, and 𝑘 indicates a sampling time (timestep). 

II. PROBLEM FORMULATION AND STATEMENT

A. UAV Motion and Energy Consumption Model

Let us model the position and heading of the RISeUAV by

𝑝(𝜏)∡𝜃(𝜏) ≔ [𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)]𝑇∡𝜃(𝜏),  (1) 

where 𝑝(𝜏) ∈ ℝ1×3 denotes the RISeUAV position in the 

Cartesian coordinates at time 𝜏; 𝜃(𝜏) is the heading (yaw angle) 

of the RISeUAV with respect to the 𝑥 −axis, and superscript 𝑇 

denotes matrix transpose. The UAV agility is of concern in the 

RISeUAV navigation for this application. Thus, we model the 

RISeUAV motion by the following kinematic equation of 

motion [33]: 

{

�̇�(𝑡) = 𝑣𝑥(𝑡) = 𝑣(𝑡) cos(𝜃(𝑡));

�̇�(𝑡) = 𝑣𝑦(𝑡) = 𝑣(𝑡) sin(𝜃(𝑡));

�̇�(𝑡) = 𝑢(𝑡) − 𝑢0; 

�̇�(𝑡) = 𝜔(𝑡);

 (2) 



where 𝑣(𝑡) = ‖[𝑣𝑥(𝑡), 𝑣𝑦(𝑡)]
𝑇
‖
2
, 𝑢(𝑡), and 𝜔(𝑡) are linear 

horizontal, vertical and angular speeds, respectively; ‖∙‖ is norm 

operator, and 𝑢0 denotes the base vertical speed input for 

hovering. The roll and pitch (elevation) angles are assumed to be 

fixed in this paper. The roll and pitch (elevation) angles can also 

be considered optimization variables and can be considered in 

future works. 

Consider 𝑈(𝑡) = [𝑣𝑥(𝑡)  𝑣𝑦(𝑡)  𝑢(𝑡) 𝜔(𝑡)]
𝑇

 as the input to the

RISeUAV motion model in (2). The following energy cost 

function can be considered for the RISeUAV navigation:  

𝐸𝑅𝐼𝑆𝑜𝑈𝐴𝑉 = ∫ (𝛼1‖𝑣𝑥(𝑡), 𝑣𝑦(𝑡)‖2
+ 𝛼2|𝑢(𝑡)|

𝑡0+𝒯

𝑡0

+ 𝛼3|𝜔(𝑡)| + 𝛼4‖�̇�𝑥(𝑡), �̇�𝑦(𝑡)‖2

+ 𝛼5|�̇�(𝑡)| + 𝛼5|�̇�(𝑡)|) 𝑑𝑡,

(3) 

where 𝐸𝑅𝐼𝑆𝑜𝑈𝐴𝑉 denotes the energy consumption of the UAV, 𝒯 

denotes the time interval of interest in the [𝑡0, 𝑡0 + 𝒯] interval;

𝛼1 > 0, 𝛼2 > 0, 𝛼3 > 0, 𝛼4 > 0, 𝛼5 > 0, and 𝛼6 > 0 are weighting 

coefficients that compromise the control inputs and UAV 

maneuver (hovering and propulsion/acceleration).  

B. State-Space, Occupancy Map, and LoS Model

The urban area can be mapped onto a 3D occupancy map

using a Lidar sensor [34], and the 3D map is uploaded to the 

RISeUAV’s onboard controller. Fig. 1(a) shows the RISeUAV 

position and motion in the Cartesian coordinate system. We 

assume that the RIS is symmetrically mounted to the balanced 

center of the UAV (to preserve flight stability) facing the ground. 

Therefore, 𝑝(𝜏) denotes the center point of the RIS and the 

coordinates of the RIS elements (unit cells or reflectarrays) can 

be calculated by the UAV coordinates and dimensions of 

elements. The 3D frame of the occupancy map is considered the 

reference frame. Γ(𝜃(𝜏)) ∈ ℝ3×3 converts the coordinates from 

the reference frame to the RIS frame (with the shifted angle 𝜃(𝜏) 
given by the UAV heading at time 𝜏): 

Γ(𝜃(𝜏)) = [

cos(𝜃(𝜏)) −sin(𝜃(𝜏)) 0

sin(𝜃(𝜏)) cos(𝜃(𝜏)) 0

0 0 1

]. 

Let 𝑝𝑚(𝜏) = [𝑥𝑚(𝜏), 𝑦𝑚(𝜏), 𝑧𝑚(𝜏)]
𝑇 ∈ ℝ1×3 denote the

coordinates of the 𝑚𝑡ℎ element of the RIS at time 𝜏, where 𝑚 ∈

ℳ = {1, … ,𝑀} and M is the number of RIS elements. Therefore, 

the coordinates of element 𝑚 are obtained as: 

𝑝𝑚(𝜏) = Γ
−1(𝜃(𝜏))([

𝑥(𝜏)
𝑦(𝜏)
𝑧(𝜏)

] + [
𝑤(𝑚)

𝑙(𝑚)
0

]), (4) 

where 

𝑤(𝑚) = 𝑑𝑤 ((
𝑀𝑤 + 1

2
) − ⌈

𝑚

𝑀𝑙
⌉) ; 

𝑙(𝑚) = 𝑑𝑙 (𝑀𝑜𝑑(𝑚 − 1,𝑀𝑙) − (
𝑀𝑙 − 1

2
)) ; 

𝑀𝑙 and 𝑀𝑤 are the number of elements along with the length and 

width of the RIS, respectively; and 𝑑𝑙 and 𝑑𝑤 denote the length

and width sizes of the elements respectively, see Fig. 1(b).  Here 
⌈∙⌉ and 𝑀𝑜𝑑(. , . ) are the round-up and modulus functions, 

respectively. 

Let 𝑝𝑛
𝐵𝑆 = [𝑥𝑛

𝐵𝑆, 𝑦𝑛
𝐵𝑆, 𝑧𝑛

𝐵𝑆]𝑇 ∈ ℝ1×3 denote the coordinates of

the 𝑛𝑡ℎ BSs, where 𝑛 ∈ 𝒩 = {1,… , 𝑁} and N is the number of 

BSs installed in the geographical area of interest, and 𝑝𝑀𝑇(𝜏) =
[𝑥𝑀𝑇(𝜏), 𝑦𝑀𝑇(𝜏), 0]𝑇 ∈ ℝ1×3 denote the MT (vehicle) position 

at time 𝜏. Accordingly, we have Δ⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏) = 𝑝𝑚(𝜏) − 𝑝𝑛

𝐵𝑆,

Δ⃗⃗𝑚
𝑅𝑈𝑀𝑇(𝜏) = 𝑃𝑀𝑇(𝜏) − 𝑝𝑚(𝜏), and ∆⃗⃗ 𝑛

𝐵𝑆𝑀𝑇(𝜏) = 𝑃𝑀𝑇(𝜏) − 𝑝
𝑛
𝐵𝑆

denoting the vector from the 𝑛𝑡ℎ BS to the 𝑚𝑡ℎ elements of the 

RIS (i.e., the BS−RISeUAV link), the vector from the 𝑚𝑡ℎ 

element of the RIS to the MT (i.e., the RISeUAV−MT link), and 

the vector from the 𝑛𝑡ℎ BS to the MT (i.e., the BS−MT link), 

respectively. For example: 

Δ⃗⃗𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏) = [𝑥𝑚(𝜏) − 𝑥𝑛

𝐵𝑆, 𝑦𝑚(𝜏) − 𝑦𝑛
𝐵𝑆, 𝑧𝑚(𝜏) − 𝑧𝑛

𝐵𝑆]𝑇.

The vector lengths, i.e., |Δ⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏)|, |Δ⃗⃗ 𝑚

𝑅𝑈𝑀𝑇(𝜏)|,  and |Δ⃗⃗ 𝑛
𝐵𝑆𝑀𝑇(𝜏)|,

denote the BS−RISeUAV, RISeUAV−IV, and BS−MT 

Euclidean distances (norms), respectively. For instance: 

|Δ⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏)| = ‖Δ⃗⃗ 𝑛𝑚

𝐵𝑆𝑅𝑈(𝜏)‖
2

= √(𝑥𝑚(𝜏) − 𝑥𝑛
𝐵𝑆)2 + (𝑦𝑚(𝜏) − 𝑦𝑛

𝐵𝑆)2 + (𝑧𝑚(𝜏) − 𝑧𝑛
𝐵𝑆)2.

Alternatively, Δ⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏) = (𝑥𝑚(𝜏) − 𝑥𝑛

𝐵𝑆)�̂� + (𝑦𝑚(𝜏) − 𝑦𝑛
𝐵𝑆)�̂� +

(𝑧𝑚(𝜏) − 𝑧𝑛
𝐵𝑆)�̂�, where �̂�,  �̂�, and �̂� are the vectors of the unit length

along the 𝑥, 𝑦, and 𝑧 axes, respectively. The normalized vector 

of the RISeUAV (on the xy−plane) is given as: ∆⃗⃗ 𝑅𝑈=

cos(𝜃(𝜏)) �̂� + sin(𝜃(𝜏)) 𝐣, where 𝜃(𝜏) is the heading (yaw) angle 

at time 𝜏. Subscript "𝑥𝑦" indicates the 2D Euclidean distance on 
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Fig. 1. The RISoUAV position and motion in the Cartesian coordinates: (a) 3D frame of the occupancy map (as the reference frame); (b) the yx−plane. 

Notice that the coordinates of the reference frame is converted to the RIS-frame using transformation matrix 𝛤(𝜃(𝜏)).  



the xy−plane. 

Suppose that Ω ∈ ℝ3 is a set of coordinates that belong to the 

3D map of the dense urban area. Let 𝑝Ω
3𝐷 = {[𝑥𝑖𝑗

3𝐷  𝑦𝑖𝑗
3𝐷  𝑧𝑖𝑗

3𝐷]|∀ 𝑖 ∈

{1, … ,𝒫𝑗}, 𝑗 ∈ {1, … , 𝔍} ∈ Ω}, where 𝒫𝑗 denotes the number of the 

Cartesian coordinates of the 𝑗𝑡ℎ building and 𝔍 is the number of 

buildings. The LoS components for vectors Δ⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏), Δ⃗⃗ 𝑚

𝑅𝑈𝑀𝑇(𝜏)

and ∆⃗⃗ 𝑛
𝐵𝑆𝑀𝑇(𝜏)  are modeled as:

LoS𝑛𝑚
𝐵𝑆𝑅𝑈 , LoS𝑚

𝑅𝑈𝑀𝑇 , LoS𝑛
𝐵𝑆𝑀𝑇

= {
1, 𝑖𝑓  Δ⃗⃗ 𝑛𝑚

𝐵𝑆𝑅𝑈(𝜏), Δ⃗⃗ 𝑚
𝑅𝑈𝑀𝑇 , Δ⃗⃗ 𝑛

𝐵𝑆𝑀𝑇 ∩ 𝑝Ω
3𝐷 = ∅

0, 𝑖𝑓  Δ⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏), Δ⃗⃗ 𝑚

𝑅𝑈𝑀𝑇 , Δ⃗⃗ 𝑛
𝐵𝑆𝑀𝑇 ∩ 𝑝Ω

3𝐷 ≠ ∅

(5) 

which are treated as the LoS constraints in the RISeUAV 

navigation problem. The validity of the LoS link can be tested 

by interpolating the corresponding vector and checking the 

membership of intermediate points with the occupancy map. 

C. Channel Model

The RIS comprises a uniform linear array of reflective

elements as a specular reflector [14], and the phase shift of each 

element is controlled via an embedded controller at the UAV. 

The phase-shift matrix of the RIS is Θ(𝜏) =

diag{𝑒𝑗𝜗1(𝜏), 𝑒𝑗𝜗2(𝜏), … , 𝑒𝑗𝜗𝑀(𝜏) }, where diag(. ) denotes a

diagonal matrix and 𝜗𝑖(𝜏) ∈ [0, 2𝜋), 𝑖 ∈ ℳ is the phase-shift of

the 𝑖𝑡ℎ RIS element at time 𝜏. Here, it is worth noting that since 

the RISeUAV chases a fast-moving vehicle, the compatibility of 

the response time of the RIS controller with RISeUAV motion, 

i.e., limitations on continuous phase shift,  must be considered in

the optimization of the trajectory and speed which can be

considered in future works. The impact of channel state

information (CSI) imperfection on RIS-assisted communication

has been studied in the literature, e.g., [35], and is not elaborated

on in this paper.  

Regarding the BS−MT link, since the LoS link can be 

randomly blocked by buildings and foliage, the Rayleigh 

channel fading model is utilized. The BS−MT channel gain is 

given by:  

𝑔𝐵𝑆𝑀𝑇(𝜏) = (√𝜌|Δ⃗⃗ 𝑛
𝐵𝑆𝑀𝑇(𝜏)|

−𝛾
) �̃�, (6) 

where 𝜌 is the path loss at the reference distance (1 m), 𝛾 ≥ 2 is 

the path loss exponent, and �̃� is a random scattering component 

modeled by a zero-mean and unit-variance circularly symmetric 

complex Gaussian (CSCG) random variable.  

Since the RISeUAV trajectory is designed to secure the LoS 

link, the free-space path loss channel model is assumed in the 

BS−RISeUAV and RISeUAV−MT links. The channel gains are 

modeled as [13], [15]: 
𝑔𝐵𝑆𝑅𝑈(𝜏)

= √𝜌

[

𝑒−𝑗𝜙𝑛(𝑚=1)
𝐵𝑆𝑅𝑈 (𝜏)

√|Δ⃗⃗ 𝑛(𝑚=1)
𝐵𝑆𝑅𝑈 (𝜏)|

𝛾
, … ,

𝑒−𝑗𝜙𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏)

√|Δ⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏)|

𝛾
, … ,

𝑒−𝑗𝜙𝑛𝑀
𝐵𝑆𝑅𝑈(𝜏)

√|Δ⃗⃗ 𝑛𝑀
𝐵𝑆𝑅𝑈(𝜏)|

𝛾

]
 

𝑇

, 

(7) 

where 𝜙𝑛𝑚
𝐵𝑆𝑅𝑈(𝜁𝑚

𝐴𝑜𝐴(𝜏), 𝜑𝑚
𝐴𝑜𝐴(𝜏)) reflects the phase delay (shift) of

the impinging signal from the BS to the 𝑚𝑡ℎ element of the RIS, 

and 𝜑𝑚
𝐴𝑜𝐴(𝜏) and 𝜁𝑚

𝐴𝑜𝐴(𝜏) are the azimuth and elevation angle-of-

arrival (AoA) of the signal at time 𝜏, respectively. Similarly, the 

channel gain of the RISeUAV−MT link is given by: 

𝑔𝑅𝑈𝑀𝑇(𝜏)

= √𝜌

[

𝑒−𝑗𝜙𝑅𝑈𝑀𝑇
(𝑚=1)(𝜏)

√|Δ⃗⃗ (𝑚=1)
𝑅𝑈𝑀𝑇 (𝜏)|

𝛾
, … ,

𝑒−𝑗𝜙𝑅𝑈𝑀𝑇
𝑚 (𝜏)

√|Δ⃗⃗ 𝑚
𝑅𝑈𝑀𝑇(𝜏)|

𝛾
, … ,

𝑒−𝑗𝜙𝑅𝑈𝑀𝑇
𝑀 (𝜏)

√|Δ⃗⃗ 𝑀
𝑅𝑈𝑀𝑇(𝜏)|

𝛾

]
 

𝑇

, 

(8) 

where 𝜙𝑅𝑈𝑀𝑇
𝑚 (𝜁𝑚

𝐴𝑜𝐷(𝜏), 𝜑𝑚
𝐴𝑜𝐷(𝜏)) reflects the phase delay (shift) of

the incident signal from the 𝑚𝑡ℎ element of the RIS to the MT, 

and 𝜑𝑚
𝐴𝑜𝐷(𝜏) and 𝜁𝑚

𝐴𝑜𝐷(𝜏) are the azimuth and elevation angle-of-

departure (AoD) of the incident signal at time 𝜏, respectively.  

The signal-to-noise ratio (SNR) at the MT through the 

BS−RISeUAV −MT and direct BS-MT links is obtained as: 

Υ𝐵𝑆−𝑅𝑈−𝑀𝑇(𝜏)

=
𝑃𝐵𝑆(𝜏)|𝑔𝐵𝑆𝑀𝑇(𝜏) + 𝑔𝑅𝑈𝑀𝑇

𝐻 (𝜏)Θ(𝜏)𝑔𝐵𝑆𝑅𝑈(𝜏)|
2

𝜎2
, 

(9) 

where Υ𝐵𝑆−𝑅𝑈−𝑀𝑇(𝜏) is the SNR at time 𝜏, 𝑃𝐵𝑆(𝜏) is the power 

transmitted by the BS at time 𝜏, and 𝜎2 is the noise power at MT. 

Finally, the achievable rate at the MT is obtained as: 

𝑅𝐵𝑆−𝑅𝑈−𝑀𝑇(𝜏) = log2(1 + Υ𝐵𝑆−𝑅𝑈−𝑀𝑇(𝜏)). (10) 

D. Problem Formulation

We aim to achieve three objectives for the RISeUAV

navigation:  

1) Minimizing the energy consumption of the UAV: This also

ensures the shortest path is selected for the RISeUAV, which 

helps to avoid violating the speed/acceleration limits by the 

UAV because the RISeUAV must follow the MT in time, which 

may move fast.  

min
𝑣𝑥(𝑡),𝑣𝑦(𝑡),𝑢(𝑡),𝜔(𝑡)

𝐸𝑅𝐼𝑆𝑜𝑈𝐴𝑉 (11) 

 𝑠. 𝑡.  

{

  0 ≤ 𝑣(𝑡) ≤ 𝑉𝑚𝑎𝑥
−𝑈𝑚𝑎𝑥 ≤ 𝑢(𝑡) ≤ 𝑈𝑚𝑎𝑥
−𝑊𝑚𝑎𝑥 ≤ 𝜔(𝑡) ≤𝑊𝑚𝑎𝑥

𝑍𝑚𝑖𝑛 ≤ 𝑧(𝑡) ≤ 𝑍𝑚𝑎𝑥

(12) 

  {

−�̇�𝑚𝑎𝑥 ≤ �̇�(𝑡) ≤ �̇�𝑚𝑎𝑥
−�̇�𝑚𝑎𝑥 ≤ �̇�(𝑡) ≤ �̇�𝑚𝑎𝑥
−�̇�𝑚𝑎𝑥 ≤ �̇�(𝑡) ≤ �̇�𝑚𝑎𝑥

(13) 

   𝑝(𝜏) ∩ 𝑝Ω
3𝐷 = ∅, ∀ 𝜏 ∈ [𝑡0, 𝑡0 + 𝒯], (14) 

where 𝑉𝑚𝑎𝑥, 𝑈𝑚𝑎𝑥, and 𝑊𝑚𝑎𝑥 are positive constants indicating the 

maximum linear horizontal, vertical and angular speeds, 

respectively; and 𝑍𝑚𝑖𝑛 and 𝑍𝑚𝑎𝑥 denote the minimum and 

maximum limits of the RISeUAV altitude, respectively; �̇�𝑚𝑎𝑥,

�̇�𝑚𝑎𝑥  and �̇�𝑚𝑎𝑥 denote the horizontal, vertical, and angular 

acceleration limits, respectively. Constraints (12) and (13) 

impose velocity/altitude and acceleration limits, respectively. 

Constraint (14) ensures collision avoidance. 

2) Passive beamforming for rate maximization via the

BS−RISeUAV −MT LoS link: Since Υ𝐵𝑆−𝑅𝑈−𝑀𝑇(𝜏) ≥ 0 and due 

to the concavity of the logarithmic function, we have 

𝑅𝐵𝑆−𝑅𝑈−𝑀𝑇(𝜏) ∝ Υ𝐵𝑆−𝑅𝑈−𝑀𝑇(𝜏), where ∝ denotes “proportional 

to”. Also, the RISeUAV is a passive element in the WCN. In 

contrast to UAV-enabled communication [10], power control is 

out of concern. Besides, the RISeUAV provides an additive LoS 

link to the direct BS−MT channel, which is of interest in our 

study. Therefore, regarding the performance of the 

BS−RIS−MT LoS link, we consider the following objective 

function for optimizing the channel performance: 



max
𝑣(𝑡),𝑢(𝑡),𝜔(𝑡),Θ(𝑡)

Ψ = ∫ 𝑔𝑅𝑈𝑀𝑇
𝐻 (𝜏)Θ(𝜏)𝑔𝐵𝑆𝑅𝑈(𝜏)

𝑡0+𝒯

𝑡0

𝑑𝜏, (15) 

 𝑠. 𝑡.    Υ𝐵𝑆−𝑅𝑈−𝑀𝑇(𝜏) ≥ 𝑆𝑁𝑅𝑚𝑖𝑛, ∀ 𝜏 ∈ [𝑡0, 𝑡0 +𝒯], (16) 

  (12), (13), (14),

where 𝑆𝑁𝑅𝑚𝑖𝑛 denotes the minimum SNR. Constraint (16) 

ensures the minimum SNR is achieved at the MT through a direct 

BS−MT LoS link, otherwise through the RISeUAV and 

BS−RISeUAV −MT LoS link at each time. We can develop the 

channel performance Ψ as a function of the BS−RISeUAV −MT 

LoS link and phase shift matrix as given by  

Ψ = ∫ 𝜌
𝑡0+𝒯

𝑡0

∑ ∑
𝑒
𝑗(𝜗𝑚(𝜏)+(𝜙𝑚

𝑅𝑈𝑀𝑇(𝜏)−𝜙𝑛𝑚
𝐵𝑆𝑅𝑈(𝜏)))

√(|Δ⃗⃗ 𝑚
𝑅𝑈𝑀𝑇(𝜏)||Δ⃗⃗ 𝑛𝑚

𝐵𝑆𝑅𝑈(𝜏)|)
𝛾

𝑀

𝑚=1

𝑁

𝑛=1

𝑑𝜏; (17) 

It is evident from (17) that the performance of the 

BS−RISeUAV −MT channel depends on the phase shift matrix 

and is adversely affected by the length/distance of the 

BS−RIS−MT LoS link. 

3) Securing uninterrupted BS−RIS−MT LoS link. We model

this objective as the LoS constraint, applying to both objective 

functions (11) and (15), as 

∃(𝐵𝑆𝑛)| (Δ⃗⃗ 𝑛
𝐵𝑆𝑅𝑈(𝜏) ∪ ∆⃗⃗ 𝑅𝑈𝑀𝑇(𝜏)) ∩ 𝑝Ω

3𝐷 = ∅; (18) 

III. THE PROPOSED SOLUTION FOR RISEUAV NAVIGATION

The MT map route ℜ, from the starting position of the MT to its 

destination, is known, as it can be yielded by maps Apps. The 

MT communicates the map route with the RISeUAV. The 

RISeUAV must hold the continuous (BS−RIS−IV) LoS link 

while satisfying the speed and SNR constraint through an 

energy-efficient path with optimal channel performance. 

However, the RISeUAV must follow the MT at a close distance 

to maintain the LoS link in an obstructed environment. This issue 

along with the RISeUAV motion constraints imposes some 

limitations on the RISeUAV trajectory design, making the 

navigation an NP-hard optimization problem.  

A two-stage autonomous navigation model for RISeUAV is 

presented in this section by designing the optimal trajectory. 

Stable tracking control through the obtained trajectory [36] is 

beyond the scope of this paper. Here, the trajectory is a flight 

path in which RISeUAV flight speed/time is considered. 

A. Stage 1. Energy-Efficient Obstacle-free Tube Path

At this stage, the RISeUAV’s random possible paths are

determined by utilizing a semi-RRT algorithm. Then, using the 

MPC method [33], prospective trajectories are achieved, which 

satisfy the problem constraints, i.e., speed/acceleration limits 

and LoS constraints. Then, dynamic programming is used to 

achieve the optimal trajectory with the minimum UAV energy 

consumption.  

To MT route ℜ is divided into 𝐾 waypoints with relatively 

large distances. The map route is modeled by ℜ: {ℜ[𝑘]| ∀ 𝑘 ∈

𝒦 = {0, 1, … , 𝐾}} that includes the start, middle, and endpoints 

of streets (direct routes) in 𝒦. Let 𝒯[𝑘] be the time indicator (i.e., 

the time period) that the MT takes to move from ℜ[𝑘 − 1] to 

ℜ[𝑘] and is available based on the MT speed, so that 𝑇 =
∑ 𝒯[𝑘]𝐾
𝑘=1 , where 𝑇 is the mission completion time determined 

by the MT. Therefore, the navigation model loses a degree of 

freedom and must obey the mission completion time enforced by 

the MT. This issue, along with the constraints associated with 

the LoS link and occupancy map of a dense area, heavily 

restrains the valid state space for RISeUAV navigation making 

the classic RRT computationally inefficient. Thus, we propose a 

modified RRT algorithm as described in the sequel.  

For ℜ[𝑘], ∀ 𝑘 ∈ 𝒦, some random options are assigned to the 

RISeUAV position as given by: 

𝒬[𝑘, 𝓆𝑘] = 𝑅𝑎𝑛𝑑𝑜𝑚 ([𝑝[𝑘, 𝓆𝑘]∡𝜃[𝑘, 𝓆𝑘]]),

∀ 𝑘 ∈ 𝒦, ∀ 𝓆𝑘 ∈ ℚ𝑘 = {1,… , 𝑄𝑘},  

where 𝑅𝑎𝑛𝑑𝑜𝑚(. ) denotes random of (. ); [𝑘, 𝓆𝑘] denotes the 

𝓆𝑘
𝑡ℎ random option at the 𝑘𝑡ℎ waypoint, and 𝑄𝑘 is the number of

random options for the 𝑘𝑡ℎ waypoint. We define 𝒮[𝑘, 𝓆𝑘] as the

sphere with 𝒬[𝑘, 𝓆𝑘] as being the center and the radius 𝓇. Those

of 𝒬[𝑘, 𝓆𝑘] for which the LoS and 𝑆𝑁𝑅 prerequisites in (16) and

(18) are not satisfied, and/or the associated sphere overlaps with

the pre-specified spheres are omitted, and new random options 

that satisfy the constraints are replaced. Note that the altitude of 

random options must be higher than 𝑧𝑛
𝐵𝑆 + 𝓏, where 𝓏 is a

positive value to ensure the LoS link is effective. Also, there 

should be a valid direct path between random options of 

waypoint ℜ[𝑘] and allocated random options of waypoint 

ℜ[𝑘 − 1]. These constraints further limit the valid state space for 

RISeUAV path planning, which is against the computational 

time. 

There are ℵ number of prospective paths for RISeUAV along 

with ℜ(ℜ[0]:ℜ[𝐾]) comprising point-to-point (p2p) paths by 

considering all possible combinations of p2p paths: 

Ξ1:ℵ( 𝒬[0, 𝓆0]: 𝒬[𝐾, 𝓆𝐾]) = {Ξ[1, 𝓆0
1], … , Ξ[𝑘, 𝓆𝑘−1

𝑘 ], … , Ξ[𝐾, 𝓆𝐾−1
𝐾 ]};

Ξ[𝑘, 𝓆𝑘−1
𝑘 ] = Ξ( 𝒬[𝑘 − 1, 𝓆𝑘−1]: 𝒬[𝑘, 𝓆𝑘]), ∀ 𝓆𝑘−1 ∈ ℚ𝑘−1, ∀ 𝓆𝑘 ∈ ℚ𝑘; 

where [𝑘 − 1, 𝓆𝑘−1]  denotes the 𝓆𝑡ℎ random option at the
(𝑘 − 1)𝑡ℎ waypoint. Totally ℵ = 𝑄𝐾+1 is the number of 

prospective paths through the route ℜ from ℜ[0] to ℜ[𝐾].  

We yield the RISeUAV input (speed) associated with p2p 

prospective paths (corresponding to ℜ[𝑘 − 1] to ℜ[𝑘]) starting 

from 𝒬[𝑘 − 1, 𝓆𝑘−1], ∀ 𝓆𝑘−1 ∈ ℚ𝑘−1, to 𝒬[𝑘, 𝓆𝑘], ∀ 𝓆𝑘 ∈ ℚ𝑘. The 

input speed corresponding to a given p2p path is defined as 

𝑈[𝑘, 𝓆𝑘−1
𝑘 ] = [𝑣𝑥[𝑘, 𝓆𝑘−1

𝑘 ], 𝑣𝑦[𝑘, 𝓆𝑘−1
𝑘 ], 𝑢[𝑘, 𝓆𝑘−1

𝑘 ], 𝜔[𝑘, 𝓆𝑘−1
𝑘 ]],

where 𝑈[𝑘, 𝓆𝑘−1
𝑘 ] = 𝑈(𝑄[𝑘 − 1, 𝑞𝑘−1]: 𝑄[𝑘, 𝑞𝑘]), which is obtained

by plugging the coordinates of 𝒬[𝑘 − 1,𝓆
𝑘−1
] and 𝒬[𝑘,𝓆

𝑘
] into

(19). Here, (19) is the discretized version of (2), as given by  

𝑈[𝑘, 𝓆𝑘−1
𝑘 ] =

𝒬[𝑘, 𝓆
𝑘
] − 𝒬[𝑘 − 1,𝓆

𝑘−1
]

𝒯[𝑘]
,   (19) 

The accelerations associated with the given p2p path are 

obtained as: 

�̇�[𝑘, 𝓆𝑘−1
𝑘 ] = |

𝑣[𝑘, 𝓆𝑘−1
𝑘 ] − 𝑣[𝑘 − 1, 𝓆𝑘−2

𝑘−1]

𝒯[𝑘]
| 

�̇�[𝑘, 𝓆
𝑘−1
𝑘 ] = |

𝑢[𝑘,𝓆
𝑘−1
𝑘 ] − 𝑢[𝑘 − 1,𝓆

𝑘−2
𝑘−1]

𝒯[𝑘]
| 

�̇�[𝑘, 𝓆𝑘−1
𝑘 ] = |

𝜔[𝑘,𝓆𝑘−1
𝑘 ]−𝜔[𝑘 − 1,𝓆𝑘−2

𝑘−1]

𝒯[𝑘]
| 

(20) 

The speed and accelerations in (19) and (20) are obtained ∀  𝑘 ∈
𝒦 − {0}, ∀ 𝓆𝑘−1 ∈ ℚ𝑘−1, ∀ 𝓆𝑘 ∈ ℚ𝑘. The number of valid RRT

branches is reduced because the corresponding branch of the tree 

(i.e., the p2p path) is discarded if the speed/acceleration 

constraints in (12) and (13) are not satisfied. 

For each of the remaining branches (of each prospective 



trajectory) the energy cost function is achieved using (21) which 

is obtained by discretizing (3): 

𝐸𝑅𝐼𝑆𝑜𝑈𝐴𝑉
Ξ𝔤 = ∑ 𝐸𝑅𝐼𝑆𝑜𝑈𝐴𝑉

Ξ𝔤 [𝑘, 𝓆𝑘−1
𝑘 ]

𝑘∈𝒦−{0}

; (21) 

where 

𝐸𝑅𝐼𝑆𝑜𝑈𝐴𝑉
Ξ𝔤 [𝑘, 𝓆𝑘−1

𝑘 ] = 𝛼1 (‖𝑣𝑥[𝑘, 𝓆𝑘−1
𝑘 ], 𝑣𝑦[𝑘, 𝓆𝑘−1

𝑘 ]‖
2
)

+ 𝛼2|𝑢[𝑘, 𝓆𝑘−1
𝑘 ]| + 𝛼3|𝜔[𝑘, 𝓆𝑘−1

𝑘 ]|

+ 𝛼4 |‖�̇�𝑥[𝑘, 𝓆𝑘−1
𝑘 ], �̇�𝑦[𝑘, 𝓆𝑘−1

𝑘 ]‖
2
|

+ 𝛼5|�̇�[𝑘, 𝓆𝑘−1
𝑘 ]| + 𝛼6|�̇�[𝑘, 𝓆𝑘−1

𝑘 ]|, 

and 𝐸𝑅𝐼𝑆𝑜𝑈𝐴𝑉
Ξ𝔤 denotes the energy consumption of the UAV 

through the 𝔤𝑡ℎ prospective trajectory (Ξ𝑔). The trajectory with

the minimum energy is adopted as the final trajectory: 

Ξ∗( 𝒬[0, 𝓆0]: 𝑄[𝐾, 𝓆𝐾] ) = arg min
𝑈[𝑘,𝓆𝑘−1

𝑘 ];

∀𝑘∈𝒦−{0}

𝐸𝑅𝐼𝑆𝑜𝑈𝐴𝑉
Ξ1:ℵ

(22) 

 Finally, the RISeUAV tube path Φ is achieved by connecting 

the spheres associated with the selected trajectory Ξ∗, as given 

by 

Φ∗( 0: 𝐾) = {𝒮∗[0], … , (𝒮∗[𝑘], 𝑈∗[𝑘]), … , (𝒮∗[𝐾], 𝑈∗[𝑘])}

where 𝑈∗[𝑘] ← 𝑈[𝑘, 𝓆∗
𝑘−1
𝑘 ], 𝒮∗[𝑘] ← 𝒮[𝑘, 𝑞𝑘

∗], and 𝑞𝑘
∗  denotes the

optimally selected random options at ℜ[𝑘]. However, browsing 

the most energy-efficient trajectory 1 is an NP-hard problem and 

can be formulated as Travelling Salesman Problem. In other 

words, the optimum trajectory cannot be found in polynomial 

time using an exhaustive search algorithm. Particularly, when 

the density of the urban area is high and/or the map route is long 

and the number of discretized waypoints and corresponding 

random options are large, finding the solution is time-

consuming, with a time complexity of 𝑂(𝑄𝐾+1). To make the 

problem computationally tractable, we use dynamic 

programming. 

Remark. Based on Bellman's principle [37], the optimum 

trajectory  Ξ∗( 𝒬[𝑘, 𝓆
𝑘
]: 𝒬[𝐾, 𝓆

𝐾
]) satisfies the following Hamilton-

Jacobi-Bellman (HJB) equation: 

Ξ∗( 𝒬[𝑘, 𝓆
𝑘
]: 𝒬[𝐾, 𝓆

𝐾
])

= min
𝑈[𝑘,𝓆𝑘−1

𝑘 ]
{Ξ[𝑘, 𝓆

𝑘−1
𝑘 ]

+ Ξ∗( 𝒬[𝑘 + 1, 𝓆
𝑘+1
∗ ]: 𝒬[𝐾, 𝓆

𝐾
∗ ])},

(23) 

which means starting from the last waypoint (i.e., the 𝐾𝑡ℎ 

waypoint) and selecting the p2p trajectory with the minimum 

energy consumption and keeping the process all the way to the 

starting point, the optimum trajectory is achieved. However, DP 

does not lead to the optimum solution because although the last 

p2p trajectory is optimal, it does not guarantee the optimality of 

the (𝐾 − 1)𝑡ℎ position as the endpoint of the next p2p trajectory. 

To address this issue, we consider a weighting coefficient for 

random options, which is also aligned with the problem 

objectives, as follows. Based on (17), the distances between the 

RISeUAV and the BS, and between RISeUAV and MT 

adversely affect the channel performance. Therefore, we weigh 

each random option with its corresponding LoS link distance as 

given by  

𝑊( 𝒬[𝑘, 𝓆
𝑘
]) =  (|Δ⃗⃗ 𝑅𝑈𝑀𝑇(𝒬[𝑘, 𝓆

𝑘
])||Δ⃗⃗ 𝑛

𝐵𝑆𝑅𝑈(𝒬[𝑘, 𝓆
𝑘
])|);

∀ 𝓆𝑘 ∈ ℚ𝑘, 𝑘 ∈ 𝒦. 
(24) 

Then, we score each p2p trajectory with the following factor 

𝐹[𝑘, 𝓆
𝑘−1
𝑘 ] = 𝐸𝑅𝐼𝑆𝑜𝑈𝐴𝑉[𝑘, 𝓆𝑘−1

𝑘 ]

× 𝑤𝐶 (𝑊( 𝒬[𝑘 − 1, 𝓆𝑘−1]) ×𝑊( 𝒬[𝑘, 𝓆𝑘])),  
(25) 

where 𝑤𝐶 is a positive coefficient to balance energy efficiency

and channel performance. The smaller  𝑤𝐶 the closer the solution

to the energy-efficient trajectory. The index 𝐹 is obtained by 

multiplication of the energy consumption index of the p2p 

trajectory to the product of the LoS link weights of its ends. 

Therefore, the p2p trajectory is selected to minimize (25), as 

given by 

Ξ∗[𝑘, 𝓆
𝑘−1
𝑘 ] = arg min

𝑈[𝑘,𝓆𝑘−1
𝑘 ]

𝐹[𝑘, 𝓆
𝑘−1
𝑘 ]. (26) 

Then, DP finds the optimum solution based on (23), as 

explained in the following. The last p2p trajectory that 

minimizes 𝐹[𝐾, 𝓆
𝐾−1
𝐾 ] in (25), is selected. Then starting from the 

𝒬[𝐾 − 1, 𝑞𝐾−1
∗ ] associated with the selected p2p trajectory, in 

a recursive manner, the optimal p2p trajectory corresponding to 

the next (i.e., the (𝐾 − 1)𝑡ℎ) discretized p2p path is selected. The 

process repeats until the first p2p trajectory is determined. At 

each p2p path where the trajectory is terminated due to the 

problem constraints (i.e., RISeUAV motion constraints), the 

next optimal p2p trajectory associated with the (𝑘 + 1)𝑡ℎ p2p 

path is selected. Finally, Φ∗( 0: 𝐾) is achieved. This technique 

significantly reduces the computational burden, because it does 

not explore and sort all valid trajectories for calculating 

corresponding energy consumption or scoring gain 𝐹. In the 

simulation section, we show that 90% optimality is achieved 

with less than 1% of the computational burden. 

In stage 2, the exact RISeUAV trajectory is obtained through 

the tube path Φ∗ by optimizing channel performance. 

B. Stage 2. RISeUAV Trajectory and Passive Beamforming

After achieving the secure tube path, the channel performance

is considered to obtain the optimal RISeUAV trajectory through 

the tube path. To this end, optimizing the objective function in 

(15), i.e., maximizing the BS−RIS−MT channel gain, is 

considered. However, the optimization problem in (15) is non-

convex regarding the RISeUAV trajectory variables, i.e., 𝑈(𝑡), 

and phase-shift matrix of the RIS (Θ(t)).  
We solve the optimization problem in (15) by proposing tube-

based finite receding horizon predictive control. The tube-based 

method limits possible solutions to predefined/valid boundaries, 

which helps to reduce the computational burden. In this regard, 

we discretize the tube path Φ∗[𝑘] (i.e., the p2p trajectory 

ℜ[𝑘 − 1]:ℜ[𝑘]) into ℰ slots as Φ∗[𝑘, 𝜖] ∀ 𝜖 ∈ 𝔼 = {1,… , ℰ} 
where ℰ is considered as the finite receding horizon for 

maximizing the achievable rate through the LoS channel for the 

upcoming p2p trajectory. Thus, (17) is updated for Φ∗[𝑘] as: 

Ψ(𝑝[𝑘, 𝜖], Θ[𝑘, 𝜖], ∀ 𝜖 ∈ 𝔼)  

= 𝜌∑∑ ∑
𝑒
𝑗(𝜗𝑚[𝑘,𝜖]+(𝜙𝑚

𝑅𝑈𝑀𝑇[𝑘,𝜖]−𝜙𝑛𝑚
𝐵𝑆𝑅𝑈[𝑘,𝜖]))

√(|Δ⃗⃗ 𝑚
𝑅𝑈𝑀𝑇[𝑘, 𝜖]||Δ⃗⃗ 𝑛𝑚

𝐵𝑆𝑅𝑈[𝑘, 𝜖]|)
𝛾

𝑀

𝑚=1

𝑁

𝑛=1

ℰ

𝜖=1

𝑝[𝑘, 𝜖] ∈ Φ∗[𝑘, 𝜖], 𝜗𝑚[𝜖] ∈ [0, 2𝜋), ∀ 𝜖 ∈ 𝔼

(27) 

where 𝑝[𝑘, 𝜖] denotes the RISeUAV position in (1) at the 𝜖𝑡ℎ slot 

associated with the 𝑘𝑡ℎ p2p trajectory. The optimization problem 

is to find a set of positions {𝑝[𝑘, 𝜖]| ∀ 𝜖 ∈ 𝔼} ∈ Φ∗[𝑘] for the 

RISeUAV so that channel gain, and thus the achievable rate, are 

maximized through tube path Φ∗[𝑘]. To this end, we can regulate 

the phase-shift of the RIS elements, i.e., 𝜗𝑚, ∀ 𝑚 ∈ℳ, to 

compensate for the phase delay associated with the 

BS−RIS−MT link. As a result, the associated received energy 

of all signals in the MT is accumulated coherently.  

https://en.wikipedia.org/wiki/Recursion


The phase delay associated with the incident signal from 

mobile BS to the 𝑚𝑡ℎ RIS element is obtained as 

𝜙𝑛𝑚
𝐵𝑆𝑅𝑈[𝑘, 𝜖]  =

2𝜋

𝜆
𝕨(𝜁𝑚

𝐴𝑜𝐴[𝑘, 𝜖], 𝜑𝑚
𝐴𝑜𝐴[𝑘, 𝜖])(Δ⃗⃗ 𝑛𝑚

𝐵𝑆𝑅𝑈[𝑘, 𝜖]),

(28) 

where 𝜆 is the carrier wavelength; and 𝕨(𝜁𝑚
𝐴𝑜𝐴, 𝜑𝑚

𝐴𝑜𝐴) ∈ ℝ1×3 is

the planar wave vector as given by 

𝕨(𝜁𝐴𝑜𝐴
𝑚 , 𝜑𝐴𝑜𝐴

𝑚 ) = [

cos(𝜁𝑚
𝐴𝑜𝐴) cos(𝜑𝑚

𝐴𝑜𝐴)

cos(𝜁𝑚
𝐴𝑜𝐴) sin(𝜑𝑚

𝐴𝑜𝐴)

sin(𝜁𝑚
𝐴𝑜𝐴)

]

𝑇

. (29) 

It is worth noting that the 𝕨(𝜁𝑚
𝐴𝑜𝐴, 𝜑𝑚

𝐴𝑜𝐴) × ∆⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈  term in (28)

results in the vector length |Δ⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈| (i.e., the Euclidean distance

in the reference frame). Therefore, 𝜙𝑛𝑚
𝐵𝑆𝑅𝑈 can be obtained as

(2𝜋 𝜆⁄ ) × |∆⃗⃗ 𝑛𝑚
𝐵𝑆𝑅𝑈|. Nevertheless, (28) can be used for the spatial

scattering channel model used in the meta surface-based RIS, to 

obtain Γ(𝜃) × 𝕨(𝜁
𝑚
𝐴𝑜𝐴, 𝜑

𝑚
𝐴𝑜𝐴), i.e., the azimuth and elevation

angle at the RIS frame, where optimizing the entire phase 

gradient is required for the optimal phase shift [14]. 

Similarly, the phase delay of the RIS-MT link for individual 

RIS elements (i.e., 𝜙𝑚
𝑅𝑈𝑀𝑇(𝜁𝑚

𝐴𝑜𝐷 , 𝜑𝑚
𝐴𝑜𝐷)) can be achieved. To

compensate for the phase delay of the BS−RIS−MT link in (27) 

we consider: 

𝜗𝑚[𝑘, 𝜖] = (𝜙𝑛𝑚
𝐵𝑆𝑅𝑈[𝑘, 𝜖] − 𝜙𝑚

𝑅𝑈𝑀𝑇[𝑘, 𝜖])         ∀ 𝜖,𝑚 (30) 

Thus, (27) is updated as: 

Ψ(𝑝[𝑘, 𝜖], ∀ 𝜖 ∈ 𝔼)  

= 𝜌∑∑
𝑀

√(|Δ⃗⃗ 𝑅𝑈𝑀𝑇[𝑘, 𝜖]||Δ⃗⃗ 𝑛
𝐵𝑆𝑅𝑈[𝑘, 𝜖]|)

𝛾

𝑁

𝑛=1

;

ℰ

𝜖=1

 

𝑝[𝑘, 𝜖] ∈ Φ∗[𝑘], ∀ 𝜖 ∈ 𝔼.

(31) 

The problem is reduced to minimizing the denominator in (31) 

which is the sum of products of the BS−RISeUAV and 

RISeUAV−MT distances for all adjacent BSs. In scenarios 

where the MT moves in the inter-cell areas, the RISeUAV can 

be navigated to preserve its distance with adjacent BSs to 

improve the channel performance. However, this demands 

proper channel assignment and power control, which also 

complicates the phase shift algorithm. Alternatively, the BS 

associated with the cellular network covering the area 

corresponding to the p2p trajectory [𝑘], is taken. Note that the 

validity of the LoS link with the approaching BS (whose 

corresponding cell covers the next p2p trajectory), is guaranteed 

in the first stage. Therefore, the following objective function is 

considered:  

min
𝑈[𝑘,𝜖]

   ∑|Δ⃗⃗ 𝑅𝑈𝑀𝑇[𝑘, 𝜖]||Δ⃗⃗ 𝑛
𝐵𝑆𝑅𝑈[𝑘, 𝜖]|,

ℰ

𝜖=1

(32) 

𝑠. 𝑡.   𝑈𝑚𝑎𝑥 ≤ 𝑈[𝑘, 𝜖] ≤ 𝑈
∗[𝑘], ∀ 𝜖 ∈ 𝔼, (33) 

𝑝[𝑘, 𝜖] ∈ Φ∗[𝑘], ∀ 𝜖 ∈ 𝔼, (34) 

𝑝[𝑘, ℰ] ∈ 𝒮∗[𝑘],                  (35) 

(Δ⃗⃗ 𝑛
𝐵𝑆𝑅𝑈[𝑘, 𝜖] ∪ ∆⃗⃗ 𝑅𝑈𝑀𝑇[𝑘, 𝜖]) ∩ 𝑝Ω

3𝐷 = ∅,  (36) 

Υ𝐵𝑆−𝑅𝑈−𝑀𝑇[𝑘, 𝜖] ≥ 𝑆𝑁𝑅𝑚𝑖𝑛, ∀ 𝜖 ∈ 𝔼,  (37) 

where 𝑈∗[𝑘] is the optimal speed corresponding to p2p trajectory 

𝑘 achieved by stage one. Constraint (33) entails that the 

RISeUAV speed must be larger than the secured speed achieved 

at stage  one for the 𝑘𝑡ℎ p2p trajectory, subject to the UAV 

maximum speed. Constraint (34) ensures that the RISeUAV flies 

at the optimum tube path associated with this p2p trajectory. 

Constraint (35) obligates that at Φ∗[𝑘,ℰ] RISeUAV is located 

inside the sphere of the optimum waypoint 𝑘, which is also the 

starting point of Φ∗[𝑘+ 1]. Constraints (36) and (37) are the LoS 

link and SNR constraints, respectively.  

To solve the problem in (32), the time interval 𝒯[𝑘] associated 

with tube path Φ∗[𝑘] is also divided into ℰ equal time slots with 

time sampling interval 𝛿, so that we have 𝒯[𝑘] = {𝛿, 2𝛿, … , ℰ𝛿}. 
Since the RIS faces the ground, the channel performance can be 

independent of 𝜃[𝑘, 𝜖] (i.e., the heading of the UAV with respect 

to the x-axis), thanks to the intelligent phase-shift matrix and 

passive beamforming. Thus, 𝜃[𝑘, 𝜖] is not considered as an 

optimizing variable, but as a constraint to limit angular speed, 

that can be achieved based on the UAV positions at two 

consecutive slots (i.e., Φ∗[𝑘, 𝜖 − 1] and Φ∗[𝑘, 𝜖]). Therefore, the 

cost function (32) can be written in (P1) as predictive finite 

receding horizon optimization for RISeUAV navigation while 

considering the channel performance (henceforth, we eliminate 

index 𝑘 associated with the 𝑘𝑡ℎ p2p trajectory, for the sake of 

simplicity). 

(P1):   min
𝕦[𝜖]

      ∑ (‖(𝑝𝑀𝑇[𝜖] − 𝑝[𝜖])‖2‖(𝑝[𝜖] − 𝑝𝑛
𝐵𝑆)‖2),

ℰ
𝜖=1  (38) 

𝑠. 𝑡.    𝑝[𝜖 + 1] = 𝔸𝑝[𝜖] + 𝔹𝕦[𝜖 + 1] + 𝔻,  (39) 

𝑣∗ ≤ 𝑣[𝜖] = ‖[𝑣𝑥(𝑡), 𝑣𝑦(𝑡)]
𝑇
‖
2
< 𝑉𝑚𝑎𝑥, ∀ 𝜖 ∈ 𝔼, (40) 

|𝑢[𝜖]| < 𝑈𝑚𝑎𝑥 , ∀ 𝜖 ∈ 𝔼,  (41) 

|tan−1 (
𝑣𝑦[𝜖]

𝑣𝑥[𝜖]
)−𝜃[𝜖 − 1]| < 𝛿

𝑊𝑚𝑎𝑥
𝑣[𝜖]

, ∀ 𝜖 ∈ 𝔼, (42) 

𝑝[𝜖] ∈ 𝛷∗, ∀ 𝜖 ∈ 𝔼, (43) 

𝑝[ℰ] ∈ 𝒮∗[𝑘], (44) 

(Δ⃗⃗ 𝑛
𝐵𝑆𝑅𝑈[𝜖] ∪ ∆⃗⃗ 𝑅𝑈𝑀𝑇[𝜖]) ∩ 𝑝Ω

3𝐷 = ∅, ∀ 𝜖 ∈ 𝔼, (45) 

‖(𝑝𝑀𝑇[𝜖] − 𝑝[𝜖])‖2‖(𝑝[𝜖] − 𝑝𝑛
𝐵𝑆)‖2 < ∆𝑚𝑎𝑥 ,

∀ 𝜖 ∈ 𝔼,     
(46) 

where 𝔸 = 𝐼3×3, 𝔹 = 𝛿𝐼3×3, 𝕦[𝜖] = [𝑣𝑥[𝜖], 𝑣𝑦[𝜖], 𝑢[𝜖]]𝑇

including the optimizing variables, and 𝔻 = [0 0 −𝑢0]
𝑇,

which are developed by discretizing the kinematic equation of 

motion in (2); 𝑝[0] = 𝑄[𝑘 − 1, 𝑞𝑘−1
∗ ], i.e., the initial RISeUAV

position is given by the last optimal position at the end of the 

previous p2p trajectory.  

We model the receding potential trajectory of the RISeUAV 

using model predictive control in (39), where (40)-(41) impose 

speed constraints. Constraint (42) limits the RISeUAV heading 

rate and satisfies the nonholonomic constraint. We do not bound 

the vertical speed to the vertical speed given by stage 1 because 

the RISeUAV may keep the initial altitude, or even reduce the 

altitude at the first time slots to increase the channel gain. The 

SNR constraint in (37) is modeled by (46), where ∆𝑚𝑎𝑥 denotes 

the maximum value that ensures that the minimum SNR is 

achieved. However, the optimization problem (P1) is non-

convex with non-convex constraints in (42)-(46). With a 

relatively low altitude (𝑧), the product of two 2-norm approaches 

zero when the RISeUAV gets close to a BS or the MT. At a 

relatively high altitude, the problem is convex. We first consider 

the RISeUAV−MT distance to be minimized because the 

RISeUAV p2p trajectory is limited to the secured tube path 

which preserves the validity of the BS-RISeUAV link and 

channel gain. Also, this is aligned with the problem objective, 

i.e., minimizing the channel gain and ensuring that RISeUAV



can track the MT movement in time. Further, considering that 

the minimum SNR constraint is satisfied at both ends of the tube 

path and the optimization problem is to minimize the link 

distance, we can relax the minimum SNR constraint in (46). 

Therefore, we focus on solving (P2) as: 

(P2):   min
𝔘
 ‖𝕭𝔘 − (𝑝ℰ

𝑀𝑇 − (𝓐𝑝[0] + 𝕯𝚲))‖
2

(47) 

𝑠. 𝑡.    𝑝[𝜖] = 𝓐𝜖𝑝[0] + 𝕭𝜖𝔘𝜖 +𝕯𝜖𝑰𝟏×𝟑𝜖; (48) 

𝑣∗ ≤ ‖[𝑣𝑥(𝑡), 𝑣𝑦(𝑡)]
𝑇
‖
2
< 𝑉𝑚𝑎𝑥, ∀ 𝜖 ∈ 𝔼, (49) 

|𝑢[𝜖]| < 𝑈𝑚𝑎𝑥 , ∀ 𝜖 ∈ 𝔼, (50) 

{

𝑣𝑥[𝜖] − 𝑣𝑥[𝜖 − 1] (1 −
1

𝑉𝑚𝑎𝑥
) > 0,

𝑣𝑦[𝜖] − 𝑣𝑦[𝜖 − 1] (1 −
1

𝑉𝑚𝑎𝑥
) > 0,

∀ 𝜖 ∈ 𝔼, (51) 

𝑝𝑚𝑖𝑛
𝛷∗ [𝜖] ≤ 𝑝[𝜖] ≤ 𝑝𝑚𝑎𝑥

𝛷∗ [𝜖], ∀ 𝜖 ∈ 𝔼, (52) 

𝑧[𝜖] ≥ 𝑧𝑛
𝐵𝑆 + 𝓏, (53) 

𝑝[ℰ] = 𝑄[𝑘, 𝑞𝑘
∗], (54) 

(Δ⃗⃗ 𝑛
𝐵𝑆𝑅𝑈[𝜖] ∪ ∆⃗⃗ 𝑅𝑈𝑀𝑇[𝜖]) ∩ 𝑝Ω

3𝐷 = ∅, ∀ 𝜖 ∈ 𝔼, (55) 

where   𝔘 = [𝕦[1] 𝕦[2] 𝕦[3] ⋯ 𝕦[ℰ]]𝑇;

𝔘𝜖 = [𝕦[1] 𝕦[2] 𝕦[3] ⋯ 𝕦[𝜖]]𝑇;

𝑝ℰ
𝑀𝑇 = [𝑃𝑀𝑇[1] 𝑃𝑀𝑇[2] 𝑃𝑀𝑇[3] ⋯ 𝑃𝑀𝑇[𝜖]]𝑇;

 𝓐𝜖 = 𝔸
𝜖;  𝓐 = [𝔸 𝔸𝟐 𝔸𝟑 ⋯ 𝔸𝜖]

𝑇;

𝕭𝜖 = [𝔸𝜖−1𝔹 𝔸𝜖−2𝔹 … 𝔸𝔹 𝔹];

𝕯𝜖 = [𝔸𝜖−1𝔻 𝔸𝜖−2𝔻 … 𝔸𝔻 𝔻];

𝕭 =

[

 
 

𝔹 0 …
𝔸𝔹 𝔹 …
𝔸2𝔹
⋮

𝔸ℰ−1𝔹

𝔸𝔹
⋮

𝔸ℰ−2𝔹

⋱
⋱
…

    

0 0
0 0
0
𝔹
𝔸𝔹

0
0
𝔹]

 
 
;

𝕯 =

[

𝔻 0 …
𝔸𝔻 𝔻 …
𝔸2𝔻
⋮

𝔸ℰ−1𝔻

𝔸𝔻
⋮

𝔸ℰ−2𝔻

⋱
⋱
…

 

0 0
0 0
0
𝔻
𝔸𝔻

0
0
𝔻]

; 

𝚲 = (𝛼𝑖𝑗) ∈ ℝ
3ℰ×3ℰ    with   (𝛼𝑖𝑗) = 1   𝑖𝑓   𝑖 ≥ 𝑗  𝑜𝑟  0 otherwise. 

𝑝𝑚𝑖𝑛
𝛷∗ [𝜖] and 𝑝𝑚𝑎𝑥

𝛷∗ [𝜖] are the 3D Cartesian coordinates achieved

based on the cylinder that models the tube path, as shown in Fig. 

2. To deal with the nonconvexity of constraints (42) and (43),

and for modeling the cylinder of tube path and cone region that

satisfies speed constraints, we apply piecewise linearization as

described in the sequel. From two given positions at both ends

of p2p trajectory 𝑘 (i.e., 𝑝[0] = 𝑄[𝑘 − 1, 𝑞
𝑘−1
∗ ] and 𝑝[ℰ] =

𝑄[𝑘, 𝑞
𝑘
∗]), we can get the azimuth and elevation angles of the

cylinder corresponding to tube path 𝑘:

𝜑𝑘 = cos
−1 (

𝑥𝑘
∗ − 𝑥𝑘−1

∗

‖[(𝑥𝑘
∗ − 𝑥𝑘−1

∗ ), (𝑦𝑘
∗ − 𝑦𝑘−1

∗ )]𝑇‖2
) ; (56) 

𝜁𝑘 = tan
−1 (

𝑧𝑘
∗ − 𝑧𝑘−1

∗

‖[(𝑥𝑘
∗ − 𝑥𝑘−1

∗ ), (𝑦𝑘
∗ − 𝑦𝑘−1

∗ )]𝑇‖2
). (57) 

Then we discretize the cylinder axis into ℰ slots and calculate 

the discretized boundaries of the cylinder for slot 𝜖 as:  

𝑝𝑚𝑎𝑥,𝑚𝑖𝑛
𝛷∗ [𝜖] = 𝑝[0] + 𝜕 ((𝜁𝑘), (𝜑𝑘)) (𝜖

‖𝑝[ℰ] − 𝑝[0]‖2
ℰ

) ± 𝓇𝐼3×1,

(58) 

where 𝜕 ((𝜁𝑘), (𝜑)) denotes the normalized vector of tube path 𝑘

and is given as 

𝜕 ((𝜁𝑘), (𝜑𝑘)) = [

cos(𝜁𝑘) cos(𝜑𝑘)

cos(𝜁𝑘) sin(𝜑𝑘)

sin(𝜁𝑘)

] .

𝑇

Constraint (52) is developed due to the fact that: 

(tan−1 (
𝑣𝑦

𝑣𝑥
))

′

=
𝑣𝑥
2

𝑣𝑥
2 + 𝑣𝑦

2
≈
𝑣𝑥

𝑣
. (59) 

Since the largest possible value for 𝑣 is 𝑉𝑚𝑎𝑥, we constrain the

lower bound of 𝑣𝑥[𝜖], by limiting the difference between

consecutive slots by 𝑣𝑥[𝜖] − 𝑣𝑥[𝜖 − 1] >
𝑣𝑥[𝜖−1]

𝑉𝑚𝑎𝑥
; and we consider

the same constraints for the lower bound of 𝑣𝑦[𝜖], which

constrains the upper bound of  𝑣𝑥[𝜖] based on (49), and vice

versa. For the first slot, we put 𝑣𝑥[𝜖 − 1] = 𝑣
∗ cos(𝜑𝑘) and

𝑣𝑦[𝜖 − 1] = 𝑣
∗ sin(𝜑𝑘), where 𝑣∗ is the optimal speed of p2p

trajectory 𝑘 given by stage 1. Constraint (43) can be linearly 

obtained by (48) and (52) with the aid of (58). Therefore, 

constraints (49)-(51) model the cone speed constraint; constraint 

(52) models the cylinder of the p2p trajectory; constraint (53)

ensures that the altitude of the RISeUAV is comparatively higher

than the altitude of the BS to secure the LoS link. Here, we

assume that the p2p tube path is free of physical obstacles

achieved in stage 1.

Nevertheless, the boundaries of the cylinder might be 

occupied by some buildings that can be identified based on the 

occupancy map and can be modeled as constraints in P2 that 

must be avoided. This can be implemented by checking the 

validity of the cylinder constraints in (52) with the occupancy 

map and replacing them with valid constraints, which obviously 

shrink the tube path. However, still, real-time modeling of the 

LoS link in (55) is a problem. We change (44) to (54) because 

the LoS link of 𝑄[𝑘, 𝑞𝑘
∗] has been secured in stage 1.  

x 

y 

z 

(𝑥, 𝑦) 

∆𝑧 

𝑝[0] 

𝑝[ℰ] 

𝓇 
𝜁𝑘 

𝜑𝑘 

𝑣𝑚𝑎𝑥[1] 

𝑥𝑚𝑎𝑥
𝛷∗ [1]

𝑥𝑚𝑖𝑛
𝛷∗ [1]

𝑥𝑚𝑖𝑛
𝛷∗ [2]

𝑥𝑚𝑖𝑛
𝛷∗ [𝜖] 

𝑥𝑚𝑎𝑥
𝛷∗ [2]

𝑥𝑚𝑎𝑥
𝛷∗ [𝜖] 

𝑝[𝜖] 

𝑝[1] 

Fig. 2. RISoUAV navigation through the cylinder of the p2p tube path. 



(a) 

(b) 

Fig. 3. The 3D map of the simulated dense urban area: (a) the 3D occupancy map and MT route from point A to point B; (b) the MT route in the XY plane. The 

MT map route is divided into 8 slots by 9 waypoints: ℜ[𝑘]|  ∀ 𝑘 = 1,… , 9, which are shown by red squares.

(a) 

(c) 

(b) 

(d) 

Fig. 4. Simulation results for the dense urban scenario: (a) stage 1, all possible p2p paths through random options; (b) ℵ prospective trajectories with valid 

speeds/accelerations (shown by light blue lines) and selected trajectory with minimum energy consumption (shown by light green lines); (c) trajectory with 

minimum energy consumption (shown by light green) vs. trajectory found by DP (shown by pink); (d) optimum trajectory through the second stage for RISeUAV 

guidance (shown by blue lines).

(a) (b) (c)

Fig. 5. Numerical result for the simulated scenario: (a) Energy consumption indicator for valid trajectories; (b) SNR at p2p waypoints of the selected trajectories; 

(c) SNR for the trajectory slots of the optimum trajectory. 
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(a) 

(c) 

(b) 

(d) 

Fig. 6. Simulation results for assessing the DP performance in stage 1: (a) all possible p2p paths with 10 random options for each p2p path; (b) trajectory with 

minimum energy consumption (shown by light green) vs. trajectory found by DP (shown by pink), and trajectory with minimum F index = energy × LoS weight 

((shown by light blue); (c) Energy consumption indicator for valid trajectories; (d) F index for valid trajectories.

Then, (55) can be embedded in (52), while the areas of the 

cylinder where the LoS link is unavailable can be regarded as 

obstacles. The validity of the LoS link at cylinder boundaries 

corresponding to each slot can be verified by interpolating the 

BS−RISeUAV −MT link for cylinder boundaries in (58) and 

checking the validity of intermediate points with the occupancy 

map. Nevertheless, efficient modeling of the LoS link in (55) in 

the context of convex optimization is part of our future work. 

Finally, in special cases, if the map route of the MT 

corresponding to the p2p trajectory 𝑘 is aligned with the vector 

Δ⃗⃗ 𝑛
𝐵𝑆𝑀𝑇[𝑘], the solution to (P2) would be close to the solution to 

(P1). 

If the map route of the MT corresponding to the p2p 

trajectory 𝑘 is perpendicular to the vector Δ⃗⃗ 𝑛
𝐵𝑆𝑀𝑇[𝑘], (P3) can be

solved for the Δ⃗⃗ 𝑛
𝐵𝑆𝑅𝑈[𝑘, 𝜖] link as

(P3):   min
𝔘
 ‖𝕭𝔘 − (𝑝𝑛

𝐵𝑆 − (𝓐𝑝[0] + 𝕯𝚲))‖
2
 (60) 

𝑠. 𝑡.    (48) − (55); 

and the optimal solution would be the average of solutions to 

(P2) and (P3). 

C. Time Complexity of the Proposed DP-MPC Method

The time complexity of the trajectory design with the

proposed DP-MPC method is approximated by 

𝑇 = 𝑇𝐷𝑃 + 𝑇𝑀𝑃𝐶 = 𝒪(𝐾) + (𝒪(𝐾 × 𝑃2) + 𝒪(𝐾 ×  𝑃3))

≈ 𝒪 (𝐾 (1 + 2 log (
1

𝜀0
))) ; 

where 𝜀0 denotes the accuracy of the interior-point method. The

time complexity is significantly lower than that of the RRT 

method which is (𝒪(𝑄𝐾+1)). 

IV. SIMULATION RESULTS

The RISeUAV navigation in a dense urban area is simulated on 

the Matlab platform to evaluate the effectiveness of the 

proposed method. The 3D occupancy map of the simulated 

scenario is presented in Fig. 3. The MT is moving from point A 

to point B through the MT route shown by the red tracks. 

The occupancy map is validated through the Matlab UAV 

toolbox (unoccupied map points are considered valid states and 

occupied and unknown map locations are interpreted as invalid 

states). The system parameters are 𝑃𝐵𝑆 = 30 dBm, 𝜎2 =

−80 dBm, 𝜌 = 10 dBm, 𝛾 = 2, 𝜆 = 10−2 m, and 𝑑 =
1

2
𝜆.

To find an energy-efficient and LoS-secured tube path for the 

RISeUAV to follow the MT, the A-B route is divided into 8 

slots by choosing 9 waypoints including the starting point and 

the endpoint of the MT route and crosspoints of streets and the 

middle of the long streets in dense areas. The MT travel time 

(the time indicator), based on which the RISeUAV navigation 

and speed/acceleration limits are determined, is selected as 

 𝒯[𝑘] = {8 8.3 5.2   4.1 4 7   4 12} seconds. 

For each waypoint ℜ[𝑘]|  ∀ 𝑘 ∈ {0, … , 8}, 6 random options 

𝒬[𝑘, 𝓆𝑘] ∀ 𝓆𝑘 = 1,… , 6 are allocated, see Fig. 4(a), that satisfy 

the following constraints; 35 𝑚 ≤ 𝑧 ≤ 130 𝑚, 𝓇 = 15 𝑚, and 

maximum horizontal distance from waypoint 𝑘 (i.e., ℜ[𝑘]) for 

allocated random options is 50 m.  

Also, the allocated random options must satisfy the 
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BS−RIS−MT LoS and SNR constraints and there must be a 

valid path between 𝒬[𝑘 − 1, 𝓆𝑘−1] and 𝒬[𝑘, 𝓆𝑘]. Increasing 

(decreasing) the number of allocated random options for each 

waypoint (the sphere radius 𝓇) increases the chance of getting 

a valid optimal tube path but increases the computational 

burden.  

The number of paths through the allocated random options is 

very large (i.e., 69). Nevertheless, after applying the RISeUAV 

speed/acceleration constraints (𝑉𝑚𝑎𝑥 = 12
𝑚

𝑠
, 𝑈𝑚𝑎𝑥 =

8
𝑚

𝑠
,𝑊𝑚𝑎𝑥 = 𝜋/6 

𝑟𝑎𝑑

𝑠𝑙𝑜𝑡
), the number of valid prospective paths 

reduces to approximately 180 trajectories, see Fig. 4(b). Then, 

the trajectory with the minimum energy consumption is 

selected by which the energy-efficient and LoS/SNR-secured 

tube path for the second stage is achieved, see Fig. 4(c). At the 

second stage, using convex optimization to solve (P2) and (P3), 

the final optimal trajectory is obtained, see Fig. 4(d). In this 

regard, we use Optimization Toolbox in Matlab (fmincon 

syntax). The number of assigned slots for each p2p path is 

selected to be 10 for the second stage (a total of 80 slots for the 

whole RISeUAV trajectory). The energy index and achieved 

SNRs for trajectory slots (𝑆𝑁𝑅𝑚𝑖𝑛 = 1) are shown in Fig. 5.

The performance of DP in finding the optimum trajectory 

among all valid trajectories is evaluated, revealing promising 

performance. With a laptop computer (Processor Intel(R) 

Core(TM) i7-8665U CPU @ 1.90GHz, RAM 32.0 GB), it took 

4.9 seconds to find the trajectory with minimum energy index 

= 82.2182, whereas DP found a trajectory with an energy index 

= 82.3221 in 0.001 seconds based on the Matlab tic-toc 

function, see Fig. 5(a).  

To further analyze the global optimality of the solution, we 

simulate a scenario with ten random options for p2p paths, as 

illustrated in Fig. 6. The number of all paths increases to 109 
with approximately 160,000 valid trajectories; see Fig. 6(a). It 

took 15.5 seconds to find the optimal trajectory with the 

minimum energy index of 77.7489, whereas DP found a 

trajectory with an energy index of 84.45 in 0.0045 second 

recorded by the Matlab tic-toc function; see Figs. 6(b) and (c). 

The interesting point is that after replacing the energy index 

with the F_index = energy × LoS weight in (25), DP finds the 

optimal trajectory with the minimum F_index, see Fig. 6(d). 

Overall, after averaging the results of several runs of stage 1 

and comparing DP results with optimal results given by 

nonpolynomial exhaustive search, DP achieves approximately 

90% of the global optimum with less than 1% of the 

computational burden. 

V. DISCUSSION

Based on the simulation results, the proposed method 

successfully discovers an energy-efficient and LoS-secured 

path for RISoUAV navigation to maintain LoS wireless 

communication link for the MT. The second stage determines 

the final trajectory by considering the energy index and channel 

performance as objectives while satisfying the UAV motion 

and nonholonomic constraints. The performance of the second 

stage strongly depends on the first stage as the second stage is 

restricted by the factors determined by the first stage such as 

radius 𝓇 and speed constraints.      

However, designing the system parameters (for modeling the 

problem and developing a solution) depends on the UAV and 

environmental characteristics in the first stage. For instance, in 

terms of the computational burden, selecting the number of 

planning slots and sphere radius r depends on the performance 

of the computational burden. From the UAV flight perspective, 

several factors, such as the UAV maneuvers 

(speed/acceleration) limits, the maximum flight altitude for 

allocating potential options for each waypoint (at stage 1), the 

height of buildings, density of the urban area, etc., have impact 

on the performance and convergence of the method. From the 

channel performance point of view, achieving an acceptable 

SNR (while satisfying the LoS and flight constraints) depends 

on the BSs allocations, power rating of the incident signals, the 

number of RIS elements, the flight altitude, etc. In this light, we 

considered one BS to simulate a worst-case scenario in the 

simulated scenario to see if the proposed method can 

successfully find an appropriate navigation path for the 

RISoUAV to satisfy problem constraints. It is observed that the 

achieved SNR at the last slots (where the MT is far from the BS 

and the UAV has to fly at a higher altitude to secure the LoS) 

declines. Considering other BSs of terrestrial 5G WCNs, 

increasing the power rating of the communication signal, and 

adopting larger RISs with more elements can be helpful but cost 

more. Thus, securing the convergence of the method in the first 

stage to a valid solution demands a compromise between the 

level of reliability/security requirements and costs that depends 

on environmental characteristics. 

The practical limitations of the RIS phase shift following the 

UAV maneuver and imperfect CSI are not considered in this 

work and will be our future work. Also, uncertainty in MT 

motion and sudden route changes due to traffic and other 

vehicles are issues that can be considered to extend the work. 

However, the RIS can be embodied as a smooth, reflective, 

metallic surface in the case of quasi-optical mmWave signals, 

or a mirror in the case of visible light communications.  A UAV 

can locate the vehicles using computer vision-based video 

odometry and reconfigure its RIS when the BS and intelligent 

vehicle have unobstructed LoS to the UAV. Further, a potential 

research topic is the UAV navigation design when the 3D map 

is unavailable, and UAV flight relies on UAV sensors. For 

example, vision-based navigation based on deep 

(reinforcement) learning methods is suggested. 

VI. CONCLUSION

The autonomous navigation of a UAV equipped with an RIS 

was designed to secure the LoS communication link for a 

mobile vehicle (an emergency ambulance) in 5G-6G WCNs. To 

tackle the computational burden of achieving an optimal 

energy-efficient and LoS-secured path while capturing the 

UAV flight constraints and BS−RIS−MT channel 

performance, a two-stage method was proposed. Stage 1 is an 

offline process (while the RISeUAV is preparing for the trip) to 

find an LoS-secured tube path with minimum energy 

consumption that satisfies the RISeUAV motion constraints. 

Stage 1 was modeled as a traveling salesman problem using a 

semi-RRT method and dynamic programming was adopted to 

make the solution computationally tractable. Stage 2 can be 

executed in real-time during the flight for the next p2p 

trajectory as a finite receding horizon aiming at maximizing the 

channel gain and thus the achievable rate. To this end, we 
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modeled the problem as convex non-linear quadratic 

programming with a mix of non-linear quadratic and linear 

constraints, which can be solved in real-time utilizing existing 

solvers such as the interior-point method.  
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