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Abstract— In this paper, we derive the stochastic master
equations for quantum systems driven by a single-photon
input state which is contaminated by quantum vacuum noise.
To improve estimation performance, quantum filters based
on multiple-channel measurements are designed. Two cases,
namely diffusive plus Poissonian measurements and two dif-
fusive measurements, are considered.
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1. INTRODUCTION

When light interacts with a quantum system, e.g., a two-
level atom or an optical cavity, partial system information
can be transferred to the output light. The output light
may be measured, say via homodyne detection, to produce
photocurrent upon which the state of quantum system can
be conditioned. The stochastic evolution of the conditional
system state is usually called quantum trajectory. Quantum
filter can be designed to estimate these trajectories [3], [4],
[11], [14]-[17], [21], [23].

In quantum optics, the quantum filtering problem is known
under the names of stochastic master equation and quantum
trajectory theory [5], [11], [23], and it was first developed
by Belavkin [3], [4]. The formalism of quantum filtering for
Gaussian input fields, including the vacuum state, coherent
state, squeezed state and thermal state, have been considered
and well studied [8], [11], [19], [23]. With lots of experimen-
tal results, such as cavity quantum electrodynamics (QED)
[18], circuit QED [9] and quantum dots in semiconductors
[24], nonclassical states of light have also been discussed in
connection with quantum networks. A range of nonclassical
states, single-photon states and coherent states have been
considered in [16]. Particularly, the master equations and
stochastic master equations are presented for an arbitrary
quantum system probed by a continuous-mode single-photon
input field. As an application, the conditional dynamics for
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the cross phase modulation in a doubly resonant cavity
are considered in [6], where both homodyne detection and
photon-counting measurements are simulated for a cavity
driven by a single-photon input field. The interaction of a
two-level atom with a propagating mode single-photon in
free space has been discussed in the literature, see e.g., [22].
The dependence of the atomic excitation probability on the
temporal and spectral features of single-photon pulse shapes
and coherent states pulse shapes are also considered in [22].

In real physical experiments, there may be limitations
for the case of single measurements due to the existence
of noise. To circumvent this imperfection, quantum filter-
ing problem with multiple output fields has been devel-
oped using quantum trajectory theory with multi-input-multi-
output (MIMO) quantum feedback [7]. A finite dimensional
discrete-time Markov model in the cases of perfect and
imperfect measurements are described in [2]. For the state
estimations used in the feedback scheme, the quantum filters
are discussed and a general robustness property for perfect
and imperfect measurements are proved. An experimental
implementation has been conducted by using the photon box
and closed-loop simulations are also presented [20]. The
observed system in [1] is assumed to be governed by a
continuous-time stochastic master equation driven by Wiener
and Poisson processes. Particularly, the incompleteness and
errors in measurements have been taken into account and
the measurement imperfections are modeled by a stochastic
matrix.

In this paper, we extend the single-photon filtering frame-
work proposed in [6], [16] by including imperfect measure-
ments. More specifically, we study the case when the output
light field is corrupted by a vacuum noise. We show how
to design filters based on multiple measurements to achieve
desired estimation performance.

2. OPEN QUANTUM SYSTEMS

The system model we discuss is an arbitrary quantum
system G driven by a single-photon input field. Here, we
will describe the system by using the triple language (S,L,H)

[13], [26]. The scattering operator S is unitary, which satisfies
S†S = SS† = I. The coupling between system and field is
described by the operator L and the self-adjoint operator H
is the initial Hamiltonian of the system.
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Fig. 1. Simultaneous homodyne detection and photon-counting at the
outputs of a beam splitter in quantum system.

The input field is represented by annihilation operator b(t)
and creation operator b†(t) on the Fock space HF , which
satisfies [b(t),b†(s)] = δ (t− s).

The dynamical evolution can be described by a unitary
operator U(t) on the tensor product Hilbert space HS⊗HF

which is given by the following quantum stochastic differ-
ential equations (QSDE)

dU(t) =
{
(S− I)dΛ(t)+LdB†(t)

−L†SdB(t)−
(

1
2

L†L+ iH
)

dt
}

U(t)

where U(0) = I.
By Itō calculus, we can find the following evolution

dBout(t) =S(t)dB(t)+L(t)dt,

dΛout(t) =S∗(t)dΛ(t)ST (t)+S∗(t)dB∗(t)LT (t)

+L∗(t)dBT (t)ST (t)+L∗(t)LT (t)dt.

(2.1)

3. QUANTUM FILTER FOR MULTIPLE
MEASUREMENTS

A. Continuous-mode Single-photon State

The creation operator for a photon with wave packet [12]
ξ (t) in time domain is defined as

B∗(ξ ) =
∫

∞

0
ξ (t)b∗(t)dt,

with the normalization condition
∫

∞

0 |ξ (t)|2dt = 1. Then the
single-photon state is given by

|1ξ 〉= B∗(ξ )|0〉.

B. Quantum Filter for Multiple Measurements Driven by
Vacuum Input

To derive the quantum filter for system driven by a single-
photon input state, we firstly introduce the result of multiple
measurements with vacuum input.

Lemma 3.1: ([10, Theorem 3.2]) Let {Yi,t , i = 1,2, . . . ,N}
be a set of N compatible measurement outputs for a quantum
system G. With vacuum initial state, the corresponding joint
measurement quantum filter is given by

dX̂ = πt [LG(Xt)]dt +
N

∑
i=1

βi,tdWi,t ,

Fig. 2. Quantum system depiction of Figure 1.

where dWi,t = dYi,t−πt(dYi,t) is a martingale process for each
measurement output and βi,t is the corresponding gain given
by

ζ
T = πt(XtdY T

t )−πt(Xt)πt(dY T
t )+πt

(
[L†

t ,Xt ]StdBdY T
t

)
,

Σ = πt(dYtdY T
t ), β = Σ

−1
ζ ,

(3.2)
where Σ is assumed to be non-singular.

Remark 3.1: A general measurement equation, which is a
function of annihilation, creation and conservation processes
in the output field, is defined as [10]

dY (t) = F∗dB∗out(t)+FdBout(t)+Gdiag(dΛout(t)). (3.3)

Particularly, a combination of homodyne detection and
photon-counting measurement is given by

F =

[
1 0
0 0

]
,G =

[
0 0
0 1

]
.

C. Quantum Filter for Joint Homodyne and Photon-counting
Detections Driven by Single-photon State

Assume the system is in an initial state ρ0 = |η〉〈η | and
the single-photon input state is |1ξ 〉. The quantum filter for
the conditional expectation for the system G driven by a
single-photon field is given by

π
11
t (X) = Eηξ [X(t)|Y (s),0≤ s≤ t].

The whole system G with the measurements in Fig. 1 can
be depicted as shown in Fig. 2. G1 = (S,L,H) is the original
system G, which has been connected with a signal model
(ancilla) M = (I,λ (t)σ−,0). By introducing a second open
quantum system G2 = (1,0,0), we concatenate the vacuum
noise into our system. The last open quantum system is a
beam splitter G3 = (Sb,0,0), where

Sb =

[ √
1− r2eiθ rei(θ+ π

2 )

rei(θ+ π
2 )

√
1− r2eiθ

]
, 0≤ r ≤ 1.

The quantum signal generating filter is given by M =

(SM,LM,HM), where

(SM,LM,HM) = (I,λ (t)σ−,0),

Here, σ− is the lowering operator and the coupling strength
λ (t) = ξ (t)√

w(t)
, where w(t) =

∫
∞

t |ξ (s)|2ds.
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By the concatenation and series product, the whole system
G is given by

G = G3 C [(G1 CM)�G2] = (St ,Lt ,Ht),

where St = Sb

[
S 0
0 1

]
, Lt =

[
L+λ (t)Sσ−

0

]
, Ht = H +

λ (t)Im{L†Sσ−}.
In what follows, we denote by Bi,t , which is a vacuum

state, the input of signal model M. Bv,t is the vacuum noise
for system G2, by the evolution of output fields (2.1), the
measurements stochastic equations are given by

dY1,t =
√

1− r2
{[

eiθ (L+SLM)+ e−iθ (L† +L†
MS†)

]
dt

+ eiθ SdBi,t + e−iθ S†dB†
i,t

}
+ ir

(
eiθ dBv,t − e−iθ dB†

v,t

)
,

(3.4)
and

dY2,t =r2
[
SdΛi,tS† +(L+SLM)S†dB†

i,t +S(L† +L†
MS†)dBi,t

+(L† +L†
MS†)(L+SLM)dt

]
+(1− r2)dΛv,t

+ ir
√

1− r2
[
SdΛvi,t −S†dΛiv,t +(L+SLM)dB†

v,t

− (L† +L†
MS†)dBv,t

]
,

(3.5)
where dY1,t is the first channel with homodyne detection and
dY2,t is the second channel with photon-counting measure-
ment.

Thus, the corresponding gain β = [β1 β2] can be calculated
by (3.2)

β1 =
√

1− r2eiθ
π̃t
(
A⊗XL+ALM⊗XS

)
+
√

1− r2e−iθ
π̃t
(
A⊗L†X +L†

MA⊗S†X
)

−
√

1− r2π̃t
(
A⊗X

)
× π̃t

[
eiθ (L+SLM)+ e−iθ (L† +L†

MS†)
]
,

(3.6)

β2 =
[
π̃t(L†L+L†

MS†L+L†SLM +L†
MLM)

]−1

× π̃t
(
A⊗L†XL+L†

MA⊗S†XL+ALM⊗L†XS

+L†
MALM⊗S†XS

)
− π̃t

(
A⊗X

)
,

(3.7)

where A is any ancilla operator and X is the system operator.
If we define [16]

π
jk

t (X) =
π̃t(Q jk⊗X)

w jk
, j,k = 0,1,

where Q jk and w jk are given by

Q jk =

[
Q00 Q01

Q10 Q11

]
=

[
σ+σ− σ+

σ− I

]
,

w jk =

[
w00 w01

w10 w11

]
=

[
w(t)

√
w(t)√

w(t) 1

]
,

the theorem which presents the quantum filter can be ob-
tained as follows.

Theorem 3.1: Let {Yi,t , i = 1,2} be a combination of ho-
modyne detection and photon-counting measurement for a
quantum system G. With single-photon input state, the quan-
tum filter for the conditional expectation in the Heisenberg
picture is given by (3.8).

Here,

Kt :=eiθ
π

11
t (L)+ e−iθ

π
11
t (L†)

+ e−iθ
π

01
t (S†)ξ ∗(t)+ eiθ

π
10
t (S)ξ (t),

νt :=π
11
t (L†L)+π

01
t (S†L)ξ ∗(t)

+π
10
t (L†S)ξ (t)+π

00
t (I)|ξ (t)|2,

the Wiener process W (t) and compensated Poisson process
N(t) are given by

dW (t) = dY1,t −
√

1− r2Ktdt, dN(t) = dY2,t − r2
νtdt,

respectively. We have π10
t (X) = π01

t (X†)†, the initial condi-
tions are π11

0 (X)= π00
0 (X)= 〈η ,Xη〉, π10

0 (X)= π01
0 (X)= 0.

Remark 3.2: If we let r = 0, θ = 0, the filter equations
reduce to an estimation problem with a single homodyne
detection. On the other hand, if we let r = 1, θ = −π

2 , the
filter equations reduce to an estimation problem with a single
photon-counting measurement [16].

Corollary 3.1: With a combination of homodyne detec-
tion and photon-counting measurement, the quantum filter
for the system G driven by single-photon input state in the
Schrödinger picture is given by (3.9).

Here,

Kt =e−iθ Tr[L†
ρ

11(t)]+ eiθ Tr[Lρ
11(t)]

+ eiθ Tr[Sρ
01(t)]ξ (t)+ e−iθ Tr[S†

ρ
10(t)]ξ ∗(t),

νt =Tr[L†Lρ
11(t)]+Tr[L†Sρ

01(t)]ξ (t)

+Tr[S†Lρ
10(t)]ξ ∗(t)+Tr[ρ00(t)]|ξ (t)|2,

and the initial conditions are

ρ
11(0) = ρ

00(0) = |η〉〈η |, ρ
10(0) = ρ

01(0) = 0.

D. Quantum Filter for Both Homodyne Detection Measure-
ments

In this subsection, we will derive the filter equations for
the case of joint homodyne-homodyne measurements, see
Fig. 3. Here, by the general measurement equation (3.3), we
choose F = I, G = 0. Then, the measurements stochastic
equations are given by (3.4) and

dY2,t =
√

1− r2
(
eiθ dBv,t + e−iθ dB†

v,t
)

+ ir
{[

eiθ (L+SLM)− e−iθ (L† +L†
MS†)

]
dt

+ eiθ SdBi,t − e−iθ S†dB†
i,t

}
,

(3.10)

where dY2,t is the second channel with homodyne detection
measurement. Thus, the corresponding gain β can also be
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dπ
11
t (X) =

{
π

11
t (LGX)+π

01
t (S†[X ,L])ξ ∗(t)+π

10
t ([L†,X ]S)ξ (t)+π

00
t (S†XS−X)|ξ (t)|2

}
dt

+
√

1− r2
[
eiθ

π
11
t (XL)+ e−iθ

π
11
t (L†X)+ e−iθ

π
01
t (S†X)ξ ∗(t)+ eiθ

π
10
t (XS)ξ (t)−π

11
t (X)Kt

]
dW (t)

+
{

ν
−1
t
[
π

11
t (L†XL)+π

01
t (S†XL)ξ ∗(t)+π

10
t (L†XS)ξ (t)+π

00
t (S†XS)|ξ (t)|2

]
−π

11
t (X)

}
dN(t),

dπ
10
t (X) =

{
π

10
t (LGX)+π

00
t (S†[X ,L])ξ ∗(t)

}
dt

+
√

1− r2
[
eiθ

π
10
t (XL)+ e−iθ

π
10
t (L†X)+ e−iθ

π
00
t (S†X)ξ ∗(t)−π

10
t (X)Kt

]
dW (t)

+
{

ν
−1
t
[
π

10
t (L†XL)+π

00
t (S†XL)ξ ∗(t)

]
−π

10
t (X)

}
dN(t),

dπ
01
t (X) =

{
π

01
t (LGX)+π

00
t ([L†,X ]S)ξ (t)

}
dt

+
√

1− r2
[
eiθ

π
01
t (XL)+ e−iθ

π
01
t (L†X)+ eiθ

π
00
t (XS)ξ (t)−π

01
t (X)Kt

]
dW (t)

+
{

ν
−1
t
[
π

01
t (L†XL)+π

00
t (L†XS)ξ (t)

]
−π

01
t (X)

}
dN(t),

dπ
00
t (X) =π

00
t (LGX)dt +

√
1− r2

[
eiθ

π
00
t (XL)+ e−iθ

π
00
t (L†X)−π

00
t (X)Kt

]
dW (t)

+
{

ν
−1
t
[
π

00
t (L†XL)

]
−π

00
t (X)

}
dN(t).

(3.8)

dρ
11(t) =

{
L ?

Gρ
11(t)+ [Sρ

01(t),L†]ξ (t)+ [L,ρ10(t)S†]ξ ∗(t)+ [Sρ
00(t)S†−ρ

00(t)]|ξ (t)|2
}

dt

+
√

1− r2
[
e−iθ

ρ
11(t)L† + eiθ Lρ

11(t)+ eiθ Sρ
01(t)ξ (t)+ e−iθ

ρ
10(t)S†

ξ
∗(t)−Ktρ

11(t)
]

dW (t)

+
{

ν
−1
t
[
Lρ

11(t)L† +Sρ
01(t)L†

ξ (t)+Lρ
10(t)S†

ξ
∗(t)+Sρ

00(t)S†|ξ (t)|2
]
−ρ

11(t)
}

dN(t),

dρ
10(t) =

{
L ?

Gρ
10(t)+ [Sρ

00(t),L†]ξ (t)
}

dt

+
√

1− r2
[
e−iθ

ρ
10(t)L† + eiθ Lρ

10(t)+ eiθ Sρ
00(t)ξ (t)−Ktρ

10(t)
]

dW (t)

+
{

ν
−1
t [Lρ

10(t)L† +Sρ
00(t)L†

ξ (t)]−ρ
10(t)

}
dN(t),

dρ
01(t) =

{
L ?

Gρ
01(t)+ [L,ρ00(t)S†]ξ ∗(t)

}
dt

+
√

1− r2
[
e−iθ

ρ
01(t)L† + eiθ Lρ

01(t)+ e−iθ
ρ

00(t)S†
ξ
∗(t)−Ktρ

01(t)
]

dW (t)

+
{

ν
−1
t [Lρ

01(t)L† +Lρ
00(t)S†

ξ
∗(t)]−ρ

01(t)
}

dN(t),

dρ
00(t) =L ?

Gρ
00(t)dt +

√
1− r2

[
e−iθ

ρ
00(t)L† + eiθ Lρ

00(t)−Ktρ
00(t)

]
dW (t)

+
{

ν
−1
t [Lρ

00(t)L†]−ρ
00(t)

}
dN(t).

(3.9)

Fig. 3. Both homodyne detection measurements at the outputs of a beam
splitter in quantum system.

calculated by (3.2), where β1 is given by (3.6) and β2 is
given by

β2 =ireiθ
π̃t(A⊗XL+ALM⊗XS)

− ire−iθ
π̃t(A⊗L†X +L†

MA⊗S†X)

− irπ̃t(A⊗X)π̃t [eiθ (L+SLM)− e−iθ (L† +L†
MS†)].

(3.11)

Theorem 3.2: Let {Yi,t , i = 1,2} be the two homodyne de-
tection measurements for a quantum system G. With single-
photon input state, the quantum filter for the conditional
expectation in the Heisenberg picture is given by (3.12).
Here,

K1,t =eiθ
π

11
t (L)+ e−iθ

π
11
t (L†)

+ e−iθ
π

01
t (S†)ξ ∗(t)+ eiθ

π
10
t (S)ξ (t),

K2,t =eiθ
π

11
t (L)− e−iθ

π
11
t (L†)

− e−iθ
π

01
t (S†)ξ ∗(t)+ eiθ

π
10
t (S)ξ (t),

the Wiener processes W1(t) and W2(t) are given by

dW1(t) = dY1,t −
√

1− r2K1,tdt, dW2(t) = dY2,t − irK2,tdt,

respectively. We have π10
t (X) = π01

t (X†)†, the initial condi-
tions are π11

0 (X)= π00
0 (X)= 〈η ,Xη〉, π10

0 (X)= π01
0 (X)= 0.

Corollary 3.2: With the two homodyne detection mea-
surements, the quantum filter for the system G driven by
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dπ
11
t (X) =

{
π

11
t (LGX)+π

01
t (S†[X ,L])ξ ∗(t)+π

10
t ([L†,X ]S)ξ (t)+π

00
t (S†XS−X)|ξ (t)|2

}
dt

+
√

1− r2
[
eiθ

π
11
t (XL)+ e−iθ

π
11
t (L†X)+ e−iθ

π
01
t (S†X)ξ ∗(t)+ eiθ

π
10
t (XS)ξ (t)−π

11
t (X)K1,t

]
dW1(t)

+ ir
[
eiθ

π
11
t (XL)− e−iθ

π
11
t (L†X)− e−iθ

π
01
t (S†X)ξ ∗(t)+ eiθ

π
10
t (XS)ξ (t)−π

11
t (X)K2,t

]
dW2(t),

dπ
10
t (X) =

{
π

10
t (LGX)+π

00
t (S†[X ,L])ξ ∗(t)

}
dt

+
√

1− r2
[
eiθ

π
10
t (XL)+ e−iθ

π
10
t (L†X)+ e−iθ

π
00
t (S†X)ξ ∗(t)−π

10
t (X)K1,t

]
dW1(t)

+ ir
[
eiθ

π
10
t (XL)− e−iθ

π
10
t (L†X)− e−iθ

π
00
t (S†X)ξ ∗(t)−π

10
t (X)K2,t

]
dW2(t),

dπ
01
t (X) =

{
π

01
t (LGX)+π

00
t ([L†,X ]S)ξ (t)

}
dt

+
√

1− r2
[
eiθ

π
01
t (XL)+ e−iθ

π
01
t (L†X)+ eiθ

π
00
t (XS)ξ (t)−π

01
t (X)K1,t

]
dW1(t)

+ ir
[
eiθ

π
01
t (XL)− e−iθ

π
01
t (L†X)+ eiθ

π
00
t (XS)ξ (t)−π

01
t (X)K2,t

]
dW2(t),

dπ
00
t (X) =π

00
t (LGX)dt +

√
1− r2

[
eiθ

π
00
t (XL)+ e−iθ

π
00
t (L†X)−π

00
t (X)K1,t

]
dW1(t)

+ ir
[
eiθ

π
00
t (XL)− e−iθ

π
00
t (L†X)−π

00
t (X)K2,t

]
dW2(t).

(3.12)

single-photon input state in the Schrödinger picture is given
by (3.13). Here,

K1,t =e−iθ Tr[L†
ρ

11(t)]+ eiθ Tr[Lρ
11(t)]

+ eiθ Tr[Sρ
01(t)]ξ (t)+ e−iθ Tr[S†

ρ
10(t)]ξ ∗(t),

K2,t =e−iθ Tr[L†
ρ

11(t)]− eiθ Tr[Lρ
11(t)]

− eiθ Tr[Sρ
01(t)]ξ (t)+ e−iθ Tr[S†

ρ
10(t)]ξ ∗(t),

and the initial conditions are

ρ
11(0) = ρ

00(0) = |η〉〈η |, ρ
10(0) = ρ

01(0) = 0.

E. Simulation Results

The atom is in the ground state initially |g〉〈g| with the
Hamiltonian H = 0. The wave packet ξ (t) for the single-
photon is given by

ξ (t) =
(

Ω2

2π

)1/4

exp
[
−Ω2

4
(t− t0)2

]
.

Now we choose the bandwidth Ω = 1.46κ and the exciting
probability for quantum filtering equations is given by

Pc
e (t) = Tr[ρ11(t)|e〉〈e|], (3.14)

where ρ11(t) is the solution to (3.13) and |e〉 means the
excited state.

In Fig. 4, 72 different stochastic trajectories are simulated
as colorful lines in each case given by (3.14). Fig. 4(a)
(r = 0) denotes the ideal case which is equivalent to the
single measurement (HD1) without any noise, [16]. For
r = 1, the case will be similar to Fig. 4(a) since the single
measurement becomes HD2. We can see that many of the
stochastic trajectories begin to decay at t = 4. Meanwhile,
some trajectories continue to rise towards Pc

e (t) = 1, it
means that the atom may be fully excited. In Fig. 4(b),

r =
√

0.5, that is the output field is contaminated by vacuum
noise. Nevertheless, it can be seen that by means of joint
measurement the estimation performance is close to those
for the ideal case. The exciting probabilities become bad if
we only use single measurement, see Fig. 4(c) and (d). By
comparing Fig. 4(b), (c) and (d), it is clear that multiple
measurements is much better.

4. CONCLUSIONS

In this paper, we have derived the quantum filter for a
quantum system driven by single-photon input state with
multiple compatible measurements. Particularly, the explicit
form of stochastic master equations with two homodyne
detection measurements and a combination of homodyne
detection and photon-counting are given. A numerical study
of a two-level system driven by a single-photon state demon-
strated the advantage of filtering design based on multiple
measurement when the output filed is contaminated by
quantum vacuum noise.
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