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Abstract

In this paper, an inventory control problem with a mean reverting inventory model

is considered. The demand is assumed to follow a continuous diffusion process and a

mean-reverting process which will take into account of the demand dependent of the

inventory level. By choosing when and how much to stock, the objective is to minimize

the long-run average cost, which consists of transaction cost for each replenishment,

holding and shortage costs associated with the inventory level. An approach for deriving

the average cost value of infinite time horizon is developed. By applying the theory of

stochastic impulse control, we show that a unique (s, S) policy is indeed optimal. The

main contribution of this work is to present a method to derive the (s, S) policy and

hence the minimal long-run average cost.
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1 Introduction

In the literature, stochastic inventory problems with different demands models have been

extensively studied [4, 37]. There are many applications in various domains for common

inventories in our daily life [1, 19, 29, 31, 33, 34, 35]. It can also be employed in commodities

[15, 32], agricultural products [8] and energy products [30]. When the long-run average cost

is considered, the famous Economic Order Quality (EOQ) formula is derived [22]. A popular

way is to apply the (s, S) policy, i.e., when the inventory is below some level s, then expedites

the inventory to a level S > s. Different numerical techniques can be applied to locate such

policy for both discrete and continuous settings under various conditions (see, for example,

[12, 17, 28, 14]). However, it is of great importance to show that (s∗, S∗) is really optimal

among all policies. It was verified in [36] that the optimality of an (s, S) policy for discrete

demands. When considering Markovian demands, it was verified in [2, 3] the optimality of

an (s, S) policy. The difference is that the former deals with a bounded demand while the

latter relaxes this assumption with certain finite moment requirements. When taking the

continuous demand into consideration, [26] assumed that the demand process is a diffusion

process, while [20] assumed that the demand process is the sum of a constant demand rate and

a compound Poisson process. [18] considered two sided action, which could both increase and

decrease the inventory while the demand fluctuated as a Brownian motion with a maximal

and nonnegative constraint on the inventory.

Recently, the mean reverting model has aroused much interest [6]. This type of inventory

arises from a long term empirical observation and is applicable to a variety of commodity

products, such as oil, metals, energy and many others. Moreover, for inventory, it can be

observed that in supermarkets large piles of displayed goods attract customers. In this work,

we assume the demand is composed of two terms. One term denotes the traditional demand,

the other one denotes the demand which is dependent of the inventory level. For this type

of inventory model, the replenishment policy can perform two functions, namely to fulfill

stochastic demand and to smooth the inventory level due to the mean reverting property.

Each intervention will incur certain cost. There are storage/backlog cost when the inventory

is in/out of stock. The objective is to find when and what replenishment should be performed

to minimize the total cost.

It is possible to derive closed form solutions to the problems under certain conditions,

such as under an infinite time horizon. When the time horizon is infinite, the discount
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rate plays an essential role. The discount rate is often assumed to be the risk free rate.

However, when the discount rate is close to zero, the discount factor is close to 1, and the

objective function with a total cost will tend to infinity due to the infinite sum. To avoid this

problem, an average cost function [24, 25] can be employed instead. For this long-run average

cost criterion, in order to make it well-defined and avoiding unbounded solutions, additional

assumptions on the inventory are imposed, such as an bounded inventory constraint [18] or

the holding cost is increased artificially [27] when the inventory is outside a range. It is also

possible to impose a bounded demand [2] or a finite moment [3]. Furthermore, combining with

mean-reverting stochastic model, the long-run average cost problem has not been explored

properly in the literature.

In this paper, we consider the long-run average cost problem with mean reverting inven-

tory model. There are both fixed and proportional costs associated with each intervention

in the inventory level. The objective is to find when and what replenishment should be

performed to minimize the total cost. Mathematically when the coefficients of the Q.V.I.

depend on the state, which is different from that in the literature with constant coefficients,

the problem becomes more difficult to tackle. Using the mean reverting model, we show that

the problem is well defined without imposing any additional constraint on the inventory level

and demand. Then we show among all the policies, a pair (s, S) is optimal for the long-run

average cost problem with the mean reverting model. Moreover, we present an approach to

derive optimal (s∗, S∗) policy and the value of long-run average cost.

This paper is structured as follows. In Section 2 we formulate the stochastic mean

reverting inventory problem with the long-run average cost criterion and present the main

result. In Section 3, we give the proof of the result in Section 2. Conclusions will be given in

Section 4.

2 The problem formulation

2.1 The model

We assume the demand is composed by two parts, which denote the inventory-independent

demand and inventory-dependent demand, respectively. First we present the inventory-
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independent demand model. Suppose that W (t) is a Wiener process defined on a probability

space (Ω,A,P). The demand on time t is then given by

dD(t) = rdt+ σdW (t), (2.1)

where r > 0 is the steady demand per unit time, and σ > 0 is the standard deviation of the

steady demand. Let F t be the smallest σ−field with respect to which D(s) is measurable,

∀ 0 ≤ s ≤ t. An impulse control is a sequence

(τi, vi), i = 1, 2, · · · ,

where τn is a stopping time with respect to F t and vi is a Fτi-measurable random variable.

Here τi denotes the time of the ith order and vi denotes the amount of order at time τi. The

cost for ordering an amount of v > 0 is given as

K + cv, v > 0, (2.2)

where K > 0 and c > 0 are the fixed order cost and proportional cost, respectively. The

policy V is said admissible if

lim sup
T→∞

E

∑N(T )
i=1 vi
T

<∞, (2.3)

where N(T ) := max{n, τn ≤ T}. We denote the set of admissible policies by V.

Let V denote an admissible impulse control, the corresponding inventory is described by the

formula

yx(t, V ) = x− k
(∫ t

0
yx(s;V )ds− γt

)
−D(t) + I(t;V ). (2.4)

Here

I(t) = I(t;V ) =

N(t)∑
i=1

vi

denote the replenishment before time t, the term

k

(∫ t

0
yx(s;V )ds− γt

)
describes the inventory-demand demand, which can be explained as: the large inventory in

supermarkets attracts more consumers or goods may deteriorate or change quality during

storage as indicated in Goyal and Giri [9] and Raafat [21]. Write

f(x) =

{
hx, x ≥ 0,

−px, x < 0,
(2.5)
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which denotes the storage cost when x ≥ 0 and the backlog cost when x < 0. We define

J(x, V ) := lim sup
T→∞

1

T
E

[N(T )∑
n=0

(K + cvn) +

∫ T

0
f(yx(t, V ))dt

]
. (2.6)

The problem is thus to investigate the optimal policy with an ergodic cost criterion of mini-

mizing (2.6). Denote

ρ0 = inf
V ∈V

J(x, V ). (2.7)

In this work, we will present the approach for obtaining the value of ρ0 and the optimal

policy, which is an (s, S) strategy. That is, once the inventory falls to s, the decision maker

will bring the inventory to S.

By the approach in inventory control theory and ergodic control theory in [4], we try to

derive the value function of ergodic problem from the following Q.V.I.
Au(x) + ρ ≤ f(x),

u(x) ≤M(u)(x),

(Au(x) + ρ− f(x))(u(x)−M(u)(x)) = 0,

(2.8)

where the operator

Au(x) = −1

2
σ2u′′(x) + (k(x− γ) + r)u′(x), (2.9)

M(u)(x) := inf
η>0

(cη +K + u(x+ η)).

Here, u(x) can be interpreted as the value function for the control problem with the cost

function f(x) − ρ. By solving Q.V.I. above, we obtain the main result of this work. The

details are given in the next section.

Theorem 2.1 When ck < p, let (s∗, S∗) be the solution of∫ S∗

s∗
(Hs∗(x) + c)dx+K = 0, (2.10)

where

Hs∗(x) =

{
2φ(x)
σ2 (M+(x) +M+)− c, x ≥ 0,

φ(x)(M−(x) +M−)− c, x < 0,
(2.11)

Φ(x) = e−
k
σ2
γ2e

2
σ2

(rx+
k(x−γ)2

2
) 1− z1(x)

1− erf(−λ )
, (2.12)
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M+ = − g
+

K1
s∗ − 1

K1(1− z1(s∗))
g+[−s∗ + (−λ erf(−λ ) +

e−λ
2

√
π

),

+g−[−s∗ + λ erf(λ )− e−λ
2

√
π

+ z2(s
∗)z1(s

∗) +
ez

2
2(x)

√
π

],

M+(x) = g+x− 1

K1(1− z1(s∗))
{g+(−z2(x)z1(x)− e−z

2
2(x)

√
π

)

− K3

K2
1K2

(
1

1− z1(x)
− 1

1− z1(s∗)
)

×
(
g+[−z2(x) + z2(x)z1(x) +

e−z
2
2(x)

√
π

]

)
,

M− =
g−

K1
(−s∗)− 1

K1(1− z1(s∗))
{g−[−s∗ − (z2(s

∗)z1(s
∗) +

e−z
2
2(s

∗)

√
π

)]}+

(− K3

K2
1K2(1− z1(s∗))

)

(
g+[λ − λ erf(−λ )− e−λ

2

√
π

]

+g−[λ erf(−λ )− e−λ
2

√
π

]

)
,

M−(x) =
g−

K1
x− 1

K1(1− z1(s∗))
{g−[x− (z2(x)z1(x) +

e−z
2
2(x)

√
π

)]}

+
K3

K2
1K2(1− z1(x))

(
g+[λ − λ erf(−λ ) +

e−λ
2

√
π

]

+g−[
−
√
kx

σ
+ λ erf(−λ )− e−λ

2

√
π

+ z2(x)z1(x) +
e−z

2
2(x)

√
π

]

)
− K3

K2
1K2(1− z1(s∗))

[−
√
kx

σ
+ z2(x)erf(−z2(x)) +

ez
2
2(x)

√
π

],

K1 =
e−

k
σ2
γ2∫∞

0 e−
2
σ2

(ry+
k(y−γ)2

2
)dy

,K2 =

√
π

2
exp(−2r

σ2
+

r2

kσ2
),K3 =

e−λ
2

1− erf(−λ )
,

g+ = h+ kc, g− = −p+ kc,N = γ − r

k
, λ =

N
√
k

σ
,

erf(x) =
2√
π

∫ x

0
e−t

2
dt, z1(x) = erf(

√
kx

σ
− λ), z2(x) =

(x−N)
√
k

σ
,

P (x) =
σK2√
k

(1− z1(x)).

(2.13)

and let (ρ, u(x)) be the solution of Q.V.I. (2.8) with (s∗, S∗) policy, then
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1. (s∗, S∗) is the optimal policy.

2.

ρ0 = ρ,

which is given as

ρ0 = g(s∗) + c(r − kγ) +
y+ σ√

k
(λ(1− z1(0)) + e−λ

2

√
π

)

1− z1(s∗)

+
y− σ√

k
[−z2(s∗) + λ+ z1(s

∗)λ − e−λ
2

√
π

+ z1(s
∗)(z2(s

∗)− λ) + e−z
2
2(s

∗)
√
π

]

1− z1(s∗)
. (2.14)

3 The proof of Theorem 2.1

The proof of Theorem 2.1 will be proceeded by a sequence of lemmas and theorems in this

section. Let U denote the set of continuously differentiable real-valued functions with bounded

derivative and continuous second derivative at all but a finite set of point in R.

Lemma 3.1 For each admissible policy V = (tn, vn), n = 1, 2, · · · , and function u ∈ U , we

have

lim sup
T→∞

1

T
E[u(yx(T, V ))] = 0. (3.1)

Proof. We first show

lim sup
T→∞

Eyx(T, V )

T
= 0. (3.2)

In fact, applying Ito lemma (see Theorem I.4.57 of Jacod and Shiryaev [13] for reference5) to

yx(T, V )ekT , where yx(T, V ) is given by (2.4), and then dividing e−kT to both sides leads to

yx(T, V ) = e−kTx+

∫ T

0
e−k(t−s)(kγ − r)ds−

∫ T

0
e−k(T−s)σdW (s) +

∫ T

0
e−k(T−s)dI(s, V )

= e−kTx+

∫ T

0
e−k(T−s)(kγ − r)ds−

∫ T

0
e−k(T−s)σdW (s) +

N(T )∑
i=0

e−k(T−τi)vi.(3.3)

5Also from Dellacherie and Meyer 1980 [7], Thm. VIII.27, or the proof of Proposition 3.2 in Hojgaard and

Taksar[11], Ito’s lemma still hold for the function of u(x) ∈ U . We can also refer to the Remark 3.2 of Liu et

al. [16] to see how Ito’s lemma can be applied here.
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Taking expectation on both sides, we have

Eyx(T, V ) = e−kTx+ (kγ − r)1− e−kT

k
+ E

N(T )∑
i=0

e−k(T−τi)vi. (3.4)

Thus,

lim
T→∞

Eyx(T, V )

T
= lim

T→∞
{e
−kT

T
x+ (kγ − r)1− e−kT

kT
+ E

∑N(T )
i=0 e−k(T−τi)vi

T
}

= 0 + lim
T→∞

E

∑N(T )
i=0 e−k(T−τi)vi

T

= lim
T→∞

E

∑N(T−ln(T ))
i=0 e−k(T−τi)vi

T
+ lim
T→∞

E

∑N(T )
i=N(T−ln(T )) e

−k(T−τi)vi

T

≤ lim
T→∞

e−k ln(T )E

∑N(T−ln(T ))
i=0 vi

T
+ lim
T→∞

E

∑N(T )
i=N(T−ln(T )) vi

ln(T )

ln(T )

T
.

(3.5)

It follows from (2.3) that both limT→∞E
∑N(T−ln(T ))
i=0 vi

T and limT→∞E

∑N(T )
i=N(T−ln(T ))

vi

ln(T ) are

bounded. Therefore,

lim
T→∞

Eyx(T, V )

T
= 0. (3.6)

Because u ∈ U , which means both u′(·) and E(yx(T, V )) are bounded, therefore,

lim sup
T→∞

E(u(yx(T, V )))

T
= 0.

The following lemma gives a lower bound of the value function ρ0.

Lemma 3.2 Suppose u(x) ∈ U and a constant ρ, satisfy{
Au(x) + ρ ≤ f(x) almost everywhere,

u(x) ≤M(u)(x) for each x in R and η > 0.
(3.7)

Then

ρ ≤ ρ0. (3.8)

Proof. If u(x) and ρ (3.7), by Ito’s lemma, for any policy V , we have

E[u(yx(T, V ))− u(yx(0, V ))] = E[

∫ T

0
−Au(yx(t, V ))dt+

N(T )∑
n=0

(u(yx(τn, V ))− u(yx(τ−n , V )))]

≥ E

∫ T

0
(ρ− f(yx(t, V )))dt−

N(T )∑
n=0

(cvn +K). (3.9)
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Dividing both sides of (3.9) by T and let T →∞, we have

ρ ≤ lim sup
T→∞

1

T
{E(u(yx(T, V ))− u(yx(0, V ))) + E[

∫ T

0
(f(yx(t, V )))dt+

N(T )∑
n=0

(cvn +K)]}.

(3.10)

By Lemma 3.1,

ρ ≤ lim sup
T→∞

1

T
{E[

∫ T

0
(f(yx(t, V )))dt+

N(T )∑
n=0

(cvn +K)]},

and therefore for each admissible policy V and initial state x,

ρ ≤ lim inf
V

lim sup
T→∞

1

T
{E[

∫ T

0
(f(yx(t, V )))dt+

N(T )∑
n=0

(cvn +K)]}

= ρ0, (3.11)

which finishes the proof.

Inspired by the (s, S) policy in the traditional inventory models, the following lemma

shows that a pair of (s, S) policy will make ρ = ρ0.

Lemma 3.3 Suppose that there exists a pair (s, S), ρ and us(x) satisfying{
Aus(x) + ρ = f(x), x > s,

us(x) = K + us(S) + c(S − x), x ≤ s,
(3.12)

where us(x) ∈ U and

us(S) = inf
η≥0

(us(s+ η) + cη). (3.13)

Then

ρ ≥ J(x, V ), (3.14)

where V := (s, S).

Proof. If (us(x), ρ) satisfies (3.12) with a pair (s, S). Let V = (s, S) be a control policy,

which is defined as

τ1 = inf{t, t ≥ 0, yx(t, (s, S)) ≤ s}, v1 = S −min(x, s),
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τn = inf{t, t > τn−1, yx(t, (s, S)) = s}, vn = S − s, n = 2, · · · .

If the initial inventory x ≤ s,

u(yx(τ1, (s, S)))− u(yx(τ−1 , (s, S))) = K + c(S − x) = K + cv1.

Otherwise

u(yx(τn, (s, S)))− u(yx(τ−n , (s, S))) = K + c(S − s) = K + cvn, n = 1, · · · .

If inventory yx(t, (s, S)) > s, then Au(x) + ρ = f(x). Therefore, with (s, S) policy, the

inequality of (3.9) becomes equality. That is,

ρ = J(x, (s, S)),

Corollary 3.1 If (us(x), ρ) satisfies both (3.7) and (3.12), then

ρ = ρ0

and policy V = (s, S) is optimal.

Proof. If (us(x), ρ) satisfies both (3.7) and (3.12), we have both ρ ≤ ρ0 and ρ ≥ ρ0. Finally

it follows from Lemma 3.3 that

ρ0 = ρ = J(x, (s, S)).

and therefore (s, S) policy is optimal. �

According to the conclusion of Lemma 3.3, if we can construct (ρ, u), with respective to

a pair (s, S), satisfies (3.12), and verify they also satisfies (3.7). Then ρ is equal to the long

time average cost ρ0 and (s, S) is the optimal policy. The steps for construction along this

line are given by the following subsection in detail.

3.1 Construction of the solution

According to Lemma 3.3, we will construct the solution to (3.12). As us(x) ∈ U , it is

continuously differentiable, therefore we have u′s(s) = −c. From the notation of S, it should

also satisfy u′s(S) = −c.
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Notice that if (s, us(x), ρ) satisfies (3.12), then the second equation of (3.12) can be

rewritten as

us(x) = us(s) + c(s− x), x ≤ s, (3.15)

0 = K +

∫ S

s
(u′s(t) + c)dt. (3.16)

Therefore, we will solve (3.12) by construction according to the following steps: (a) For any

fixed s, solve the first equation of (3.12) with the condition u′s(s) = −c, we obtain a solution

us(·) ∈ U ; (b) Show that a point s exists, where the function us(s + η) + cη attains its

minimum; (c) Use (3.16) to determine an optimal s.

3.1.1 Step (a): Construct us(x)

First, for any fixed number s, we consider{
Aus(x) + ρ = f(x), x > s,

us(x) = us(s) + c(s− x), x ≤ s.
(3.17)

and the condition u′s(s) = −c.

Denote

Hs(x) := u′s(x).

It satisfies {
AHs(x) + kHs(x) = f ′(x), x > s,

Hs(x) = −c, x ≤ s,
(3.18)

where

f ′(x) =

{
h, x > 0,

−p, x < 0.
(3.19)

We let f ′(0) = 0. The solution of (3.18) can be derived by considering the Green function{
−1

2σ
2Φ′′(x) + (r + k(x− γ))Φ′(x) + kΦ(x) = 0, x ∈ R

Φ(0) = 1,Φ(+∞) = 0.
(3.20)

It can be solved by considering the function χ(x), which is the solution of

−σ
2

2
χ′′(x)− (k(x− γ) + r)χ′(x) = 0, (3.21)
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with boundary condition

χ(0) = exp(− k

σ2
γ2), χ(+∞) = 0.

The unique solution of (3.21) is

χ(x) = e−
k
σ2
γ2
∫ +∞
x ϑ(y)dy∫∞
0 ϑ(y)dy

, (3.22)

where

ϑ(x) = exp{− 2

σ2
[k

(x− γ)2

2
+ rx]}. (3.23)

Then the unique solution of (3.20) is

Φ(x) =
χ(x)

ϑ(x)
. (3.24)

Now we are ready to construct Hs(x).

Lemma 3.4 The unique bounded solution of (3.18) is

Hs(x) =
2

σ2

∫ x

s

Φ(x)

Φ(ξ)
Q(ξ)dξ − c, x ≥ s, (3.25)

where

Q(x) :=

∫ +∞

x
g′(η)

χ(η)

χ(x)
dη, (3.26)

g(x) := f(x) + ckx. (3.27)

Proof. Because

H ′s(x) =
2

σ2
Φ′(x)

∫ x

s

Q(ξ)

Φ(ξ)
dξ +

2

σ2
Q(x), (3.28)

and

H ′′s (x) =
2

σ2
Φ′′(x)

∫ x

s

Q(ξ)

Φ(ξ)
dξ +

2

σ2
Φ′(x)

Φ(x)
+

2

σ2
Q′(x), (3.29)

therefore,

AHs(x) + kHs(x) = −1

2
σ2H ′′(x) + (k(x− γ) + r)H ′(x) + kHs(x)

=
2

σ2
(−σ

2

2
Φ′′(x) + k(x− γ) + r + k)

∫ x

s

Q(ξ)

Φ(ξ)
dξ +

2

σ2
[−σ

2

2

Φ′(x)

Φ(x)
− σ2

2
Q′(x) + (k(x− γ) + r)Q(x)]

=
2

σ2
(−σ

2

2

χ′(x)

χ(x)
)Q(x)−Q′(x)

= f ′(x). (3.30)
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That is, Hs(x) constructed by (3.25) is the solution of (3.18). We will prove that the bounded

solution of (3.18) is unique and verify that Hs(x) of (3.25) is bounded, then (3.25) is just the

solution of (3.18).

To show that the bounded solution of (3.18) is unique, it suffices to show that the

bounded solution of {
AHs(x) + kHs(x) = 0, x > s,

Hs(x) = 0, x ≤ s,
(3.31)

is 0. In fact, when x > s, if Hs(x) 6= 0, without loss of generality, we assume that Hs(x)

becomes positive when x > s. If there exists x1 such that Hs(x) reaches its local maximum,

then

H ′s(x1) = 0, H ′′s (x1) < 0,

which contradicts (3.31). Thus H ′s(x) > 0. For large enough x2, we have r+ k(x− γ) > 0 on

(x2,+∞). If H ′′s (x) ≤ 0 on (x2,+∞), which again contradicts (3.31). If H ′′s (x) > 0, it implies

that H ′s(x) increases with x, which contradicts the fact that Hs(x) is bounded. Therefore,

when x > s, H ′s(x) > 0 cannot hold and the assumption that Hs(x) becomes positive cannot

hold, namely, we must have

Hs(x) ≤ 0

on [s,+∞). Similarly, Hs(x) cannot be negative. Thus, the unique bounded solution of (3.31)

is 0 and the unique bounded solution of (3.18) is (3.25).

For the bounded property, we denote z1(x) = 1−Φ(x). Obviously, z1(x) is the bounded

solution of {
−1

2σ
2Z ′′(x) + (r + k(x− γ))Z ′(x) + kz1(x) = k, x ∈ R,

z1(0) = 0.
(3.32)

Write

Y (x) =
z1(x)

Φ(x)
,

then substitute z1(x) = Φ(x)Y (x) into (3.32), we have

d

dx
(Y ′(x)Φ2(x)ϑ(x)) = −2k

σ2
Φ(x)ϑ(x)

= −2k

σ2
χ(x). (3.33)

On the other hand, the definition of Y (x) shows that

Y ′(x)Φ2(x)ϑ(x) = −Φ′(x)ϑ(x).
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From the expression of Φ(x) and ϑ(x), we know Y ′(x)Φ2(x)ϑ(x) is bounded and approaches

to 0 when x→ +∞. Due to this property, it follows from (3.33) that

Y ′(x)Φ2(x)ϑ(x) =
2

σ2

∫ +∞

x
kχ(η)dη. (3.34)

With some calculations, we have

z1(x) = k

∫ x

0

Φ(x)

Φ(ξ)

∫ +∞

ξ

χ(η)

χ(ξ)
dηdξ.

Therefore, when x > 0,

Hs(x) =
2

σ2

∫ x

s

Φ(x)

Φ(ξ)

∫ +∞

ξ
g′(η)

χ(η)

χ(ξ)
dηdξ − c

=
2Φ(x)

σ2

∫ 0

s

1

Φ(ξ)

∫ +∞

ξ
g′(η)

χ(η)

χ(ξ)
dηdξ +

2(h+ ck)

σ2

∫ x

0

Φ(x)

Φ(ξ)

∫ +∞

ξ

χ(η)

χ(ξ)
dηdξ − c

= Φ(x)Hs(0) +
h+ ck

k
(

2

σ2

∫ x

0

kΦ(x)

Φ(ξ)

∫ +∞

ξ

χ(η)

χ(ξ)
dηdξ)− c

= Φ(x)Hs(0) +
h+ ck

k
z1(x)− c

=
h+ ck

k
+ Φ(x)(Hs(0)− h+ ck

k
)− c. (3.35)

It follows from limx→+∞Φs(x) = 0 that

lim
x→+∞

Hs(x) =
h

k
, (3.36)

which implies Hs(x) is bounded. �

Now we are ready to derive ρ and construct us(x). For x ≥ s, (3.12) can be rewritten

as

−σ
2

2
H ′s(x) + [(k(x− γ) + r)]Hs(x) + ρ = f(x). (3.37)

On the other hand, by integrating (3.18) from s to x, we have

−σ
2

2
H ′s(x) +

σ2

2
H ′s(s) + [(k(x− γ) + r)]Hs(x) = f(x)− f(s). (3.38)

By comparing (3.37) and (3.38), we have

ρ =
σ2

2
H ′s(s) + f(s) + c[k(s− γ) + r]. (3.39)

Now, let us construct us(x) according to Hs(x) above. For any fixed s, define

us(x) = −cx+

{ ∫ x
s Hs(ξ)dξ, x > s,

0, x ≤ s.
(3.40)
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Lemma 3.5 For each s ∈ R, the function us : R → R defined by (3.40) is in U and satisfies

Aus(x) + ρ− f(x) = 0 for x > s,

where ρ is defined by (3.39).

Proof. From the construction, it can be seen that us(·) is continuously differentiable, has

bounded derivative, and has a continuous second derivative at all but s. Also the construction

of us(·) gives Aus(x) + ρ− f(x) = 0 for x > s.

3.1.2 Step (b): Decide the value of S

From (3.13), it can be seen that S depends on the value of s. For any fixed s, we let S(s)

be the value where us(x) + cx − cs attains its global minimum. We will show such an S(s)

exists, which satisfies Hs(S(s)) = −c.

Lemma 3.6 Let x0 be the root of Q(x), defined by (3.26).

1. If s ≥ x0, then

S(s) = s,

otherwise,

S(s) ≥ x0.

2. When x > (<)S(s), we have Hs(x) ≥ (≤)− c.

Proof. Obviously, Q(ξ) > 0 when ξ > x0.

If x > s ≥ x0, then

Hs(x) =
2

σ2

∫ x

s

Φ(x)

Φ(ξ)
Q(ξ)dξ − c > −c. (3.41)

Thus, we have

S(s) = s.

If s < x0, then

Hs(x0) < −c
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and

lim
x→+∞

Hs(x) =
h

k
> 0,

which implies that there exists S(s) which satisfies Hs(S(s)) = −c and S(s) ≥ x0.

From the fact Q(x) > 0 when x > x0, Φ(x) > 0 and S(s) ≥ x0, it can be easily seen

that Hs(x) ≥ −c on (S(s),+∞) and Hs(x) ≤ −c on (−∞, S(s)). �

3.1.3 Step (c): Decide the optimal s

We will use (3.16) to show the existence and the uniqueness by Lemma 3.7.

Lemma 3.7 Denote

Γ(s) =

∫ S(s)

s
(Hs(y) + c)dy. (3.42)

When ck < p, there exists a unique s satisfying

s < x0 < 0,

such that

Γ(s) = −K.

Proof. From the expression of Q(x), we have x0 < 0.

Because S(s) = s on s ≥ x0, therefore, Γ(s) = 0 for s ≥ x0. Thus

s < x0.

In the subsequence we investigate the properties of Γ(s) when s < x0.

As H(s) = H(S(s)) = 0, we have

Γ′(s) =

∫ S(s)

s
H ′s(y)dy = −Q(s)

2

σ2

∫ S(s)

s

Φ(y)

Φ(s)
dy. (3.43)

Obviously, Γ′(s) > 0 on (−∞, x0). Moreover, if we have

lim
s→−∞

Γ′(s) ≥ p− ck
k

> 0, (3.44)
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then it follows that lims→−∞ Γ(s) = −∞. As Γ(s) is continuous and Γ(s) = 0 on s ≥ x0, we

can conclude that there exits a s < x0 satisfying the property

Γ(s) = −K.

To prove (3.44), we have

lims→−∞Γ′(s) ≥ lims→−∞ −Q(s)
2

σ2

∫ x0

s

Φ(y)

Φ(s)
dy

= lims→−∞ −
2Q(s)

σ2Φ(s)

∫ 0

s
Φ(η)dη

(
1−

∫ 0
x0

Φ(η)dη∫ 0
s Φ(η)dη

)
= lims→−∞ −

2Q(s)

σ2

∫ 0

s

Φ(y)

Φ(s)
dy

= lims→−∞
2

σ2
(−p+ ck)

∫ 0

s

χ(y)

χ(s)
dy

∫ 0

s

Φ(y)

Φ(s)
dy

+lims→−∞
2

σ2
(h+ ck)

∫ +∞

0

χ(y)

χ(s)
dy

∫ 0

s

Φ(y)

Φ(s)
dy

≥ lims→−∞
2

σ2
(−p+ ck)

∫ 0

s

χ(y)

χ(s)
dy

∫ 0

s

Φ(y)

Φ(s)
dy. (3.45)

By integrating (3.21), we have∫ 0

s

χ(y)

χ(s)
dy = −σ

2χ′(s)

2kχ(s)
− (k(s− γ) + r)

k
+

(r − kγ)χ(0) + σ2

2 χ
′(0)

kχ(s)

= −(k(s− γ) + r)

k
(1− m(s)

k(s− γ) + r
), (3.46)

where

m(s) = −σ
2χ′(s)

2χ(s)
+

(r − kγ)χ(0) + σ2

2 χ
′(0)

χ(s)
. (3.47)

It can be easily checked that m(s) is bounded. Thus,

lims→−∞
2

σ2
(−p+ ck)

∫ 0

s

χ(y)

χ(s)
dy

∫ 0

s

Φ(y)

Φ(s)
dy

= lims→−∞ −
2

σ2
(−p+ ck)

k
(k(s− γ) + r)(1− m(s)

k(s− γ) + r
)

∫ 0

s

Φ(y)

Φ(s)
dy

= lims→−∞ −
2

σ2
(−p+ ck)

k
(k(s− γ) + r)

∫ 0

s

Φ(y)

Φ(s)
dy. (3.48)

Notice that when s < 0, 2
σ2

∫ 0
s [(k(y − r) + r)]Φ(y)dy ≥ 2

σ2

∫ 0
s Φ(y)dy[(k(s− r) + r)] and

2
σ2

∫ 0
s [(k(y − r) + r)]Φ(y)dy

Φ(s)
=

∫ 0
s χ(y)d 1

ϑ(x)

Φ(s)

=
Φ(0)− Φ(s)−Ms

Φ(s)
, (3.49)
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where

M =
e−

k
σ2
γ2∫∞

0 e−
2
σ2

(ry+
k(y−γ)2

2
)dy

.

Then,

lims→−∞

2
σ2

∫ 0
s [(k(y − γ) + r)]Φ(y)dy

Φ(s)
= −1. (3.50)

From (3.45),(3.48) and (3.50), we have

lims→−∞

∫ 0

s

Φ(y)

Φ(s)
dy[−(k(s− γ) + r)] ≥ p− ck

k
.

This completes the proof of existence.

In the proof of existence, we show that the s satisfying Γ(s) = −K is on the interval

(−∞, x0]. Notice that

Γ′(s) = −Q(s)

Φ(s)

∫ S(s)

s
Φ(η)dη

means that Γ′(s) > 0 on (−∞, x0]. It means Γ(s) is strictly increasing with s, so the s

satisfying Γ(s) = −K is unique. �

3.1.4 The solution of Q.V.I.

Denote the value of s in Lemma 3.7 by s∗, and S(s∗) by S∗.

Lemma 3.8 For the point s∗ satisfying Γ(s∗) = −K,

1. the function

us∗(x) = −cx+

{ ∫ x
s∗ Hs∗(ξ)dξ, x > s∗,

0, x ≤ s∗,
(3.51)

together with the scalar ρ∗ = f(s∗) + σ2

2 u
′′
s∗(s∗) + c(k(s∗− γ) + r), satisfies (3.12), then

ρ∗ achieves the average cost,
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2. (s∗;S∗) is an optimal policy.

Proof. We will prove the first item by advantage of Lemma 3.3. Lemma 3.5 shows the first

equation of (3.12) is satisfied, Γ(s∗) = −K means that the second equation of (3.12) holds.

Then we only need check the complementary slackness condition. When x ≤ s∗,

us∗(x) = us∗(s∗) + c(s∗ − x)

= inf
η>0

(us∗(s∗ + η) + cη +K) + c(s∗ − x)

= inf
η>0

(us∗(x+ η) + c(x− s∗) + cη +K) + c(s∗ − x)

= inf
η>0

(us∗(x+ η) + cη +K). (3.52)

We need also show that

Aus∗(x) + ρ ≤ f(x), x ≤ s∗,

us∗(x) ≤ inf
y≥s∗

(us∗(y) + c(y − s∗)), x > s∗. (3.53)

When x < s, from the assumption p < ck and the fact that x < s∗ < 0, we have

ρ =
σ2

2
H ′s∗(s∗) + f(s∗) + c[k(s∗ − γ) + ν] ≤ f(x) + c[k(x− γ) + r],

and

Aus∗(x) + ρ = Aus∗(s∗) + ρ = ρ,

thus, we obtain the first complementary slackness condition

Aus∗(x) + ρ ≤ f(x) + c[k(x− γ) + r], x < s∗.

When x > S∗, we have u′s∗(x) ≥ −c on x > S∗. Thus

us∗(x) + cx ≤ inf
y>x

(us∗(y) + cy) ≤ inf
y>x,η>0

(us∗(y + η) + c(y + η) +K).

That is,

us∗(x) ≤ inf
η>0

(us∗(x+ η) + cη +K), x ≥ S∗. (3.54)

It remains to show the case s∗ < x < S∗. From the assumption that u′s∗(x) ≤ −c on x < S∗,

we have

us∗(x) < us∗(s∗) + cs∗ − cx ≤ K + us∗(S∗) + c(S∗ − x)

= K + inf
y>0

(us∗(y) + c(y − S∗)) + c(S∗ − x) = K + inf
η>0

(us∗(x+ η) + cη), s∗ < x < S∗.(3.55)
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From (3.54) and (3.55), we have

us∗(x) ≤ K + inf
η>0

(us∗(η) + cη), x > s∗,

which finishes the proof from Lemma 3.3. �

Now the remains are to calculate the value of ρ0 and (s, S). The explicit solution of

(3.21) can be rewritten as

χ(x) = e−
k
σ2
γ2 1− z1(x)

1− erf(−λ )
. (3.56)

From the relation

Φ(x) = e
2
σ2

(rx+
k(x−γ)2

2
)χ(x)

Hs∗(x) =
2

σ2

∫ x

s∗

Φ(x)

Φ(ξ)

∫ ∞
ξ

g′(η)
χ(η)

χ(ξ)
dηdξ,

and (3.39), we have

ρ0 = ρ =
σ2

2

∫ ∞
s∗

g′(η)
χ(η)

χ(ξ)
dη + g(s∗) + c(r − kγ),

with some calculations for integral, the expression of Hs∗(x) and ρ0 and (s∗, S∗) can be

derived. The calculations are given in Appendix. �

Remark 3.1 When k = 0, the case is reduced to the one in [26]. If x > 0,

Hs∗(x) = hx+ ps∗ + (h+ p)
σ2

2r
(1− e

2r
σ2
s∗). (3.57)

If x < 0,

Hs∗(x) = −p(x− s∗) + (h+ p)
σ2

2r
(e

r
σ2
x − e

2r
σ2
s∗), (3.58)

S∗ = −
ps∗ + (h+ p)σ

2

2r (1− e
2r
σ2
s∗)

h
,

and ∫ S∗

s∗
Hs∗(y)dy

=
−p(s∗)2

2
− (h+ p)

σ4

4r2
(1− e

r
σ2
s∗) +

σ2

2r
e

2r
σ2
s∗(h+ p)s∗ − 1

2h
[−ps∗ + (h+ p)

σ2

2r
(1− e

r
σ2
s∗)]2.

Then ∫ S∗

s∗
Hs∗(y)dy +K = 0
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becomes

− 1

2h
(h+ p)

{
p(s∗)2 − (h+ p)

σ2

r
s∗e

2r
σ2
s∗ − pσ

2

r
s∗ − (h− p) σ

4

4r2

+
σ4

4r2
(h+ p)e

4r
σ2
s∗ + p

σ4

2r2
e

2r
σ2
s∗
}

+K = 0, (3.59)

which decides the value of s∗.

4 Concluding remarks

In this work, we have considered the average cost inventory control problem with the mean

reverting model. By using stochastic impulse control theory, we showed that an (s, S) strategy

is optimal in the setting. Also we present a method to solve the value function and (s, S)

policy.
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5 Appendix

The calculation for Theorem 2.1.

Now let us come to the calculation of Hs(x).

Hs∗(x) + c

=
2

σ2
Φ(x)

∫ x

s∗

1

Φ(ξ)

∫ ∞
ξ

g′(η)
χ(η)

χ(ξ)
dηdξ

=
2

σ2
Φ(x)

∫ x

s∗
g′(η)χ(η)(

∫ η

s∗

1

χ(ξ)Φ(ξ)
dξ)dη +

2

σ2
Φ(x)

∫ +∞

x
g′(η)χ(η)(

∫ x

s∗

1

χ(ξ)Φ(ξ)
dξ)dη.

(A.1)

The first term of the right hand

2

σ2
Φ(x)

∫ x

s∗
g′(η)χ(η)(

∫ η

s∗

1

χ(ξ)Φ(ξ)
dξ)dη

=
2

σ2
Φ(x)

∫ x

s∗
g′(η)χ(η)(

∫ η

s∗
d

1

K2
1P (ξ)

)dη

=
2

σ2
Φ(x)

∫ x

s∗
g′(η)χ(η)(

1

K2
1P (η)

− 1

K2
1P (s∗)

)dη

=
2

σ2
Φ(x)

∫ x

s∗
(
g′(η)

K1
− g′(η)P (η)

K1P (s∗)
)dη

=
2

σ2
Φ(x)

∫ x

s∗

g′(η)

K1
dη − 2

σ2
Φ(x)

∫ x

s∗

g′(η)P (η)

K1P (s∗)
dη, (A.2)

If x > 0, the first term of the right hand of (A.2) is

φ(x)(− g
+

K1
s∗ + g+x).

If x ≤ 0, the first term of the right hand of (A.2) is

φ(x)(
g−

K1
(x− s∗)).

If x > 0, the second term of the right hand of (A.2) is

Φ(x)

K1P (s∗)

∫ x

s∗
K2g

′(η)(1− erf(
η −N
σ/
√
k

))dη

=
Φ(x)

K1P (s∗)

∫ 0

s∗
K2g

′(η)(1− erf(
η −N
σ/
√
k

))dη +
Φ(x)

K1P (s∗)

∫ x

0
K2g

′(η)(1− erf(
η −N
σ/
√
k

))dη

=
Φ(x)σ

K1P (s∗)
√
k
{g+K2[−s∗ − (z2(x)z1(x) +

e−z
2
2(x)

√
π

) + (−λ erf(−λ ) +
e−λ

2

√
π

)]

+g−K2[−s∗ − (−λ erf(−λ ) +
e−λ

2

√
π

) + (z2(s
∗)z1(s

∗) +
e−z

2
2(s

∗)

√
π

)]}. (A.3)
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If x ≤ 0, the second term of the right hand of (A.2) is

Φ(x)

K1P (s∗)

∫ x

s∗
K2g

′(η)erf(
η −N
σ/
√
k

)dη

=
Φ(x)

√
k

K1P (s∗)σ
{g−K2[x− s∗ − (z2(x)z1(x)

+
e−z

2
2(x)

√
π

) + (z2(s
∗)z1(s

∗) +
e−z

2
2(s

∗)

√
π

)]}. (A.4)

If x < 0, the second term of the right hand of (A.1) is

2

σ2
Φ(x)

∫ +∞

x
g′(η)χ(η)(

∫ x

s∗

1

χ(ξ)Φ(ξ)
dξ)dη

=
2

σ2
Φ(x)(

1

K2
1P (x)

− 1

K2
1P (s∗)

)

∫ +∞

x
g′(η)χ(η)dη

=
2

σ2
Φ(x)K3(

1

K2
1P (x)

− 1

K2
1P (s∗)

)(

∫ 0

x
g′(η)χ(η)dη +

∫ +∞

0
g′(η)χ(η)dη)

=
2

σ2
Φ(x)

K3σ√
k

(
1

K2
1P (x)

− 1

K2
1P (s∗)

)(g+
∫ +∞

−λ
(1− erf(η))dη + g−

∫ −λ
z2(x)

(1− erf(η))dη)

=
2

σ2
Φ(x)

K3σ√
k

(
1

K2
1P (x)

− 1

K2
1P (s∗)

)

(
g+[λ − λ erf(−λ ) +

e−λ
2

√
π

]

+g−[
−x
σ/
√
k

+ λ erf(−λ )− e−λ
2

√
π

+ z2(x)z1(x) +
e−z

2
2(x)

√
π

]

)
.

(A.5)

Similarly, if x ≥ 0, the second term of the right hand of (A.1)

2

σ2
Φ(x)

∫ +∞

x
g′(η)χ(η)(

∫ x

s∗

1

χ(ξ)Φ(ξ)
dξ)dη

=
2

σ2
Φ(x)(

1

K2
1P (x)

− 1

K2
1P (s∗)

)

∫ +∞

x
g′(η)χ(η)dη

=
2

σ2
Φ(x)

K3σ√
k

(
1

K2
1P (x)

− 1

K2
1P (s∗)

)

(
g+[−z2(x) + z2(x)z1(x) +

e−z
2
2(x)

√
π

]

)
.

(A.6)

Summarizing all the terms of (A.1), we have the explicit expression of Hs∗(x).

Hs∗(x) =

{
2φ(x)
σ2 (M+(x) +M+), x ≥ 0,

φ(x)(M−(x) +M−), x < 0
(A.7)
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As

H ′s∗(x) =
2

σ2
Φ′(x)

∫ x

s∗

1

Φ(ξ)

∫ ∞
ξ

g′(η)
χ(η)

χ(ξ)
dηdξ +

2

σ2

∫ ∞
x

g′(η)
χ(η)

χ(x)
dη

=
2

σ2
Φ′(x)

Φ(x)
Hs∗(x) +

2

σ2

∫ ∞
x

g′(η)
χ(η)

χ(x)
dη (A.8)

and Hs∗(s∗) = 0, so we only need calculate the second term of (A.8).

Since s∗ < 0, we just consider the case x < 0,

2

σ2

∫ ∞
x

g′(η)
χ(η)

χ(x)
dη

=
y+ σ√

k
(λ + erf(−λ )− λ + e−λ

2

√
π

)

1− z1(x)

+
y− σ√

k
[−z2(x) + erf(−λ )λ − e−λ

2

√
π

+ z1(x)z2(x) + e−z
2
2(x)√
π

]

1− z1(x)
.

(A.9)

Substituting x with s∗ in the above equation, we get the expression of ρ0.

References

[1] S. Axsater. Inventory Control. Springer, New York, 2006.

[2] D. Beyer and S.P. Sethi. Average Cost Optimality in Inventory Models with Markovian

Demands, Journal of Optimization Theory and Applications, 92 (1997), 497-526.

[3] D. Beyer, S.P. Sethi and M. Taksar. Inventory models with Markovian demands and

cost functions of polynomial growth, Journal of Optimization Theory and Applications,

98 (1998), 281-323.

[4] A. Bensoussan. Dynamic Programming and Inventory Control. IOS Press, 2011.

[5] A. Bensoussan and J.L. Lions. Impulse Control and Quasi-Variational Inequalities.

Gauthier-Villars, Paris, France, 1984.

[6] A. Cadenillas, P. Lakner and M. Pinedo. Optimal Control of a Mean-Reverting Inventory,

Operations Research, 58 (2010), 1697-1710.

[7] C. Dellacherie and P. A. Meyer. Probabilites et Potentiel. Theorie des Martingales. Paris:

Hermann, 1980.

24



[8] P. L. Fackler and M. J. Livingston. Optimal storage by crop producers, American Journal

of Agricultural Economics, 84 (2002), 645-659.

[9] S. K. Goyal and B. C. Giri. Recent trends in modeling of deteriorating inventory. Euro-

pean Journal of Operational Research, 134 (2001), 1-16.

[10] J.M. Harrison. Brownian Motion and Stochastic Flow Systems. John Wiley and Sons,

New York, 1985.

[11] B. Hogaard and M. Taksar. Controlling risk exposure and dividends payout schemes:

insurance company example. Mathematical Finance, 9 (1999), 153-182.

[12] R.H. Hollier, K.L. Mak and K.F.C. Yiu. Optimal inventory control of lumpy demand

items using (s, S) policies with a maximum issue quantity restriction and opportunistic

replenishments, International Journal of Production Research, 43 (2005), 4929-4944.

[13] J. Jacod and A.N. Shiryaev. Limit theorems for Stochastic Processes, 2003.

[14] S.S. Ko, J. Kang and E.Y. Kwon. An (s,S) inventory model with level-dependent G/M/1-

Type structure, Journal of Industrial and Management Optimization, 12 (2016), 609-

624.

[15] P. Kouvelis, R. Li and Q. Ding. Managing Storable Commodity Risks: The Role of

Inventory and Financial Hedge, Manufacturing & Service Operations Management, 15

(2013), 507-521.

[16] J.Z. Liu, K.F.C. Yiu and L.H. Bai. Minimizing the ruin probability with a risk constraint.

Journal of industrial and management optimization, 8 (2012), 531-547.

[17] K.L. Mak, K.K. Lai, W.C. Ng and K.F.C. Yiu. Analysis of optimal opportunistic replen-

ishment policies for inventory systems by using a (s, S) model with a maximum issue

quantity restriction, European Journal of Operational Research, 166 (2005), 385-405.

[18] M. Ormeci, J.G. Dai and J. Vande Vate. Impulse control of Brownian motion: The

constrained average cost case, Operations Research, 56 (2008), 618-629.

[19] E. L. Porteus. Foundations of Stochastic Inventory Theory. Stanford Business Books,

Stanford, 2002.

[20] E. Presman and S.P. Sethi. Stochastic inventory models with continuous and Poisson

demands and discounted and average costs, Production and Operations Management, 15

(2004), 279-293.

25



[21] F. Raafat. Survey of literature on continuously deteriorating inventory models. Journal

of the Operational Research Society, 42 (1991), 27-37.

[22] L. Schwartz. The Economic Order-Quantity (EOQ) Model. In D. Chhajed & T. J.

Lowe (Ed.), Building Intuition: Insights From Basic Operations Management Models

and Principles. Springer US, 2008.

[23] S.P. Sethi and F. Cheng. Optimality of (s, S) Policies in Inventory Models with Marko-

vian Demand, Operations Research, 45 (1995), 331-339.

[24] S.P. Sethi, W. Suo, M.I. Taksar and H. Yan. Optimal Production Planning in a Multi-

Product Stochastic Manufacturing System with Long-Run Average Cost, Discrete Event

Dynamic Systems, 8 (1998), 37-54.

[25] S.P. Sethi, H. Zhang and Q. Zhang. Minimum Average Cost Production Planning in

Stochastic Manufacturing Systems, Mathematical Models and Methods in Applied Sci-

ences, 8 (1998), 1252-1276.

[26] A. Sulem. A solvable one-dimensional model of a diffusion inventory system, Mathematics

of Operations Research, 11 (1986), 125-133.

[27] M.I. Taksar. Average optimal singular control and a related stopping problem, Mathe-

matics of Operations Research, 10 (1985), 63-81.

[28] S.Y. Wang, K.F.C. Yiu and K.L. Mak. Optimal inventory policy with fixed and propor-

tional transaction costs under a risk constraint, Mathematical and Computer Modelling,

58 (2013), 1595-1614.

[29] C.D.J. Waters. Inventory Control and Management, 2nd Ed.. John Wiley & Sons, Chich-

ester, 2003.

[30] T. Weston. Applying stochastic dynamic programming to the valuation of gas storage

and generation assets. In E. Ronn (ed.), Real Options and Energy Management Us-

ing Options Methodology to Enhance Capital Budgeting Decisions, Risk Publications,

London, 2002.

[31] T. Wild. Best Practice in Inventory Management, 2nd Ed.. Butterworth Heinemann,

Oxford, 2002.

[32] J.C. Williams and B. D. Wright. Storage and Commodity Markets. Cambridge University

Press, 1991.

26



[33] H.L. Xu, P. Sui, G.L. Zhou and L. Caccetta. Dampening bullwhip effect of order-up-

to inventory strategies via an optimal control method, Numerical Algebra, Control and

Optimization, 3 (2013), 655-664.

[34] K.F.C. Yiu, S.Y. Wang and K.L. Mak. Optimal portfolios under a value-at-risk con-

straint with applications to inventory control in supply chains, Journal of Industrial and

Management Optimization, 4 (2008), 81-94.

[35] K.F.C. Yiu, L.L. Xie, K.L. Mak. Analysis of bullwhip effect in supply chains with hetero-

geneous decision models Journal of Industrial and Management Optimization, 5 (2009),

81-94.

[36] Y.S. Zheng. A Simple Proof for Optimality of (s; S) Policies in Infinite-Horizon Inventory

Systems. Journal of Applied Probability, 28 (1991), 802-810.

[37] P.H. Zipkin. Foundations of Inventory Management. McGraw-Hill/Irwin, 2000.

27




