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Abstract. It is observed empirically that mean-reverting processes are more

realistic in modeling the inventory level of a company. In a typical mean-

reverting process, the inventory level is assumed to be linearly dependent on

the deviation of the inventory level from the long-term mean. However, when

the deviation is large, it is reasonable to assume that the company might

want to increase the intensity of interference to the inventory level significantly

rather than in a linear manner. In this paper, we attempt to model inventory

replenishment as a nonlinear continuous feedback process. We study both

infinite horizon discounted cost and the long-run average cost , and derive the

corresponding optimal (s, S) policy.

1. Introduction. In inventory control problems, stochastic models account for the

randomness in demands [3]. However, the problem becomes complicated with the

addition of a number of parameters [1], such as fixed cost, variable cost, order

latency and differentiate decision models [24] in the supply chains. Although nu-

merical techniques can be easily applied for solving the inventory policies for both

discrete [13, 15, 27] and continuous models [22, 23, 25], analytic solutions are still
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appealing as practitioners can gain more insights. It is possible to derive some

closed form solution to the problem under certain conditions, such as under infi-

nite time horizon. Indeed, under different demand models, closed form solutions

have been derived. In the literature, the optimal policy has been derived for the

diffusion process in [9]. An explicit solution to the problem was derived by Sulem

[21] later. The policy was further extended in [16] for optimal band policy. For

discrete demands, the optimal (s, S) policy was derived in [26]. If demands arrive

at random epochs, it is traditionally modelled by the Poisson process [18, 19] or the

renewal process [11, 20]. These early approaches are extended further by the use of

the compound Poisson process [4, 17] and Markovian demands [6, 7].

As for the inventory control process, many types of inventory follow mean-

reverting processes. This provides a feedback mechanism in adjusting the inventory

level based on the deviation of the inventory level from the long-term mean. In ad-

dition, it can be used to model inventory dependent demand. By using the typical

mean-reverting process and a quadratic cost function, a two-band replenishment

policy has been derived in [8]. On the other hand, Benkherouf and Johnson [2] ex-

tended the standard mean-reverting process to a nonlinear one, where the intensity

of adjustment to the inventory level depends nonlinearly on the current inventory

level. With fixed and variable costs for every replenishment, the discounted cost

problem is to be minimized. As a first attempt to model this nonlinearity, a Pois-

son jump demand model was assumed, and a new impulse control problem was

formulated. The optimal (s, S) policy can be derived analytically. In addition to a

Poisson jump demand model, further simplification was adopted in [2] in which the

nonlinearity vanishes whenever there is a shortage in the inventory level.

In this paper, following [2, 8], we consider the control problem with a nonlinear

inventory-dependent term incorporated into the diffusion demand model. Different

from [2] which employed a jump process, we assume that the demand follows a

Wiener process together with the nonlinearity introduced into the mean-reverting

process. Furthermore, the nonlinearity is assumed for all inventory levels. Intro-

ducing fixed and variable costs, a new impulse control problem is proposed. It

should be noted that only a linear mean-reverting process was considered in [3].

However, when a nonlinear term is introduced, the solution process becomes much

more difficult, especially when we deal with the uniqueness of the policy in which

some special properties of the Green function are needed. By extending the theory

in [3] for this nonlinear feedback problem, we consider the optimal minimal dis-

counted cost and tackle the problem under infinite time horizon. By the dynamic

programming principle, the problem is reduced to solving a quasi-variational in-

equality (Q.V.I.). By constructing the Green function under the nonlinear process,

the optimal (s, S) policy is developed. In addition, we also consider the long-run

average cost function and derive the corresponding optimal (s,S) policy.
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The main contributions this work are the following. First, we consider the nonlin-

ear inventory-dependent term into inventory model, which captures the generalized

phenomenon that traditional diffusion model cannot explain. Second, we don’t re-

quire the nonlinear term to be zero when the inventory is out of order, which is

more general than the one which is discussed in [2] with a jump model. Third, we

also investigate the optimal replenishment problem with ergodic case, which is not

considered in [2]. Finally, we show that an (s; S) policy solves the Q.V.I. and solve

the Q.V.I. analytically with a closed-form solution.

This paper is structured as follows. In Section 2 we formulate the stochastic

inventory problem under a general nonlinear mean-reverting model. In section 3,

we solve the discounted problem and obtain an explicit expression for the value

function and hence the (s, S) policy. In Section 4 we consider the long-run average

cost problem by considering the limit of the discount problem. Section 5 summarizes

the results with some concluding remarks.

2. Problem formulation. We first formulate the stochastic inventory problem

under consideration. Suppose that W (t) is a Wiener process defined on a given

probability space (Ω,A,P). In the absence of intervention, the inventory in the

interval [0, t] can be described by the process

dy(t) = −
(

(γ + f(y(t))dt+ σdW (t)

)
, (1)

where γdt + σdW (t) represents the external accumulated demand per unit time,

f(x) is part of the mean reversion process satisfying

0 ≤ f ′(x) ≤M,

lim
x→+∞

f(x) = +∞,

lim
x→−∞

f(x) = −∞. (2)

In the literature, f(·) usually takes a linear form. The mean reversion of the process

can be explained by the assumption that if inventory recently has gone down because

of a strong demand, one could expect the demand in the near future to be weaker,

allowing the inventory to revert back toward its preferred target [3, 8]. Here we

extend f(x) to be a nondecreasing nonnegative function defined on R. The term

f(·) captures an inventory dependent demand, or a materialized deterioration of

the inventory. If f(·) takes the mean reversion, it is reduced to the case discussed in

[3]. If f = 0, it recovers a demand model when γt+ σW (t) represents the external

accumulated demand on (0, t). Denote

F t := σ(W (s), s ≤ t).

An impulse control is a sequence

(θn, vn), n = 1, 2, · · · ,
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where θn is a stopping time with respect to F t and vn is a Fθn -measurable random

variable. Here θn denotes the nth order and vn denotes the amount at time θn.

The cost for ordering an amount of vn > 0 is given by

c(vn) = K + cvn, vn > 0, (3)

where K > 0 is the fixed set up cost of ordering and c denotes the unit cost for each

item ordered. Let V denote an impulse control, the corresponding inventory level

can be described by the formula

yx(t, V ) = x−
(
γt+

∫ t

0

f(yx(s, V ))ds+ σW (t)

)
+ I(t;V ), (4)

where x is an initial inventory level, γ > 0 is a constant rate of demand, σ > 0 and

I(t) = I(t;V ) =
∑

{n|θn<t}

vn.

Here we first consider a discounted cost objective function. Let α > 0 be a specified

discount rate. For any given initial inventory level x and an ordering policy V , we

define the discounted cost as

Jα(x, V ) = E

[ ∞∑
n=0

(K + cvn) exp(−αθn) +

∫ ∞
0

g(yx(t, V )) exp(−αt)dt
]
, (5)

where

g(x) = hx+ + px−

denotes the storage cost when x > 0 and the backlog cost when x < 0. Define the

value function associated with (5) by

uα(x) = inf
V
Jα(x, V ). (6)

In order that (5) is well defined, we let V denote all V satisfying the following

conditions ∫ ∞
0

g(yx(t, V )) exp(−αt)dt <∞,

E

∞∑
n=0

exp(−αθn) <∞,

E

∞∑
n=0

exp(−αθn)vn <∞. (7)

The impulsive control V is said to be admissible if V ∈ V. The problem is to find

V ∗ ∈ V such that

uα(x) = Jα(x, V ∗).
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3. The results with discounted problem. To solve the discounted problem, we

first define the operator

Auα(x) = −1

2
σ2u′′α(x) + (γ + f(x))u′α(x). (8)

¿From the dynamic programming principle, the value function uα(x) satisfies the

following Q.V.I.:
Auα(x) + αuα(x) ≤ g(x),

uα(x) ≤M(uα)(x),

(Auα(x) + αuα(x)− g(x))(uα(x)−M(uα)(x)) = 0,

(9)

where

M(uα) = inf
v>0

[cv +K + uα(x+ v)].

The derivation of Q.V.I. (9) follows the standard techniques described in Bensoussan

and Lions [5] and Bensoussan [3]. We will sketch the proof in Appendix. We will

study (9) in a continuous functional space and verify that it is equal to the solution

to the value function (6) by a classical verification argument. We refer to [5] for the

general theory of impulse control and Q.V.I.

To simplify the second inequality of (9), we apply the transformation

Gα(x) = uα(x) + cx.

Then solving (9) is reduced to find Gα(x) which satisfies
AGα(x) + αGα(x) ≤ g̃(x) + cγ,

Gα(x) ≤ K + infη≥xGα(η),

(AGα(x) + αGα(x)− g̃(x)− cγ)(Gα(x)−K − infη≥xGα(η)) = 0,

(10)

where

g̃(x) := g(x) + c(αx+ f(x)).

We require Gα(·) to be C1with linear growth. Naturedly, uα(·) has the same prop-

erties. For any fixed s, let Sα(s) denote the point where Gα,s(x) attains its smallest

minimum, then

G′α,s(Sα(s)) = 0.

Instead of (10), we will construct a pair (s,Gα,s(x)), which is the solution of AGα,s(x) + αGα,s(x) = g̃(x) + cγ, x > s,

Gα,s(x) = K +Gα,s(Sα(s)), x ≤ s.
(11)

It follows from (10) that G′α,s(s) = 0 and G′α,s(Sα(s)) = 0. Then the construction

will be proceeded with the following three steps:

(a) First of all, for any fixed s, solve the first equation in (11) with the condition

G′α,s(s) = 0 and obtain a C1 solution Gα,s(·).
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(b) Show that Sα(s) exists, which satisfies the condition G′α,s(Sα(s)) = 0.

(c) Use the second equation in (11) to determine a unique optimal s, which is

denoted by sα. This method leads to a unique function, which is C1, and a unique

pair (sα, Sα).

These steps will be described in details in the following subsection 3.1-subsection

3.3. Later we will verify that the function constructed in this way satisfies the

original Q.V.I. (10) of the inventory problem, which will be given as Theorem 4.2.

3.1. Step 1: For any fixed s, construct Gα,s(x). Consider AGα,s(x) + αGα,s(x) = g̃(x) + cγ, x > s,

Gα,s(x) = Gα,s(s), x ≤ s.
(12)

Because of the regularity, we necessarily have G′α,s(s) = 0.

Denote

Hα,s(x) := G′α,s(x),

then it satisfies AHα,s(x) + (α+ f ′(x))Hα,s(x) = g̃′(x), x > s,

Hα,s(x) = 0, x ≤ s.
(13)

Notice that g̃′(x) = −p+ c(α+ f ′(x)) if x < 0, we make the assumption

−p+ c(α+M) < 0, (14)

so g̃′(x) < −p+ c(α+ f ′(x)) < 0 for x < 0.

To solve (13) we take advantage of the Green function, which is derived from − 1
2σ

2Φ′′α(x) + (γ + f(x))Φ′α(x) + (α+ f ′(x))Φα(x) = 0, x ∈ R,

Φα(0) = 1,Φα(+∞) = 0.
(15)

The following lemma shows the solution properties of (15).

Lemma 3.1. There exists one and only one solution of (15), which has the prop-

erties 0 < Φα(x) < 1 for x > 0, Φα(x) > 1 for x < 0, and

Φ′α(x) ≤ 0,

for all x ∈ (−∞,+∞).

Proof. First we claim that Φα(x) > 0 when x ≥ 0. Otherwise, there exists a local

minimum, where Φα(x) ≤ 0, Φ′α(x) = 0, Φ′′α(x) > 0. It contradicts (15). Moreover,

we must have Φ′α(x) < 0 when x ≥ 0. Otherwise, there exists a positive local

maximum on [0,+∞), which is again impossible due to (15). Similarly, we have

Φ′α(x) < 0 on (−∞, 0). Therefore, Φα(x) is strictly decreasing on (−∞,∞), namely,

0 < Φα(x) < 1 for x > 0, Φα(x) > 1 for x < 0.
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Before the construction, another function χα(x) is needed. Denote

F (x) =

∫ x

0

f(y)dy, ϑ(x) = exp(− 2

σ2
(γx+ F (x))).

and define

χα(x) = ϑ(x)Φα(x), x ∈ R, (16)

Then χα(x) satisfies the differential equation −σ
2

2 χ
′′
α(x)− (γ + f(x))χ′α(x) + αχα(x) = 0,

χα(0) = 1, χα(+∞) = 0.
(17)

The following lemma shows the properties of χα(x), which will be used later.

Lemma 3.2. There exists one and only one solution χα(x) of (17). It has also the

properties 0 < χα(x) < 1 for x > 0, χα(x) > 1 for x < 0, and χ′α(x) < 0 for all x.

Moreover,

lim inf
x→−∞

χ′′α(x) ≥ 0, lim
x→−∞

χα(x) = +∞. (18)

Proof. Obviously χα(x) defined by (16) is the solution of (17). By using a similar

argument to Φα(x), we can obtain 0 < χα(x) < 1 for x > 0, χα(x) > 1 for x < 0,

and χ′α(x) < 0 for all x. Now let us prove the properties of χ′′α(x) when x approaches

to −∞.

Denote Ψα(x) = χ′α(x), then Ψα(x) < 0 and −σ
2

2 Ψ′′α(x)− (γ + f(x))Ψ′α(x) + (α− f ′(x))Ψα(x) = 0,

Ψα(0) = φ′α(0),Ψ′α(0) = φ′′α(0).
(19)

We prove lim infx→−∞ χ′′α(x) ≥ 0 under two separate cases:

Case 1:¡¡ lim supx→−∞ f ′(x) ≤ α. There exists x̄ such that f ′(x̄) < α.

(i) If Ψ′α(x̄) > 0 and if there exits x < x̄ satisfying Ψ′α(x) ≤ 0, then a local min-

imum exists, where the first derivative is zero and the second derivative is positive,

which contradicts (19). Thus, when Ψ′α(x̄) > 0, we must have Ψ′α(x) > 0 for all

x ≤ x̄, which means

lim inf
x→−∞

Ψ′α(x) ≥ 0,

namely,

lim inf
x→−∞

χ′′α(x) ≥ 0.

(ii) (a) If Ψ′α(x̄) ≤ 0 and if Ψ′α(x) ≤ 0 for all x ≤ x̄, then we must have

lim inf
x→−∞

Ψ′α(x) = 0.

Otherwise,

lim inf
x→−∞

Ψ′α(x) < 0

leads to

lim
x→−∞

Ψα(x) > 0,
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which contradicts the fact that Ψα(x) ≤ 0.

(ii) (b) If Ψ′α(x̄) ≤ 0 and if there exists ¯̄x < x̄ such that Ψ′α(¯̄x) > 0, then it is

reduced to the case in (i).

Case 2:¡¡ limx→−∞ f ′(x) > α. For some x̃, we have f ′(x̃) > α.

(i) If Ψ′α(x̃) ≤ 0 and if there exists x < x̃ such that Ψ′α(x) > 0, then a local

maximum exists, which is impossible from (19). Thus Ψ′α(x) ≤ 0 for all x ≤ x̃;

similar to Case 1 (ii) (a), we have

lim inf
x→−∞

Ψ′α(x) = 0.

(ii) If Ψ′α(x̃) > 0 and if there exists ˜̃x < x̃ such that Φ′α(˜̃x) ≤ 0; then it is reduced

to the case in (i). If Ψ′α(x) > 0 for all x ≤ x̃, obviously, lim infx→−∞ χ′′α(x) ≥ 0.

¿From Case 1 and Case 2, we get the desired result.

To prove limx→−∞ χα(x) = +∞, we use the argument by reduction to absurdity.

Indeed, because of χα(x) > 0 and χ′α(x) < 0, if limx→−∞ χα(x) is bounded, then

limx→−∞ χα(x) exists, we denote it by Mb, which is a constant. As a result,

lim
x→−∞

χ′α(x) = 0, lim
x→−∞

χ′′α(x) = 0.

It follows from (17) that

χ′α(x)

χα(x)
=

α

γ + f(x)
− σ2χ′′α(x)

2χα(x)(γ + f(x))
.

Therefore, there exists x̌ < 0, when x < x̌,

χ′α(x)

χα(x)
≤ α

γ + f(x)

≤ α

Mx
. (20)

Thus χα(x) is larger than χα(x̌)(xx̌ )
α
M , which contradicts the fact that limx→−∞ χα(x)

is bounded. This completes the proof.

Remark 3.1. When f(x) takes the linear form as in [3], limx→−∞ χα(x) = +∞
becomes more obvious. The proof in Lemma 3.2 is more involved to show that

lim infx→−∞ χ′′α(x) ≥ 0, which is not only needed in the proof limx→−∞ χα(x) =

+∞, but also for later use in Lemma 3.8.

Now we are ready to construct a bounded solution of (13) by the following lemma.

Lemma 3.3. Denote

Qα(ξ) :=
2

σ2

∫ +∞

ξ

g̃′(η)
χα(η)

χα(ξ)
dη, (21)

then

Hα,s(x) =

∫ x

s

Φα(x)

Φα(ξ)
Qα(ξ)dξ, (22)

is a bounded solution of (13).
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Proof. Obviously, Hα,s(x) constructed by (22) is the solution of (13). The remaining

work is to show that it is bounded. We first show that

2

σ2

∫ x

0

Φα(x)

Φα(ξ)

∫ +∞

ξ

(α+ f ′(η))
χα(η)

χα(x)
dηdξ = 1− Φα(x), (23)

and (23) is the bounded solution of − 1
2σ

2Z ′′α(x) + (γ + f(x))Z ′α(x) + (α+ f ′(x))Zα(x) = α+ f ′(x), x ∈ R+,

Zα(0) = 0.
(24)

Denote

Zα(x) = 1− Φα(x).

Obviously, Zα(x) is the bounded solution of (24). To show (23) holds, we denote

Yα(x) =
Zα(x)

Φα(x)
, (25)

and substitute Zα(x) = Φα(x)Yα(x) into (24); it can be seen that

d

dx
(Y ′α(x)Φ2

α(x)ϑ(x)) = − 2

σ2
Φα(x)ϑ(x)(α+ f ′(η))

= − 2

σ2
χα(x)(α+ f ′(η)). (26)

On the other hand, the definition of Yα(x) means that

Y ′α(x)Φ2
α(x)ϑ(x) = −Φ′α(x)ϑ(x),

which implies Y ′α(x)Φ2
α(x)ϑ(x) is bounded and approaches to 0 when x → +∞.

Thus, it follows from (26) that

Y ′α(x)Φ2
α(x)ϑ(x) =

2

σ2

∫ +∞

x

χα(η)(α+ f ′(η))dη. (27)

Substituting (25) into (27) leads to

Zα(x) =
2

σ2

∫ x

0

Φα(x)

Φα(ξ)

∫ +∞

ξ

(α+ f ′(η))
χα(η)

χα(ξ)
dηdξ.

We can now go to the proof of (22). We prove it directly from the expression of

Hα,s(x):

Hα,s(x)

= Φα(x)Hα,s(0) +
2

σ2

∫ x

0

Φα(x)

Φα(ξ)

∫ +∞

ξ

g̃′(η)
χα(η)

χα(x)
dηdξ

= Φα(x)Hα,s(0) +
2

σ2

∫ x

0

Φα(x)

Φα(ξ)

∫ +∞

ξ

(α+ f ′(η))(c+
g′(η)

α+ f ′(η)
)
χα(η)

χα(ξ)
dηdξ

= Φα(x)Hα,s(0) + c(1− Φα(x))

+

∫ x

0

Φα(x)

Φα(ξ)

∫ +∞

ξ

h

α+ f ′(η)
(α+ f ′(η))

χα(η)

χα(ξ)
dηdξ,
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where the third equation follows from (23). From the relation

h

α+M
<

h

α+ f ′(η)
<
h

α
,

we have

Φα(x)Hα,s(0) + c(1− Φα(x)) +
h

α+M
(1− Φα(x)) ≤ Hα,s(x)

≤ Φα(x)Hα,s(0) + c(1− Φα(x)) +
h

α
(1− Φα(x)). (28)

Thus

c+
h

α+M
≤ limx→+∞Hα,s(x) ≤ c+

h

α
. (29)

which means that Hα,s(x) is bounded.

The following lemma guarantees that the bounded solution of (13) is unique.

Lemma 3.4. The bounded solution of (13) is unique.

Proof. It is sufficient to show that 0 is the unique solution of AHα,s(x) + (α+ f ′(x))Hα,s(x) = 0, x > s,

Hα,s(x) = 0, x ≤ s.
(30)

In fact, if there exists x1 ≥ s such that Hα,s(x1) > 0, then on [x1,+∞), (a) there

exists at least one local maximum or (b) H ′α,s(x) > 0.

If (a) holds, then there exists x where Hα,s(x) attains its local maximum with

Hα,s(x) > 0, H ′α,s(x) = 0, H ′′α,s(x) < 0,

which contradicts (13). Thus (a) cannot hold.

If (b) holds, for large enough x, we have γ + f(x) > 0 if H ′′α,s(x) ≤ 0, which is

in contradiction with (13). If H ′′α,s(x) > 0, it implies that H ′α,s(x) increases with x,

which contradicts the fact that Hα,s(x) is bounded. Thus (b) cannot hold.

From (a) and (b), we know that H ′α,s(x) > 0 cannot be true and Hα,s(x) cannot

be positive when x > s; therefore we must have

Hα,s(x) ≤ 0.

Similarly, Hα,s(x) cannot be negative. Therefore, the unique bounded solution of

(30) is 0. Consequently the unique bounded solution of (13) is (22).

By Lemma 3.3 and Lemma 3.4, we can conclude that Hα,s(x) defined by (22)

is the unique bounded solution of (13). Let’s construct Gα,s(x) from Hα,s(x). For

x ≥ s, (12) can be rewritten as

−σ
2

2
H ′α,s(x) + (f(x) + γ)Hα,s(x) + αGα,s(s) = g̃(x) + cγ. (31)

On the other hand, by integrating (13), we have

−σ
2

2
H ′α,s(x) +

σ2

2
H ′α,s(s) + (f(x) + γ)H ′α,s(x) = g̃(x)− g̃(s). (32)
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Comparing (31) and (32) on [x, s], we have

αGα,s(s) =
σ2

2
H ′α,s(s) + g̃(s) + cγ, (33)

which decides the value of Gα,s(s). For any given s, define

Gα,s(x) =

 Gα,s(s) +
∫ x
s
Hα,s(ξ)dξ, x > s

Gα,s(s), x ≤ s.
(34)

Obviously, Gα,s(x) constructed by (34) and (33) is in C1.

3.2. Step 2: The existence of Sα(s). Let x0,α be the root of Qα(x) defined

by (21). Then such x0,α exists and is unique. In fact, from χα(x) = ϑ(x)Φα(x),

χα(x) > 0 and limx→−∞ χα(x) = ∞, we obtain the existence of x0,α and the

property that x0,α < 0. Because the first derivative of Qα(s)χα(x) is negative, then

x0,α is unique.

Lemma 3.5. If s ≥ xα,0, then

Sα(s) = s,

otherwise, Gα,s(x) attains its minimum at

Sα(s) ≥ xα,0.

Proof. The definition of xα,0 and Qα(x) implies that Qα(ξ) > 0 when ξ > xα,0.

Thus, if x > s ≥ xα,0, then

Hα,s(x) =

∫ x

s

Φα(x)

Φα(ξ)
Qα(ξ)dξ > 0. (35)

In this case, we have Sα(s) = s.

If s < xα,0, Qα(x) < 0 on [s, x0], then Hα,s(xα,0) < 0. Combined with (29), we

conclude that there exists Sα(s) ≥ s such that Hα,s(Sα(s)) = 0.

3.3. Step 3: Decide the value of s. Notice that the second equation of (11) is

to decide the value of s satisfying

K +

∫ Sα(s)

s

Hα,s(x)dx = 0. (36)

Denote Γα(s) :=
∫ Sα(s)

s
Hα,s(y)dy. We have the following lemma about Γα(s).

Lemma 3.6. There exists an

s < xα,0

such that

Γα(s) = −K.
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Proof. When s ≥ xα,0, according to Lemma 3.5,

Sα(s) = s,

which means Γα(s) = 0. Therefore, we only need discuss the case that s < xα,0.

When s < xα,0, we investigate the properties of Γα(s). As Hα(s) = Hα(Sα(s)) =

0, we have

Γ′α(s) =

∫ Sα(s)

s

H ′α,s(y)dy = −Qα(s)

∫ Sα(s)

s

Φα(y)

Φα(s)
dy. (37)

Obviously, when s < xα,0 Γ′α(s) > 0 due to Qα(s) < 0. We will show

lim
s→−∞

Γ′α(s) ≥ p− c(α+M)

2α
. (38)

It follows from (37) that

Γ′α(s) ≥ −Qα(s)

∫ xα,0

s

Φα(y)

Φα(s)
dy

= −Qα(s)

Φα(s)

∫ 0

s

Φα(η)dη

(
1−

∫ 0

xα,0
Φα(η)dη∫ 0

s
Φα(η)dη

)

= −Qα(s)

∫ 0

s

Φα(y)

Φα(s)
dy

≥ 2

σ2
(p− c(α+M))

∫ +∞

s

χα(y)

χα(s)
dy

∫ 0

s

Φα(y)

Φα(s)
dy.

≥ 2

σ2
(p− c(α+M))

∫ 0

s

χα(y)

χα(s)
dy

∫ 0

s

Φα(y)

Φα(s)
dy. (39)

In the next lemma, we will show that

lim
s→−∞

∫ 0

s

χα(y)

χα(s)
dy

∫ 0

s

Φα(y)

Φα(s)
dy ≥ σ2

4α
. (40)

¿From (39) and (40), we have

lim
s→−∞

Γ′α(s) ≥ p− c(α+M)

2α
.

Thus we have proved (38), which implies lims→−∞ Γα(s) = −∞. Combined with

Γα(xα,0) = 0, we conclude that there exists s < xα,0 such that

Γα(s) = −K.

Next we construct the proof of (40) by the following lemma. One way is to ap-

proximate Φ′α(x) as suggested in the previous work [3]. However, it requires more

algebra in the process. Here a shorter proof is provided as follows.

Lemma 3.7.

lim
s→−∞

∫ 0

s

χα(y)

χα(s)
dy

∫ 0

s

Φα(y)

Φα(s)
dy ≥ σ2

4α
. (41)
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Proof. Rewrite lims→−∞
∫ 0

s
χα(y)
χα(s)dy

∫ 0

s
Φα(y)
Φα(s)dy as lims→−∞

∫ 0
s
χα(y)dy

χα(s)

∫ 0
s

Φα(y)dy

Φα(s) . Since

lim
x→−∞

χα(x) = +∞

and

lim
x→−∞

ϑ(x) = +∞,

we have

lim
x→−∞

Φα(x) = +∞.

Thus, it follows from the l’Hospital’s rule that

lim
s→−∞

∫ 0

s
χα(y)dy

χα(s)

∫ 0

s
Φα(y)dy

Φα(s)

=
χα(s)

χ′α(s)

Φα(s)

Φ′α(s)
. (42)

Then we will consider χα(s)
χ′α(s) and Φα(s)

Φ′α(s) , respectively.

As lim infx→−∞ χ′′α(x) ≥ 0 and limx→−∞ f(x) = −∞, therefore, there exists x̂ < 0

such that

χ′′α(x) > − 2

σ2

and

γ + f(x) < −K1

for all x ≤ x̂, here K1 is any positive constant.

When x ≤ x̂ < 0, it follows from (17) that

(γ + f(x))χ′α(x) ≤ αχα(x) + 1 ≤ 2αχα(x). (43)

Then

0 ≥ χ′α(x)

χα(x)
≥ 2α

γ + f(x)
, (44)

or equivalently

χα(x)

χ′α(x)
≤ γ + f(x)

2α
. (45)

On the other hand,

Φ′α(x)

Φα(x)
=

χ′α(x)

χα(x)
+
ϑ′(x)

ϑ(x)

≥ 2α

γ + f(x)
+

2

σ2
(γ + f(x)). (46)

Equivalently

Φα(x)

Φ′α(x)
≤ 1/(

2α

γ + f(x)
+

2

σ2
(γ + f(x))). (47)
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Combined (45) and (47), we have

lim
s→−∞

χα(s)

χ′α(s)

Φα(s)

Φ′α(s)

≥ lim
s→−∞

γ + f(s)

2α
/(

2α

γ + f(s)
+

2

σ2
(γ + f(s)))

≥ σ2

4α
. (48)

Finally, it remains to prove the uniqueness of s.

Lemma 3.8. The value of s satisfying the property Γα(s) = −K is unique.

Proof. From Lemma 3.6, the value s satisfying Γα(s) = −k is on (−∞, xα,0), and

Γ′α(s) = −Qα(s)

Φα(s)

∫ Sα(s)

s

Φ(η)dη. (49)

As Qα(s) < 0 in (−∞, xα,0) and Φα(s) > 0, therefore, Γ′α(s) > 0, i.e., Γα(s) is

strictly increasing with s. Then the value s satisfying the property Γα(s) = −K is

unique.

We denote the pair(s, Sα(s)),which satisfies γα(s) = −K, by (sα, Sα). By sum-

marizing the lemmas above, we come to the main result of this work.

Theorem 3.1. The function Gα,s(x) defined by (11) is equal to the solution Gα(x)

of Q.V.I. (10). The strategy (sα, Sα) is optimal, which can be derived from the

relation  Hα,sα(Sα) = 0,∫ Sα
sα

Hα,sα(x)dx+K = 0,
(50)

where

Hα,sα(x) =
2

σ2

∫ x

sα

Φα(x)

Φα(ξ)

∫ ∞
ξ

g̃′(η)
χα(η)

χα(ξ)
dηdξ, (51)

Φα(x) = e
2
σ2

(γx+F (x))χα(x), (52)

and χα(x) is the solution of (17).

Proof. The proof is given in Appendix.

4. The long run average cost. One important problem is to study the behavior

when the discount factor approaches to 1. Although the objective function tends to

infinity, an average cost function can be employed instead. This is referred as the

ergodic control problem. Define

J(x, V ) = lim sup
T

1

T
E

[N(T )∑
n=0

(K + cvn) +

∫ T

0

g(yx(t, V ))dt

]
(53)
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where

N(T ) = max{i, θi ≤ T}.
The problem is thus to investigate the inventory control problem with an ergodic

cost criterion of minimizing (53):

ρ0 = inf
V
J(x, V ).

Denote ũα(x) := uα(x) − uα(sα). By the “vanishing discount method”, we will

show (ũα(x), αuα(sα)) converges to a pair (u(x), ρ), which is the solution of Q.V.I.:

Au(x) + ρ ≤ g(x),

u(x) ≤ K + inf
η≥x

u(η),

(Au(x) + ρ− g(x))(u(x)−K − inf
η≥x

u(η)) = 0, (54)

followed by showing that ρ is equal to the value of ρ0. To simplify the algebra,

denote

G̃α(x) = Gα(x)−Gα(sα), ρα = αGsα(sα).

Obviously,

lim
α→0

ρα = ρ.

In the following sections, instead of proving the convergence of (ũα(x), αuα(sα)) and

solving (54), we prove that (G̃α(x), αGα(sα)) converges to the solution (G(x), ρ) of

the Q.V.I.:

AG(x) + ρ ≤ g̃(x) + cγ,

G(x) ≤ K + inf
η≥x

G(η),

(AG(x) + ρ− g̃(x)− cγ)(G(x)−K − inf
η≥x

G(η)) = 0, (55)

and solve ρ from the transformed problem (55).

4.1. The ergodic control. In the previous section, we construct Gα,s(x) through

its derivativeHα,s(x), which in turn can be derived by employing theGreen function

Φα(x) and χα(x). Let α = 0 in χα(x) of (17), Φα(x) of (15), Qα,s(x) of (21) and

Hα,s(x) of (22), and denote them by χ(x), Φ(x), Q(x) and Hs(x), respectively. We

first consider the solution of AGs(x) + αGs(x) = g̃(x) + cγ, x > s,

Gs(x) = K +Gs(Ss), x ≤ s.
(56)

Theorem 4.1. The policy (sα, Sα) are uniformly bounded. Moreover, (G̃α(x), αG̃α(sα))

converges to the solution (G(x), ρ) of (56).

Proof. We first prove that Hα(x) uniformly converges to H(x) on any compact

set of R, then G̃α(x) converges to G(x). The idea is to prove that Φα(x) and

χα(x) uniformly converge to Φ(x) and χ(x). The details for the proof are given in

Appendix.
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Lemma 4.1. Hs(x) is bounded.

Proof. The proof is similar to Lemma 3.3, which is omitted here.

Based on Theorem 4.1 and Lemma 4.1, we obtain the following important results.

Theorem 4.2. There exists a unique s such that∫ S

s

Hs(x)dx+K = 0. (57)

The pair (s, S) can be derived from the relation Hs(S) = 0 and (57), where

Hs(x) = 2
σ2

∫ x
s

Φ(x)
Φ(ξ)

∫∞
ξ
g̃′(η)χ(η)

χ(ξ)dηdξ, (58)

χ(x) =

∫ +∞
x

e−
2
σ2

(γy+F (y))dy∫∞
0
e−

2
σ2

(γy+F (y))dy
,

Φ(x) = e
2
σ2

(γx+F (x))χ(x). (59)

Let

Gs(x) =


∫ x
s
Hs(ξ)dξ, x > s,

0, x ≤ s.
(60)

and

ρ =
σ2

2
H ′s(s) + g̃(s) + cγ,

then (Gs(x), ρ) is the solution of the Q.V.I. (55).

Proof. The proof can be achieved by repeating a similar procedure to that in the

discounted case in Theorem 3.1. The procedure is to show firstly that (Gs(x), ρ) is

the solution of (56), then it is the solution of Q.V.I. (55).

Obviously, from the relation Gα(x) = uα(x) + cx, we have G(x) = u(x) + cx.

Moreover, it is the same ρ and the same optimal strategy for (54) and (55). The

following verification theorem says the long run average cost ρ0 can be obtained by

the value ρ from Q.V.I. (54), and (s, S) policy is the optimal control.

Theorem 4.3. Let (ρ, u(x)) be the solution of Q.V.I. (55) and (s, S) be given by

Theorem 4.2, then

ρ0 = ρ =
σ2

2

∫ ∞
s

g̃′(η)
χ(η)

χ(ξ)
dη + g̃(s) + cγ

and

lim sup
T→∞

EG(ys,Sx (T ))

T
= 0.

The proof is given in Appendix.
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5. Conclusion. In this paper, we have considered a new stochastic inventory con-

trol problem under a nonlinear process which varies depending on the current inven-

tory level. With the formulated model, we have derived and proved the optimality

of the (s, S) strategy, and shown that the strategy is unique. The strategy is reduced

to the case in [3] when f(x) takes a linear form. Furthermore, we have considered

the limiting case with ergodic control when the discount factor vanishes under the

nonlinear process using the long run average cost function. Again we have derived

the (s, S) strategy and proved the optimality. We hope this work can shed light on

the nonlinear inventory control process and can be used for practical problems.

6. Appendix.

6.1. The derivation of (9). From the dynamic programming theory (See Ben-

soussan [3];Bensoussan and Lions [5]; Fleming and Soner[12]). It can be shown that

uα satisfies the dynamic programming principle,

uα(x) = inf
V
E

[ t∑
n=0

(K + cvn) exp(−αθn) +

∫ t

0

g(yx(t, V )) exp(−αt)dt+

exp(−αt)uα(yx(t, V ))

]
. (A.1)

If an order with quantity v is made at the initial time, then K + cv should be paid

and the inventory level becomes x + v. If we proceed optimally from now on, the

best we can obtain is

cv +K + uα(x+ v).

Therefore,

uα(x) ≤ cv +K + inf
v>0

uα(x+ v). (A.2)

If no order is made at the initial time, we assume that the first order is made after

time δ. Then
δ∑

n=0

(K + cvn) exp(−αθn) = 0.

Substituting δ with t in(5) results in

uα(x) ≤ inf
V
E

[ ∫ δ

0

g(yx(t, V )) exp(−αt)dt+ exp(−αδ)uα(yx(δ, V ))

]
. (A.3)

Applying Ito lemma to exp(−αδ)uα(yx(δ, V )) leads to

0 ≤ inf
V
E

∫ δ

0

[
g(yx(s, V ))− αuα(yx(s, V ))−Auα(yx(s, V )) exp(−αt)

]
ds. (A.4)

Let δ → 0 in (A.4), we have

Auα(x) + αuα(x) ≤ g(x). (A.5)

For any initial inventory x, either (A.2) or (A.5) is tight. That is, the third equation

of (9) holds.
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6.2. The proof of Theorem 3.1.

Proof. From the construction, we need to check the complementary slackness con-

dition of (9). When x ≤ sα,

Gα,sα(x) = Gα,sα(sα)

= inf
η>sα

Gα,sα(η) +K

= inf
η>x

Gα,sα(η) +K. (A.6)

The third equation above follows from

Gα,sα(x′) = Gα,sα(sα) > inf
η>sα

Gα,sα(η)

when x ≤ x′ ≤ sα. Then

Gα,sα(x) = inf
η>x

Gα,sα(η) +K.

We also need to show that

AGα,sα(x) + αGα,sα(x) ≤ g̃(x) + cγ, x < sα,

Gα,sα(x) ≤M(u)(x), x ≥ sα. (A.7)

When x < sα,

AGα,sα(x) + αGα,sα(x) = αGα,sα(sα).

As

αGα,sα(sα) =
σ2

2
H ′α,sα(sα) + g̃(sα) + cγ ≤ g̃(x) + cγ,

it follows readily that

AGα,sα(x) + αGα,sα(sα) = αGα,sα(sα) ≤ g̃(x) + cγ, x < sα.

¿From Hα,sα(x) defined by (22), it is easily seen that

Hα,sα(x) < 0 on x ≤ Sα

and

Hα,sα(x) > 0 onx > Sα,

which means that Gα,sα(x) is strictly increasing (decreasing) on x > Sα(x < Sα).

Thus,

Gα,sα(x) ≤ inf
η>x

Gα,sα(x) < M(u)(x), x ≥ Sα.

It remains to show the case sα < x < Sα. In fact,

Gα,sα(x) < Gα,sα(sα) ≤ K +Gα,sα(Sα) = K + inf
η>x

Gα,sα(η)

on sα < x < Sα, namely,

Gα,sα(x) ≤M(u)(x)

on sα < x < Sα. Thus we have

Gα,sα(x) ≤M(u)(x)
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on x > sα.

Let u be the solution of (9). By Ito’s lemma1, for any policy V ∈ V, we apply

the Ito differential rule to uα(x)e−αt :

E[e−αtuα(yx(t, V ))− uα(x)]

= E[

∫ t

0

−e−αs(Auα(yx(s, V ))ds+ αuα(xs))ds

+

N(t)∑
n=0

e−αθn(uα(yx(θn, V ))− uα(yx(θ−n , V )))]

≥ E

∫ t

0

e−αs(−g(yx(s, V )))ds−
N(t)∑
n=0

e−αθn(cvn +K). (A.8)

Let t→∞ for ∀V ∈ V, we have∫ ∞
0

g(yx(t, V )) exp(−αt)dt <∞,

which implies

lim
t→∞

E[e−αt|yx(t, V )|] = 0. (A.9)

Because u′α(·) are bounded, therefore,

lim
t→∞

E[e−αtu(yx(t, V ))] = 0. (A.10)

Then, we have

uα(x) ≤ lim
t→∞

∫ ∞
0

e−αt(g(yx(t, V )))dt+

∞∑
n=0

e−αvn(cvn +K). (A.11)

That is, for any admissible V , we have

uα(x) ≤ J(x, V ),

and therefore,

uα(x) ≤ inf
V ∈V

J(x, V ). (A.12)

Let V s
∗,S∗ denote the (s∗, S∗) policy. It is defined as follows. Let

θ1 = {t, t ≥ 0, yx(t, V s
∗,S∗) ≤ s∗}, v1 = S∗ −min(x, s∗),

θn = inf{t, t > θn−1, yx(t, V s
∗,S∗) ≤ s∗}, vn = S∗ − s∗, n = 2, · · · .

If inventory yx(t, V s
∗,S∗) > s∗, then

Auα(x) + αuα(x) = g(x).

Otherwise, there is a replenishment, and

u(yx(θn, V
s∗,S∗)) = u(yx(θ−n , V

s∗,S∗)) +K + cvn, n = 1, · · · .

1It can be seen from Dellacherie and Meyer 1980 [10], Thm. VIII.27, Ito’s lemma still holds

for the function of uα(x) ∈ C2 except for s∗. We can also refer to the Remark 3.2 of Liu et al.

[14] to see how Ito’s lemma can be applied here.
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Therefore, with (s∗, S∗) policy, the inequality of (A.8) becomes an equality.

In the next proposition we show E
∫ +∞

0
e−αty2

x(t, V s
∗,S∗)dt <∞, which implies∫ ∞

0

g(yx(t, V s
∗,S∗)) exp(−αt)dt <∞.

Then

lim
t→∞

E(e−αt|yx(t, V s
∗,S∗)|) = 0,

and the inequality of (A.11) becomes an equality. That is,

uα(x) = J(x, V s
∗,S∗)

and the policy (s∗, S∗) is optimal.

Proposition 6.1. E
∫ +∞

0
e−αty2

x(t, V s
∗,S∗)dt <∞.

Proof. When 0 < t < θ1, the dynamics y(t)

dy(t) = −(γ + f(y))dt− σdW (t), y(0) = x. (A.13)

When n ≥ 1, θn < t < θn+1, the dynamics y(t)

dy(t) = −(γ + f(y))dt− σdW (t), y(θn) = S. (A.14)

Applying Ito Lemma to y2(t)e−αt leads to

dy2(t)e−α(t) = −αe−αty2(t)dt+ 2e−αty(t)(γ + f(y(t)))dt− 2σe−αty(t)dW (t)

≤ −αe−αty2(t)dt+ 2e−αty(t)(γ + f(0))dt− 2σe−αty(t)dW (t),

where the inequality follows from that

f(y) = f(0) + y

∫ 1

0

f ′(λy)dλ (A.15)

and

yf(y) = yf(0) + y2

∫ 1

0

f ′(λy)dλ, (A.16)

which yields to

yf(y) ≥ yf(0).

By integrating y2(t)e−α(t) from θn to θ−n+1 and taking expectation, we have

E(y2(θ−n+1)e−αθn+1)− E(y2(θn)e−αθn)

= s2E(e−αθn+1)− S2E(e−αθn)

≤ E

∫ θn+1

θn

e−αt(−αy2(t)− 2y(t)(γ + f(0)))dt.

≤ E

∫ θn+1

θn

e−αt(−αy2(t) +
αy2(t)

2
+

8

α
(γ + f(0))2)dt. (A.17)
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Similarly, we have

E(y2(θ−1 )e−αθ1)− E(y2(0))

= s2E(e−αθn+1)− y2
0E(e−αθn)

≤ E

∫ θ1

0

e−αt(−αy2(t) +
αy2(t)

2
+

8

α
(γ + f(0))2)dt. (A.18)

It follows from (A.17) and (A.18) that

s2Ee−αθn+1 − y2
0 + (S2 − s2)

n∑
i=1

E(e−αθn)

≤ −α
2
E

∫ +∞

0

e−αty2(t)dt+
8

α
(γ + f(0))2E

∫ ∞
0

e−αtdt. (A.19)

That is,

α

2
E

∫ +∞

0

e−αty2(t)dt

≤ 8

α
(γ + f(0))2 + s2Ee−αθn+1 − y2

0 + (S2 − s2)

n∑
i=1

E(e−αθn). (A.20)

If s2Ee−αθn+1 + (S2− s2)
∑n
i=1E(e−αθn) <∞ when n→∞, we obtain the desired

result. In the remainder we show this property.

Let τ = inf{t|yS(t) = s} and Ee−ατ = η. When n ≥ 2, we have θn = θn−1 + τ

and

Ee−α(θn) = Ee−αθ1ηn−1.

It is easy to show that Ee−ατ = u(S) < 1. Therefore,

lim
n→∞

n∑
i=1

E(e−αθn) = lim
n→∞

Ee−αθ1
n∑
i=1

ηn−1 <∞

and

s2Ee−αθn+1 = 0,

which finishes the proof of (A.20).

6.3. The proof of Theorem 4.1. The following Lemma 6.1 and Lemma 6.2 will

be needed for the proof of Theorem 6.1 below, which in turn is the main result for

proving Theorem 4.1.

Lemma 6.1. For α1 < α2, Suppose that χα1
(x) and χα2

(x) are the solutions of

the following equations, respectively, −σ
2

2 χ
′′
α1

(x)− (f(x) + γ)χ′α1
(x) + α1χα1(x) = 0,

−σ
2

2 χ
′′
α2

(x)− (f(x) + γ)χ′α2
(x) + α2χα2

(x) = 0,
(A.21)

with boundary condition

χαi(0) = 1, χαi(+∞) = 0, i = 1, 2.

Then χα1(x) > χα2(x) for x > 0, and χα1(x) < χα2(x) for x < 0.
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Proof. We first consider the case that x ≥ 0. From the fact χα2(x) > 0 and the

assumption that α1 < α2, we know

−σ
2

2
χ′′α1

(x)− (f(x) + γ)χ′α1
(x) + α2χα1

(x) > 0. (A.22)

Denote

L(x) = χα1(x)− χα2(x).

Then

lim
x→∞

L(x) = 0.

From (A.21) and (A.22), we have

−σ
2

2
L′′(x)− (f(x) + γ)L′(x) + (α2 − α1)L(x) > 0. (A.23)

If there exists x such that L(x) < 0, then there must exist x∗ such that

L(x∗) = min
x≥0

L(x).

At the point x∗, we have

L′′(x∗) > 0, L′(x) = 0, L(x) < 0.

However, these properties contradict with (A.22). Thus, L(x) > 0 holds. Namely,

χα1
(x) > χα2

(x) for x > 0.

As χα1(x) > χα2(x) for x > 0 and χα1(0) = χα2(0), we have

χ′α1
(0) > χ′α2

(0).

We claim that χα1(x) < χα2(x) for all x < 0. Otherwise, if there exists x such that

χα1(x) ≥ χα2(x) when x < 0, let

x− = max{x, x < 0, χα1
(x) = χα2

(x)}.

Due to χ′α1
(0) > χ′α2

(0), we have

x− < 0.

Then

χα1
(x) < χα2

(x), x ∈ [x−, 0].

On interval [x−, 0], there is a contradiction with (A.22)by repeating the proof of

case x > 0. So we have

χα1(x) < χα2(x)

for all x < 0.

Lemma 6.2. Let χ(x) be the solution of

−σ
2

2
χ′′(x)− (f(x) + γ)χ′(x) = 0, (A.24)

with boundary condition

χ(0) = 1, χ(+∞) = 0.
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Then, when α → 0, χα(x) increasingly(decreasingly) converges to χ(x) for x >

0(x < 0).

Proof. Similar to the proof of Lemma 6.1, we just prove the case x > 0. It

can be easily checked that χα(x) ≤ χ(x) for x > 0 and χα(x) increases with

α. Moreover, from Lemma 6.1 we know χα(x) is increasing/decreasing with α

on [−∞, 0)/[0,+∞), and bounded by χ(x). Thus, limα→0 χα(x) exists. We denote

it by χlim(x). Also, it can be proven that

lim
α→0

χ′α(x) = χ′lim(x), lim
α→0

χ′′α(x) = χ′′lim(x).

Thus, we have

−σ
2

2
χ′′lim(x)− (f(x) + γ)χ′lim(x) = 0, (A.25)

with χlim(0) = 1. Suppose that χ′′lim(+∞) = a, obviously, a ≥ 0. As χα(x) < χ(x),

we have

lim
x→+∞

χlim(x) ≤ lim
x→∞

χ(x),

which implies a ≤ 0. Thus we have

a = 0.

So χlim(x) is the solution of (A.25).

Theorem 6.1. Hα,s(x)→ Hs(x) uniformly on any compact set of R, with

Hs(x) =
2

σ2

∫ x

s

Φ(x)

Φ(ξ)
Q(ξ)dξ,

Proof. Without lose of generality, it suffices to prove that for any closed interval

[s, b], Hα,s(x)→ Hs(x) uniformly. Namely, it suffices to prove that for any ε, there

exists α0 such that

|Hs(x)−Hα,s(x)| ≤ ε

2
, x ∈ [s, b] (A.26)

when α < α0. In the following we will prove (A.26).

Denote

Mα(ξ) =
1

Φα(ξ)χα(ξ)
,

Nα(ξ) =

∫ ∞
ξ

g̃′α(η)χα(η)dη,

M(ξ) =
1

Φ(ξ)χ(ξ)
,

N(ξ) =

∫ ∞
ξ

g̃′(η)χ(η)dη. (A.27)

¿From Lemma 6.2, it can be easily verified that Mα(ξ) uniformly converges and is

uniformly bounded on any compact set of R and Nα(ξ) converges uniformly on any
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compact set of R.

Then

|Hs(x))−Hα,s(x))|

≤ 2Φ(x)

σ2

∫ x

s

(Mα(ξ)Nα(ξ)−M(ξ)N(ξ))dξ

=
2Φ(x)

σ2

∫ x

s

(Mα(ξ)(Nα(ξ)−N(ξ)) +N(ξ)(Mα(ξ)−M(ξ)))dξ

≤ 2Φ(x)

σ2
(B1

∫ b

s

|Nα(ξ)−N(ξ)|dξ +B2

∫ b

s

(Mα(ξ)−M(ξ))dξ), (A.28)

where

B1 := sup{Mα(ξ), ξ ∈ [a, b]},

B2 := sup{N(ξ), ξ ∈ [a, b]}.

Denote

B = max(B1Φ(s), B2Φ(s)).

Then there exists α1 > 0, when α < α1,

|Mα(ξ)−M(ξ)| < ε

B
, |Nα(ξ)−N(ξ)| < ε

B
,∀ ξ ∈ [a, b].

Thus

|(Hs(a)−Hs(x))− (Hα,s(a)−Hα,s(x))| < ε.

Theorem 6.2. There exists M such that Sα ≤M for small enough α.

Proof. As Hα,s(x) converges to Hs(x) uniformly on any compact set of R, then

there exist αh1
,Mh1

> 0, when α < α2, we have

Hα,s(0) < Mh1
.

For x > 0, from (28), we have

Hα,s(x) ≥ h

α+M
+ c+ Φα(x)(Hα,s(0)− (

h

α+M
+ c)). (A.29)

Since Φα(x) converges to Φ(x) uniformly on any compact set of R, then there exist

Mh2
and αh2

such that

Φα(x) ≤ ε

Mh1
+ h

k + c

for any α < αh2 and x ≥Mh2 .

Denote Mh := max(Mhi , i = 1, 2), αh = min(1, αhi , i = 1, 2), then

Hα,s(x) ≥ h

α+M
+ c− ε ≥ c+

h

1 +M
− ε (A.30)

for any x ≥Mh and α ≤ αh.
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Let x0 be the root of Q(x) = 0. If s ≥ x0, it follows from (A.26) that Hα,s(x) > 0

on (s,+∞), thus Sα(s) = s. Since Sα(s) satisfies Hα,s(Sα(s)) = 0, it follows from

(A.30) that Sα(s) < Mh, specially, Sα < Mh, when α ≤ αh.

Theorem 6.3. sα is bounded below.

Proof. Let s0 be a fixed value with s0 < x0 < 0. We can assume that for sufficiently

small α, s0 < xα,0. If sα ≥ s0, then it is bounded below by s0.

Now let us check the case that sα < s0. Similar to Lemma 3.6, there exists Mγ

such that

Γ′(s) ≥ −Q(s)

Φ(s)

∫ 0

s

Φ(η)dη

(
1−

∫ 0

x0
Φ(η)dη∫ 0

s
Φ(η)dη

)

≥ lim
s→−∞

2

σ2
(p− cM)

∫ 0

s

χα(y)

χα(s)
dy

∫ 0

s

Φα(y)

Φα(s)
dy. (A.31)

Let α = 0 in (17), we have

(γ + f(x))χ′(x) ≤ χ(x) + 1. (A.32)

Then

χ(x)

χ′(x)
≤ γ + f(x), (A.33)

and

Φ′(x)

Φ(x)
≥ 1

γ + f(x)
+

2

σ2
(γ + f(x)). (A.34)

Therefore,

lim
s→−∞

∫ 0

s

χα(y)

χα(s)
dy

∫ 0

s

Φα(y)

Φα(s)
dy ≥ lim

s→−∞

χ(s)

χ′(s)

Φ′(s)

Φ(s)
≥ σ2

2
, (A.35)

which implies

Γ′(s) ≥ P − cM. (A.36)

Thus, for sufficiently small α,

−Qα(s)

Φα(s)

∫ 0

s

Φα(η)dη

(
1−

∫ 0

xα,0
Φα(η)dη∫ 0

s
Φα(η)dη

)
≥ p− cM

2
, s ≤ −Mγ . (A.37)

Denote

Bγ =
p− cM

2
.

If s < min(−Mγ , s0), then

Γ′α(s) ≥ Bγ ,

and

Γα(−Mγ)− Γα(s) ≥ (−Mγ − s)Bγ . (A.38)
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As Γα(xα,0) = 0 and Γ′α(x) > 0 for x < xα,0, therefore, we have Γα(−Mγ) < 0.

Thus, (A.38) becomes

−Γα(s) ≥ (−Mγ − s)Bγ . (A.39)

Notice that Γα(sα) = −K, substituting s with sα in (A.38) yields to

K ≥ (−Mγ − sα)Bγ ,

that is, sα ≥ −Mγ− K
Bγ

. So sα is bounded below by −Mγ− K
Bγ

if α is small enough.

As −Mγ − K
Bγ
≤ sα ≤ Ssα ≤ M and γα(sα) = −K, thus we can extract a

subsequence such that sα → s, Sα → S and γ(s) = −K. Similar to Lemma 3.8, the

policy (s, S) is unique.

6.4. The proof of Theorem 4.3.

Proof. Suppose that (u(x), ρ) is the solution of (55), then for any admissible control

V , by Ito lemma, we have

E[u(yx(T, V ))− u(yx(0, V ))]

= E[

∫ T

0

−Au(yx(s, V ))ds+

N(T )∑
n=0

(u(yx(τn, V ))− u(yx(τ−n , V )))]

≥ E

∫ T

0

(ρ− g(yx(s, V ))ds−
N(T )∑
n=0

(cγn +K), (A.40)

thus,

1

T
E(u(yx(T, V ))− u(yx(0, V )))

≥ 1

T
E

[ ∫ T

0

(ρ− g(yx(s, V )))ds−
N(T )∑
n=0

(cγn +K)

]
. (A.41)

Since uα(x) ≥ 0, we have u(x) ≥ 0. Then

ρ ≤ lim sup
T

1

T
[E

∫ T

0

g(yx(s, V ))ds− Eu(yx(T, V )) +

N(T )∑
n=0

(cγn +K)]

≤ J(x, yx(0, V )), (A.42)

which means

ρ ≤ ρ0. (A.43)

On the other hand, as (ρ, u(x)) is the solution with (s, S), it satisfies

Au(x) + ρ = g(x) + c(ν − kγ), x > s

u(x) = K + inf
η≥x

u(η) = K + u(S), x ≤ s. (A.44)

Then by this (s, S) strategy, the inequality of (A.40) becomes equality. Thus,

ρ = J(x, yx(0, V ∗),
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which implies that

ρ ≥ ρ0. (A.45)

¿From (A.43) and (A.45), we show that ρ = ρ0 and lim supT→∞
Eu(ys,Sx (T ))

T = 0. It

follows from(33) that

ρ =
σ2

2

∫ ∞
s

g̃′(η)
χ(η)

χ(ξ)
dη + g̃(s) + c(ν + γ).

Thus we get

ρ0 =
σ2

2

∫ ∞
s

g̃′(η)
χ(η)

χ(ξ)
dη + g̃(s) + c(ν + γ).
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