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ABSTRACT
To improve the out-of-sample performance of the portfolio, Lasso regularization is in-
corporated to the Mean Absolute Deviance (MAD) based portfolio selection method.
It is shown that such a portfolio selection problem can be reformulated as a con-
strained Least Absolute Deviance (LAD) problem with linear equality constraints.
Moreover, we propose a new descent algorithm based on the ideas of “nonsmooth
optimality conditions” and “basis descent direction set”. The resulting MAD-Lasso
method enjoys at least two advantages. First, it does not involve the estimation
of covariance matrix that is difficult particularly in the high-dimensional settings.
Second, sparsity is encouraged. This means that assets with weights close to zero in
the Markovwitz’s portfolio are driven to zero automatically. This reduces the man-
agement cost of the portfolio. Extensive simulation and real data examples indicate
that if the Lasso regularization is incorporated, MAD portfolio selection method is
consistently improved in terms of out-of-sample performance, measured by Sharpe
ratio and sparsity. Moreover, simulation results suggest that the proposed descent
algorithm is more time-efficient than interior point method and ADMM algorithm.

KEYWORDS
MAD-Lasso; portfolio selection; constrained LAD Lasso; linear equality
constraints; interior point method; ADMM; nonsmooth optimality conditions;
Sharpe ratio; sparsity.

1. Introduction

The mean-variance framework of Markowitz [17] is the cornerstone for modern port-
folio selection theory. Under this framework, in order to balance the risk and return,
the portfolio variance is minimized at a given level of expected return. This entails
the estimation of the mean vector µ and covariance matrix Σ. However, as shown in
[2, 6, 9, 13], if the sample mean and sample covariance are taken as the estimation
of µ ,Σ , the out-of-sample performance of the asset allocation is not satisfactory in
practice. In the context of regression analysis, it is well known that Least Absolute
Deviance (LAD) is more robust and resistant to outliers in the response compared to
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the usual Least Square (LS) regression, see [11, 20, 21]. The statistical properties of the
constrained Lasso estimates are studied in [10, 12]. As an analogy, it is natural to be-
lieve that in portfolio selection problem, the out-of-sample performance of a portfolio
can be improved if the portfolio variance is replaced by the mean absolute value. In-
deed, Konno [14] proposed a Mean Absolute Deviation (MAD) based robust portfolio
selection method without involving mean vector and covariance matrix explicitly.

Sparsity is also desirable in portfolio selection because it reduces the management
cost. However, this cannot be achieved by applying the method of [14] directly. Though
the Lasso penalty of Tibshirani [19] is introduced in the context of variable selection,
it finds extensive applications in portfolio selection. For example, Brodie [3] develops
a sparse and stable portfolio selection strategy by incorporating the idea of Lasso
regularization. It is shown that the out-of-sample performance of the Lasso regularized
method is consistently better than naive equal-weight portfolio in terms of Sharpe
ratio. Further studies of regularized Markowitz’s theory include, to name a few, [4,
7, 8, 24, 25]. However, all these methods are developed under the traditional mean-
variance framework. The purpose of this paper is to incorporate Lasso penalty into
MAD based portfolio selection method.

In this paper, we illustrate that the proposed MAD-Lasso method can be reformu-
lated as a constrained LAD problem with linear equality constraints. In the absence of
constraints, Shi [18] develop a steepest descent algorithm for the LAD Lasso problem.
In the present paper, we further generalize the ideas of “nonsmooth optimality condi-
tions” and “basis direction set” to allow equality constraints. Interior point method is
a competitor of the proposed algorithm. Notice that the constrained LAD problem can
be transformed into a linear programming problem and therefore can be solved by in-
terior point method provided in the Matlab interface. However, interior point requires
nested iteration that increase the tuning parameter in the outer-loop and do optimiza-
tion to an approximated problem in the inner-loop. Since the solution is never exact
if only finitely-many iterations are done, one needs to specify a thresholding value to
determine if a component in the approximated solution equals zero. To simplify the
calculation process of MAD-Lasso model, we derived the finite optimality condition
theorem as the stopping rule for MAD-Lasso model, which considerably improved the
time efficiency of our proposed algorithm. Extensive simulation results indicate that
our proposed method can impose equivalent magnitude of number of iterations, and
is much more time efficient than interior point method. The MAD-Lasso model with
our proposed method performs better when dealing with heavy tailed datasets such
as Asymmetric Laplace data. Alternatively, one can consider simplex method, ADM-
M algorithm, coordinate descent algorithm, and L-BFGS algorithm [1, 5, 16, 22, 23].
However, as mentioned in [22], interior point method possesses better worst-case com-
plexity than simplex method (page 393). Direct application of the coordinate descent
algorithm can be problematic for nonsmooth objective function like that in the MAD-
Lasso problem, see [23]. Though the MAD-Lasso problem can be transformed into
constrained problem with smooth objective function, the extension of the coordinate
descent algorithm to the constrained cases is not trivial. L-BFGS algorithm[5, 16] in-
volves approximations to both gradient and Hessian matrix. Therefore, it faces similar
difficulties as the coordinate descent algorithm. In this paper, our proposed algorithm
is compared with interior point method and ADMM algorithm only.

The paper is organized as follows. In Section 2, we propose the MAD-Lasso portfo-
lio selection method. In Section 3, MAD-Lasso model is reformulated as constrained
LAD Lasso model with linear equality constraints. New descent algorithm for the
constrained LAD-Lasso problem is presented based on the ideas of zero set and ba-
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sis direction set. In Section 4, extensive simulation studies and real data analysis are
carried out to evaluate the performance of our methods. Results show that our pro-
posed methodology is significantly much more time efficient than state-of-the-art linear
programming solver: interior point method. Concluding remarks and future research
directions are discussed in Section 6.

2. MAD-Lasso

Suppose that there are n securities, the rate of return of i-th stock at time t is rti,
denote the observation matrix as R with (t, i)-th entry being rti, t = 1, 2, · · · , T, i =
1, 2, · · · , n. The portfolio allocation weight vector x = (x1, x2, · · · , xn)′ ∈ Rn satisfies∑n

i=1 xi = 1. Konno [14] proposed the Mean Absolute Deviation (MAD) risk measure,
defined as

MAD (x) =
1

T

T∑
t=1

∣∣ n∑
i=1

(rti − ri)xi
∣∣.

Similar to Broadie [2], we penalize MAD portfolio selection model with Lasso penalty,
and obtain the MAD-Lasso problem as

x(λ) = arg min
x

E
∥∥r01T −Rx

∥∥
1

+ λ‖x‖1

s.t. x′r = r0 ,x
′1 = 1, (1)

where λ is a tuning parameter controlling the size of penalty. The MAD-Lasso model
has the following advantages:

1. It encourages sparsity. With appropriately chosen tuning parameter λ, some
components in the portfolio weight vector x shrink towards zero, resulting in
sparse portfolio selection strategies.

2. It controls the shorting level of portfolio selection model. The equivalent formu-
lation is to minimize

‖r01T −Rx‖+ 2λ
∑
i:xi≤0

|xi|+ λ,

where
∑

i:xi≤0
|xi| controls the shorting level. The last term does not affect the

optimization problem.
3. It robustify the portfolio selection problem. The `1 norm penalty mitigate the

computational difficulties related to the possible collinearity in the rates of re-
turns of different assets. Moreover, it ameliorates the influence of financial vio-
lations and extreme cases.

Proposition 2.1. We have the followings.
(1) For any two tuning parameters λ1 < λ2, let x(λ1),x(λ2) be the corresponding

weight vectors. Then, we have

(λ1 − λ2)
(
‖x(λ2)‖ − ‖x(λ1)‖

)
≥ 0.
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This indicates that the greater is the penalty λ , the greater is the sparsity.
(2) Suppose that there exists λ0 such that all entries in x(λ0) are non-negative. Then,

for any λ ≥ λ0 , all entries in the solution x(λ) are non-negative too.

Proof. (1) Suppose there are two portfolio allocation vectors x(λ1),x(λ2) corresponding
to the tuning parameter λ1, λ2 respectively in the MAD-Lasso problem (1). We have

‖r01T −Rx(λ1)‖1 + λ1‖x(λ1)‖1
≤ ‖r01T −Rx(λ2)‖1 + λ1‖x(λ2)‖1
= ‖r01T −Rx(λ2)‖1 + λ2‖x(λ2)‖1 + (λ1 − λ2)‖x(λ2)‖1
≤ ‖r01T −Rx(λ1)‖1 + λ2‖x(λ1)‖1 + (λ1 − λ2)‖x(λ2)‖1
= ‖r01T −Rx(λ1)‖1 + λ1‖x(λ1)‖1 + (λ1 − λ2)

(
‖x(λ2)‖1 − ‖x(λ1)‖1

)
.

This yields that

(λ1 − λ2)
(
‖x(λ2)‖1 − ‖x(λ1)‖1

)
≥ 0. (2)

(2) If all the entries of x(λ0) are nonnegative and some entries of x(λ) are negative,

we have
∥∥x(λ)

∥∥ ≥ ∑n
i=1

∣∣x(λ)
i

∣∣ =
∣∣∑n

i=1 x
(λ0)
i

∣∣ =
∑n

i=1

∣∣x(λ0)
i

∣∣ = 1. This yields that∥∥x(λ)
∥∥ ≥ ∥∥x(λ0)

∥∥. From (2), we have λ0 ≥ λ. This indicates that the all-nonnegative-
entry case λ0 corresponds to the sparsest solution. The particular solution correspond-
ing to λ0 is the optimal solution among all solutions for λ ≥ λ0.

3. Constrained LAD Lasso model

To solve the MAD-Lasso portfolio selection problem, we generalize the descent algo-
rithm of Shi et al. [18] to allow linear equality constraints.

3.1. Problem Definition

Consider constrained LAD-Lasso problem:

min
x

‖y −Ax‖1 + λ‖x‖

s.t. Cx = b, (3)

where A ∈ RT×n is the covariance matrix with row vectors Ai, C ∈ Rq×n , b =
(b1, · · · , bq)′ ∈ Rq, and x = (x1, · · · , xn)′ ∈ Rn. Without loss of generality, we as-
sume that C is full rank matrix, i.e., rank (C) = q .

Problem (1) can be reformulated as special case of Problem (3) with

A =


r11 − r1 r12 − r2 · · · r1n − rn
r21 − r1 r22 − r2 · · · r2n − rn

...
...

...
...

rT1 − r1 rT2 − r2 · · · rTn − rn

 =


A1

A2
...
AT

 , y =


0
0
...
0

 ,

C =

(
r1 r2 · · · rn
1 1 · · · 1

)
, b =

(
r0

1

)
.
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where Ai is the i-th row of constraint matrix A, yi is the i-th element of y, and C is
the constraint matrix with row vectors Ci , i = 1, 2, · · · , q , rank (C) = q = 2.

3.2. Optimality Conditions for Feasible Direction

Note that an arbitrary point x can be transformed to a feasible point as shown below.
Suppose that Cx− b = c0 6= 0 . Setting x0 = x− Cᵀ(CCᵀ)−1c0, then,

Cx0 − b = Cx− b− CCᵀ(CCᵀ)−1c0 = c0 − c0 = 0.

The transformed point x0 is said to be the feasible point generated by x. Thus, the
initial point for the algorithm can be chosen as a feasible point. If x is a feasible
point, we choose a direction h such that the cost function value decreases along this
direction. The choice of the direction can not be arbitrary because the constraints
must be satisfied along this direction. That is, it is required that

C(x+ h)− b = Cx− b+ Ch = Ch = 0. (4)

Definition 3.1. The direction h fulfilling (4) is called a feasible direction. If h is
a feasible direction, the corresponding directional derivative is a feasible directional
derivative.

First, we have the following assumptions.

Assumption 1. For any x and h ∈ Rn, lim
λ→∞

f(x+ λh) =∞.

Assumption 2. For any n indices i1, · · · , in in {1, · · · , T}, {Ai1 , · · · , Ain} are lin-
early independent.

Denote Aix − yi = ui and Ω = {∗1, · · · , ∗m} = {∗i : u∗i = 0, i = 1, 2, · · · ,m} as the
zero set. Then, the objective function can be rewritten as summation of smooth and
nonsmooth part of f(x):

f(x) = S(x) +N(x),

S(x) ,
T∑
i=1

I (ui > 0) (Aix− yi) +

T∑
i=1

I (ui < 0) (−Aix+ yi) , cx+ z,

N(x) ,
T∑
i=1

I (ui = 0) |Aix− yi| =
m∑
i=1

|A∗ix− y∗i |,

where I (·) as the indicator function and

c ,
T∑
i=1

I (ui > 0)Ai −
T∑
i=1

I (ui < 0)Ai , z = −
T∑
i=1

I (ui > 0)yi +

T∑
i=1

I (ui < 0)yi.

Since f(x) is convex, its local minimizer must be the global minimizer. The optimality
condition of the minimizer is that any feasible directional derivatives are greater than
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or equal to zero. That is, x∗ is the optimal solution of (3) if and only if

∇hf(x∗) = ∇hS(x∗) +∇hN(x∗) ≥ 0, ∀h ∈ {h | h ∈ Rn, Ch = 0}. (5)

However, it is not easy to verify the optimality condition (5) because there are
infinitely-many feasible directions h. To obtain a finite representation of the optimality
conditions, consider the nonsmooth part N(x) with

A∗ix = y∗i , i = 1, · · · ,m.

If {A∗i : i = 1, · · · ,m} are independent, then m ≤ n − q . If m > n − q , then the
equations above are overdetermined. Denote Ci as the i-th row of constraint matrix
C , i = 1, 2, · · · , q. Without loss of generality, we assume that m ≤ n − q and {A∗i :
i = 1, · · · ,m} ∪ {C1, C2, · · · , Cq} are linearly independent. Let

D =



C1
...
Cq
A∗1

...
A∗m


.

Generalized inverse matrix VD can be obtained such that DVD = Im+q , where Im+q

is the (m + q) × (m + q) identity matrix and VD = (V1, · · · , Vm+q). Consider the
null space {V ∈ Rn|DV = 0}. There exist n − m − q linearly independent vectors
Vj , j = m+ q + 1, · · · , n that form the basis of the null space. Hence, we have DVj =
0 ,∀j = m + q + 1, · · · , n. Then, an equivalent finite-representation of the optimality
condition (5) is given by the following theorem.

Theorem 3.2. Suppose that rank (D) = m+ q, then x∗ is the optimal solution if and
only if the feasible directional derivatives satisfy

∇Vi
f(x∗) = ∇Vi

S(x∗) +∇Vi
N(x∗) ≥ 0, i = q + 1, · · · , q +m,

∇V −
i
f(x∗) = ∇V −

i
S(x∗) +∇V −

i
N(x∗) ≥ 0, i = q + 1, · · · , q +m, (6)

∇Vi
f(x∗) = ∇Vi

S(x∗) = 0, i = m+ q + 1, · · · , n.

Proof. Note that the space of all feasible directions is spanned by {Vi , i = q+1, · · · , n},
condition (6) is a special case of (5) and the necessary condition is obvious. Next, we
establish the sufficient condition, this means that if (6) are satisfied, (5) holds. If x∗

is optimal, then we have the following KKT conditions:

∇Vi
f(x∗) ≥ 0 ,∇V −

i
f(x∗) ≥ 0, i = q + 1, · · · , q +m,

∇Vi
f(x∗) = 0, i = q +m+ 1, · · · , n.

6



By orthonormality of {V1, V2, · · · , Vn}, (6) can be simplified as

∇Vi
f(x∗) = ∇Vi

S(x∗) =
cVi
‖Vi‖

= 0, i = q +m+ 1, · · · , n,

∇Vi
f(x∗) = ∇Vi

S(x∗) +∇Vi
N(x∗) =

cVi
‖Vi‖

+
1

‖Vi‖
≥ 0, i = q + 1, · · · , q +m,

∇V −
i
f(x∗) = ∇V −

i
S(x∗) +∇V −

i
N(x∗) =

−cVi
‖Vi‖

+
1

‖Vi‖
≥ 0, i = q + 1, · · · , q +m.

For any feasible direction h, there exists a weight vector w = (wq+1, wq+2, · · · , wn)′

such that

h =

n1∑
i=q+1

wiVi +

n∑
i=n1+1

wi(−Vi).

Without loss of generality, we can set wi ≥ 0,∀i = 1, · · · , n. This is because when
wi < 0, we have wiVi = (−wi) · (−Vi). Then, replacing Vi by −Vi and wi by −wi > 0
yield that

∇hN(x∗) =

∑m
i=1 |A∗ih|
‖h‖

=

∑m
i=1

∣∣∣A∗i(∑n1

j=q+1wjVj +
∑n

j=n1+1wj(−Vj)
)∣∣∣

‖h‖

=

∑m
i=1

∣∣wiA∗iVi+n∣∣
‖h‖

=

∑m
i=1wi
‖h‖

.

We have

∇hf(x∗) =

∑n
i=q+1wicVi

‖h‖
+

∑m
i=1wi
‖h‖

=
1

‖h‖

( m∑
i=1

wi+q(cVi+q + 1) +

n∑
i=m+q+1

wicVi

)
=

1

‖h‖

m∑
i=1

wi+q∇Vi+q
f(x∗) · ‖Vi+q‖+

1

‖h‖

n∑
i=m+q+1

wi∇Vi
f(x∗)‖Vi‖ ≥ 0.

Then, for any feasible direction h, the feasible directional derivative is greater than or
equals to zero. Hence, (5) holds and x∗ is the optimal solution. �

3.3. Descent feasible directions

The design of the algorithm is as follows. Let x(k) be the approximation at the k-
th iteration, Ωk = {k1, k2, · · · , km} as the index set of zero set. If the optimality
condition (6) is satisfied, then x(k) is the optimal solution. Otherwise, there exists at
least a feasible direction h such that the cost function decreases along this direction.
These steps are repeated until (6) is satisfied.

∇Vi
f(x) ≥ 0, and ∇V −

i
f(x) ≥ 0 , for i = k1, k2, · · · , km,

can not be satisfied at the same time and consequently at least one of Vi and V −i is

the descent direction. For an iterative point x(k), with zero set Ωk, the cost function
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can be rewritten as

f(x(k)) = c(k)x(k) +
∑
i∈Ωk

|Aix(k) − yi|+ z(k). (7)

Denote by Ω′k the set of all the indexes such that (6) is not satisfied for Vi or V −i , i =
k1, k2, · · · , km. To speed up the search, consider the indexes i ∈ Ωk so that the descent
directional derivatives ∇Vi

f or ∇V −
i
f are the greatest. Suppose that Λ1 ⊂ Ω′k contains

a proportion α of the indexes in Ω′k with corresponding slowest descent directional
derivatives ∇Vi

f or ∇V −
i
f . Extensive experiments show that α = 0.05 can make a

trade off between stability and convergence. Smaller α may fail to converge, larger α
may decrease the convergence rate. In the following, we choose α = 0.05. Denote

Ω0
k = Ωk\Λk1.

Without loss of generality, assume that k1, k2, · · · , kl ∈ Ω0
k. This means that the in-

dexes in Λk1 are removed from the zero set. Denote

A0k =

Ak1...
Akl

 , k1, · · · , kl ∈ Ω0
k.

Choose the descent direction h in the space spanned by

{Vi : i ∈ Λk1} ∪ {Vi : i = km + 1, · · · , n}

such that

h =
∑
i∈Λk

1

tiVi +

n∑
i=km+1

tiVi.

It can be verified that

Aih = 0, ∀i ∈ Ω0
k.

Such a choice guarantees that the descent direction keep the set Ω0
k unchanged.

Set the descent direction h(k) as the optimal solution to

max
v∈Rp

− c(k)h

s.t. Aih = 0, ∀i ∈ Ω0
k.

(8)

It means that the solution h is chosen as the vector nearest to the deepest descent
direction −c(k). The optimal solution to Problem (8) is

h̃ = −c(k) −Aᵀ
0k(A0kA

ᵀ
0k)
−1A0k · (−c(k)), (9)

where Aᵀ
0k(A0kA

ᵀ
0k)
−1A0k(−c(k)) is the projected direction of −c(k) in the subspace

{h : Aih = 0, i ∈ Ω0
k}. Equivalently, Aᵀ

0k(A0kA
ᵀ
0k)
−1A0k(−c(k)) = Proj{−c(k)

∣∣h :
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Aih = 0, i ∈ Ω0
k}. Then, the descent direction h(k) can be chosen as the normalized

vector of h̃ with

h(k) = h̃/‖h̃‖. (10)

The normalized direction h(k) guarantees that γ(k) is the step length as defined in the
following, and the zero set is updated as Ωk = Ω0

k.

3.4. Optimal Step Length

The cost function decreases along the descent direction h(k). The next iteration point
is generated by

x(k+1) = x(k) + γ(k)h(k) , γ(k) > 0,

where γ(k) is the step length that is determined via the following optimization problem,

min
γ≥0

g(γ) = f(x(k+1)) = f(x(k) + γh(k)) , γ ≥ 0.

Since f is convex, g(γ) is also convex. Then, we can choose γ(k) as the optimal solution
of the problem min

γ
g(γ). This problem is equivalent to the following problem

max
γ≥0

γ

s.t. ∇h(k)f(x(k) + γh(k)) ≥ 0, (11)

∇h(k)−f(x(k) + γh(k)) ≥ 0.

For this problem, we have the following observation (see Shi et al. [18]).

Lemma 3.3. There exists an optimal solution γ(k) > 0 and at least one i in {1, · · · , n}
such that Ai(x

(k) +γ(k)h(k)) = yi, that is, i is in the zero set at the point x(k) +γ(k)h(k)

during the k-th iteration.

3.5. Algorithm

Denote by γ(k) the optimum step length along the direction h(k) as described in Section
3.4. The cost function is updated as

f(x(k+1)) = c(k+1)x(k+1) +
∑

i∈Ωk+1

|Aix(k+1)|+ z(k+1).

Remove the indexes in Λk1 from the zero set Ωk and denote Ω0
k = Ωk\Λk1. Let Λk2 =

{i|ui = 0}. Lemma 3.3 guarantees that Λk2 is non-empty. In the (k + 1)-th iteration,
set

Ωk+1 = Ω0
k ∪ Λk2,
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and

x(k+1) = x(k) + γ(k)h(k).

Continue the above process until the optimal condition (6) is satisfied.
To summarize, the algorithm is as follows:

Algorithm 1 Descent Algorithm for MAD-Lasso model

• Initialization: Choose an initial point x(0), compute the corresponding set Ω0,
and compute the cost function f(x(0)). Set k = 0.
• Step 1: (Terminate)

Generate the matrix V for the zero set Ωk. If conditions (6) are satisfied with-
in tolerance level 1e−6, then stop and return the optimal solution and value.
Otherwise, go to Step 2.
• Step 2: (Descent Direction)

Find the α = 0.05 proportion fastest descent directions as Λk1, where α denotes
the percentage of selected descent directions that decrease faster than the other
1− α directions. Set Ω0

k = Ωk\Λk1, and compute the descent direction h(k) using
(9), (10).
• Step 3: (Optimal Step Length) Find the best step length γ(k) by (11).
• Step 4: (Iteration) Update x(k+1) = x(k) + γ(k)h(k). Find Λk2 and update the

zero set as Ωk+1 = Ω0
k ∪ Λk2. Then we compute the cost function f(x(k+1)) at

(k + 1)-th iteration, and then we go to Step 1.

4. Numerical Experiments

In this section, several simulation studies are conducted to confirm the time efficiency
and robustness of our proposed algorithm. The proposed algorithm is compared with
both interior point method and ADMM algorithm. See Appendix A for the implemen-
tation of these two methods. For MAD-Lasso model, Example 1 and Example 2 show
that our proposed method is significantly time efficient than interior point method and
ADMM. For portfolio selection, Example 3 show that MAD-Lasso models (IP,NEW)
outperform MAD model and is more robust for heavy tailed data. All the numerical
experiments are performed in Matlab with an Intel (R) Core (TM) i7-4790 3.60 GHz
Processor and 3.60 GHz memory. Interior point method and ADMM are implemented
in the MATLAB interface (see Appendix A).

4.1. Simulation Studies

Example 1: In the first example, we compare interior point method and our proposed
method for MAD-Lasso portfolio selection models. We generate data from the following
parameter settings:

Case (I) : µ = (0.3, 0.6, 0.00001, 0.00001, 0.00001) ,

Σ = diag(µ/10) , n = 5 , T = 100, 200, 300, 400, 500;

Case (II) : µ = (0.2, 0.4, 0.6, 0.8, 1.0, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001) ,

Σ = diag(µ/10) , n = 10 , T = 200, 300, 400, 500.
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For each case, we set tuning parameter λ =
√

2T log n as suggested in [21]. We gener-
ate 100 replicates and averaged the estimation results to obtain final results. Then we
implement interior point method, our proposed method and ADMM to evaluate the es-
timation performance of MAD-Lasso models. We focus on time consumption (Time),
number of estimated nonzero coefficients (Degree of Freedom) and number of itera-
tions (Iter No.). Simulation results are reported in Table 1. Figure 1-2 plot the tendency
of Time and Iter No. with respect to sample size T .

Table 1. Simulation results of Example 1, Case (I) and Case (II): IP: interior point method; Proposed: our

proposed method; ADMM: ADMM algorithm.

Case (I) Time Degree of Freedom Number of Iterations

n T IP Proposed ADMM IP Proposed ADMM IP Proposed ADMM

5 100 0.0109 0.0018 1.9321 3.15 3.10 3.20 9.40 4.15 907.75
5 200 0.0212 0.0022 10.6599 3.20 3.20 3.30 9.60 4.50 925.05
5 300 0.0312 0.0028 30.1605 3.15 3.15 3.05 9.80 4.60 964.35
5 400 0.0397 0.0032 55.5970 3.25 3.25 3.15 9.90 4.80 970.80
5 500 0.0482 0.0035 94.3329 3.25 3.30 3.30 10.00 4.89 980.58

Case (II) Time Degree of Freedom Number of Iterations

n T IP Proposed ADMM IP Proposed ADMM IP Proposed ADMM

10 200 0.0301 0.0081 16.4816 6.30 6.10 6.30 10.00 12.90 1337.80
10 300 0.0363 0.0098 46.6691 6.20 6.20 6.00 10.20 13.20 1543.40
10 400 0.0439 0.0103 92.1499 6.00 6.00 6.10 10.40 15.90 1586.30
10 500 0.0541 0.0140 153.5235 6.10 6.00 6.10 10.50 16.30 1613.50

Figure 1. Tendency of Time and Number of Iterations w.r.t. sample size T for Case (I). IP: interior point
method; Proposed: our proposed method; ADMM: ADMM algorithm.
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Figure 2. Tendency of Time and Number of Iterations tendency w.r.t. sample size T for Case (II). IP: interior
point method; Proposed: our proposed method; ADMM: ADMM algorithm.

Table 1 show that ADMM is quite time consuming, we then focus on comparison of
interior point method and our proposed method in Example 2. With increasing sample
size T , number of iterations (Iter No.) increases, the Degree of Freedom results show
that the three methods can achieve equivalent portfolio selection results.

Figure 1-2 plot the tendency of time consumption (Time) and number of it-
erations (Iter No.) for interior point method, our proposed method and ADMM
algorithm. Extensive simulation studies confirmed that our proposed method is more
time efficient and impose equivalent magnitude number of iterations with respect to
interior point method.

Example 2. Since Example 1 confirmed the fact that ADMM is time inefficient,
we compare our proposed method and interior point method for MAD-Lasso model
with n = 20 and n = 50. Simulation results of time consumption (Time), number of
iterations (Iter No.) and Degree of Freedom are reported in Table 2, tendency of time
consumption and number of iterations w.r.t. sample size T are depicted in Figure 3.

Table 2. Simulation results of time consumption, number of iterations, degree

of freedom for n = 20 and n = 50. IP: interior point method, Proposed: our
proposed algorithm.

n = 20 Time Iter No. Degree of Freedom

n T IP Proposed IP Proposed IP Proposed

20 400 0.0579 0.0215 10.60 31.24 7.02 7.01
20 600 0.0781 0.0275 10.80 36.36 7.03 7.02
20 800 0.0937 0.0333 11.10 41.28 7.01 7.03
20 1000 0.1365 0.0445 11.60 44.16 7.04 7.02

n = 50 Time Iter No. Degree of Freedom

n T IP Proposed IP Proposed IP Proposed

50 500 0.1101 0.0754 11.84 87.13 8.77 8.65
50 600 0.1342 0.0931 11.96 97.25 8.88 8.86
50 700 0.1646 0.1076 11.99 103.61 9.55 9.43
50 800 0.1978 0.1294 12.02 109.54 9.88 9.86
50 900 0.2308 0.1352 12.16 103.62 10.02 10.04
50 1000 0.2988 0.1843 12.34 109.45 10.11 10.08
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Figure 3. Tendency of time consumption and number of iterations with n = 20 and n = 50. IP: interior point
method; Proposed: our proposed algorithm.

Table 2 show that though our proposed method require larger number of iterations
than interior point method, it is significantly more time efficient than interior point
method. This extensively verifies the time efficiency of our proposed method for
MAD-Lasso model. Figure 3 also verifies the time efficiency of our algorithm and
the equivalent magnitude of number of iterations with respect to interior point method.

Example 3. To explore the portfolio selection performance of our proposed method
and ADMM, we compare portfolio selection performance of Gaussian data and Asym-
metric Laplace (AL) data (see Kotz [15]). The Gaussian data and AL data are gener-
ated from the following parameter settings:

µ = (0.20, 0.40, 0.60, 0.80, 1.0, 0.00001, · · · , 0.00001︸ ︷︷ ︸
p−5

), Σ = diag(µ/10),

with (n, T ) = (10, 200) , (20, 500) , (50, 1000). Simulation results are reported in Table
3, the corresponding boxplots are illustrated in Figure 4-6.
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Table 3. Simulation results of Gauss Data and AL Data for Setting I,II,III.

Setting I Gaussian Data AL Data

Model n T Time DF Iter No. Time DF Iter No.

MAD Model 10 200 0.0360 10.00 7.22 0.0361 10.00 7.27
MAD-Lasso(IP) 10 200 0.0394 6.15 10.61 0.0409 5.89 11.15
MAD-Lasso(NEW) 10 200 0.0072 6.13 14.71 0.0066 5.89 13.81

Setting II Gaussian Data AL Data

Model n T Time DF Iter No. Time DF Iter No.

MAD Model 20 500 0.0608 20.00 8.37 0.0605 20.00 8.49
MAD-Lasso(IP) 20 500 0.0665 6.81 11.39 0.0685 6.41 11.76
MAD-Lasso(NEW) 20 500 0.0220 6.79 34.53 0.0179 6.39 30.12

Setting III Gaussian Data AL Data

Model n T Time DF Iter No. Time DF Iter No.

MAD Model 50 1000 0.2103 49.99 9.41 0.2082 50.00 9.29
MAD-Lasso(IP) 50 1000 0.2667 9.68 12.07 0.2645 8.23 11.86
MAD-Lasso(NEW) 50 1000 0.1638 9.60 129.50 0.1180 8.17 94.72

Table 3 show that our proposed algorithm is more time efficient than interior point
for both Gaussian Data and Asymmetric Laplace (AL) Data. For AL Data, the De-
gree of Freedom is much more close to 5, i.e. the number of true significant variables
(X1, · · · , X5) than for Gaussian data. The special connection between MAD risk mea-
sure and Asymmetric Laplace distribution yields that the MAD-Lasso model is more
stable for heavy tailed data such as AL Data. For MAD-Lasso models with varying
dimension scales, number of iterations of our proposed method is greater than interior
point method; However, Time index show that our proposed method is time efficient.
Thus our proposed method performs better than interior point method overall.

Figure 4-6 display the time consumption (Time), Degree of Freedom, number of
iterations (Iter No.) for Gaussian Data and AL Data with varying sample sizes. MAD-
Lasso model with our proposed method outperforms other methods, especially for AL
data. Simulation results of our proposed method are more robust against AL data and
time efficient.

Figure 4. Boxplots of Gaussian Data and AL Data with n = 10, T = 200. A: MAD model; B: MAD-Lasso

model with interior point method; C: MAD-Lasso Model with proposed method.
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Figure 5. Boxplots of Gaussian Data and AL Data with n = 20, T = 500. A: MAD model; B: MAD-Lasso

model with interior point method; C: MAD-Lasso Model with proposed method.

Figure 6. Boxplots of Gaussian Data and AL Data with n = 50, T = 1000. A: MAD model; B: MAD-Lasso

model with interior point method; C: MAD-Lasso Model with proposed method.

5. Portfolio Selection Applications

To evaluate portfolio selection performance of MAD model and MAD-Lasso models,
extensive simulation studies and real data analysis are carried out to compare (1)
MAD, (2) MAD-Lasso with the proposed algorithm, and (3) MAD-Lasso with interior
point (IP) method, see Appendix A for description of interior point method. The com-
parison is based on computational efficiency and performance of the portfolio selection
under the following risk measures:
(1) Expected Return (Mean): Mean = w′µ.
(2) Sharpe Ratio: Sharpe = w′µ/

√
w′Σw.

(3) Sparsity: number of nonzero entries of w (see [26]).
(4) Time: time consumption.
(5) Standard Deviation (StD): σ =

√
w′Σw.

(6) Mean Absolute Deviation (MAD): 1
T

∑T
t=1

∣∣∑n
i=1(rti − ri)wi

∣∣.
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(7) Value at Risk (VaR): VaRα = µ+ σΦ−1(1− α).

(8) Expected Shortfall (ES): ESα = µ+ σψ(Φ−1(1−α))
α .

5.1. Simulation Study

Example 4: To investigate the estimation performance of different portfolio selec-
tion methods, we consider two cases that the datasets are generated from multivariate
Gaussian distribution and multivariate Asymmetric Laplace distribution with the fol-
lowing parameter settings:

µ = (0.00001 , 0.00002 , 0.00003 , 0.00004 , 0.00005 , 0.60 , 0.70 , 0.80 , 0.90 , 1.00).

Σ = diag (µ/10).

In both cases, (1) MAD, (2) MAD-Lasso with interior point method (IP, see Appendix
A), and (3) MAD-Lasso with the proposed method (NEW) as described in Section 3
are used for portfolio selection. The tuning parameter λ is chosen as λ =

√
2T log n , as

suggested in [21]. We conduct 100 replicates for both Gaussian Data and Asymmetric
Laplace Data cases. Portfolio selection simulation results are reported in Table 4.
Figure 7-8 further display the boxplots of Gaussian Data and AL Data, respectively.

Table 4. Simulation results of Gaussian Data and AL Data for portfolio selection.

Gaussian Data n T Time Sparsity Iter No.. Mean StD Sharpe VaR CVaR

MAD Model 10 100 0.0178 10.00 6.66 0.30 0.17 1.80 0.58 0.40
MAD-Lasso(IP) 10 100 0.0129 6.09 10.10 0.30 0.17 1.77 0.58 0.40

MAD-Lasso(NEW) 10 100 0.0058 6.08 13.34 0.30 0.17 1.77 0.58 0.40

AL Data n T Time Sparsity Iter. No. Mean StD Sharpe VaR CVaR

MAD Model 10 100 0.0175 10.00 6.75 0.30 0.33 0.91 0.85 0.59
MAD-Lasso(IP) 10 100 0.0127 5.71 10.83 0.30 0.34 0.89 0.86 0.60

MAD-Lasso(NEW) 10 100 0.0055 5.69 12.70 0.30 0.34 0.89 0.86 0.60

Table 4 confirmed that the MAD-Lasso models outperform MAD model in terms
of Sharpe ratio, Sparsity and risk measures (StD, MAD, VaR0.01, CVaR0.01). Under
the above-mentioned indicators, the performance of MAD-Lasso is similar for interior
point method and the proposed descent algorithm. However, in terms of computational
time, the proposed descent algorithm significantly outperforms interior point method.
Figure 7-8 further plot the boxplots of the simulation results.
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Figure 7. Simulation results of Gaussian Data for portfolio selection: A. MAD model; B. MAD-Lasso with
interior point method (IP); C. MAD-Lasso with proposed method (NEW).

Figure 8. Simulation results of AL Data for portfolio selection: A. MAD model; B. MAD-Lasso with interior
point method (IP); C. MAD-Lasso with proposed method (NEW).

5.2. Real Data Analysis

Consider the datasets complied by Fama and French. Portfolios involving 48 industry
sectors are obtained from both daily and monthly data (abbreviated to FF48d, FF48m)
from June 1976 to June 2006. In both FF48d and FF48m datasets, the portfolios are
constructed at the end of each June. Denote by rti the annualized return in time t of
i-th industry, i = 1, 2, · · · , 48.
Example 1. In this example, we compare the out-of-sample performances of MAD
model (mad), Naive Evenly model (naive), and MAD-Lasso models with interior point
and our proposed method (IP, NEW). For such a purpose, all portfolios are constructed
by fixing the expected return at r0 = r̄, where the target return r0 as the average return
achieved by the naive, evenly-weighted portfolio, computed from either the entire daily
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data or the entire monthly data. Consider the sequence of increasing tuning parameters
λ = 2−5:1:5

√
2T log n with λ1 = 2−5

√
2T log n = 1

32

√
2T log n , λ2 = 2−4

√
2T log n =

1
16

√
2T log n , · · · , λ10 = 25

√
2T log n = 32

√
2T log n.

For both FF48d and FF48m datasets, we compare MAD model (mad), Naive evenly-
weighted model (naive), and MAD-Lasso (IP, NEW). The comparisons are based on
computational time, Sparsity, Sharpe, MAD, VaR0.01 and ES0.01. Estimation results
are reported in Table 5, 6.

Table 5. Portfolio selection results of FF48d data:(T, n) = (7573, 48); ExpRet: r0 = 0.0550.

Time Sharpe Sparsity

mad 3.8550 naive 0.0064 mad 0.0841 naive 0.0632 mad 47 naive 48

MAD-Lasso (IP) MAD-Lasso (NEW) MAD-Lasso (IP) MAD-Lasso (NEW) MAD-Lasso (IP) MAD-Lasso (NEW)

λ1 2.9822 2.3658 0.0852 0.0852 47 47
λ2 3.4228 2.0967 0.0852 0.0852 47 47
λ3 3.3466 2.0494 0.0851 0.0851 45 45
λ4 3.4036 2.1634 0.0848 0.0848 36 36
λ5 3.3688 2.4207 0.0843 0.0843 32 32
λ6 3.6359 1.8651 0.0830 0.0830 25 24
λ7 3.9089 2.8070 0.0811 0.0811 18 18
λ8 4.2888 2.8444 0.0801 0.0801 13 13
λ9 4.1552 2.8232 0.0801 0.0801 13 13
λ10 4.6611 2.8770 0.0801 0.0801 13 13

MAD VaR0.01 ES0.01

mad 0.4617 naive 0.6069 mad 1.5746 naive 2.0784 mad 1.7960 naive 2.3732

MAD-Lasso (IP) MAD-Lasso (NEW) MAD-Lasso (IP) MAD-Lasso (NEW) MAD-Lasso (IP) MAD-Lasso (NEW)

λ1 0.4457 0.4457 1.5556 1.5556 1.7742 1.7742
λ2 0.4458 0.4458 1.5559 1.5559 1.7745 1.7745
λ3 0.4461 0.4460 1.5576 1.5576 1.7765 1.7765
λ4 0.4471 0.4471 1.5620 1.5620 1.7815 1.7815
λ5 0.4501 0.4501 1.5716 1.5716 1.7925 1.7925
λ6 0.4576 0.4576 1.5948 1.5948 1.8191 1.8191
λ7 0.4696 0.4696 1.6313 1.6313 1.8609 1.8609
λ8 0.4770 0.4770 1.6517 1.6517 1.8843 1.8843
λ9 0.4770 0.4770 1.6517 1.6517 1.8843 1.8843
λ10 0.4770 0.4770 1.6517 1.6517 1.8843 1.8843

Simulation results of Table 5-6 show that with increasing tuning parameter λ, we can
achieve higher level Sparsity and smaller Sharpe ratio. Moreover, the values of MAD,
VaR0.01, ES0.01 increases accordingly. For both datasets, MAD model (mad) outper-
forms Naive model (naive) in terms of Sharpe ratio and risk measures. MAD-Lasso
models with smaller tuning parameters can achieve better performance than MAD
model. For MAD-Lasso models, results show that our proposed algorithm (NEW) is
much more time efficient than interior point method (IP). With properly chosen tun-
ing parameters, MAD-Lasso models can achieve higher Sharpe ratio and smaller risk
than MAD model (mad) and Naive model (naive). On the other hand, with increasing
tuning parameter λ, MAD-Lasso models can achieve better performance than MAD
Model by sacrificing a little bit Sharpe ratio and risk.
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Table 6. Portfolio selection results of FF48m data: (T, n) = (361, 48); ExpRet: r0 = 1.2606.

Time Sharpe Sparsity

mad 0.9094 naive 0.0001 mad 0.4332 naive 0.2450 mad 48 naive 48

MAD-Lasso(IP) MAD-Lasso(NEW) MAD-Lasso(IP) MAD-Lasso(NEW) MAD-Lasso(IP) MAD-Lasso(NEW)

λ1 0.3121 0.2698 0.4311 0.4324 48 48
λ2 0.2449 0.1782 0.4317 0.4304 47 48
λ3 0.2245 0.1363 0.4314 0.4316 47 48
λ4 0.2763 0.1646 0.4308 0.4308 42 44
λ5 0.2742 0.1154 0.4260 0.4265 40 39
λ6 0.2485 0.0977 0.4189 0.4177 29 27
λ7 0.2599 0.1042 0.3986 0.3985 19 19
λ8 0.2856 0.1217 0.3734 0.3734 15 15
λ9 0.2343 0.0932 0.3473 0.3473 10 10
λ10 0.2590 0.0945 0.3473 0.3481 10 10

MAD VaR0.01 ES0.01

mad 2.1255 naive 3.7957 mad 8.0304 naive 13.2301 mad 9.0166 naive 14.9736

MAD-Lasso(IP) MAD-Lasso(NEW) MAD-Lasso(IP) MAD-Lasso(NEW) MAD-Lasso(IP) MAD-Lasso(NEW)

λ1 2.0243 2.0247 8.0625 8.0419 9.0533 9.0298
λ2 2.0251 2.0261 8.0542 8.0738 9.0438 9.0662
λ3 2.0262 2.0281 8.0583 8.0557 9.0485 9.0455
λ4 2.0341 2.0347 8.0675 8.0686 9.0590 9.0603
λ5 2.0604 2.0600 8.1440 8.1359 9.1467 9.1374
λ6 2.1144 2.1236 8.2615 8.2806 9.2813 9.3032
λ7 2.2383 2.2389 8.6172 8.6197 9.6888 9.6916
λ8 2.4150 2.4150 9.1145 9.1146 10.2586 10.2586
λ9 2.6162 2.6162 9.7053 9.7053 10.9354 10.9354
λ10 2.6162 2.6169 9.7053 9.6843 10.9354 10.9113

Example 2. In this example, MAD-Lasso with interior point method (IP) and our
proposed method (NEW) are taken into comparison. For FF48d and FF48m Datasets
with tuning parameters chosen as λ = (0.05 : 0.05 : 8) ·

√
2T log n with multiply ratio

0.05
√

2T log n. Simulation results of MAD-Lasso models are displayed in Figure 9-10.

Figure 9. Portfolio selection tendency of FF48d data with increasing tuning parameter λs.

Figure 9-10 show that our proposed method impose larger sparsity and is more time
efficient than interior point method with larger tuning parameter λ. Moreover, after
some point when λ is large enough, the curves of Sharpe ratio, StD, VaRα and CVaRα
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with respect to λ behave like horizontal lines, this confirmed the fact that the sparsity
fixed with tuning parameter large enough, this coincide with Proposition 2.1 (2).

Figure 10. Portfolio selection tendency of FF48m data with increasing tuning parameter λs.

6. Conclusion and Prospects

In this article, we proposed the MAD-Lasso portfolio selection strategy that can be
reformulated as a constrained LAD Lasso problem with linear equality constraints.
Based on the idea of nonsmooth optimality conditions, we derive a new descent al-
gorithm that updates descent directions iteratively from a basis direction set. Under
specific tolerance level and finite stopping conditions, extensive simulation studies and
real data analysis verifies that our method is much more time efficient than interior
point method and ADMM. The new method process equivalent magnitude of number
of iterations with respect to interior point method. It is shown that MAD-Lasso models
encourage sparsity and are robust against heavy tailed datasets, thus is recommend-
ed for portfolio selection. Future research directions include partial index tracking,
portfolio hedging, and portfolio adjustment under MAD-Lasso framework.

References

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the Alternating Direction Method of Multipliers. Foundations and
Trends in Machine Learning Vol. 3.1 (2011), pp. 1–122.

[2] M. Broadie. Computing efficient frontiers using estimated parameters. Annals of Opera-
tions Research Vol. 45.1 (1993), pp. 21–58.

[3] J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris. Sparse and stable
Markowitz portfolios. Proceedings of the National Academy of Sciences Vol. 106.30 (2009),
pp. 12267–12272.

[4] M. Carrasco, and N. Noumon. Optimal portfolio selection using regularization. Discussion
Paper (2011).

[5] A. Coppola, and B.M. Stewart. lbfgs: Efficient l-bfgs and owl-qn optimization in r, (2014).

20



[6] V. DeMiguel, L. Garlappi, and R. Uppal. Optimal versus naive diversification: How in-
efficient is the 1/N portfolio strategy? The Review of Financial Studies Vol. 22.5 (2007),
pp. 1915–1953.

[7] B. Fastrich, S. Paterlini, and P. Winker. Penalized least squares for optimal sparse portfo-
lio selection. In COMPSTAT 2014 Conference Proceedings, International Conference on
Computational Statistics, (2014).

[8] M. Fernandes, G. Rocha, and T. Souza. Regularized minimum-variance portfolios using
asset group information (2012), pp. 1–28.

[9] P.A. Frost, and J.E. Savarino. For better performance: constrain portfolio weights. The
Journal of Portfolio Management Vol. 15.1 (1988), pp. 29–34.

[10] B.R. Gaines, J. Kim and H. Zhou. Algorithms for fitting the constrained lasso. Journal of
Computational and Graphical Statistics (2018), (just-accepted).

[11] X. Gao, and J. Huang. Asymptotic analysis of high-dimensional LAD regression with
LASSO. Statistica Sinica Vol. 20.4 (2008), pp. 1485–1506.

[12] G.M. James, C. Paulson, and P. Rusmevichientong. Penalized and constrained regression.
Technical Report Vol. 15 (2013).

[13] J.D. Jobson, and B. Korkie. Estimation for Markowitz efficient portfolios. Journal of the
American Statistical Association Vol. 75.371 (1980), pp. 544–554.

[14] H. Konno, H. Yamazaki, Mean-absolute deviation portfolio optimization model and its
applications to Tokyo stock market. Management Science Vol. 37.5 (1991), pp. 519–531.

[15] S. Kotz, T. Kozubowski, and K. Podgorski. The Laplace distribution and generalizations: a
revisit with applications to communications, economics, engineering, and finance. Springer
Science & Business Media (2012).

[16] D.C. Liu, J. Nocedal. On the Limited Memory BFGS Method for Large Scale Optimiza-
tion. Mathematical Programming Vol. 45.1-3 (1989), pp. 503C-528.

[17] H. Markowitz. Portfolio selection. The Journal of Finance Vol. 7.1 (1952), pp. 77–91.
[18] Y. Shi, Z. Feng, and K.F.C. Yiu. A descent method for least absolute deviation lasso

problems. Optimization Letters (2017), pp. 1–17.
[19] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, Series B (Methodological) (1996), pp. 267–288.
[20] H. Wang, G. Li, and G. Jiang. Robust regression shrinkage and consistent variable selec-

tion through the LAD-Lasso. Journal of Business & Economic Statistics Vol. 25.3 (2007),
pp. 347–355.

[21] L. Wang. The L1 penalized LAD estimator for high dimensional linear regression. Journal
of Multivariate Analysis Vol. 120 (2013), pp. 135–151.

[22] S. Wright, and J. Nocedal. Numerical optimization. Springer Science Vol. 35 (1999), pp.67–
68, 7.

[23] T.T. Wu, and K. Lange. Coordinate descent algorithms for lasso penalized regression. The
Annals of Applied Statistics Vol. 2.1 (2008), pp. 224–244.

[24] Y.M. Yen. A note on sparse minimum variance portfolios and coordinate-wise descent
algorithms. arXiv preprint arXiv:1005.5082 (2010).

[25] Y.M. Yen, and T.J. Yen. Solving norm constrained portfolio optimization via coordinate-
wise descent algorithms. Computational Statistics & Data Analysis Vol. 76 (2014), pp.
737–759.

[26] H. Zou, T. Hastie, and R. Tibshirani. On the degrees of freedom of the Lasso. The Annals
of Statistics Vol. 35.5 (2007), pp. 2173–2192.

21



Appendix A. Interior Point Method and ADMM Algorithm

Reparameterize Model (3) with

y∗ ,

(
y
0n

)
,A∗ ,

(
A
λIn

)
, T ∗ , T + n.

Model (3) becomes

min
x

‖A∗x− y∗‖1
s.t. Cx− b = 0.

For convenience, we dropped the ∗ sign and obtain

min
x

‖Ax− y‖

s.t. Cx = b.

where A ∈ RT×n, y ∈ Rn, C ∈ Rq×n, b ∈ Rq.
To solve Problem (3), consider the following transformations. Let u+,u− be the

positive part and negative part of Ax − y, and x+,x− be the positive part and
negative part of x, then Problem (3) becomes

arg min
x

u+ + u− + λx+ + λx−

s.t. Ax+ u+ − u− = y,

x− x+ + x− = 0, (A1)

Cx = b.

Problem (A1) is a general linear programming problem that can be solved using
linprog provided in Matlab, the stopping conditions of interior point method is that
the algorithm iterate until it reaches a point that satisfies the constraints to within
tolerances and meanwhile the relative step length are small, and the tolerance is 1e−6.
ADMM can be implemented in Matlab as described in Boyd et al.[1] with applica-
tions in ADMM, the stopping condition is that the primal and dual residuals below
tolerance 1e−6.
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