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Abstract: A discrete-time stochastic LQ problem with multiplicative noises and state transmission delay is studied in this paper,
which does not require any definiteness constraint on the cost weighting matrices. Necessary and sufficient conditions are derived
for the case with a fixed time-state initial pair. A set of coupled discrete-time Riccati-like equations can be derived to characterize
the existence and the form of the delayed optimal control. Furthermore, the convexity of the cost functional is fully characterized
via certain properties of the solution of the Riccati-like equations.
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1 Introduction

Linear-quadratic (LQ, for short) optimal control was pi-
oneered by Kalman [12] in 1960, which is now a classical
yet fundamental problem in control theory. Extension to s-
tochastic LQ problems was first carried out by Wonham [27]
in 1968, and has received considerable interests and effort-
s since then. A common assumption of most literature on
stochastic LQ problems is that the state weighting matri-
ces are nonnegative definite and the control weighting ma-
trices are positive definite. Contrary to this, Chen, Li and
Zhou [8] revealed in 1998 that a stochastic LQ problem with
multiplicative noises might still be solvable even if the cost
weighting matrices are indefinite. More about this kind of
LQ problems can be found in [1] [2] [11] [20] and references
therein. Recently, some researchers are interested in the so-
called mean-field LQ problems [15] [16] [21] [25] [29] [30].
An important feature of mean-field control problems is that
the expected values of the state and control enter nonlinear-
ly into the cost functional, which will bring new phenomena
and new theoretical difficulties.

Note that all the aforementioned papers are free of time
delay. If time delay happens to appear in the system state, the
control input and/or the information-transmission channel, it
is much more complicated and challenging to design the op-
timal control of the corresponding LQ problems. Such kind
of LQ problems have been extensively studied since 1970’s;
see, for example, [3] [9] [13] [23] [32] or other related liter-
ature [4] [14] [17] [22]. Concerned with a deterministic LQ
problem with input delay, it is shown [23] that the delayed
optimal control is obtained by invoking the Smith predictor
theory, and that the optimal gains are same to those of the
LQ problem without input delay.

Unfortunately, the results about deterministic LQ prob-
lems (with input delay) cannot be directly generalized to the
stochastic setting. In [32], the authors considered a discrete-
time stochastic LQ problem with input delay and multiplica-
tive noises, and showed that the optimal control (if exists)
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is a linear feedback of d-step-lagged conditional expectation
of current states and that the optimal gains are computed via
a set of coupled discrete-time Riccati-like equations. Here,
the set of discrete-time Riccati-like equations differs signifi-
cantly from what we have in hand the standard discrete-time
Riccati equation. The reason for this, to the authors’ knowl-
edge, is related to a poor property of this class of stochastic
systems, namely that the known separation principle does
not hold for stochastic systems with multiplicative noises.
Therefore, for a stochastic LQ problem with multiplicative
noises, we can have a control by replacing the current states
in the optimal control with their d-step-lagged conditional
expectations; however, the obtained control is not optimal
for the corresponding stochastic LQ problem with d-step in-
put delay.

It is worth pointing out that the stochastic systems with
multiplicative noises have been extensively studied in the
past half century. From the viewpoint of mathematics, al-
most all the theories about stochastic differential equations
(SDEs, for short) are for the case with multiplicative noises,
and there are lots of practical motivations to study such kind
of SDEs. The study of controlled systems with multiplica-
tive noises is also popular in the control community; a recent
small collection in the literature related to our paper includes
[1] [2] [6] [7] [8] [11] [15] [18] [20] [26] [29].

In this paper, a general discrete-time stochastic LQ prob-
lem with multiplicative noises and state transmission delay is
thoroughly investigated, whose cost weighting matrices for
the state and control are allowed to be indefinite. Apart from
intending to generalize the existing results to the joint case
with indefiniteness and time delay, the topic of this paper
is also partially motivated by recent progresses in network
control system [5] [10] [24] and other related areas. The
contributions of this paper are listed as follows:

For the case with a fixed time-state initial pair, the solv-
ability of Problem (LQ) at that initial pair is shown to be e-
quivalent to that a stationary condition and a convexity con-
dition are satisfied, with the backward state of a forward-
backward stochastic difference equation (FBS∆E, for short)
being involved in the stationary condition. Further, a set of
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coupled discrete-time Riccati-like equations is introduced,
by which we can express the backward state of the FBS∆E
via its forward state. Moreover, equivalent characterizations
of the stationary condition and the convexity condition are
derived via certain properties of the solution of the Riccati-
like equations.

2 Problem formulation

Consider the following controlled stochastic difference e-
quation (S∆E, for short)

Xk+1 =
(
AkXk +Bkuk

)
+
(
CkXk +Dkuk

)
wk,

Xt = x, k ∈ Tt , {t, t+ 1, ..., N − 1},
(2.1)

where t ∈ T , {0, 1, ..., N−1},Ak, Ck ∈ Rn×n,Bk, Dk ∈
Rn×m are deterministic matrices. The noise {wk, k ∈ T} is
assumed to be a martingale difference sequence defined on a
probability space (Ω,F , P ) with

Ek+1[wk+1] = 0, Ek+1[(wk+1)2] = 1, k ∈ T. (2.2)

Here, Ek+1 is the conditional mathematical expectation
E[ · |Fk+1] with respect to Fk+1 = σ{wl, l = 0, 1, · · · , k},
and F0 is understood as {∅,Ω}. Introduce the following cost
functional associated with (2.1)

J(t, x;u) =

N−1∑
k=t

E
[
XT

k QkXk + uTkRkuk
]

+ E
[
XT

NGXN

]
, (2.3)

where Qk, Rk, k ∈ Tt, G are deterministic symmetric ma-
trices of appropriate dimensions. Note, here, that we do not
pose any definiteness constraints on the cost weighting ma-
trices.

As mentioned in Introduction, time delays arise natural-
ly in many engineering fields such as chemical processes
and communication systems, etc. Throughout this paper, we
assume that there is a transmission delay of d steps (with
d ≥ 2); such kind of delays arise frequently in network con-
trol systems [5] [10] [24]. Hence, at stage k ∈ {t, ...t + d}
the controller’s decision information set remains Ft as no
new information is available; and for k ∈ Tt+d = {t +
d, ..., N − 1} the information set should be Fk−d. To define
the set of admissible controls, let us review the following
spaces. For t = 0, ..., N , let

L2
F (t;Rm) =

{
ζ ∈ Rm

∣∣∣ ζ is Ft-measurable,
and E|ζ|2 <∞

}
, (2.4)

and

L2
F (T−dt ;Rm)

=

ν
∣∣∣∣∣∣
ν = {νk, k ∈ T−dt },
νk is Fk-measurable, k ∈ T−dt ,

and
∑N−1−d

k=t E|νk|2 <∞

 (2.5)

with
T−dt = {t, ..., N − 1− d}.

Introduce the set of admissible controls

U t
ad =

{
u
∣∣∣ u = {ut, ut+1, ..., uN−1},
u ∈

(
L2
F (t;Rm)

)d × L2
F (T−dt ;Rm)

}
. (2.6)

The following optimal control problem will be studied in this
paper.

Problem (LQ). For a time-state initial pair (t, x), find a
ū ∈ U t

ad such that

J(t, x; ū) = inf
u∈Ut

ad

J(t, x;u). (2.7)

Noting that the initial pair (t, x) is specialized, hereafter
the above problem will be called as Problem (LQ) for the ini-
tial pair (t, x). Furthermore, any ū satisfying (2.7) is called
an optimal control of Problem (LQ) for the initial pair (t, x).

Definition 2.1. Problem (LQ) is said to be (uniquely)
solvable at (t, x) if there exists a (unique) ū ∈ U t

ad such
that (2.7) holds.

3 Main results

In this section, we will study Problem (LQ) for the fixed
initial pair (t, x).

Theorem 3.1. The following statements are equivalent.
(i) Problem (LQ) is solvable at (t, x).
(ii) The following assertions hold.

a) There exists a ut,x,∗ ∈ U t
ad such that the stationary

condition

Rku
t,x,∗
k +BT

k Ek−dZ
t,x,∗
k+1

+DT
k Ek−d(Zt,x,∗

k+1 wk) = 0, a.s., k ∈ Tt (3.1)

is satisfied, where Zt,x,∗ is the backward state of the
following FBS∆E

Xt,x,∗
k+1 =

(
AkX

t,x,∗
k +Bku

t,x,∗
k

)
+
(
CkX

t,x,∗
k +Dku

t,x,∗
k

)
wk,

Zt,x,∗
k = QkX

t,x,∗
k +AT

k EkZ
t,x,∗
k+1

+ CT
k Ek(Zt,x,∗

k+1 wk),

Xt,x,∗
t = x, Zt,x,∗

N = GXt,x,∗
N , k ∈ Tt.

(3.2)

b) The convexity condition

inf
u∈Ut

ad

J(t, 0;u) ≥ 0 (3.3)

holds.
Under any of above conditions, ut,x,∗ in (ii) is an optimal

control of Problem (LQ) for the initial pair (t, x).

Remark 3.2. Throughout this paper, Ek−d is understood
as Et if k ∈ {t, ..., t + d − 1} (i.e., k − d < t). Hence, for
k = t, ..., t+ d− 1, (3.1) reads as

Rku
t,x,∗
k +BT

k EtZ
t,x,∗
k+1 +DT

k Et(Z
t,x,∗
k+1 wk) = 0, a.s.

Different from the general maximum principle of [33], The-
orem 3.1 provides necessary and sufficient conditions on the
existence of the optimal control of Problem (LQ) for the ini-
tial pair (t, x).

Recall the pseudo-inverse of a matrix. By [19], for a given
matrix M ∈ Rn×m, there exists a unique matrix in Rm×n

denoted by M† such that{
MM†M = M, M†MM† = M†,
(MM†)T = MM†, (M†M)T = M†M.

(3.4)



This M† is called the Moore-Penrose inverse of M . The
following lemma is from [1].

Lemma 3.3. Let matrices L, M and N be given with
appropriate size. Then, LXM = N has a solution X if
and only if LL†NMM† = N . Moreover, the solution of
LXM = N can be expressed as X = L†NM† + Y −
L†LYMM†, where Y is a matrix with appropriate size.

If M = I in Lemma 3.3, then LL†N = N is equivalent
to Ran(N) ⊂ Ran(L). Here, Ran(N) is the range of N .
We now introduce the following discrete-time Riccati-like
iterations:

P
(0)
k = Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak

+ CT
k P

(0)
k+1Ck,

P
(i)
k = AT

k P
(i+1)
k+1 Ak, i = 1, ..., d− 1,

P
(d)
k = −HT

k W
†
kHk,

P
(0)
N = G, P

(j)
N = 0, j = 1, ..., d,

k ∈ Tt+d = {t+ d, ..., N − 1},

(3.5)



P
(0)
k = Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak

+ CT
k P

(0)
k+1Ck,

P
(i)
k = AT

k P
(i+1)
k+1 Ak, i = 1, ..., k − t− 1,

P
(k−t)
k = AT

k P
(k+1−t)
k+1 Ak −HT

k W
†
kHk,

k ∈ {t+ 2, ..., t+ d− 1},

(3.6)

and


P

(0)
t+1 = Qt+1 +AT

t+1

(
P

(0)
t+2 + P

(1)
t+2

)
At+1

+ CT
t+1P

(0)
t+2Ct+1,

P
(1)
t+1 = AT

t+1P
(2)
t+2At+1 −HT

t+1W
†
t+1Ht+1,

P
(0)
t = Qt +AT

t

(
P

(0)
t+1 + P

(1)
t+1

)
At + CT

t P
(0)
t+1Ct

−HT
t W

†
t Ht,

(3.7)

where

Wk =



Rk +

d∑
i=0

BT
k P

(i)
k+1Bk

+DT
k P

(0)
k+1Dk, k ∈ Tt+d,

Rk +

k+1−t∑
i=0

BT
k P

(i)
k+1Bk

+DT
k P

(0)
k+1Dk, k ∈ {t, ..., t+ d− 1},

(3.8)

and

Hk =



∑d
i=0B

T
k P

(i)
k+1Ak

+DT
k P

(0)
k+1Ck, k ∈ Tt+d,∑k+1−t

i=0 BT
k P

(i)
k+1Ak

+DT
k P

(0)
k+1Ck, k ∈ {t, ..., t+ d− 1}.

(3.9)

Based on the solution of (3.5)-(3.7), an equivalent character-
ization of the stationary condition is derived.

Theorem 3.4. The following statements are equivalent.

(i) The stationary condition of (3.1) is satisfied for some
ut,x,∗ ∈ U t

ad.
(ii) The following condition

HkEk−dX
t,x,∗
k ∈ Ran(Wk), a.s., k ∈ Tt (3.10)

is satisfied, where Wk, Hk, k ∈ Tt, are given in (3.8) and
(3.9), and Xt,x,∗ is given by the forward S∆E of

Xt,x,∗
k+1 =

(
AkX

t,x,∗
k +Bku

t,x,∗
k

)
+
(
CkX

t,x,∗
k +Dku

t,x,∗
k

)
wk,

Zt,x,∗
k = QkX

t,x,∗
k +AT

k EkZ
t,x,∗
k+1

+ CT
k Ek(Zt,x,∗

k+1 wk),

Xt,x,∗
t = x, Zt,x,∗

N = GXt,x,∗
N , k ∈ Tt

(3.11)

with

ut,x,∗k = −W †kHkEk−dX
t,x,∗
k , k ∈ Tt. (3.12)

Furthermore, the backward state Zt,x,∗ of (3.11) has the fol-
lowing expression

Zt,x,∗
k =



P
(0)
k Xt,x,∗

k + P
(1)
k Ek−1X

t,x,∗
k + · · ·

+ P
(k−t)
k EtX

t,x,∗
k , k ∈ {t, ..., t+ d− 1},

P
(0)
k Xt,x,∗

k + P
(1)
k Ek−1X

t,x,∗
k + · · ·

+ P
(d)
k Ek−dX

t,x,∗
k , k ∈ Tt+d,

where P (i), i = 0, ..., d, are given in (3.5)-(3.7).

We now study the convexity condition. In what follows,
the functional u 7→ J(t, x;u) is called convex if (3.3) holds.
Let X0 be the solution of (2.1) with x = 0, i.e.,

X0
k+1 =

(
AkX

0
k +Bkuk

)
+
(
CkX

0
k +Dkuk

)
wk,

X0
t = 0, k ∈ Tt.

(3.13)

Lemma 3.5. For any u ∈ U t
ad, it holds that

J(t, 0;u) =

N−1∑
k=t

E
{

(Ek−dX
0
k)THT

k W
†
kHkEk−dX

0
k

+ 2(HkEk−dX
0
k)Tuk + uTkWkuk

}
(3.14)

with X0 given in (3.13).

Proof. By adding to and subtracting

N−1∑
k=t

E
{ d∑

i=0

(Ek+1−iX
0
k+1)TP

(i)
k+1Ek+1−iX

0
k+1

−
d∑

i=0

(Ek−iX
0
k)TP

(i)
k Ek−iX

0
k

}
+

t+d−1∑
k=t

E
{ k+1−t∑

i=0

(Ek+1−iX
0
k+1)TP

(i)
k+1Ek+1−iX

0
k+1

−
k−t∑
i=0

(Ek−iX
0
k)TP

(i)
k Ek−iX

0
k

}



from J(t, 0;u), we have (noting X0
t = 0)

J(t, 0;u) =

N−1∑
k=t+d

E
{

(X0
k)T
[
Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
AT

k

+ CT
k P

(0)
k+1Ck − P (0)

k

]
X0

k

+

d−1∑
i=1

(Ek−iX
0
k)T
[
AT

k P
(i+1)
k+1 Ak − P (i)

k

]
Ek−iX

0
k

− (Ek−dX
0
k)TP

(d)
k Ek−dX

0
k

+ 2(HkEk−dX
0
k)Tuk + uTkWkuk

}
+

t+d−1∑
k=t+2

E
{

(X0
k)T
[
Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
AT

k

+ CT
k P

(0)
k+1Ck − P (0)

k

]
X0

k

+

k−t−1∑
i=1

(Ek−iX
0
k)T
[
AT

k P
(i+1)
k+1 Ak − P (i)

k

]
Ek−iX

0
k

+ (EtX
0
k)T
(
AT

k P
(k+1−t)
k+1 Ak − P (k−t)

k

)
EtX

0
k

+ 2(HkEtX
0
k)Tuk + uTkWkuk

}
+ E

{
(X0

t+1)T
[
Qt+1 +AT

t+1

(
P

(0)
t+2 + P

(1)
t+2

)
AT

t+1

+ CT
t+1P

(0)
t+2Ct+1 − P (0)

t+1

]
X0

t+1

+ (EtX
0
t+1)T

(
AT

t+1P
(2)
t+2At+1 − P (1)

t+1

)
EtX

0
t+1

+ 2(Ht+1EtX
0
t+1)Tut+1

+ uTt+1Wt+1ut+1

}
+ E

{
(X0

t )T
[
Qt +AT

t

(
P

(0)
t+1

+ P
(1)
t+1

)
AT

t + CT
t P

(0)
t+1Ct − P (0)

t

]
X0

t

+ 2(HtX
0
t )Tut + uTt Wtut

}
=

N−1∑
k=t

E
{

(Ek−dX
0
k)THT

k W
†
kHkEk−dX

0
k

+ 2(HkEk−dX
0
k)Tuk + uTkWkuk

}
.

This completes the proof.
Based on above preparations, we have the following theo-

rem.

Theorem 3.6. The following statements are equivalent.
(i) Problem (LQ) is solvable at (t, x).
(ii) The following assertions hold

a) The solution of Riccati-like equations (3.5)-(3.7) has
the property Wk ≥ 0, k ∈ Tt.

b) For any u ∈ U t
ad, the condition

HkEk−dX
x,u
k ∈ Ran(Wk), a.s., k ∈ Tt (3.15)

is satisfied, where Xx,u is the solution of the follow-
ing S∆E

Xx,u
k+1 =

(
AkX

x,u
k −BkW

†
kHkEk−dX

x,u
k

+Bkuk
)

+
(
CkX

x,u
k +Dkuk

−DkW
†
kHkEk−dX

x,u
k

)
wk,

Xx,u
t = x, k ∈ Tt.

(3.16)

Under any of above conditions, the following control

ut,x,∗k = −W †kHkEk−dX
t,x,∗
k , k ∈ Tt

is an optimal control of Problem (LQ) for the initial pair
(t, x), where Xt,x,∗ is given by

Xt,x,∗
k+1 =

(
AkX

t,x,∗
k −BkW

†
kHkEk−dX

t,x,∗
k

)
+
(
CkX

t,x,∗
k −DkW

†
kHkEk−dX

t,x,∗
k

)
wk,

Xt,x,∗
t = x, k ∈ Tt

4 Conclusion

In this paper, an indefinite stochastic LQ problem with s-
tate transmission delay and multiplicative noises is studied.
For the case with a fixed initial pair, a set of discrete-time
Riccati-like equations is introduced, which is used to char-
acterize the existence of the delayed optimal control of Prob-
lem (LQ). For future research, the infinite-horizon stochastic
LQ problem with input delay should be investigated.
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