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Abstract This paper investigates the global stabilization problem of k-valued logical control networks

(KVLCNs) via event-triggered control (ETC), where the control inputs only work at several certain individual

states. Compared with the traditional state feedback control, the designed ETC not only shortens the

transient period but also decreases the number of controller execution. The content of this paper is divided

into two parts. In the former part, a necessary and sufficient criterion is derived for the event-triggered

stabilization of KVLCNs. Meanwhile, a constructing procedure is developed to design all time-optimal

event-triggered stabilizers. In the latter part, we devote to designing the switching-cost-optimal event-

triggered stabilizer, that is, to minimize the number of controller execution. The labelled digraph is derived

based on the dynamic of the overall system. Utilizing this digraph, we formulate a universal and unified

procedure, named as the minimal spanning in-tree algorithm, to minimize the triggering event set. Finally,

the effectiveness of obtained results is illustrated by several numerical examples.
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1 Introduction

Recently, the rapid development of DNA microarrays has set the stage for mathematical modeling of

genetic regulatory networks [1]. Generally speaking, until now, numerical formal types of mathematical

models have been proposed to depict, simulate, and even predict the dynamic behavior of biological

networks, for instance, Markov-type genetic networks [2] and Boolean networks (BNs). Based on many

experimental results, BN models, which were originally proposed by Kauffman in 1969 [3], have been

proved to be capable of forecasting the dynamic sequence of protein activation patterns within genetic

regulation networks [4]. A typical biological application is the cell cycle control network in yeast [5]. In

addition, the modality of BNs has constructed a natural framework for providing minute comprehension

and insights of the dynamic behavior exhibited by large-scale genetic networks.

In a Boolean model, the expression of each node on networks is approximated by two levels, namely

1 (ON) and 0 (OFF). The state update of each gene is determined by a pre-assigned logical function

associated with the states of in-neighbor genes. As mentioned in [6], a recent significant discovery
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in systems biology is that exogenous perturbations, which can be described as ‘control’, are almost

ubiquitous in many biological systems. Thereby the concept of Boolean control networks (BCNs) has

been formally generated by adding binary inputs to the BNs [7]. In capillary endothelia cells [8] for

instance, a simple BCN has been established to simulate the dynamic behavior of the signaling system,

where growth factors and cell shape (spreading) are both presented by two external inputs.

Since these extensive applications for therapeutic interventions in the field of systems biology, the

investigations on BNs and BCNs have aroused widespread attention of many scientists and scholars.

However, although BNs and BCNs seem simple, there still lacks a systematic and valid tool to analyze and

control these Boolean models. Recently, Cheng et al. have presented a generalized matrix product, named

as semi-tensor product (STP) [9]. Thanks to this technique, a considerable amount of researches have

been inspired and several classical control problems have been extensively investigated in BCNs, including

but not limited to, stabilization and set stabilization [10–21], reachability and controllability [22–24],

observability [25], synchronization [26], function perturbation [27], and several other problems [28–32].

The main idea of STP approach is to convert the logical dynamic of a BN (BCN) into a normal discrete-

time linear system. Furthermore, the knowledge of matrix theory and graph theory can be applied to

systematically analyze these problem. In addition, STP of matrices also provides an extreme convenience

for analyzing k-valued logical control networks (KVLCNs), non-linear shift registers, finite automata

and so on [33]. Indeed, KVLCNs, which can be regarded as a generalization of traditional BCNs to

some extent, are more complex and have wider applications than BCNs. For example, the number of

feasible choices in each player’s action set may be more than two for finite evolutionary networked game

as described in [34, 35], but binary Boolean model can not describe such a case. Therefore, it is more

significant to consider KVLCNs in this manuscript.

The control design strategy is always an interesting topic in complex networks, naturally genetic

regulatory networks. Numerical control schemes have been developed in the study of logical systems,

including but not limited to, state feedback control [11], output feedback control [10], pinning control

[22, 36], sampled-data control [37]. Unfortunately, in the aforementioned control paradigms, the control

inputs need to be executed at each time instant. It is indeed a waste of resources if the dynamic

evolution of the original network is desirable. Motivated by this, another alternative control paradigm,

named as event-triggered control (ETC), has been put forward in [38]. With the advent of this triggering

mechanism, substantial numbers of control cost can be reduced, so the ETC has extensively taken part

in the study of logical control systems [34, 39–41], multi-agent systems [42], as well as smart grids [43].

By following the main stream of research, the event-triggered controller considered in this paper is an

intermittent control strategy, which is firstly proposed in the late nineties [38]. As reported in [34,39,41],

this typical kind of ETC consists of two parts: (1) A state feedback mechanism to determine the control

inputs; (2) A set of states to decide when the control inputs should be taken into consideration.

Up to now, ETC has been formally used to address many problems of KVLCNs. In [39], two classes of

event-triggered controllers have been firstly designed to deal with the disturbance decoupling problem of

BCNs, and several necessary and sufficient conditions have been derived for checking whether it is solvable.

Moreover, an effective event-triggered approach has been developed to realize the global stabilization of

finite evolutionary networked games by some reachable sets with respect to the designated state [34].

Meanwhile, the number of control execution has been minimized by an adjustment algorithm in some

special circumstances. However, since the structure of the alternative control system has been given

beforehand, sometimes this approach may become invalid, such as Example 2 introduced in this paper.

Inspired by this, it deserves developing a universal and unified approach to minimize the number of

controller execution. Afterwards, this kind event-triggered controller has been further generalized to

investigate the global stabilization of probabilistic BCNs [41]. At the same time, the design of the

time-optimal event-triggered stabilizer is still open.

In this paper, the global stabilization problem of KVLCNs is realized via the time-optimal event-

triggered controller and the switching-cost-optimal one, respectively. The main contributions of this

manuscript are listed as follows:

• In the former part of paper, the time-optimal event-triggered stabilizer is designed. Via STP tech-
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nique, the algebraic framework of the KVLCN under ETC is established, which consists of a network

inherent transition matrix, an alternative network transition matrix and a triggering event set. Similar

to the time-optimal state feedback stabilizer as in [11], a necessary and sufficient criterion is derived for

the event-triggered stabilization of the KVLCN. Furthermore, a constructive procedure is developed to

design all time-optimal event-triggered stabilizers.

• In the latter part of this manuscript, we devote to designing an event-triggered stabilizer with the

minimal number of controller execution, which is called the switching-cost-optimal one. The labelled

digraph is constructed to describe the dynamic behavior of an event-triggered controlled KVLCN. More-

over, by resorting to the knowledge of graph theory, the number of controller execution is minimized via

a universal procedure, named as the minimal spanning in-tree algorithm. It can tackle all circumstances

and overcome the constraint of the method in [34].

The remainder of this paper is structured as follows. Some preliminaries are introduced in Section 2.

Section 3 presents the main results of this paper, and several illustrative examples are presented to show

the effectiveness of the obtained results. A brief conclusion is given in Section 4.

2 Preliminaries and Problem Formulation

In this section, some necessary preliminaries are presented.

• N and R are the sets of all natural integers and real integers, respectively.

• Rm×n is the set of all m× n real matrices.

• [a, b] represents the set of all integers between a and b, where a, b ∈ N.

• Dk := [0, k − 1].

• Dn
k := Dk ×Dk × · · · ×Dk︸ ︷︷ ︸

n

.

• Coli(A) (Rowi(A)) is the ith column (row) of matrix A.

• δin := Coli(In), where In is the n× n identity matrix.

• ∆n is the set of all columns of identity matrix In.

• A ∈ Rm×n is called a Boolean matrix, if [A]ij ∈ D2.

• A ∈ Rm×n is called a logical matrix, if A = [δi1m, δ
i2
m, · · · , δinm ], simply represented as δm[i1, i2, · · · , in].

• Lm×n consists of all m× n logical matrices.

• | S | is the cardinal number of elements in the set S.

2.1 STP of Matrices

Definition 1 (Cheng et al. [9]). The STP of A ∈ Rm×n and B ∈ Rp×q is defined as

AnB = (A⊗ Iα/n)(B ⊗ Iα/p),

where α is the least common multiple of n and p, and ‘⊗’ is the Kronecker product of matrices.

Remark 1. As a generalization of conventional matrix product, when n = p, AnB = (A⊗I1)(B⊗I1) =

AB. The STP of matrices provides a method to multiply two matrices with arbitrary dimensions (see [9]

for more details). In general, symbol “n” is omitted without any confusion.

Lemma 1 (Cheng et al. [9]). Swap matrix W[m,n] is an mn ×mn logical matrix defined as W[m,n] =[
In ⊗ δ1m, · · · , In ⊗ δmm

]
. Based on W[m,n], the pseudo-commutative law of STP is concluded as follows:

(1) If X ∈ Rm×1 and B ∈ Rp×q, then XB = (Im ⊗B)X.

(2) If X ∈ Rm×1 and Y ∈ Rn×1, then Y X = W[m,n]XY .

Suppose that x = (x1, x2, · · · , xn) ∈ Dn
k , we define a bijection Γn : Dn

k → ∆kn as

Γn(x) = nni=1δ
k−xi
k = δskn ,

where s =
∑n
i=1(k−xi−1)kn−i and Γn(x) is called the equivalent delta vector form of x. Then, arbitrary

logical function f : Dn
k → Dk can be expressed in its algebraic representation by following lemma.
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Lemma 2 (Cheng et al. [9]). For a logical function f(x1, x2, . . . , xn) : Dn
k → Dk, there exists a

determined matrix Mf ∈ Lk×kn , called the structure matrix of f , such that

f(x1, x2, . . . , xn) = MfΓn ((x1, x2, · · · , xn)) .

2.2 The Dynamics of KVLCNs Under Event-Triggered Controllers

The KVLCN under ETC, presented as follows, consists of an inherent non-control k-valued logical network

(KVLN) (1a), an alternative KVLCN (1b), and a triggering event set Λ ⊆ Dn
k standing for some certain

individual states where the control inputs are triggered:
x1(t+ 1) = f1(x1(t), · · · , xn(t)),

x2(t+ 1) = f2(x1(t), · · · , xn(t)),
...

xn(t+ 1) = fn(x1(t), · · · , xn(t)),

(1a)


x1(t+ 1) = f ′1(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

x2(t+ 1) = f ′2(x1(t), · · · , xn(t), u1(t), · · · , um(t)),
...

xn(t+ 1) = f ′n(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

(1b)

where fi : Dn
k → Dk and f ′i : Dn+m

k → Dk, i ∈ [1, n], are logical functions, xi ∈ Dk and uj ∈ Dk,

j ∈ [1,m], are respectively states and control inputs.

The mechanism of ETC is essentially an intermittent control strategy. In particular, when the dynamic

of inherent system (1a) evolves desirably, the system maintains in the form of (1a) and the control inputs

are not triggered. Otherwise, i.e., the state of system locates in the set Λ, KVLCN (1b) works and the

control inputs are considered.

Next, we present the equivalent algebraic expression of the event-triggering controlled KVLCN. To facil-

itate the analysis, let x(t) = Γn ((x1(t), x2(t), · · · , xn(t))) ∈ ∆N and u(t)=Γm ((u1(t), u2(t), · · · , um(t))) ∈
∆M , where N = kn and M = km. KVLN (1a) and KVLCN (1b) can be algebraically represented by

Lemma 2 as follows:

xi(t+ 1) = Mix(t), i ∈ [1, n], (2a)

xj(t+ 1) = M ′ju(t)x(t), j ∈ [1, n], (2b)

where Mi ∈ Lk×N and M ′j ∈ Lk×MN . Then, the equations in (2a) and (2b) are further multiplied to

lead that

x(t+ 1) = Lx(t), (3a)

x(t+ 1) = L′u(t)x(t), (3b)

where L=M1 ∗M2 ∗ · · · ∗Mn ∈ LN×N is the inherent transition matrix, and L′ = M ′1 ∗M ′2 ∗ · · · ∗M ′n ∈
LN×MN is the transition matrix of alternative subsystem (1b), where ‘∗’ is the Khatri-Rao product [44].

Therefore, if we define Γ(Λ) := {Γn(x) : x ∈ Λ}, the overall dynamic of the KVLCN with ETC can be

synoptically described as

x(t+ 1) =

{
Lx(t), x(t) ∈ ∆N\Γ(Λ),

L′u(t)x(t), x(t) ∈ Γ(Λ).
(4)

Or equivalently, the above dynamic can be given as

x(t+ 1) = [L,L′] ũ(t)x(t) := L̃ũ(t)x(t), (5)

where the novel control ũ(t) ∈ ∆M+1 is constructed from u(t) as follows: (1) If x(t) ∈ ∆N\Γ(Λ), then

ũ(t) := δ1M+1; (2) If x(t) ∈ Γ(Λ), one obtains that ũ(t) := [0, u(t)>]>. Here and elsewhere, ‘>’ is the

transpose of matrix.
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The state trajectory of system (5) with x(0;x0, ũ) = x0 with respect to certain control sequence

ũ : {0, 1, 2, · · · } → ∆M+1 is recorded as x(t;x0, ũ). Then, the concept of the global event-triggered

stabilization for system (5) with respect to x∗ ∈ ∆N is presented, where x∗ is supposed to be δrN without

loss of generality.

Definition 2. For a given state δrN ∈ ∆N , system (5) is said to be globally stabilizable to δrN , i.e.,

δrN -stabilization, if for every x0 ∈ ∆N , there exist a positive integer T and a control sequence ũ :

{0, 1, 2, · · · } → ∆M+1 such that t > T implies x(t;x0, ũ)=δrN .

Remark 2. Since system (5) contains the information of the triggering set Γ(Λ), the stabilization

of system (5) also can be called the event-triggered stabilization of system (4). Without raising any

confusion, we simply call it stabilization in the following content.

In this paper, the control input u(t) in (4) is considered as the feedback of state x(t), that is,

u(t) = Gx(t) = δM [β1, β2, · · · , βN ]x(t), (6)

where G ∈ LM×N is called the state feedback matrix. Response to equation (6), ũ(t) also can be

regarded as a special feedback of x(t) with the “state feedback matrix” G̃, namely ũ(t) = G̃x(t). In

details, G̃ = δM+1[γ1, γ2, · · · , γN ] is built as

γj =

{
1, δjN ∈ ∆N\Γ(Λ),

βj + 1, δjN ∈ Γ(Λ).
(7)

The objectives of this paper are to design the possible state feedback matrix G̃ ∈ L(M+1)×N such

that KVLCN (5) is globally stabilizable to δrN under two classes of event-triggered controllers, that is,

the time-optimal stabilizer and the switching-cost-optimal one. Thereinto, the time-optimal stabilizer is

to make the transient period minimal, and the switching-cost-optimal one is to minimize the triggering

event set, that is, to minimize | Γ(Λ) |.

3 Main Results

In the section, we firstly develop the event-triggered controller for the minimum-time stabilization of

KVLCN (5), which can also be called the time-optimal one. In the latter part of this paper, we develop

an event-triggered controller with the minimal triggering set, called the switching-cost-optimal one, under

the framework of labelled digraph.

3.1 Design of the Time-Optimal Event-Triggered Stabilizer

In this subsection, the time-optimal event-triggered stabilizers are designed. Consider KVLCN (5), a

v-step reachable set with respect to state δrN is defined as in [11]:

Rv(r) =
{
δjN ∈ ∆N : there exists ũ(0), ũ(1), · · · , ũ(v − 1) ∈ ∆M+1

such that x(v; δjN , ũ(0), ũ(1), · · · , ũ(v − 1)) = δrN

}
.

(8)

On the basis of Rv(r) defined above, the following theorem can be obtained, whose proof is straight-

forward and omitted.

Theorem 1. For a given state δrN ∈ ∆N , system (4) can be globally δrN -stabilization by event-triggered

controller, if and only if, the next conditions are both satisfied:

(1) δrN ∈ R1(r);

(2) There exists an integer l ∈ [1, N − 1] such that Rl(r) = ∆N .

Without any confusion, the minimal integer satisfying condition (2) is denoted by l∗. Assume that

conditions (1) and (2) in Theorem 1 are satisfied, it can be implied that Ri+1(r) ⊇ Ri(r) for all i ∈
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[0, l∗ − 1], where R0(r) = {δrN}. Then, we aim to develop a constructive procedure for the “state

feedback matrix” G̃, under which, the transient period of (5) is minimal.

To this end, we split ∆N into mutually disjoint sets as

∆N = (Rl∗(r) \Rl∗−1(r)) ∪ · · · ∪ (R2(r) \R1(r)) ∪ (R1(r) \R0(r)) ∪R0(r). (9)

To each δiN ∈ ∆N , there exists a unique integer li ∈ [1, l∗] such that δiN ∈ Rli(r) \Rli−1(r). Denote

αi = L̃δiMN for i ∈ [1,MN ], the ‘state feedback matrix’ G̃ = δM+1[γ1, γ2, · · · , γN ] can be given by

following procedure:

(1) If αr = r, let γr = 1; Else, namely αr 6= r, let γr be one solution of α(γr−1)N+r = r;

(2) For i ∈ [1, N ]\{r}, if δαiN ∈ Rli−1(r), let γi = 1; Otherwise, let γi be one solution of δ
α(γi−1)N+i

N ∈
Rli−1(r).

Remark 3. Under the controller constructed above, all states in ∆N can reach δrN after at most l∗

steps. This time-optimal event-triggered stabilizer simultaneously reduces the number of control as small

as possible. If all time-optimal stabilizers are necessary, we only need to modify the above procedure

trivially. Therefore, we ignore it here.

Once matrix G̃ is obtained, the triggering event set Γ(Λ) can immediately be calculated as {δiN : γi = 1},
and the initial state feedback matrix G equals to G = δM [β1, β2, · · · , βN ], where βi = γi− 1 if γi 6= 1 and

βi can be arbitrarily selected in [1,M ] for γi = 1.

Example 1. Let L = δ4[1, 1, 3, 4] and L′ = δ4[1, 3, 4, 1, 1, 3, 4, 1], we construct a novel system in form

of (5) with state transition matrix

L̃ = δ4[1, 1, 3, 4, 1, 3, 4, 1, 1, 3, 4, 1]. (10)

Let r = 1, it can be easily calculated that R1(1) = {δ14 , δ24 , δ44} and R2(1) = ∆4. Since δ14 ∈ R1(1) and

R2(1) = ∆4, this system can be globally stabilizable to δ14 under ETC.

According to L̃, let γi be as in the above procedure. One has γ1 = 1, γ2 = 1, γ3 = 2, 3 and γ4 = 2, 3.

Correspondingly, we can take the triggering event set Γ(Λ) = {δ14 , δ24}, and β1, β2, β3 and β4 can be

arbitrarily chosen from ∆2.

Observe from above calculation, the transient period is 2. If we use the traditional state feedback

control as in [11], it will be 3. Hence, it is worth formulating that the designed event-triggered controllers

both reduce the control cost and transient period than traditional state feedback controllers.

3.2 Design of the Switching-Cost-Optimal Event-Triggered Stabilizer

In this subsection, assume that the conditions in Theorem 1 are satisfied, we devote to designing the

event-triggered stabilizer with optimal switching cost. That is, to minimizing the triggering event set

Γ(Λ). In [34], an adjustment method has been formulated to minimize the triggering event set Γ(Λ)

in some special cases. However, it is not capable of addressing some certain generalized senses such as

Example 2. Thus, a universal and unified approach to design the switching-cost-optimal stabilizer is still

valuable and meaningful.

Example 2. Consider logical system (5) with transition matrices L = δ8[4, 2, 1, 3, 6, 5, 8, 5] and L′ =

δ8[4, 2, 1, 2, 6, 8, 3, 3, 4, 2, 1, 2, 6, 5, 3, 3], it is easy to confirm that this network is globally δ28-stabilization

under ETC by Theorem 1.

According to the approach proposed in [34], we firstly draw the attractors and basis 1) of KVLN with

respect to L as follows:

1) Please see [9] for more details about attractors and basis of KVLNs.
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δ28 δ18

δ38

δ48

δ68 δ58 δ88 δ78

Figure 1 State transition graph of KVLN with respect to transition matrix L = δ8[4, 2, 1, 3, 6, 5, 8, 5].

Then, we can select a possible state in the attractors {δ18 , δ38 , δ48} and {δ58 , δ68}, respectively, and add

the feasible control inputs at these two states such that the overall system can be stablizable to δ28 . That

is, the minimal number of controller execution is equal to 2.

However, since the transition matrix L′ of KVLCN (3b) is determined, if δ58 is selected, it evolves to

δ68 under every control input; Otherwise, δ68 is chosen, it evolves to δ88 under u = δ12 or δ22 . Obviously,

any state in the attractor {δ58 , δ68} cannot reach δ28 by this approach. Hence, this method to minimize the

triggering event set Γ(Λ) is not applicable for this example.

Remark 4. In fact, since the transition matrix L′ is known, it is infeasible to consider L unilaterally

when minimizing Γ(Λ) as in [34]. In the following, based on the knowledge of graph theory, we present a

universal and unified approach to minimize it.

First of all, a labelled digraph G is derived for equivalent graphical description of the dynamic of

KVLCN (5). The labelled digraph G is indeed an ordered pair (V,A) consisting of a set of vertices

V := [1, N ] and a set of directed arcs A. For every arc (i, j) ∈ A, vertices i and j are respectively named

as the starting vertex and the ending one of arc (i, j).

Consider KVLN (3a), since L ∈ LN×N is a Boolean matrix, it can be associated with a labelled

diagraph G0 = (V,A0). Thereinto, A0 is a real line arc set, where G0 has a real line arc (i, j) joining

i to j if and only if [L]ji = 1. As for KVLCN (3b), L′ is partitioned into [L′1, L
′
2, · · · , L′M ], where L′µ,

µ ∈ [1,M ], are control-dependent transition matrices. Similar to the construction of G0, the labelled

digraph for Lµ, denoted by Gµ, is associated with an order pair (V,Aµ), where Aµ is a dashed line arc

set, when a dashed line arc (i, j) ∈ Aµ if and only if
[
L′µ
]
ji

= 1. Furthermore, by uniting these labelled

digraphs G0 and Gµ, µ ∈ [1,M ], the overall labelled digraph G = (V,A) is obtained as

G =

M⋃
µ=0

Gµ =

(
V,

M⋃
µ=0

Aµ

)
.

Remark 5. In fact, the arc set A consists of some real line arcs and dashed line ones, corresponding

to the dynamics of (3a) and (3b), respectively. For convenience, they are denoted by an identical set A

without distinction from notation. From the construction of G , it is easy to find that there may exist

more than one arc in the same direction with the same starting vertex and the ending one. If we operate

on the labelled digraph G , it may cause some unnecessary issues and high time complexity. Therefore,

we make some pretreatment for G before giving algorithm.

To facilitate the analysis, some pretreatment is operated on the labelled digraph G , the labelled digraph

after pretreatment is also denoted by G := (V,A) for convenience, here A represents the arc set of the

labelled digraph after pretreatment.

1) Delete all self loops.

2) For all ordered pair (i, j) ∈ [1, N ] × [1, N ] and i 6= j, remain the arc with minimal weight joining i

to j and delete others. If there are such two arcs, select the arbitrary one.

3) Assign each dashed line arc joining i to j by a control set u(i,j) := {µ : [Lµ]ji = 1, µ ∈ [1,M ]}.
As mentioned in [45], the stabilization problem of KVLCN can be equivalently described by the exis-

tence of spanning in-tree with the designated vertex r, which is call the root of tree. Thus, an approach to

find the switching-cost-optimal stabilizer is exactly to find a spanning in-tree at root r with the minimal

number of dashed line arcs in labelled digraph G .
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To this end, weights N and 1 are respectively assigned to each dashed line arc and real line one.

Denote the weight on every arc (i, j) by w(u, v), then the labelled digraph G with weight is denoted by

G := (V,A,W ), where W is a set of weight w(i, j) for all (i, j) ∈ A. The spanning in-tree at root r

with the minimal sum of weight is named as the minimal spanning in-tree of labelled digraph G . In the

graph theory, an effective algorithm has been proposed to find such the minimal spanning in-tree, which

is called Edmonds’s Algorithm [46]. Moreover, a universal and unified procedure is firstly derived for the

switching-cost-optimal event-triggered stabilizer.

Algorithm 1 The Minimal Spanning In-Tree Algorithm.

Step 1: Initialize i := 0, V0 := V , E0 := A and W0 := W . Designate vertex r as the root.

Step 2: Calculate J1 = {(v, θ(v)) : v ∈ V0 \ {r}}, where an order pair (v, θ(v)) is the minimal weight arc

among all (v, j) ∈ E0.

Step 3: Check whether there exists directed cycles in (Vi, Ji+1). If do, go to Step 4; Otherwise, go to

Step 7.

Step 4: Contract every cycle C into one new vertex to obtain a new diagraph (Vi+1, Ei+1,Wi+1), the

weight set Wi+1 is updated from Wi as follows, then i := i+ 1 and go to Step 5.

• If (u, v) is an arc joining cycle C , remain its weight unchanged.

• If (u, v) is an arc away cycle C , reassign its weight as w(u, v)− w(θ−1(u), u).

• Keep the weight of other arcs unchanged.

Step 5: Do the pretreatment for the novel labelled digraph (Vi, Ei,Wi).

Step 6: Calculate Ji+1 = {(v, θ(v)) : v ∈ Vi \ {r}}, where an order pair (v, θ(v)) is the minimal weight

arc among all (v, j) ∈ Ei. Then, back to Step 3.

Step 7: Expand the contracted cycles formed during the above phase in reverse order of their contraction

and remove one arc from each cycle to form a spanning in-tree.

Remark 6. The time complexity of Algorithm 1 is O(HN), where N = kn and H =| A |.
The returned minimal spanning in-tree in Algorithm 1 is denoted by G 0 = (V,A0,W 0), where A0 ⊆ A

and W0 ⊆ W . Once G 0 is obtained, the corresponding event-triggered controllers can be constructed

immediately. For every arc set D ⊆ A, bDc consists of the starting vertex of each arc in D.

Algorithm 2 The Corresponding Event-Triggered Controller Design From the Minimal Spanning In-Tree.

Step 1: Construct the triggering event set Γ(Λ). If [L]rr = 1, then Γ(Λ) =
{
δiN : i ∈

⌊
A0\A0

⌋}
; Otherwise,

Γ(Λ) =
{
δiN : i ∈

⌊
A0\A0

⌋
∪ {r}

}
.

Step 2: Determine the state feedback matrix G. Let βr be randomly chosen in ∆M if r 6∈ Γ(Λ); Else,

βr = u(r,r). To every j ∈ [1, N ]\{r}, if j ∈ Γ(Λ), there is a unique integer tj ∈ [1, N ] satisfying (j, tj) ∈ A0,

let βj be an arbitrary integer in u(j,tj); Otherwise, let βj be an arbitrary integer in [1,M ]. The feasible

state feedback matrix can be designed as G = δM [β1, β2, · · · , βN ].

Example 3. In the following, Example 2 is reconsidered by approach presented in this subsection.

Firstly, weights 8 and 1 are respectively assigned to the dashed line arcs and the real line ones. The

labelled digraph after pretreatment is presented as Figure 2.

Next, calculate J1 by Step 2 of Algorithm 1 as Figure 3.

Then, since (V0, J1) has cycles C1={1, 3, 4} and C2={5, 6}, then go to Step 4 of Algorithm 1. As drawn

in Figure 4, cycles C1 and C2 are contracted into novel vertices U and V , respectively.

Consequently, repeating Step 5 and Step 6 of Algorithm 1, Figure 5 is obtained. There still exists a

cycle in (V1, J2). Thus, vertices V and 8 are further recontracted and the weights of arcs are updated by

Step 4 in Figure 6. By repeating Step 5 and Step 6, (V2, J3) is obtained without any cycle as Figure 7.

Finally, using Step 7 of Algorithm 1, we expand the contracted cycles formed during the above phase

in reverse order of their contraction and remove one arc from each cycle to form a spanning in-tree.

Therefore, arcs (3, 4), (5, 6) and (5, 8) are removed. The obtained minimal spanning in-tree G 0 is presented

as in Figure 8.
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8 1

1 1

1 1

1

1

8 8

8

2 1

3

4

6 5 8 7

2 1

3

4

6 5 8 7

Figure 2 The labelled digraph after pretreatment

(V0, E0,W0).

Figure 3 Calculate set J1={(v, θ(v)) | v ∈ [1, 8]} by Step

2 in Algorithm 1. That is, θ(1) = 4, θ(3) = 1, θ(4) = 3,

θ(5) = 6, θ(6) = 5, θ(7) = 8 and θ(8) = 5.

8− 1

1 1

8− 1
88

2 U

V 8 7

8− 1

1 1

8− 1

2 U

V 8 7

Figure 4 A new constructed weighted directed graph

(V1, E1,W1). By Algorithm 1, w(U, 2) = 8 − 1 and

w(V, 8) = 8− 1. The weight of other arcs keeps unchanged.

Figure 5 Find the set J2 in Firgure 4, where J2 =

{(V, 8), (8, V ), (7, 8), (U, 2)}.

8− 1

1

88− 1

2 U

B 7

8− 1

1

8− 1

2 U

B 7

Figure 6 The vertices V and 8 are contracted into a novel

vertex B. Let w(U,B) = 8−1 and the weights of other arcs

be unchanged.

Figure 7 The set J3 = {(2, U), (U,B), (B, 7)}.

Based on the minimal spanning in-tree G 0, using Algorithm 2, the corresponding triggering event set

is designed as Γ(Λ) = {δ48 , δ68 , δ88}, and the possible state feedback matrices are G = δ8[∗, ∗, ∗, ∗, ∗, 1, ∗, ∗],
where ∗ is 1 or 2.

2 1

3

4

6 5 8 7

Figure 8 The minimal spanning in-tree G 0 of Example 2.

From Figure 8, it is observed that the number of control execution is equal to 3. If we utilize the

traditional state feedback control, the number of control execution will be 7 on the transient period, since
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all states need to be controlled.

4 Conclusion

This paper has discussed the global stabilization problem of KVLCNs with ETC. By resorting to STP

of matrices, a necessary and sufficient condition has been derived for the global stabilization of event-

triggered controlled KVLCNs. Meanwhile, the corresponding time-optimal event-triggered stabilizer has

been realized. In the latter part of paper, we have designed the switching-cost-optimal event-triggered

stabilizer. The labelled digraph of event-triggered controlled KVLCNs has been constructed. Utilizing the

knowledge of graph theory, an effective algorithm, named as the minimal spanning in-tree algorithm, has

been developed to minimize the number of control execution. This approach can tackle all circumstances

and overcome the constraint of the method in the existing literature.
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