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Abstract. A new multi-component diffuse interface model with the Peng-Robinson
equation of state is developed. Initial values of mixtures are given through the NVT
flash calculation. This model is physically consistent with constant diffusion param-
eters, which allows us to use fast solvers in the numerical simulation. In this paper,
we employ the scalar auxiliary variable (SAV) approach to design numerical schemes.
It reformulates the proposed model into a decoupled linear system with constant co-
efficients that can be solved fast by using fast Fourier transform. Energy stability is
obtained in the sense that the modified discrete energy is non-increasing in time. The
calculated interface tension agrees well with laboratory experimental data.
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1 Introduction

In reservoir engineering and chemical flows, multi-component and multi-phase fluid sys-
tems are unneglectable with important roles in the thorough and accurate understand-
ing of flow behaviors in a large range of applications [2–4, 6, 15, 17, 22]. In numerical
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simulations, it is a key effort to determine whether the studied fluid mixtures remain
in one single phase or split into multiple phases including oil phase, water phase, gas
phase, etc. Thermodynamic equilibrium conditions are the basic rule to control physi-
cal properties of the mixture fluid flow, such as composition and density of each phase
if split, and whether the phase split occurs at all. Recently, realistic equations of state
(EOS) (e.g. Peng-Robinson EOS [18]) have attracted more and more attention in the
multi-component multi-phase flow simulation, which is very useful in the study of ther-
modynamic mechanism. It can be applied in many areas, especially in the pore scale
modeling of subsurface fluid flow [7–9, 11]. The main cause of capillarity, a major im-
miscible two-phase flow mechanism for systems with a strong wettability preference, is
often attributed to the interface tension, which is mainly determined by phase behaviors
of multi-component fluids. In order to capture the phase properties and behaviors bet-
ter, diffuse interface models based on Peng-Robinson EOS have been widely studied in
recent years [6, 11].

While modeling the multi-component system, the mobility tensor is a significant ele-
ment to be considered. Mobility, which is a variable defined in diffuse interface models,
plays an essential role to keep the developed model consistent with thermodynamic laws.
The mobility matrix M shall be symmetric and positive semi-definite so that Onsager’s
reciprocal principle and the second law of thermodynamics are satisfied. Different meth-
ods have been proposed to model the mobility tensor, which could be summarized into
three types. The first one is to define mobility as a diagonal matrix with positive diag-
onal elements, which satisfies the aforementioned two principles and is convenient to
implement. Only the diffusivity of each component is considered, so that the mobility
tensor could be represented simply as: Mii. The second one is to take mobility matrix
as a full matrix, and namely we have two tensors Mii and Mij. It should be noted that
the mole mean diffusivity matrix Dii = 0 but Dij > 0. The third one is to use mass mean
diffusivity instead of mole mean diffusivity. More details on the modeling of the mobil-
ity tensor could be found in [13] and references therein. In this paper, inspiring from the
first choice of mobility, we propose a new multi-component two phase diffuse interface
model in order to use certain fast calculation approaches.

How to select the initial value of multi-component mixture becomes an important
modeling issue when the realistic equation of state (EOS) is involved. To handle this, we
need to consider a phase splitting problem. The NPT flash calculation (temperature T,
pressure P and composition N) and the NVT flash calculation (temperature T, volume V
and composition N) are two common phase splitting approaches. As discussed in [21],
classical coupled schemes based on the NPT flash calculation suffer from a few essential
limitations, such as the requirement of constructing a pressure equation as there is no
intrinsic pressure equation. An alternative modeling framework, based on the NVT flash
calculation with moles, volume and temperature as the primal state variables, has been
actively studied very recently [7, 8]. It allows us to get the molar density of gas and
liquid of a specific substance when the phase transition occurs, and is better posed than
the NPT flash calculation. The obtained solution can be used as the initial value of the
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diffuse interface model with given substances.
Efficient numerical schemes are highly needed for solving such diffuse interface mod-

els with Peng-Robinson EOS. The main challenge is the strong non-linearity in the func-
tion of bulk Helmholtz free energy density, which usually becomes more serious as the
number of components increases. Several approaches have been carried out to con-
struct energy stable schemes for diffuse interface models with Peng-Robinson EOS. In
[6, 11, 12, 19, 20, 22], energy stable schemes are proposed by using the convex-splitting
strategy, which is a popular used approach for solving diffuse interface problems. The
modified Newton’s method with a relaxation parameter, which is mentioned in [9], is an-
other approach to guarantee the energy decay property while constructing the schemes.
In addition, a classical fully implicit scheme is studied in [10] to deal with a multi-
component system with Peng-Robinson EOS. Recently, the invariant energy quadrati-
zation (IEQ) scheme, is also used to study the Peng-Robinson EOS problems [14]. In this
paper, we use the scalar auxiliary variable (SAV) approach [24, 25] to design a second or-
der SAV Crank-Nicolson (SAV-CN) scheme. It leads to an unconditionally energy stable
numerical scheme of decoupled linear equations with constant coefficients that can be
solved fast by using fast Fourier transform.

The rest of the paper is organized as follows. In Section 2, we will develop a multi-
component two-phase flow model with the mobility tensor involved. The method of ini-
tial value selection, which is based on the NVT framework, is also given in this section.
In Section 3, we will propose a second order SAV scheme for this model. The energy sta-
bility is also studied in this section. In Section 4, several numerical tests are designed and
implemented to demonstrate the effectiveness of the proposed model and the numerical
scheme. Some concluding remarks are given in Section 5.

2 Mathematical modelling of multi-component two-phase flow

2.1 Governing equations

We now formulate a thermodynamic consistent mathematical model to describe multi-
component two-phase flow based on the Peng-Robinson EOS, which is widely used in
petroleum industry. It can accurately represent the thermodynamic properties of hydro-
carbon mixtures in the multi-phase fluid flow. We model the flow under an isothermal
condition, i.e, with a constant temperature T.

Governing equations can be written as the following form

∂ni

∂t
+∇· Ji =0,

Ji =−
m

∑
j=1

Mij∇µj,
(2.1)

for i = 1,2,··· ,m. In this paper, we consider periodic boundary conditions. Here ni, Ji

and µi are the molar density, the diffusive flux and the total chemical potential of the i-th
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component, respectively. M=(Mij)m×m is the mobility tensor, which should be symmet-
ric and at least positive semi-definite (in most cases, strictly positive definite) to satisfy
Onsager’s reciprocal principle and the second law of thermodynamics. In [13], Kou and
Sun introduced several approaches to form the mobility term. In this paper, we give a
new approach of M by using a diagonal matrix with positive diagonal elements to meet
the above requirements. We set

Mii=
Di

N0
i

|Ω|
RT

, i=1,2,··· ,m, (2.2)

where N0
i is the total particle amount of the i-th component at the initial state and |Ω| is

the calculated volume (area in 2D). R stands for the universal gas constant and Di >0 is
the diffusion coefficient of component i. Therefore, the diffusion flux can be written as

Ji =−
Di

N0
i

|Ω|
RT

∇µi, i=1,2,···m. (2.3)

We need to mention that the above modeling of mobility by a diagonal matrix allows us
to design certain fast calculation numerical schemes (such the SAV scheme studied in this
paper) because of its constant coefficients.

Using the mobility (2.3), the origin problem can be rewritten as

∂ni

∂t
+∇· Ji =0,

Ji =−Mii∇µi,
(2.4)

for i=1,2,··· ,m. The total chemical potential of the i-th component µi as used in (2.1) has
the bulk contribution µb,i and the gradient contribution µ∆,i.

µi =µb,i−µ∆,i=µb,i−
m

∑
j=1

cij∆nj, i=1,2,···m, (2.5)

where the influence parameter cij is usually assumed to be a constant and its expression
can be seen in the appendix. The bulk part µb,i is the derivative of the bulk Helmholtz
free energy density fb with respect to ni. The expression of fb of the Peng-Robinson EOS
case can also be found in the appendix. The total energy of the system is defined as

F=Fb+F∇, (2.6)

where

Fb =
∫

Ω
fb(n)dx,

F∇=
1

2

∫

Ω

m

∑
i

m

∑
j

cij∇ni ·∇njdx.
(2.7)
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2.2 Initial value calculation for the multi-component dynamic system

For the multi-component multi-phase flow simulation based on realistic equations of
state, a tricky issue challenging a reliable numerical result is how to choose applicable
initial values on the molar density distribution of the components. To address this issue,
in this paper, we provide a brief introduction on how to conduct a reasonable initial value
calculation based on the thermodynamic theory of flash calculation [16].

In two-phase compositional flow, compositions of chemical components in each phase
change with thermodynamic conditions, and that is what flash calculations determine.
Phase splitting may occur or disappear with the variation of temperature or pressure,
which adds on the difficulty of the composition determination. Wide additional proper-
ties at phase equilibrium statements can also been predicted through flash calculation. A
general phase splitting problem is often defined with an assumption of a certain given
thermodynamic equilibrium state among the components. Common phase splitting for-
mulations include the NPT flash (with constant temperature T, pressure P and compo-
sition N) and the NVT flash (with constant temperature T, volume V and composition
N).

Here, we want to introduce the NVT flash calculation which is a relatively new ap-
proach to deal with the phase splitting problem. First of all, we specify the overall com-
position, i.e. mole fraction of each species in the overall fluid mixture consisting n com-
ponents and possibly multiple phases and we define zi =

Ni
N as the overall mole fraction

of the i-th component in the entire mixture. Ni is the total amount of i-th component.
N = ∑

m
i Ni and V is the total amount and total volume respectively. Then we will go

through two steps to get the molar concentrations of the substances that can guarantee
the phase separation numerically and the given mixture is not thermodynamic phase-
stable.

At the beginning, we need to give some notations: c= N
V is the total molar density of

the mixture and czi=
Ni
V , i=1,··· ,m is the molar concentration of i-th component. c′ is the

trial molar density or the total molar density of the new phase (which can be found in
Fig. 1, and details will be discussed shortly). c′′ is the molar density of the original phase
after the phase separation (which can be found in Fig. 2, and details will be discussed
shortly). V ′

i is the volume of i-th component in the new phase and V ′′
i is the volume of i-

th component in the original phase after the phase separation. V ′=∑iV
′
i and V ′′=∑iV

′′
i .

N′
i is the particle number of i-th component in the new phase and N′′

i is the particle
number of i-th component in the original phase after the phase separation. N′ = ∑i N

′
i

and N′′=∑i N′′
i and we denote ȳi =

N ′′
i

N ′′ , i=1,··· ,m.

STEP 1. Infinitesimal splitting

It is believed that, if the phase splitting happens, the new phase (here we call it the trial
phase) will form with a infinitesimal volume (here we use 0+ to describe this volume) at
the very beginning of the phase separation. So our first step is to determine whether or
not this phenomenon happens under given conditions.
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Figure 1: Infinite small splitting.

As we can see in the Fig. 1, if the phenomenon happens, the original single-phase
mixture (with the m components’ molar densities cz1,··· ,czm) will split into the trial phase
part (infinitesimal volume part) with the volume 0+ and the rest part with the volume
V−=V−0+ during the progress of the infinite small splitting. In this step, our aim is to
find the trial molar density c′ of the new phase.

First, we need to calculate the saturation pressure psat which has the following form

psat = pc exp
[

5.37(1+ω)
(

1− Tc

T

)]

, (2.8)

where

ω=
3

7

( log10(
pc

patm
)

Tc
Tb
−1

)

.

Given critical properties Tc,Pc and boiling point TP of different components, we will
get different psat of different components. Here we note that the patm represents the
unit standard atmosphere pressure. Usually it has the following relation with the Mpa:
1Mpa≈9.8atm. After we have saturation pressure psat

i for each component, we will cal-
culate the trial phase composition under the framework of the NVT flash calculation.

The truth is, from the beginning, we do not know the phase state of the mixture. So
we have following two assumptions.

• Case 1: If the trial phase is in the liquid phase we first calculate the total initial
pressure by

pini=
m

∑
i

psat
i (T)zi, (2.9)

then we give the formulation of the trial phase composition (liquid-like)

x̄i =
psat

i

pini
zi, i=1,··· ,m. (2.10)

Then we calculate the compressibility factor Z of the system by solve the following
equation based on the Peng-Robinson EOS (Different equation of state has different
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formulation which respects to Z).

Z3−(1−B)Z2+(A−2B−3B2)Z−(AB−B2−B3)=0, (2.11)

where

A=
a(Tc)pini

R2T2
,

B=
bpini

RT
.

(2.12)

Here the expression of a(Tc) and b can be found in appendix. We use all real solu-
tions of the equation (2.11) to do the following analysis.

• Case 2: If the trial phase is in the gas phase, first we calculate the trial phase com-
position (gas-like)

x̄i =

zi

psat
i

Σ
zj

psat
j

, i=1,··· ,m. (2.13)

Then the initial pressure is given by

pini=Σpsat
i (T)x̄i. (2.14)

We can get Z in the same way as in Case 1.

We can use the obtained Z to calculate the total molar density of trail phase c′ by the
following relation (the non-ideal gas equation)

pini=Zc′RT. (2.15)

Here, we need to mention that pini we used in the (2.15) should be calculated under the
same assumption with the Z we choose.

Then we will show a special method to determine whether or not the system will ex-
perience a phase separation under the overall composition that we gave at the beginning.
Here we introduce the tangent plane distance function D

D(T,1,c′ x̄1,··· ,c′ x̄m)=Σ[µi((T,1,c′ x̄1,··· ,c′ x̄m))−µi((T,1,cz1,··· ,czm))]c
′ x̄i

−[p((T,1,c′ x̄1,··· ,c′ x̄m))−p((T,1,cz1,··· ,czm))]. (2.16)

The function D is used to determine whether the phase separation will happen. If D is
less than 0, it means there will have a phase separation and the molar density of trial
phase is c′. Otherwise we need to use another Z to do the same process (more details can
be seen in the paper by Jiri [16]). If we fail to find the appropriate c′ from all the Z we got
in Case 1 and Case 2, we need to consider a new set of zi for the purpose of two-phase
system specification.
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STEP 2. Finite-amount splitting

The existing of c′ means the original single-phase mixture will experience the phase sep-
aration with the initial fraction zi. Under the assumption that the molar density of the
new phase still equals to the trial phase molar density c′ and the phase composition still

equal to x̄i (which means x̄i=
N ′

i
N ′ ) after the phase separation. We can get molar density c′′,

the phase composition ȳi and the total volume V ′′ of another phase. We call this progress
the ”finite-amount splitting” and it can be shown in the Fig. 2.

Figure 2: Finite-amount splitting.

To be specific, in this step, we calculate the molar density of both phases of the i-th
component by using

V ′+V ′′=V,

c′V ′+c′′V ′′= cV,

fb(c
′)V ′+ fb(c

′′)V ′′− fbV<0,

(2.17)

where fb represents the Helmholtz free energy density. Here we use the bisection method
to get the value V ′′ and c′′, first we set V ′ = 0.5V and we can get the c′′ and V ′′ by the
relation

V ′′=V−V ′,

c′′=
cV−c′V ′

V ′′ ,
(2.18)

where V is the initial volume which we set arbitrary, for simplicity, we set V=1. Then we
put the c′,V ′,c′′,V ′′ into the determination equation fb(c

′)V ′+ fb(c
′′)V ′′− fbV < 0. If the

inequality is established, we can get the molar densities of two phases under the given
thermodynamic properties.

For the multi-component systems, we can further calculate the composition of both
phases by using the relation

c′ x̄iV
′+c′′ȳiV

′′= cziV, i=1,··· ,m, (2.19)

which leads to

ȳi =
cziV−c′ x̄iV

′

c′′V ′′ , i=1,··· ,m. (2.20)
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Figure 3: Flowchart of the NVT flash calculation.

Similarly, we can calculate ȳi by using

fb(c
′ x̄1,··· ,c′ x̄m)V

′+ fb(c
′′ȳ1,··· ,c′′ȳm)V

′′− fb(cz1,··· ,czm)V<0

as the determination function. Until now, we can get the molar concentrations c′ x̄i and
c′′ȳi of each component of different phases. We can use these molar concentrations as
initial values of our model, or we can optimize them further using additional schemes,
e.g. the method in [16].

Fig. 3 gives a flowchart of the NVT flash calculation. Based on the above flash cal-
culation scheme, molar density distribution of both the two components can be deter-
mined as the initial condition of our further numerical simulation. For the convenience
of researchers in this field, we pre-computed two-phase two-component system with the
procedure described method and the composition results can be found in Table 1.

Table 1: Initial values (mol/m3) for methane (n1) and n-decane (n2) in gas and liquid phases.

Temperature (K) n1(liquid) n1(gas) n2(liquid) n2(gas)

450 4062 1028 438 3522

400 3832 1428 488 2938

350 3675 1536 512 2861

300 3569 1648 564 2497

3 SAV approach of the multi-component model with

Peng-Robinson EOS

3.1 Model reformulation

Considering the multi-component two-phase model (2.4), we use the SAV approach to
reformulate it. First, we introduce V(t), which has the following form

V(t)=

√

Fb+
m

∑
i=1

CT,iN
t
i . (3.1)



1606 Z. Qiao et al. / Commun. Comput. Phys., 26 (2019), pp. 1597-1616

Here, CT,i≥0 is the thermodynamic coefficient of component i to ensure Fb+∑
m
i=1CT,iN

t
i ≥

0, and we need to choose the CT,i based on the temperature T but independent of the
molar density. One thing we would like to mention here is that Fb is always larger than
0 during all the numerical experiments we carried out for real substances. Using V(t) to
rewrite the chemical potential, we can get

µi =
V(t)

√

Fb+∑
m
i=1CT,iN

t
i

µb,i−
m

∑
j=1

cij∆nj. (3.2)

With this, the origin system (2.4) changes to for i=1,2,··· ,m
∂ni

∂t
=Mii∆µi,

µi =
V(t)

√

Fb+∑
m
i=1CT,iN

t
i

µb,i−
m

∑
j=1

cij∆nj,

∂V

∂t
=

m

∑
i=1

∫

Ω

µb,i

2
√

Fb+∑
m
j=1 CT,jN

t
j

∂ni

∂t
dx.

(3.3)

The total energy F can be reformulated as F=F∇+V
2. The following energy law can

be easily obtained by integrating the three equations in (3.2) with µi,
∂ni
∂t and V, respec-

tively and using periodic boundary conditions.

Lemma 3.1. The total energy F satisfies the following energy law:

dF

dt
=−

m

∑
i=1

Mii

∫

Ω
∇µi∇µidx. (3.4)

Remark 3.1. (3.4) implies that the energy F is non-increasing in time. It is easy to get that
(3.2) also satisfies the mass conservation

d

dt

∫

Ω
nidx=0, i=1,2,··· ,m.

3.2 Notations of spectral discretization

In this section, we will give notations of some spatial operators for the spectral collocation
method on the two-dimensional space Ω=(0,X)×(0,Y).

Let Nx,Ny be any positive even numbers, and the Nx×Ny mesh Ωh of Ω can be de-
scribed as the following nodes set (xi,yj), where xi = ihx, yj = jhy, 1≤ i≤ Nx , 1≤ j≤ Ny.

hx =
X
Nx

,hy =
Y
Ny

. We define index sets

Jh =
{

(i, j)∈N
2 |1≤ i≤Nx , 1≤ j≤Ny, 1≤ k

}

,

Ĵh =
{

(l,m)∈Z
2
∣

∣− Nx

2
+1≤ l≤ Nx

2
, − Ny

2
+1≤m≤ Ny

2

}

.
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Then we define all the periodic grid functions on Ωh as Fh, which has the following form

Fh ={ f : Ωh→R | fi+lNx ,j+mNy
= fi,j, for any (i, j)∈ Jh and (l,m)∈Z

2}.

For any function f ∈Fh, we can define the following 2-D Fourier transform f̂ =P f and
the inverse Fourier transform f =P−1 f̂ by

f̂l,m =
1

NxNy
∑

(i,j)∈Jh

fi,j exp
(

−i
2lπ

X
xi

)

exp
(

−i
2mπ

Y
yj

)

, (l,m)∈ Ĵh;

fi,j = ∑
(l,m)∈ Ĵh

f̂l,m exp
(

i
2lπ

X
xi

)

exp
(

i
2mπ

Y
yj

)

, (i, j)∈ Jh .

Let F̂h = {P f | f ∈ Fh}. First order partial operators D̂x, D̂y and D̂z are defined on F̂h as
follows:

(D̂x f̂ )l,m=
(2lπi

X

)

f̂l,m, (D̂y f̂ )l,m=
(2mπi

Y

)

f̂l,m, (l,m)∈ Ĵh.

Then the spectral form of second order partial operators can be written as

D2
x =P−1D̂2

xP, D2
y=P−1D̂2

yP.

We can define the discrete Laplace operator ∆h as

∆h f =D2
x f +D2

y f .

The inner product can also be denoted as

( f ,g)h =h2
xh2

y

Nx

∑
i=1

Ny

∑
j=1

fi,j ·gi,j.

3.3 A SAV-CN scheme of a two-component model with Peng-Robinson EOS

In this paper, we consider a two-component model with Peng-Robinson EOS. We solve
the system in the time interval [0,T] and the space domain Ω=[0,X]2. For a given positive
integer Nt, we set the time step ∆t as ∆t= T

Nt
. For a given positive integer Ns, we set the

gride size h as h= X
Ns

. The SAV-CN scheme of the system (2.4) is constructed by using the

spectral collocation method in space as follows: for 0≤ s≤Nt−1, find ns+1∈Fh such that

ns+1
i −ns

i

∆t
=Mii∆hµs+1/2

i ,

µs+1/2
i =−1

2

2

∑
j=1

cij(∆hns+1
j +∆hns

j)+
µs+1/2

b,i

2F1/2
(Vs+1+V

s), i=1,2,

V
s+1−V

s =
2

∑
j=1

( µs+1/2
b,j

2Fs+1/2
,ns+1

j −ns
j

)

h

,

(3.5)
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where F
s+1/2 =

√

Fb(n̂1
s+1/2,n̂2

s+1/2)+∑
2
i=1CT,iN

t
i and n̂i

s+1/2 can be regarded as an ex-

plicit approximation of ns+1/2
i . However, due to the high nonlinearity of the Helmholtz

free energy from Peng-Robinson EOS, it has a strict constrain on the time step ∆t using
the explicit approximation. So we employ the following equation for solving n̂i

s+1/2

n̂i
s+1/2−ns

(1/2)∆t
=Mi∆hµs

b,i−
2

∑
j=1

cij∆hn̂j
s+1/2, i=1,2.

Due to cij = cji, we can have the following property

( 2

∑
j=1

cij∆h(n
s+1
j +ns

j ),n
s+1
i −ns

i

)

h

=
2

∑
j=1

cij[(∆hns+1
j ,ns+1

i )h−(∆hns
j ,n

s
i )h], i=1,2.

Using this property, we multiply three equations of (3.5) with ∆tµs+1/2, ns+1/2
i −ns

i and
V

s+1+V
s, respectively, and then get for i=1,2

(µs+1/2
i ,ns+1

i −ns
i )h=(∆tµs+1/2

i ,Mii∆hµs+1/2
i )h,

(µs+1/2
i ,ns+1

i −ns
i )h=− 1

2

( 2

∑
j=1

cij(∆hns+1
j +∆hns

j ),n
s+1
i −ns

i

)

h

+

(

µs+1/2
b,i

2F1/2
(Vs+1+V

s),ns+1
i −ns

i

)

h

,

(Vs+1)2−(Vs)2=
2

∑
j=1

(

µs+1/2
b,i

2Fs+1/2
(Vs+1+V

s),ns+1
i −ns

i

)

h

.

(3.6)

Then

2

∑
i=1

(∆tµs+1/2
i ,Mii∆hµs+1/2

i )h=−1

2

2

∑
i=1

2

∑
j=1

cij[(∆hns+1
j ,ns+1

i )h−(∆hns
j ,n

s
i )h]+(Vs+1)2−(Vs)2.

In the mean time, we define the modified discrete total energy at time level s as

Fs
m =−1

2

2

∑
i=1

2

∑
j=1

cij(∆hns
j ,n

s
i )h+(Vs)2,

and the operator ∆h is negative definite. It is now clear that the following theorem holds:

Theorem 3.1. The second order SAV-CN scheme (3.5) is unconditional energy stable meaning
that for any ∆t>0 we have

Fs+1
m −Fs

m≤0.

Remark 3.2. The following mass conservation property of (3.5) is easy to be obtained:

Ns

∑
i=1

Ns

∑
j=1

(nk)
s+1
I,j h2=

Ns

∑
i=1

Ns

∑
i=1

(nk)
s
i,jh

2, k=1,2.
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4 Numerical experiments

In this section, the proposed SAV-CN scheme is used to check the feasibility. The numer-
ical experiments are designed in 2D space with the mixture consists of methane (CH4)
and n-decane (nC10H22). In the following numerical example, the temperature we choose
is 450K. The computational domain is set as a square area Ω=(0,LD)

2 with LD=2×10−8

meters and 200×200 mesh grids are used. The time step ∆t=10−4. The initial values of
methane and n-decane are shown in Table 1. The initial condition is to impose the liq-
uid phase of the substances under the saturated steam pressure at 450K in the region of
(0.3LD,0.7LD)

2. The rest of the domain is filled with the mixture of the gas phase of the
substances under the same external conditions.

4.1 Distributions of the molar density and other properties

Obviously, at the initial state, there exists a jump in molar density between two different
phases. During the simulation, the square corners will be changed into round circular
corners at the equilibrium state by the surface force. Figuratively, the molar density dis-
tributions (Figs. 4 and 5) evolution of methane and n-decane match well with those from
the component-wise convex splitting scheme in [6].
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Figure 4: Molar density distributions of methane at different time: (a) t=0, (b) t=500, (c) t=1500.

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 500

1000

1500

2000

2500

3000

(a)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 500

1000

1500

2000

2500

3000

(b)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 500

1000

1500

2000

2500

3000

(c)

Figure 5: Molar density distributions of n-decane at different time: (a) t=0, (b) t=500, (c) t=1500.



1610 Z. Qiao et al. / Commun. Comput. Phys., 26 (2019), pp. 1597-1616

100 200 300 400 500 600 700 800 900 1000
1.5646

1.5646

1.5647

1.5647

1.5647

1.5647

1.5647

1.5648

1.5648

1.5648

1.5648
x 10

4

Time steps

T
ot

al
 m

as
s

100 200 300 400 500 600 700 800 900 1000
2337

2337.5

2338

2338.5

2339

2339.5

Time steps

T
ot

al
 m

as
s

Figure 6: The mass evolution of methane (left) and n-decane (right).
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Figure 7: The energy evolution of the system.

The mass evolution of each phase in the process are illustrated in Fig. 6, which verify
the mass conservation property of our scheme. Fig. 7 shows the evolution history of the
total energy. An obvious energy dissipation trend can be observed.

4.2 Calculation of the interface tension

The interface tension (N/m) is the net contractive force per unit length of the interface
which has the following form

σsur =
F(n)−F(ninitial)

A
, (4.1)

where A is the cross surface area of the liquid drop. In the previous work [22], Qiao
and Sun set the radius of the liquid drop under the assumption that the volume of the
drop does not change all along the experiment. This assumption comes from the sharp
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Figure 8: The width chosen of the interface: (a) Method 1; (b) Method 2.

interface theory. Similarly, the literature [6, 14] used the same method to calculate the
interface tension. On the other hand, our numerical experiment is based on the diffuse
interface theory. When we calculate the area A, the thickness of the interface needs to
be taken into consideration. Furthermore, in the multi-component case, the diffusion
of liquid-gas interface may be different between substances. This could be observed in
Figs. 4 and 5. It is nature to determine the calculate area A here as the weighted mean of
the area of different substances.

A=∑
i

ωi Ai,

where ωi =
Ni

∑i Ni
and Ai represents the area of the i-th component. Here, we have two

different approaches to get the area Ai.

Method 1. If we considered the width of the interface (which is proposed in [23]), as
shown in Fig. 8(a) (here we use the methane as an example). Using the interface width
L, we can get the radius of the droplet at the stable state as r = 1

2 L+r0 (assuming that

the area of the square droplet at the initial state is As, r0 =
√

2As
π ). In this approach, we

implicitly assumed that the volume (area in 2D) of the liquid droplet is conserved.

Method 2. In general, the volume (area in 2D) of the liquid droplet may not be con-
served exactly during the process of the interface formation. Without having to assume
the conservation of the liquid droplet volume, we provide another approach to get the
radius of the droplet which can be found in Fig. 8(b). Here, we set the distance from the
middle point of the interface to the middle point of the pure liquid droplet as the radius
to get the area Ai.

Fig. 9 shows interface tensions calculated by these two approaches. At the same time,
the laboratory data and previous results in [6] are also marked. We can see that interface



1612 Z. Qiao et al. / Commun. Comput. Phys., 26 (2019), pp. 1597-1616

100 120 140 160 180 200 220 240 260 280

Temperature (F)

2.5

3

3.5

4

4.5

5

In
te

rf
ac

e 
te

ns
io

n 
(m

N
/m

)
Laboratory data
Results in [6]
Results by Method 1
Results by Method 2

Figure 9: Comparison of interface tensions between the laboratory data and numerical results.

tensions obtained by our methods are much better than those in [6] due to the involving
interface width. It is now acceptable from the engineering point of view. We also find that
the difference between the two approaches of getting the interface area is relatively small.
This can be attributed to the fact that the density of liquid phase is usually much larger
than that of the gas phase, especially when hydrocarbon is involved in the substances.
When these two phases contribute same mass to the interface, the gas phase will lose
much more volume than the liquid phase. Generally, this reflects to the fact that the
volume of the liquid phase experiences a small change during the interface formation.

5 Conclusions

In this paper, we propose a new multi-component diffuse interface model with the Peng-
Robinson EOS, which is physically consistent. To complete the system, we introduce
a method to calculate the initial values based on the NVT flash calculation. The SAV
approach is employed to develop efficient numerical schemes for solving the investigated
model. Energy stability is derived in the sense that the modified discrete energy is non-
increasing in time. Numerical experiments are conducted with realistic hydrocarbons
methane (CH4) and n-decane (nC10H22). Two different methods are given to calculate the
interface tension. Our numerical results agree better with the laboratory experimental
data compared with existing results in the literature.
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Appendix

When considering the real inhomogeneous fluid system, the diffuse interface between
two phases should be considered. In order to describe the phenomenon around the inter-
face, the diffuse interface model with the gradient contribution is often used. Qiao and
Sun [22] proposed a diffuse interface model which is based on Peng-Robinson EOS. In
the theory, the Helmholtz free energy is used as the kernel. For describing the behavior
on the interfaces of the m components system, we set the system temperature is T(K)
and let molar density have the form n=(n1,n2,··· ,nm)T, where ni is the molar density of
the i-th component. In the model, we not only use the homogeneous Helmholtz energy
density fb but also need to add a gradient term f∇(n) to model the interface effect.

The Helmholtz free energy fb(n) of a homogeneous fluid with Peng-Robinson EOS is
given by

fb(n)= f ideal
b (n)+ f excess

b (n),

f ideal
b (n)=RT

m

∑
i=1

ni(lnni−1),

f excess
b (n)=−nRT ln(1−bn)+

a(T)n

2
√

2b
ln

(

1+(1−
√

2)bn

1+(1+
√

2)bn

)

,

(A.1)

where n=∑
m
i ni is the total molar density of the system, R is the gas constant which has

the value 8.31432JK−1mol−1. a= a(T) is the pressure correction coefficient and b= b(T)
is the volume correction coefficient, which have the following form

a(T)=
m

∑
i=1

m

∑
j=1

yiyj(aiaj)
1
2 (1−kij), b(T)=

m

∑
i=1

yibi.

Here yi represents the mole fraction of the i-th component, kij represents the binary inter-
action of Peng-Robinson EOS. ai and bi in the equation above are shown as follows

ai(T)=0.45724
R2T2

ci

Pci

(

1+mi

(

1−
√

T

Tci

)

)2

;

bi=0.7780
RTci

Pci
,
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where Tci and Pci are properties of the i-th substance which represent the critical temper-
ature and critical pressure, respectively. mi has the form

mi =0.37464+1.54226ωi−0.26992ω2
i , ωi≤0.49;

mi =0.379642+1.485030ωi−0.164423ω2
i +0.01666666ω3

i ; ωi>0.49,

where ωi can be achieved by using the critical data of the substances as follows

ωi=
3

7

(

log10(
Pci

14.695PSI )
Tci
Tbi

−1

)

−1.

The inhomogeneous term of the gradient contribution f∇(n) can be modeled by a simple
relation:

f∇(n)=
1

2

m

∑
i,j=1

cij∇ni ·∇nj, (A.2)

where cij is the influence parameter

cij =(1−βij)
√

cicj.

Here, βij is the binary coefficient with βii = 0. And we set βij = 0.5 as in [13] when i 6=
j. ci represents the influence of the pure substance. It has relations with the pressure
correction parameter and the volume correction parameter of Peng-Robinson EOS.

ci = aib
3
2
i

(

mc
1,i

(

1− Tci

T
+mc

2,i

)

)

,

mc
1,i =

10−16

1.2326+1.357457ωi
,

mc
2,i =

10−16

0.9051+1.5410ωi
.

After adding the gradient contribution f∇, the total Helmholtz free energy is presented
as

f (n)= fb(n)+ f∇(n). (A.3)
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[21] O. Polı́vka and J. Mikyška. Compositional modeling in porous media using constant vol-
ume flash and flux computation without the need for phase identification. Journal of Compu-
tational Physics, 272:149–169, 2014.

[22] Z. Qiao and S. Sun. Two-phase fluid simulation using a diffuse interface model with Peng-
Robinson equation of state. SIAM Journal on Scientific Computing, 36(4):B708–B728, 2014.



1616 Z. Qiao et al. / Commun. Comput. Phys., 26 (2019), pp. 1597-1616

[23] Z. Qiao, X. Yang and Y. Zhang. Mass conservative lattice Boltzmann scheme for a three-
dimensional diffuse interface model with Peng-Robinson equation of state. Physical Review
E, 98(2):023306, 2018.

[24] J. Shen, J. Xu, and J. Yang. A new class of efficient and robust energy stable schemes for
gradient flows. arXiv preprint arXiv:1710.01331, 2017

[25] J. Shen, J. Xu, and J. Yang. The scalar auxiliary variable (SAV) approach for gradient flows.
Journal of Computational Physics, 353:407–416 2018.

[26] J. Shen and X. Yang. Decoupled, energy stable schemes for phase-field models of two-phase
incompressible flows. SIAM Journal on Numerical Analysis, 53(1):279–296 0036–1429, 2015.


