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Abstract. Sdpnal+ is a Matlab software package that implements an augmented La-
grangian based method to solve large scale semidefinite programming problems with bound
constraints. The implementation was initially based on a majorized semismooth Newton-CG
augmented Lagrangian method, here we designed it within an inexact symmetric Gauss-Seidel
based semi-proximal ADMM/ALM (alternating direction method of multipliers/augmented La-
grangian method) framework for the purpose of deriving simpler stopping conditions and closing
the gap between the practical implementation of the algorithm and the theoretical algorithm.
The basic code is written in Matlab, but some subroutines in C language are incorporated
via Mex files. We also design a convenient interface for users to input their SDP models into
the solver. Numerous problems arising from combinatorial optimization and binary integer
quadratic programming problems have been tested to evaluate the performance of the solver.
Extensive numerical experiments conducted in [Yang, Sun, and Toh, Mathematical Program-
ming Computation, 7 (2015), pp. 331–366] show that the proposed method is quite efficient and
robust, in that it is able to solve 98.9% of the 745 test instances of SDP problems arising from
various applications to the accuracy of 10−6 in the relative KKT residual.
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1 Introduction

Let Sn be the space of n×n real symmetric matrices and Sn+ be the cone of positive semidefinite
matrices in Sn. For any X ∈ Sn, we may sometimes write X � 0 to indicate that X ∈ Sn+. Let
P = {X ∈ Sn : L ≤ X ≤ U}, where L,U are given n×n symmetric matrices whose elements are
allowed to take the values −∞ and +∞, respectively. Consider the semidefinite programming
(SDP) problem:

(SDP) min
{
〈C, X〉 | A(X) = b, l ≤ B(X) ≤ u, X ∈ Sn+, X ∈ P

}
,

where b ∈ Rm, and C ∈ Sn are given data, A : Sn → Rm and B : Sn → Rp are two given
linear maps whose adjoints are denoted as A∗ and B∗, respectively. The vectors l, u are given
p-dimensional vectors whose elements are allowed to take the values −∞ and ∞, respectively.
Note that P = Sn is allowed, in which case there are no additional bound constraints imposed
on X. We assume that the m×m symmetric matrix AA∗ is invertible, i.e., A is surjective.

Note that (SDP) is equivalent to

(P) min
{
〈C, X〉 | A(X) = b, B(X)− s = 0, X ∈ Sn+, X ∈ P, s ∈ Q

}
,

where Q = {s ∈ Rp : l ≤ s ≤ u}. The dual of (P), ignoring the minus sign in front of the
minimization, is given by

(D) min

{
δ∗P(−Z) + δ∗Q(−v) + 〈−b, y〉

∣∣∣ A∗(y) + B∗(ȳ) + S + Z = C, −ȳ + v = 0,

S ∈ Sn+, Z ∈ Sn, y ∈ Rm, ȳ ∈ Rp, v ∈ Rp

}
,

where for any Z ∈ Sn, δ∗P(−Z) is defined by

δ∗P(−Z) = sup{〈−Z, W 〉 |W ∈ P}

and δ∗Q(·) is defined similarly. We note that our solver is designed based on the assumption that
(P) and (D) are feasible.

While we have presented the problem (SDP) with a single variable block X, our solver is
capable of solving the following more general problem with N blocks of variables:

min
∑N

j=1〈C(j), X(j)〉

s.t.
∑N

j=1A(j)(X(j)) = b, l ≤
∑N

j=1 B(j)(X(j)) ≤ u,

X(j) ∈ K(j), X(j) ∈ P(j), j = 1, . . . , N,

(1)

where A(j) : X (j) → Rm, and B(j) : X (j) → Rp are given linear maps, P(j) := {X(j) ∈ X (j) |
L(j) ≤ X(j) ≤ U (j)} and L(j), U (j) ∈ X (j) are given symmetric matrices where the elements are
allowed to take the values −∞ and ∞, respectively. Here X (j) = Snj (Rnj ), and K(j) = X (j) or
K(j) = Snj

+ (Rnj

+ ). For later expositions, we should note that when X (j) = Snj , the linear map

A(j) : Snj → Rm can be expressed in the form of

A(j)(X(j)) =
[
〈A(j)

1 , X(j)〉, . . . , 〈A(j)
m , X(j)〉

]T
, (2)
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where A
(j)
1 , . . . , A

(j)
m ∈ Snj are given constraint matrices. The corresponding adjoint (A(j))∗ :

Rm → Snj is then given by

(A(j))∗y =
∑m

k=1 ykA
(j)
k .

In this paper, we introduce our Matlab software package Sdpnal+ for solving (SDP)
or more generally (1), where the maximum matrix dimension is assumed to be moderate (say
less than 5000) but the number of linear constraints m + p can be large (say more than a
million). One of our main contributions here is that the current algorithm has substantially
extended the capability of Sdpnal+ to solve the general problem (1) compared to the original
version in [24], wherein the algorithm is designed to solve a problem with only linear equality
constraints and P = {X ∈ Sn | X ≥ 0} or P = Sn. Moreover, the implementation in [24]
was based on a majorized semismooth Newton-CG augmented Lagrangian method developed
in that paper. Here, for the purpose of deriving simpler stopping conditions, we redesign the
algorithm by employing an inexact semi-proximal alternating direction method of multipliers
(sPADMM) (or the semi-proximal augmented Lagrangian (sPALM) if the bound constraints
are absent) framework developed in [2] for multi-block convex composite conic programming
problems. Currently, the algorithm which we have implemented is a 2-phase algorithm based on
the augmented Lagrangian function for (D). In the first phase, we employ the inexact symmetric
Gauss-Seidel based sPADMM to solve the problem to a modest level of accuracy. Note that while
the main purpose of the first phase algorithm is to generate a good initial point to warm-start
the second phase algorithm, it can be used on its own to solve a problem. The algorithm we
have implemented in the second phase is an inexact sPADMM for which the main subproblem
in each iteration is solved by a semismooth Newton-CG method.

The development of Sdpnal+ in [24], which is built on the earlier work on Sdpnal in [25],
has in fact spurred much of the recent progresses in designing efficient convergent ADMM-type
algorithms for solving multi-block convex composite conic programming, such as [2, 7, 16]. Those
works in turn shaped the recent algorithmic design of Sdpnal+. Indeed, the algorithm in the
first phase of Sdpnal+ is the same as the convergent ADMM-type method developed in [16]
when the subproblems in each iteration are solved analytically. For the algorithm in the second
phase, it is an economical variant of the majorized semismooth Newton-CG (SNCG) augmented
Lagrangian method designed in [24] to solve (D) for which only one SNCG subproblem is solved
in each iteration.

Another contribution of this paper is our development of a basic interface for the users to
input their SDP models into the Sdpnal+ solver. While there are currently two well developed
matlab based user interfaces for SDP problems, namely, CVX [4] and YALMIP [9], there are
strong motivations for us to develop our own interface here. A new interface is necessary to
facilitate the modeling of an SDP problem for Sdpnal+ because of latter’s flexibility to directly
accept inequality constraints of the form “l ≤ B(X) ≤ u”, and bound constraints of the form
“L ≤ X ≤ U”. The flexibility can significantly simplify the generation of the data in the
Sdpnal+ format as compared to what need to be done in CVX or YALMIP to reformulate
them as equality constraints through introducing extra variables. In addition, the final number
of equality constraints present in the data input to Sdpnal+ can also be substantially fewer
than those present in CVX or YALMIP. It is important to note here that the number of equality
constraints present in the generated problem data can greatly affect the computational efficiency
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of the solvers, especially for interior-point based solvers. An illustration of the benefits just
mentioned will be given at the end of Section 5.

Our Sdpnal+ solver is designed for solving feasible problems of the form presented in (P)
and (D). It is capable of solving large scale SDPs with m or p up to a few millions but n is
assumed to be moderate (up to a few thousands). Extensive numerical experiments conducted
in [24] show that a variety of large scale SDPs can be solved by Sdpnal+ much more efficiently
than the best alternative methods [10, 21].

The Sdpnal+ package can be downloaded from the following website:

http://www.math.nus.edu.sg/~mattohkc/SDPNALplus.html

Installation and general information such as citations, can be found at the above link. The test
instances which we have used to evaluate the performance of our solver can also be found at the
above website.

We have evaluated the performance of Sdpnal+ on various classes of large scale SDP
problems arising from the relaxation of combinatorial problems such as maximum stable set
problems, quadratic assignment problems, frequency assignment problems, and binary integer
quadratic programming problems. The solver has also been tested on large SDP problems arising
from robust clustering problems, rank-one tensor approximation problems, as well as electronic
structure calculations in quantum chemistry. The detailed numerical results can be found at the
above website. Based on the numerical evaluation of Sdpnal+ on 745 SDP problems, we can
observe that the solver is fairly robust (in the sense that it is able to solve most of the tested
problems to the accuracy of 10−6 in the relative KKT residual) and highly efficient in solving
the tested classes of problems.

The remaining parts of this paper are organized as follows. In the next section, we describe
the installation and present some general information on our software. Section 2 gives some
details on the main solver function sdpnalplus.m. In Section 3, we describe the algorithm
implemented in Sdpnal+ and discuss some implementation issues. In Section 4, we present a
basic interface for the users to input their SDP models into the Sdpnal+ solver. In Section 5,
we present a few SDP examples to illustrate the usage of our software, and how to input the
SDP models into our interface. Section 6 gives a summary of the numerical results obtained by
Sdpnal+ in solving 745 test instances of SDP problems arising from various sources. Finally,
we conclude the paper in Section 7.

2 Data structure and main solver

Sdpnal+ is an enhanced version of the Sdpnal solver developed by Zhao, Sun and Toh [25].
The internal implementation of Sdpnal+ thus follows the data structures and design framework
of Sdpnal. A casual user need not understand the internal implementation of Sdpnal+.

2.1 The main function: sdpnalplus.m

In the Sdpnal+ solver, the main routine is sdpnalplus.m, whose calling syntax is as follows:
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[obj,X,s,y,S,Z,ybar,v,info,runhist] = ...

sdpnalplus(blk,At,C,b,L,U,Bt,l,u,OPTIONS,X,s,y,S,Z,ybar,v);

Input arguments.

• blk: a cell array describing the conic block structure of the SDP problem.

• At, C, b, L, U, Bt, l, u: data of the problem (SDP).
If L ≤ X but X is unbounded above, one can set U=inf or U=[]. Similarly, if the linear
map B is not present, one can set Bt=[], l=[], u=[].

• OPTIONS: a structure array of parameters (optional).

• X, s, y, S, Z, ybar, v: an initial iterate (optional).

Output arguments. The names chosen for the output arguments explain their contents. The
argument X is a solution to (P) which satisfies the constraints X ∈ Sn+ and X ∈ P approximately
up to the desired accuracy tolerance. The argument info is a structure array which records
various performance measures of the solver. For example

info.etaRp, info.etaRd, info.etaK1, info.etaK2

correspond to the measures ηP , ηD, ηK, ηP defined later in (4), respectively. The argument
runhist is a structure array which records the history of various performance measures during
the course of running sdpnalplus.m. For example,

runhist.primobj, runhist.dualobj, runhist.relgap

runhist.primfeasorg, runhist.dualfeasorg

record the primal and dual objective values, complementarity gap, primal and dual infeasibilities
at each iteration, respectively.

2.2 Generation of starting point by admmplus.m

If an initial point (X,s,y,S,Z,ybar,v) is not provided for sdpnalplus.m, we call the function
admmplus.m, which implements a convergent 3-block ADMM proposed in [16], to generate a
starting point. The routine admmplus.m has a similar calling syntax as sdpnalplus.m given as
follows:

[obj,X,s,y,S,Z,ybar,v,info,runhist] = ...

admmplus(blk,At,C,b,L,U,Bt,l,u,OPTIONS,X,s,y,S,Z,ybar,v);

Note that if an initial point (X,s,y,S,Z,ybar,v) is not supplied to admmplus.m, the default
initial point is (0,0,0,0,0,0,0).

We should mention that although we use admmplus.m for the purpose of warm-starting
sdpnalplus.m, the user has the freedom to use admmplus.m alone to solve the problem (SDP).

5



2.3 Arrays of input data

The format of the input data in Sdpnal+ is similar to those in SDPT3 [18, 20]. For each SDP
problem, the conic block structure of the problem data is described by a cell array named blk.
If the kth block X{k} of the variable X is a nonnegative vector block with dimension nk, then we
set

blk{k,1} = ’l’, blk{k,2} = nk,

At{k} = [nk ×m sparse], Bt{k} = [nk × p sparse],

C{k}, L{k}, U{k}, X{k}, S{k}, Z{k} = [nk × 1 double or sparse].

If the jth block X{j} of the variable X is a semidefinite block consisting of a single block of size
sj , then the content of the jth block is given as follows:

blk{j,1} = ’s’, blk{j,2} = sj ,

At{j} = [s̄j ×m sparse ], Bt{k} = [s̄j × p sparse],

C{j}, L{j}, U{j}, X{j}, S{j}, Z{j} = [sj × sj double or sparse ],

where s̄j = sj(sj + 1)/2. By default, the contents of the cell arrays L and U are set to be empty
arrays. But if X{j} ≥ 0 is required, then one can set

L{j} = 0, U{j} = [].

One can also set L = 0 to indicate that X{j} ≥ 0 for all j = 1, . . . , N in (1).
We should mention that for the sake of computational efficiency, we store all the constraint

matrices associated with the jth semidefinite block in vectorized form as a single s̄j ×m matrix

At{j}, where the kth column of this matrix corresponds to the kth constraint matrix A
(j)
k , i.e.,

At{j} = [svec(A
(j)
1 ), . . . , svec(A(j)

m )],

and svec : Ssj → Rs̄j is the vectorization operator on symmetric matrices defined by

svec(X) = [X11,
√

2X12, X22, . . . ,
√

2X1,sj , . . . ,
√

2Xsj−1,sj , Xsj ,sj ]
T . (3)

We store Bt in the same format as At. The function svec.m provided in Sdpnal+ can easily
convert a symmetric matrix into the vector storage scheme described in (3). Note that while
we store the constraint matrices in vectorized form, the semidefinite blocks in the variables X,
S and Z are stored either as matrices or in vectorized forms according to the storage scheme of
the input data C.

Other than inputting the data (At,b,C,L,U) of an SDP problem individually, Sdpnal+
also provides the functions read sdpa.m and read sedumi.m to convert problem data stored
in the SDPA [23] and SeDuMi [15] format into our cell-array data format just described. For
example, for the problem theta62.dat-s in the folder /datafiles, the user can call the m-file
read sdpa.m to load the SDP data as follows:

>> [blk,At,C,b] = read_sdpa(’./datafiles/theta62.dat-s’);

>> OPTIONS.tol = 1e-6;

>> [obj,X,s,y,S,Z,ybar,v,info,runhist] = sdpnalplus(blk,At,C,b,[],[],[],[],[],OPTIONS);
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2.4 The structure array OPTIONS for parameters

Various parameters used in our solver sdpnalplus.m are set in the structure array OPTIONS. For
details, see SDPNALplus parameters.m. The important parameters which the user is likely to
reset are described next.

1. OPTIONS.tol: accuracy tolerance to terminate the algorithm, default is 10−6.

2. OPTIONS.maxiter: maximum number of iterations allowed, default is 20000.

3. OPTIONS.maxtime: maximum time (in seconds) allowed, default is 10000.

4. OPTIONS.tolADM: accuracy tolerance to use for admmplus.m when generating a starting
point for the algorithm in the second phase of sdpnalplus.m (default = 10−4).

5. OPTIONS.maxiterADM: maximum number of ADMM iterations allowed for generating a
starting point. When there are no bound constraints on X (P = Sn) and no linear
inequality constraints corresponding to B(X) (hence Q = ∅), the default value is roughly
equal to 200; otherwise, the default value is 2000.

6. OPTIONS.printlevel: different levels of details to print the intermediate information
during the run. It can be the integers 0, 1, 2, with 1 being the default. Setting to the
highest value 2 will result in printing the complete details.

7. OPTIONS.stopoption: options to stop the solver. The default is OPTIONS.stopoption=1,
for which the solver may be stopped prematurely when stagnation occurs. To prevent the
solver from stopping prematurely before the required accuracy is attained, set OPTONS.stopoption=0.

8. OPTIONS.AATsolve.method: options to solve a linear system involving the coefficient ma-
trix AA∗, with

OPTIONS.AATsolve.method=’direct’ (default) or ’iterative’.

For the former option, a linear system of the form AA∗y = h is solved by the sparse
Cholesky factorization, while for the latter option, it is solved by a diagonally precondi-
tioned PSQMR iterative solver.

2.5 Stopping criteria

In Sdpnal+, we measure the accuracy of an approximate optimal solution (X, s, y, ȳ, S, Z, v) for
(P) and (D) by using the following relative residual based on the KKT optimality conditions:

η = max{ηP , ηD, ηK, ηP}, (4)

where K = Sn+,

ηP = max
{
‖A(X)−b‖

1+‖b‖ , ‖B(X)−s‖
1+‖s‖

}
, ηD = max

{
‖A∗(y)+B∗(ȳ)+S+Z−C‖

1+‖C‖ , ‖ȳ−v‖1+‖v‖

}
,

ηK = 1
5
‖X−ΠK(X−S)‖

1+‖X‖+‖S‖ , ηP = 1
5 max

{
‖X−ΠP (X−Z)‖

1+‖X‖+‖Z‖ , ‖s−ΠQ(s−v)‖
1+‖s‖+‖v‖

}
.
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Additionally, we compute the relative gap by

ηg = |pobj−dobj|
1+|pobj|+|dobj| . (5)

For a given accuracy tolerance specified in OPTIONS.tol, we terminate both sdpnalplus.m and
admmplus.m when

η ≤ OPTIONS.tol. (6)

2.6 Caveats

There are a few points which we should emphasize on our solver.

• It is important to note that Sdpnal+ is a research software. It is not intended nor
designed to be a general purpose software at the moment. The solver is designed based on
the assumption that the primal and dual SDP problems (P) and (D) are feasible, and that
Slater’s constraint qualification holds. The solver is expected to be robust if the primal and
dual SDP problems are both non-degenerate at the optimal solutions. However, if either
one of them, particularly if the primal problem, is degenerate or if the Slater’s condition
fails, then the solver may not be able to solve the problems to high accuracy.

• Another point to note is that our solver is designed with the emphasis on handling problems
with positive semidefinite variables efficiently. Little attention has been paid on optimizing
the solver to handle linear programming problems.

• While in theory our solver can easily be extended to solve problems with second-order cone
constraints, it is not capable of solving such problems at the moment although we plan to
extend our solver to handle second-order cone programming problems in the future.

3 Algorithmic design and implementation

For simplicity, we will describe the algorithmic design for the problem (D) instead of the dual of
the more general problem (1). Our algorithm is developed based on the augmented Lagrangian
function for (D), which is defined as follows: given a penalty parameter σ > 0, for (Z, v, y, ȳ) ∈
Sn × Rp ××Rm × Rp, and (X, s) ∈ Sn × Rp,

Lσ(Z, v, S, y, ȳ;X, s) =

{
δ∗P(−Z) + δ∗Q(−v) + 〈−b, y〉+ δSn+(S)− 1

2σ‖X‖
2 − 1

2σ‖s‖
2

+σ
2 ‖A

∗(y) + B∗(ȳ) + S + Z − C + σ−1X‖2 + σ
2 ‖v − ȳ + σ−1s‖2.

As mentioned in the Introduction, the algorithm implemented in Sdpnal+ is a 2-phase
algorithm where the first phase is a convergent inexact sGS-sPADMM algorithm [2] whose
template is described next.

First-phase algorithm. Given an initial iteration (Z0, v0, S0, y0, ȳ0, X0, s0), perform the fol-
lowing steps in each iteration.
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Step 1. Let Rk1 = A∗(yk)+B∗(ȳk)+Sk+Zk−C+σ−1Xk and Rk2 = vk− ȳk+σ−1sk. Compute
(Zk+1, vk+1) = argmin Lσ(Z, v, Sk, yk, ȳk;Xk, sk) as follows:

Zk+1 = argmin
{
δ∗P(−Z) +

σ

2
‖Z − Zk +Rk1‖2

}
= σ−1ΠP(σ(Rk1 − Zk))− (Rk1 − Zk),

vk+1 = argmin
{
δ∗Q(−v) +

σ

2
‖v − vk +Rk2‖2

}
= σ−1ΠQ(σ(Rk2 − vk))− (Rk2 − vk).

Step 2a. Compute

(yk+1
tmp , ȳ

k+1
tmp ) ≈ argmin

{
Lσ(Zk+1, vk+1, Sk, y, ȳ;Xk, sk)

}
.

For this step, we typically need to solve a large system of linear equations given by[
AA∗ AB∗

BA∗ BB∗ + I

]
︸ ︷︷ ︸

M

[
y

ȳ

]
=

[
h1 := σ−1b−A(Sk + Zk+1 − C + σ−1Xk)

h2 := vk+1 + σ−1sk − B(Sk + Zk+1 − C + σ−1Xk)

]
.

(7)
In our implementation, we solve the linear system via the sparse Cholesky factorization
of M if it can be computed at a moderate cost. Otherwise, we use a preconditioned
CG method to solve (7) approximately so that the residual norm satisfies the following
accuracy condition:

√
σ‖[h1;h2]−M[yk+1

tmp ; ȳk+1
tmp ]‖ ≤ εk,

where {εk} is a predefined summable sequence of nonnegative numbers. In [24], the linear
system corresponding to M is AA∗y = h1, and it is solved by a direct method based
on sparse Cholesky factorization. Here, the inexact sGS-ADMM framework [2] we have
employed gives us the flexibility to solve the linear system approximately by an iterative
solver such as the preconditioned conjugate gradient method, while not affecting the con-
vergence of the algorithm. Such a flexibility is obviously critical to the computational
efficiency of the algorithm when the sparse Cholesky factorization of M is impossible to
compute for a very large linear system.

Step 2b. Let Rk+1
1 = A∗(yk+1

tmp ) + B∗(ȳk+1
tmp ) + Sk + Zk+1 − C + σ−1Xk. Compute

Sk+1 = argmin
{
δSn+(S) +

σ

2
‖S − Sk +Rk+1

1 ‖2
}

= ΠSn+(Sk −Rk+1
1 ).

Step 2c. Let hnew
1 := h1 −A(Sk+1 − Sk), and hnew

2 := h2 − B(Sk+1 − Sk). Set (yk+1, ȳk+1) =
(yk+1

tmp , ȳ
k+1
tmp ) if

√
σ
∥∥∥[hnew

1 ;hnew
2 ]−M[yk+1

tmp ; ȳk+1
tmp ]

∥∥∥ ≤ 10εk;

otherwise solve (7) with the vector h1 replaced by hnew
1 and h2 replaced by hnew

2 , and the
approximate solution (yk+1, ȳk+1) should satisfy the above accuracy condition.
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Step 3. Let Rk+1
D,1 = A∗(yk+1)+B∗(ȳk+1)+Sk+1 +Zk+1−C and Rk+1

D,2 = vk+1− ȳk+1. Compute

Xk+1 = Xk + τσRk+1
D,1 , s

k+1 = sk + τσRk+1
D,2 ,

where τ ∈ (0, (1 +
√

5)/2) is the steplength which is typically chosen to be 1.618.

We note that by [2], the computation in Step 2a–2c is equivalent to solving the subproblem:

(Sk+1, yk+1, ȳk+1) = argmin

{
Lσ(Zk+1, vk+1, S, y, ȳ;Xk, sk)

+σ
2 ‖(S; y; ȳ)− (Sk; yk; ȳk)‖2H

}
,

where H is the symmetric Gauss-Seidel decomposition linear operator associated with the linear
operator (I;A;B)(I,A∗,B∗) + diag(0, 0, I), i.e.,

H =

 (A∗, B∗)D−1(A;B) 0 0

0 0 0

0 0 0

 with D =

[
AA∗ AB∗
BA∗ BB∗ + I

]
.

There are numerous implementation issues which are addressed in Sdpnal+ to make the
above skeletal algorithm practically efficient and robust. A detailed description of how the issues
are addressed is beyond the scope of this paper. Hence we shall only briefly mention the most
crucial ones.

1. Dynamic adjustment of the penalty parameter σ, which is equivalent to restarting the
algorithm with a new parameter by using the most recent iterate as the initial starting
point.

2. Initial scaling of the data, and dynamic scaling of the data.

3. The efficient implementation of the PCG method to compute an approximate solution for
(7).

4. Efficient computation of the iterate Sk+1 by using partial eigenvalue decomposition when-
ever it is expected to be more economical than a full eigenvalue decomposition.

5. Efficient evaluation of the residual measure η defined in (4).

The algorithm in the second phase of Sdpnal+ is designed based on the following convergent
inexact sPADMM algorithm (or the sPALM algorithm if the bound constraints are absent). After
presenting the algorithm, we will explain the changes we made in this algorithm compared to
that developed in [24].

Second-phase algorithm. Given an initial iterate (Z0, v0, S0, y0, ȳ0, X0, s0) generated in the
first phase, perform the following steps in each iteration.

Step 1. Compute (Zk+1, vk+1) as in Step 1 of the first-phase algorithm.

10



Step 2. Compute

(yk+1, ȳk+1, Sk+1) ≈ argminLσ(Zk+1, vk+1, S, y, ȳ;Xk, sk)

by using the semismooth Newton-CG (SNCG) method which has been described in detail
in [25] such that the following accuracy condition is met:

√
σmax{‖b−AΠSn+(W k+1)‖, ‖BΠSn+(W k+1)− sk + σ(ȳk+1 − vk+1)‖} ≤ εk,

where W k+1 := A∗yk+1 + B∗ȳk+1 + Sk + Zk+1 − C + σ−1Xk, and {εk} is a predefined
summable sequence of nonnegative numbers.

Step 3. Compute (Xk+1, sk+1) as in Step 3 of the first-phase algorithm.

As one may observe, the difference between the first-phase and the second-phase algorithms
lies in the construction of (yk+1, ȳk+1, Sk+1) in Step 2 of the algorithms. In the first phase,
the iterate is generated by adding the semi-proximal term σ

2 ‖(S; y; ȳ) − (Sk; yk; ȳk)‖2H to the
augmented Lagrangian function Lσ(Zk+1, vk+1, S, y, ȳ;Xk, sk). For the second phase, no such
a semi-proximal term is required though one may still add a small semi-proximal term to the
augmented Lagrangian function to ensure that the subproblems are well defined. As our goal
is to minimize the augmented Lagrangian function Lσ(Z, v, S, y, ȳ;Xk, sk) for each pair of given
(Xk, sk), it is thus clear that Step 2 of the second-phase algorithm is closer to that goal compared
to Step 2 of the first-phase algorithm. Of course, the price to pay is that the subproblem in Step
2 of the second-phase algorithm is more complicated to solve.

Now we highlight the differences between the above inexact sPADMM algorithm and the
majorized semismooth Newton-CG (MSNCG) augmented Lagrangian method developed in [24].
First, the algorithm in [24] is designed to solve (SDP) with only linear equality constraints while
the algorithm here is for the general problem with additional linear inequality constraints. Even
when we specialize the algorithm here to the problem with only linear equality constraints, our
algorithm here is also different from the one in [24] which we will now explain. For the case when
only linear equality constraints are present, the augmented Lagrangian function associated with
the dual of that problem is given by

Lσ(Z, S, y;X) = δ∗P(−Z) + 〈−b, y〉+ δSn+(S) +
σ

2
‖A∗y + S + Z − C + σ−1X‖2 − 1

2σ
‖X‖2.

At the kth iteration of the MSNCG augmented Lagrangian method, the following subproblem
must be solved:

min
y,S,Z

{
Lσ(Z, S, y;Xk)

}
,

and theoretically it is solved by the MSNCG method until a certain stopping condition is satis-
fied. However, in the practical implementation, only one step of the MSNCG method is applied
to solve the subproblem and the stopping condition is not strictly enforced. Thus there is a gap
between the theoretical algorithm and the practical algorithm implemented in [24]. But for the
convergent inexact sPADMM algorithm employed in this paper, its practical implementation
follows closely the steps described in the second-phase algorithm. Thus the practical algorithm
presented in this paper is based on rigorous stopping conditions in each iteration to guarantee
its overall convergence.

11



4 Interface

In this section, we will present a basic interface for our Sdpnal+ solver. First, we show how to
use it via a small SDP example given as follows:

min trace(X(1)) + trace(X(2)) + sum(X(3))

s.t. −X(1)
12 + 2X

(2)
33 + 2X

(3)
2 = 4,

2X
(1)
23 +X

(2)
42 −X

(3)
4 = 3,

2 ≤ −X(1)
12 − 2X

(2)
33 + 2X

(3)
2 ≤ 7,

X(1) ∈ S6
+, X

(2) ∈ R5×5, X(3) ∈ R7
+,

0 ≤ X(1) ≤ 10E6, 0 ≤ X(2) ≤ 8E5,

(8)

where En denotes the n×n matrix of all ones. In the notation of (1), the problem (8) has three
blocks of variables X(1), X(2), X(3). The first linear map A(1) contains two constraint matrices

A
(1)
1 , A

(1)
2 ∈ S6 whose nonzero elements are given by

(A
(1)
1 )12 = (A

(1)
1 )21 = −0.5, (A

(1)
2 )23 = (A

(1)
2 )32 = 1.

With the above constraint matrices, we get 〈A(1)
1 , X(1)〉 = −X(1)

12 and 〈A(1)
2 , X(1)〉 = 2X

(1)
23 .

The second linear map A(2) contains two constraint matrices A
(2)
1 , A

(2)
2 ∈ R5×5 whose nonzero

elements are given by

(A
(2)
1 )33 = 2, (A

(2)
2 )42 = 1.

Since the third variable X(3) is a vector, the third linear map A(3) is a constraint matrix A(3) ∈
R2×7 whose nonzero elements are given by

(A(3))12 = 2, (A(3))24 = −1.

In a similar fashion, one can identify the matrices for the linear maps B(1),B(2), and B(3).
The example (8) can be coded using our interface as follows:

Listing 1: Example (8).

1 n1 = 6; n2 = 5; n3 = 7;

2 mymodel = ccp_model(’Example_simple ’);

3 X1 = var_sdp(n1,n1);

4 X2 = var_nn(n2,n2);

5 X3 = var_nn(n3);

6 mymodel.add_variable(X1 ,X2 ,X3);

7 mymodel.minimize(trace(X1) + trace(X2) + sum(X3));

8 mymodel.add_affine_constraint(-X1(1,2)+2*X2(3,3)+2*X3(2) == 4);

9 mymodel.add_affine_constraint (2*X1(2,3)+X2(4,2)-X3(4) == 3);

10 mymodel.add_affine_constraint (2<=-X1(1,2) -2*X2(3,3)+2*X3(2) <=7);

11 mymodel.add_affine_constraint (0 <= X1 <= 10);

12 mymodel.add_affine_constraint(X2 <= 8);

13 mymodel.solve;

Note that although the commands
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mymodel.add_affine_constraint(-X1(1,2)+2*X2(3,3)+2*X3(2)==4);

mymodel.add_affine_constraint(2*X1(2,3)+X2(4,2)-X3(4)==3);

are convenient to use for a small example, it may become tedious if there are many such con-
straints. In general, it is more economical to encode numerous such constraints by using the
constraint matrices of the linear maps A(1), A(2), A(3), which we illustrate below:

Listing 2: Example (8) with constraints specified via linear maps as cell arrays.

1 A1 = {sparse(n1,n1); sparse(n1,n1)}; A2 = {sparse(n2,n2); sparse(n2,n2)};

2 A3 = sparse(2,n3);

3 A1{1}(1 ,2) = -1; A2{1}(3 ,3) = 2; A3(1,2) = 2; % -X1(1,2)+2*X2(3,3)+2*X3(2)

4 A1{2}(2 ,3) = 2; A2{2}(4 ,2) = 1; A3(2,4) = -1; % 2*X1(2,3)+X2(4,2)-X3(4)

5 b = [4;3];

6 mymodel.add_affine_constraint(A1*X1 + A2*X2 + A3*X3 == b);

As the reader may have noticed, in constructing the matrix A1{1} corresponding to the constraint

matrix A
(1)
1 , we set A1{1}(1,2) = -1 instead of A1{1}(1,2) = -0.5; A1{1}(2,1) = -0.5.

Both ways of inputing A1{1} are acceptable as internally, we will symmetrize the matrix A1{1}.
In following subsections, we will discuss the details of the interface.

4.1 Creating a ccp model

Before declaring variables, constraints and setting parameters, we need to create a ccp model

class first. This is done via the command:

mymodel = ccp model(model name);

The string model name is the name of the created ccp model. If no model name is specified, the
default name is ‘Default’.

After solving the created mymodel, we save all the relevant information in the file ‘model name.mat’.
It contains two structure arrays, input data and solution, which store all the input data and
solution information, respectively.

4.2 Delcaring variables

Variables in Sdpnal+ can be real vectors or matrices. Currently, our interface supports four
types of variables: free variables, variables in SDP cones, nonnegative variables and variables
which are symmetric matrices. Next, we introduce them in details.

1. Free variables. One can declare a free variable X ∈ Rm×n via the command:

X = var free(m,n);

where the parameters m and n specify the dimensions of X. One can also declare a column
vector variable Y ∈ Rn simply via the command:

Y = var free(n);
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2. Variables in SDP cones. A variable X ∈ Sn+ can be declared via the command:

X = var sdp(n,n);

In this case, the variable must be a square matrix, so X = var sdp(m,n) with m 6= n is
invalid.

3. Variables in nonnegative orthants. To declare a nonnegative variable X ∈ Rm×n+ , one
can use the command:

X = var nn(m,n);

We can also use Y = var nn(n) to declare a vector variable Y ∈ Rn+.

4. Variables which are symmetric matrices. To declare a symmetric matrix variable
X ∈ Sn, one can use the command:

X = var symm(n,n);

In this case, the variable must be a square matrix.

5. Adding declared variables into a model. Before one can start to specify the objective
function and constraints in a model, the variables, say X and Y, that we have declared
must be added to the ccp model class mymodel that we have created before. This step is
simply done via the command:

mymodel.add variable(X,Y);

Here mymodel is a class object and add variable is a method in the class.

4.3 Declaring the objective function

After creating the model mymodel, declaring variables (say X and Y) and adding them into
mymodel, we can proceed to specify the objective function. Declaring an objective function
requires the use of the functions (methods) minimize or maximize. There must be one and
only one objective function in a model specification. In general, the objective function is specified
through the sum or difference of the inprod function (inner product of two vectors or two
matrices) which must have two input arguments in the form: inprod(C,X) where X must be a
declared variable, and C must be a constant vector or matrix which is already available in the
workspace and having the same dimension as X. The input C can also be a constant vector or
matrix generated by some Matlab built-in functions such as speye(n,n).

Although we encourage users to specify an optimization problem in the standard form given
in (1), as a user-friendly interface, we also provide some extra functions to help users to specify
the objective function in a more natural way. We summarize these functions and their usages
in Table 1.

For the class mymodel created in Listing 1, we can see that the objective function of (8) is
specified via the command:

mymodel.minimize(trace(X1) + trace(X2) + sum(X3));
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Function Description

inprod(C, X) The inner product of a constant vector or matrix C and variable X

of the same dimension.

trace(X) The trace of a square matrix variable X.

sum(X) The sum of all elements of a vector or matrix variable X.

l1 norm(X) The `1 norm of a variable X.

l1 norm(A∗X +b) The `1 norm of an affine expression. For the exact meaning of the
expression “A∗X”, the reader can refer to (10).

Table 1: Supported functions for specifying the objective function in a model.

4.4 Adding affine constraints into the model

Affine constraints can be specified and added into mymodel after the relevant variables have
been declared. This is done via the function (method) add affine constraint. The following
constraint types are supported in the interface:

• Equality constraints ==

• Less-or-equal inequality constraints <=

• Greater-or-equal inequality constraints >=

where the expressions on both the left and right-hand sides of the operands must be affine
expressions. Strict inequalities < and > are not accepted. Inequality and equality constraints
are applied in an elementwise fashion, matching the behavior of Matlab itself. For instance,
if U and X are m × n matrices, then X <= U is interpreted as mn (scalar) inequalities X(i,j)

<= U(i,j) for all i = 1, . . . ,m, j = 1, . . . , n. When one side is a scalar and the other side is
a variable, that value is replicated; for instance, X >= 0 is interpreted as X(i,j) >= 0 for all
i = 1, . . . ,m, j = 1, . . . , n.

In general, affine constraints have the following form

A1 ∗ X1 +A2 ∗ X2 + · · ·+Ak ∗ Xk <= (>= or ==) b, (9)

where X1, X2, . . . , Xk are declared variables, b is a constant matrix or vector, and A1,A2, . . . ,Ak
are linear maps whose descriptions will be given shortly.

Next, we illustrate how to add affine constraints into the model object mymodel in detail.

4.4.1 General affine constraints

In this section, we show users how to initialize the linear maps A1, A2, . . . , Ak in (9).

• If Ai = ai, is a scalar, then ai ∗ Xi has the same dimension as the variable Xi.

• If Xi is an n-dimensional vector, then Ai must be a p× n constant matrix, and Ai ∗ Xi is
in Rp.

15



• If Xi is an m× n (n > 1) matrix, then Ai ∗ Xi is interpreted as a linear map such that

Ai ∗ Xi =

 〈A
(i)
1 , Xi〉

...

〈A(i)
p , Xi〉

 ∈ Rp, (10)

where A
(i)
1 , . . . , A

(i)
p are given m×n constant matrices. In this case, Ai is a p× 1 constant

cell array such that

Ai{j} = A
(i)
j , j = 1, . . . , p.

4.4.2 Coordinate-wise affine constraints

Although users can model coordinate-wise affine constraints in the general form given in (9), we
allow users to declare them in a more direct way as follows:

a1 ∗ X1(i1, j1) + a2 ∗ X2(i2, j2) + · · ·+ ak ∗ Xk(ik, jk) <= (>= or ==) b, (11)

where a1, a2, . . . , ak, b are scalars and X1, X2, . . . , Xk are declared variables. The index pairs
(i1, j1), (i2, j2), . . . , (ik, jk) extract the corresponding elements in the variables. From Listing 1,
we can see how a constraint of the form (11) is added, i.e.,

mymodel.add affine constraint(2 ∗ X1(2, 3) + X2(4, 2)− X3(4) == 3)

Our interface also allows users to handle multiple index pairs. For example, if we have a
declared variable X ∈ Rm×n and two index arrays

I = [i1, i2, . . . , ik], J = [j1, j2, . . . , jk],

where max{i1, i2, . . . , ik} ≤ m and max{j1, j2, . . . , jk} ≤ n, then X(I, J) is interpreted as

X(I, J) =


X(i1, j1)
X(i2, j2)

...
X(ik, jk)

 ∈ Rk.

An example of such a usage can be found in Listing 9.

4.4.3 Element-wise multiplication

In our interface, we also support element-wise multiplication (.∗) between a declared variable X

and a constant matrix A with the same dimension. Suppose

X =

X11 · · · X1n
...

. . .
...

Xm1 · · · Xmn

 , A =

A11 · · · A1n
...

. . .
...

Am1 · · · Amn

 .
Then A. ∗ X is interpreted as

A. ∗ X =

A11 ∗ X11 · · · A1n ∗ X1n
...

. . .
...

A11 ∗ Xm1 · · · Amn ∗ Xmn

 .
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4.4.4 Specifying affine constraints using predefined maps

For convenience, we also provide some predefined maps to help users to specify constraints in a
more direct way. We summarize these maps and their usages in Table 2.

Function Description Dimension

inprod(C, X) The inner product of a constant vector or matrix
C and a variable X of the same dimension.

1× 1

trace(X) The trace of a square matrix variable X. 1× 1

sum(X) The sum of all elements of a vector or matrix
variable X.

1× 1

l1 norm(X) The `1 norm of a variable X. 1× 1

l1 norm(A*X + b) The `1 norm of an affine expression. 1× 1

map diag(X) Extract the main diagonal of an n × n matrix
variable X.

n× 1

map svec(X) For an n×n symmetric variable X, it returns the
corresponding symmetric vectorization of X, as
defined in (3).

n(n+1)
2 × 1

map vec(X) For a m × n matrix variable X, it returns the
vectorization of X.

mn× 1

Table 2: Supported predefined maps.

4.4.5 Chained constraints

In our interface, one can add chained inequalities into the created ccp model mymodel. In
general, chained affine constraints have the form

L <= A1 ∗ X1 +A2 ∗ X2 + · · ·+Ak ∗ Xk <= U,

where L and U are scalars or constant matrices with having the same dimensions as the affine
expression in the middle. As an example, one can add bound constraints for a declared variable
X via the command:

mymodel.add affine constraint(L <= X <= U);

It is important to note that in chained inequality constraints, the affine expression in the middle
should only contain declared variables but not constants.

4.5 Adding positive semidefinite constraints into the model

Positive semidefinite constraints can be added into a previously created object mymodel using the
function (method) add psd constraint. Such a constraint is valid only for a declared symmetric
variable or positive semidefinite variable. In general, a positive semidefinite constraint has the
form

a1 ∗ X1 + a2 ∗ X2 + · · ·+ ak ∗ Xk � G, (12)
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where a1, a2, . . . , ak are scalars, and X1, X2, . . . , Xk are declared variables in symmetric matrix
spaces or PSD cones, and G is a constant symmetric matrix. Note that one can also have the
version “�” in (12). We can add (12) into mymodel as follows:

mymodel.add psd constraint(a1 ∗ X1 + · · ·+ ak ∗ Xk >= G)

Specially,

• For a variable X ∈ Sn, one can use mymodel.add psd constraint(X>=0) to specify the
constraint X � 0 or X ∈ Sn+.

• For a variable X ∈ Sn and a constant matrix G ∈ Sn. One can use mymodel.add psd constraint(X

>= G) and mymodel.add psd constraint(X <= G) to specify the constraint X � G and
X � G, respectively.

Similar to affine constraints, one can also use chained positive semidefinite constraints together.
For example, for a variable X ∈ Sn and two constant matrices G1, G2 ∈ Sn (G1 � G2), one can
specify G1 � X � G2 as

mymodel.add psd constraint(G1 <= X <= G2);

4.6 Setting parameters for Sdpnal+

As described in Section 2.4, there are mainly nine parameters in the parameter structure ar-
ray OPTIONS. To allow users to set these parameters freely, we provide the function (method)
setparameter for such a purpose. Parameters which are not specified are set to be the default
values described in Section 2.4. Now, we describe the usage of setparameter in details.

Assume that we have created a ccp model class called mymodel. Since setparameter is a
method in the ccp model class, so the usage of setparameter is simply

mymodel.setparameter(‘para name’,value)

In Table 3, we summarize the parameters which can be set in setparameter. Note that users
can set more than one parameters at a time. For example, one can use

mymodel.setparameter(‘tol’, 1e-4, ‘maxiter’, 2000);

to set the parameters tol = 1e-4 and maxiter = 2000.

4.7 Solving a model and extracting solutions

After creating and initializing the class mymodel, one can call the method solve to solve the
model as follow:

mymodel.solve

After solving the SDP problem, one can extract the optimal solutions using the function get value.
For example, if X1 is a declared variable, then one can extract the optimal value of X1 by setting

get value(X1)

Note that the input of the function get value should be a declared variable.
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Parameter Name Usage Default Value

tol mymodel.setparameter(‘tol’, value) 1e-6

maxiter mymodel.setparameter(‘maxiter’, value) 20000

maxtime mymodel.setparameter(‘maxtime’, value) 10000

tolADM mymodel.setparameter(‘tolADM’, value) 1e-4

maxiterADM mymodel.setparameter(‘maxiterADM’, value) 200

printlevel mymodel.setparameter(‘printlevel’, value) 1

stopoption mymodel.setparameter(‘stopoption’, value) 1

AATsolve.method mymodel.setparameter(‘AATsolve.method’, value) ‘direct’

BBTsolve.method mymodel.setparameter(‘BBTsolve.method’, value) ‘iterative’

Table 3: Usage of setparameter.

4.8 Further remarks on the interface

Here we give some remarks to help users to input an SDP problem into our interface more
efficiently.

• If a variable must satisfy a conic constraint, it would be more efficient to specify the conic
constraint when declaring the variable rather than declaring the variable and imposing the
constraint separately. For example, it is better to use X = var nn(m,n) to indicate that
the variable X ∈ Rm×n must be in the cone Rm×n+ rather than separately declaring X =

var free(m,n) followed by setting

mymodel.add affine constraint(X >= 0);

Similarly, if a square matrix variable Y ∈ Sn must satisfy the conic constraint that Y ∈ Sn+,
then it is better to declare it as Y = var sdp(n,n) rather than separately declaring Y =

var free(n,n) followed by setting

mymodel.add psd constraint(Y >= 0);

The latter option is not preferred because we have to introduce extra constraints.

• When there is a large number of affine constraints, specifying them using a loop in Matlab
is generally time consuming. To make the task more efficient, if possible, always try to
model the problem using our predefined functions

5 Examples on building SDP models using our interface

To solve SDP problems using Sdpnal+, the user must input the problem data corresponding
to the form in (P). The file SDPNALplusDemo.m contains a few examples to illustrate how to
generate the data of an SDP problem in the required format. Here we will present a few of those
examples in detail. Note that the user can also store the problem data in either the SDPA or
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SeDuMi format, and then use the m-files to read sdpa.m or sedumi.m to convert the data for
Sdpnal+.

We also illustrate how the SDP problems can be coded using our basic interface.

5.1 SDPs arsing from the nearest correlation matrix problems

To obtain a valid nearest correlation matrix (NCM) from a given incomplete sample correlation
matrix G ∈ Sn, one version of the NCM problem is to consider solving the following SDP:

(NCM) min
{
‖H ◦ (X −G)‖1 | diag(X) = e, X ∈ Sn+

}
,

where H ∈ Sn is a nonnegative weight matrix and “◦” denotes the elementwise product. Here
for any M ∈ Sn, ‖M‖1 =

∑n
i,j=1 |Mij |.

In order to express (NCM) in the form given in (P), we first write

svec(X)− svec(G) = x+ − x−,

where x+ and x− are two nonnegative vectors in Rn̄ (n̄ = n(n + 1)/2). Then (NCM) can be
reformulated as the following SDP with m = n+ n̄ equality constraints:

min 〈svec(H), x+〉+ 〈svec(H), x−〉
s.t. diag(X) = e,

svec(X)− x+ + x− = svec(G), X ∈ Sn+, x+, x− ∈ Rn̄+.
(13)

Given G,H ∈ Sn, the SDP data for the above problem can be coded for Sdpnal+ as follows.

Listing 3: Generating the Sdpnal+ data for the NCM problem (13).

1 blk{1,1} = ’s’; blk{1,2} = n;

2 n2 = n*(n+1) /2;

3 II = speye(n2); hh = svec(blk(1,:),H);

4

5 for k=1:n; Acell{k} = spconvert ([k,k,1;n,n,0]); end

6 Atmp = svec(blk(1,:),Acell ,1);

7 At{1,1} = [Atmp{1}, II];

8 At{2,1} = [sparse(n,n2), sparse(n,n2); -II, II]’;

9

10 b = [ones(n,1); svec(blk(1,:),G)];

11 C{1,1} = sparse(n,n); C{2,1} = [hh; hh];

For more details, see the m-file NCM.m in the subdirectory /util.
Next, we show how to use our interface to solve the nearest correlation matrix problem

(NCM). Given a data matrix G ∈ Sn, we can solve the corresponding NCM problem using our
interface as follows.

Listing 4: Solving a NCM problem with our interface.

1 n = 100;

2 G = randn(n,n); G = 0.5*(G + G’);

3 H = rand(n); H = 0.5*(H+H’);

20



4 model = ccp_model(’Example_NCM ’);

5 X = var_sdp(n,n);

6 model.add_variable(X);

7 model.minimize(l1_norm(H.*X - H.*G));

8 model.add_affine_constraint(map_diag(X) == ones(n,1));

9 model.setparameter(’tol’, 1e-6, ’maxiter ’, 2000);

10 model.solve;

11 Xval = get_value(X);

12 dualinfo = get_dualinfo(model);

The last two lines in Listing 4 illustrate how we can extract the numerical value of the
variable X and also the corresponding dual variables. Observe that with the help of our interface,
users can input the problem into our solver very easily; see Example NCM.m for more details.

5.2 SDP relaxations of the maximum stable set problems

Let G be an undirected graph with n nodes and edge set E . Its stability number, α(G), is the
cardinality of a maximal stable set of G, and it can be expressed as

α(G) := max{eTx : xixj = 0, (i, j) ∈ E , x ∈ {0, 1}n},

where e ∈ Rn is the vector of all ones. It is known that computing α(G) is NP-hard. But an
upper bound θ(G), known as the Lovász theta number [8], can be computed as the optimal
value of the following SDP problem:

θ(G) := max
{
〈eeT , X〉

∣∣∣ 〈Eij , X〉 = 0 ∀ (i, j) ∈ E , 〈I, X〉 = 1, X ∈ Sn+
}
, (14)

where Eij = eie
T
j + eje

T
i and ei denotes the ith standard unit vector of Rn. One can further

tighten the upper bound to get α(G) ≤ θ+(G) ≤ θ(G), where

θ+(G) := max
{
〈eeT , X〉

∣∣∣ 〈Eij , X〉 = 0 ∀ (i, j) ∈ E , 〈I, X〉 = 1, X ∈ Sn+, X ≥ 0
}
. (15)

In the subdirectory /datafiles of Sdpnal+, we provide a few SDP problems with data stored
in the in SDPA or SeDuMi format, arising from computing θ(G) for a few graph instances.
The segment below illustrates how one can solve the SDP problem, theta8.dat-s, to compute
θ+(G):

>> [blk,At,C,b] = read_sdpa(’theta8.dat-s’);

>> L = 0;

>> [obj,X,s,y,S,Z,ybar,v,info,runhist] = sdpnalplus(blk,At,C,b,L);

To compute θ(G), one can simply set L = [] to indicate that there is no lower bound constraint
on X. In Listing 5, we illustrate how to use our interface to solve the θ+ problem (15).

Listing 5: Solving the θ+ problem (15) using our interface.

1 load theta6.mat

2 [IE ,JE] = find(triu(G,1));

3 n = length(G);

4 model = ccp_model(’Example_theta ’);

5 X = var_sdp(n,n);
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6 model.add_variable(X);

7 model.maximize(sum(X));

8 model.add_affine_constraint(trace(X) == 1);

9 model.add_affine_constraint(X(IE ,JE) == 0);

10 model.add_affine_constraint(X >= 0);

11 model.solve;

5.3 SDPs arising from the frequency assignment problems

Given a network represented by a graph G with n nodes and an edge set E together with an
edge-weight matrix W , a certain type of frequency assignment problem on G can be relaxed into
the following SDP (see [1, eq. (5)]):

(FAP) max 〈(k−1
2k )L(G,W )− 1

2Diag(We), X〉
s.t. diag(X) = e, X ∈ Sn+,

〈−Eij , X〉 = 2/(k − 1) ∀ (i, j) ∈ U ⊆ E ,
〈−Eij , X〉 ≤ 2/(k − 1) ∀ (i, j) ∈ E \ U ,

(16)

where k > 1 is a given integer, U is a given subset of E , L((G,W ) := Diag(We) −W is the
Laplacian matrix, Eij = eie

T
j + eje

T
i . Note that (16) is equivalent to

max 〈(k−1
2k )L(G,W )− 1

2Diag(We), X〉
s.t. diag(X) = e, X ∈ Sn+, L ≤ X ≤ U,

(17)

where

Lij =

{
− 1
k−1 ∀(i, j) ∈ E ,
−∞ otherwise,

Uij =

{
− 1
k−1 ∀(i, j) ∈ U ,
∞ otherwise.

Next, we show how to use our interface to solve the SDP problem (16). Assume that we
have already computed the constant matrix C := (k−1

2k )L(G,W )− 1
2Diag(We) and saved it as C

in the current workspace. Suppose IU, JU are two single column arrays storing the index pairs
(i, j) corresponding to U , and IE, JE are two single column arrays storing the index pairs (i, j)
corresponding to E . Assume that IU, JU, IE, JE, n, kpara are already stored in the current
workspace. We can build the ccp model for (16) using our interface as follows. More details can
be seen in Example FAP.m.

Listing 6: Solving the FAP (16) using our interface.

1 model = ccp_model(’Example_FAP ’);

2 X = var_sdp(n,n);

3 model.add_variable(X);

4 model.maximize(inprod(C,X));

5 model.add_affine_constraint(map_diag(X) == ones(n,1));

6 const = -1/(kpara -1);

7 model.add_affine_constraint(X(IU ,JU) == const);

8 model.add_affine_constraint(X(IE ,JE) >= const);

9 model.solve;
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One can also solve (FAP) using the equivalent formulation specified in (17). Assume that
the matrices L, U, C and n have been computed in the current workspace, we can input the SDP
problem (17) into our interface based on the above equivalent form as follows.

Listing 7: Solving the reformulated FAP (17).

1 model = sdp_model(’Example_FAP2 ’);

2 X = var_sdp(n,n);

3 model.add_variable(X);

4 model.maximize(inprod(C,X));

5 model.add_affine_constraint(map_diag(X) == ones(n,1));

6 model.add_affine_constraint(L <= X <= U);

7 model.solve;

5.4 SDPs arising from Euclidean distance matrix problems

Consider a given undirected graph G with n nodes and edge set E . Let D = (dij) ∈ Sn be a
matrix whose elements are such that dij > 0 if (i, j) ∈ E , and dij = 0 if (i, j) 6∈ E . We seek
points x1, x2, . . . , xn in Rd such that ‖xi − xj‖ is as close as possible to dij for all (i, j) ∈ E . In
particular, one may consider minimizing the L1-error as follows:

min
{∑

(i,j)∈E |d2
ij − ‖xi − xj‖2| − α

2n

∑n
i,j=1 ‖xi − xj‖2 |

∑n
i=1 xi = 0, x1, . . . , xn ∈ Rd

}
,

where the equality constraint is introduced to put the center of mass of the points at the
origin. The second term in the objective function is introduced to achieve the effect of spreading
out the points instead of crowding together, and α is a given nonnegative parameter. Let
X = [x1, . . . , xn] ∈ Rd×n. Then ‖xi − xj‖2 = eTijX

TXeij , where eij = ei − ej . The above
nonconvex problem can be rewritten as (for more details, see [6]):

min
{∑

(i,j)∈E |d2
ij − 〈eijeTij , Y 〉| − α〈I, Y 〉 | 〈E, Y 〉 = 0, Y = XTX, X ∈ Rd×n

}
.

By relaxing the nonconvex constraint Y = XTX to Y ∈ Sn+, we obtain the following SDP
problem:

min
∑

(i,j)∈E x
+
ij + x−ij − α〈I, Y 〉

s.t. 〈eijeTij , Y 〉 − x
+
ij + x−ij = d2

ij ∀ (i, j) ∈ E ,

〈E, Y 〉 = 0,

Y ∈ Sn+, x+
ij , x

−
ij ≥ 0 ∀ (i, j) ∈ E .

(18)

Note that the number of the equality constraints in (18) is |E| + 1, and that the problem does
not satisfy the Slater’s condition because of the constraint 〈E, Y 〉 = 0. The problem (18) is
typically highly degenerate and the optimal solution is not unique, which may result in high
sensitivity to small perturbations in the data matrix D. Hence, the problem (18) can usually
only be solved by Sdpnal+ to a moderate accuracy tolerance, say OPTIONS.tol = 10−4. Given
the data matrix D ∈ Sn, and let m = |E|, the SDP data for (18) can be coded as follows:
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Listing 8: Generating the Sdpnal+ data for the EDM problem (18).

1 blk{1,1} = ’s’; blk{1,2} = n;

2 Acell = cell(1,m+1); b = zeros(m+1,1); cnt = 0;

3 for i = 1:n

4 for j = 1:n

5 if (D(i,j) ~= 0)

6 cnt = cnt + 1;

7 Acell{cnt} = spconvert ([i,i,1; i,j,-1; j,i,-1; j,j,1; n,n,0]);

8 b(cnt) = D(i,j)^2;

9 end

10 end

11 end

12 Acell{m+1} = ones(n);

13 At(1) = svec(blk(1,:),Acell); C{1,1} = -alpha*speye(n,n);

14 blk{2,1} = ’l’; blk{2,2} = 2*m;

15 At{2,1} = [-speye(m), speye(m); sparse (1,2*m)]’; C{2,1} = ones (2*m,1);

Next, we show how to solve the EDM problem (18) using our interface. Assume that we
have generated the data matrix D ∈ Sn such that Dij = dij for all (i, j) ∈ E , and stored it in
data randEDM.mat together with a given α . As mentioned above, we set the accuracy tolerance
to solve the problem as 1e-4. Now we can input the SDP problem into our interface as follows.

Listing 9: Solving the EDM problem (18) using our interface.

1 load data_randEDM;

2 [ID , JD , val] = find(D);

3 dd = val .^2;

4 n1 = length(D);

5 n2 = length(ID);

6

7 model = ccp_model(’Example_EDM ’);

8 X1 = var_nn(n2 ,1);

9 X2 = var_nn(n2 ,1);

10 Y = var_sdp(n1,n1);

11 model.add_variable(X1 ,X2 ,Y);

12 model.minimize(sum(X1) + sum(X2) - alpha*trace(Y));

13 model.add_affine_constraint(Y(ID ,ID)+Y(JD ,JD)-Y(ID ,JD)-Y(JD ,ID) -X1 +X2 == dd

);

14 model.add_affine_constraint(sum(Y) == 0);

15 model.setparameter(’tol’, 1e-4, ’maxiter ’, 2000);

16 model.solve;

5.5 SDPs arising from quadratic assignment problems

Let Π be the set of n × n permutation matrices. Given matrices A,B ∈ Rn×n, the associated
quadratic assignment problem (QAP) is given by

v∗QAP := min{〈X, AXB〉 : X ∈ Π}. (19)

For a matrix X = [x1, . . . , xn] ∈ Rn×n, we will identify it with the n2-dimensional vector
x = [x1; . . . ;xn]. For a matrix Y ∈ Rn2×n2

, we let Y ij be the n×n block corresponding to xix
T
j
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in the matrix xxT . It is shown in [13] that v∗QAP is bounded below by the following number:

v := min 〈B ⊗A, Y 〉
s.t.

∑n
i=1 Y

ii = I, 〈I, Y ij〉 = δij ∀ 1 ≤ i ≤ j ≤ n,
〈E, Y ij〉 = 1, ∀ 1 ≤ i ≤ j ≤ n,
Y � 0, Y ≥ 0,

(20)

where E is the matrix of ones, and δij = 1 if i = j, and 0 otherwise. Note that there are
3n(n + 1)/2 equality constraints in (20). But two of them are actually redundant, and we
remove them when solving the standard SDP generated from (20).

Now, we show an example of solving the SDP relaxation of the QAP problem ’chr12a’ via
our interface.

Listing 10: Solving the SDP relaxation of a QAP with our interface.

1 problem_name = ’chr12a ’;

2 [A, B] = qapread(strcat(problem_name , ’.dat’));

3 %% Construct C

4 Ascale = max(1, norm(A, ’fro’));

5 Bscale = max(1, norm(B, ’fro’));

6 A = A/Ascale; B = B/Bscale;

7 C = kron(B, A); C = 0.5*(C + C’);

8 nn = length(C);

9 n = length(A);

10

11 model = ccp_model(problem_name);

12 Y = var_sdp(nn, nn);

13 model.add_variable(Y);

14 model.minimize(inprod(C, Y));

15 model.add_affine_constraint(Y >= 0);

16 II = speye(n); EE = ones(n);

17 for i = 1:n-1

18 for j = i:n

19 Eij = sparse(i,j,1,n,n);

20 if (i==j) const = 1; else , const = 0; end

21 model.add_affine_constraint(inprod(kron(II ,Eij), Y) == const);

22 model.add_affine_constraint(inprod(kron(Eij ,II), Y) == const);

23 model.add_affine_constraint(inprod(kron(Eij ,EE), Y) == 1);

24 end

25 end

26 model.add_affine_constraint(inprod(kron(II ,sparse(n,n,1,n,n)), Y) == 1);

27 model.setparameter(’maxiter ’, 5000);

28 model.solve;

5.6 Comparison of our basic interface with CVX and YALMIP

As mentioned in the Introduction, our new interface is motivated by the need to facilitate the
modeling of an SDP problem for Sdpnal+ to directly accept inequality constraints of the form
“l ≤ B(X) ≤ u”, and bound constraints of the form “L ≤ X ≤ U” in addition to equality
constraints of the form “A(X) = b”.
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For the interfaces CVX [4] and YALMIP [9], one will need to first reformulate a problem with
the above mentioned inequality constraints into the standard primal SDP form (for interior-point
solvers) by converting the inequality constraints into equality constraints through introducing
extra nonnegative variables as follows:

B(X)− s(1) = l, B(X) + s(2) = u, X −X(1) = L, X +X(2) = U,

s(1) ≥ 0, s(2) ≥ 0, X(1) ≥ 0, X(2) ≥ 0.

The above conversion not only will add significant overheads when generating the SDP data
in CVX or YALMIP, a much more serious computational issue is that it has created a large
number of additional equality constraints in the formulation which would cause huge computa-
tional inefficiency when solving the problem. Moreover, the large number of additional equality
constraints introduced will likely make the SDP solver to encounter various numerical difficulties
when solving the resulting SDP problem.

In Table 4, we present the relevant information for the SDP data generated by various
interfaces for the QAP problem (20) with matrices A,B of dimensions n × n. As one can
observe, CVX took an exceeding long time to generate the data compared to YALMIP and
Sdpnal+. When the problem dimension n becomes larger, the ratio of the times taken by
YALMIP and Sdpnal+ to generate the data also grows larger, and the ratio is more than 13
for n = 20. More alarmingly, the number of equality constraints generated by CVX or YALMIP
is exceedingly large. For n = 20, the ratio of the number of equality constraints generated
by YALMIP and Sdpnal+ is more than 255 (≈ 160400/628) times. Such a huge number of
equality constraints generated by CVX or YALMIP is fatal for the computational efficiency of
interior-point solvers, and also disadvantageous for Sdpnal+.

6 Summary of the numerical performance of Sdpnal+

We have tested our solver Sdpnal+ on 745 SDP instances arising from various sources, namely,

1. 65 instances of DNN (doubly nonnegative) relaxation of maximum stable set problems
from [17, 14, 19];

2. 14 instances of SDP relaxation of frequency assignment problems (FAPs) [3];

3. 94 instances of DNN relaxation of quadratic assignment problems (QAPs) [5];

4. 165 instances of DNN relaxation of binary quadratic integer programming (BIQ) problems
[22];

5. 120 instances of DNN relaxation of clustering problems [12];

6. 165 instances of DNN relaxation of BIQ problems with additional valid inequalities [16];

7. 65 instances of SDP relaxation of maximum stable set problems from [17, 14, 19];

8. 57 instances of SDP relaxation of best rank-one tensor approximation problems [11].
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Table 4: Time taken (in seconds) to generate the SDP data (and the corresponding problem
sizes) by various interfaces for the QAP problem (20) with matrices A,B of dimension n×n. Here
m is the final number of equality constraints in the generated SDP data, sblk is the dimension
of the positive semidefinite matrix block, lblk is the dimension of the nonnegative vector, ublk
is the dimension of the unrestricted vector.

n CVX YALMIP Sdpnal+

10 9.22 2.55 0.49

m = 5213
sblk = 100,
lblk = 5050

m = 10100
sblk = 100
lblk = 5050
ublk = 10163

m = 163
sblk = 100,
lblk = 5050

15 448 3.52 0.67

m = 25783
sblk = 225,
lblk = 25425

m = 50850
sblk = 225
lblk = 25425
ublk = 50983

m = 358
sblk = 225
lblk = 25425

20 9.86 0.73

took too long to run

m = 160400
sblk = 400
lblk = 80200
ublk = 160628

m = 628
sblk = 400
lblk = 80200

In total there are 623 SDP problems with simple polyhedral bound constraints on the matrix
variable in addition to other linear constraints, and 122 standard SDP problems. The complete
numerical results are available at

http://www.math.nus.edu.sg/~mattohkc/papers/SDPNALPtable-2017-Dec-18.pdf

Note that the results are obtained on a desktop computer having the following specification: Intel
Xeon CPU E5-2680v3 @2.50 GHz with 12 cores, and 128GB of RAM. The extensive numerical
experiments show that our Sdpnal+ solver is quite efficient and robust, in that it is able to
solve 98.9% of the 745 instances of SDP problems arising from various applications listed above
to the accuracy of less than 1.5× 10−6 in the relative KKT residual η defined in (4).

In Figure 1, we plot the time T taken to solve a subset of 707 tested instances (with
computation time of over one second each) versus the estimated times Trg = 0.00274 (m +
p)0.220 n1.357, obtained based on the regression log10(T ) ≈ log10(κ) +α log10(m+p) +β log10(n).
From the graph, one can observe that Trg can estimate the actual time taken to within a factor
of about 20 for a given (m + p, n). If we contrast the dependent of Trg on (m + p, n) with the
O((m+ p)2n2) +O((m+ p)n3) +O((m+ p)3) time complexity in an interior-point method such
as those implemented in SDPT3 or SeDuMi, then we can immediately observe that the time
complexity of Sdpnal+ is much better. In particular, the dependence on the number of linear
constraints is only (m+p)0.22 for a given matrix dimension n. This also explains why our solver
can be so efficient in solving an SDP problem with a large number of linear constraints.

In Table 5, we give a summary of the numerical results obtained for the subset of 707 SDP
problems mentioned in the last paragraph. Note that in the table, m + p is the total number
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Figure 1: Time T taken to solve 707 SDP instances versus the times estimated based on regres-
sion Trg = 0.00274 (m+ p)0.220 n1.357.

of linear constraints as specified by A and B. The simple polyhedral bound constraints on the
matrix variable are not counted in m+ p. Thus even if m+ p is a modest number, say less than
1000, the number of actual polyhedral constraints in the problem can still be large. Observe
that across each row in the table, the average time taken to solve the problems with different
number of linear constraints does not depend strongly on m+ p. However, across each column
in the table, the dependence of the average time taken to solve the problems on the matrix
dimension n is more significant, but it is still much weaker than the cubic exponent dependent
on the matrix dimension.

7 Conclusion and future works

Sdpnal+ is designed to be a general purpose software for solving large scale SDP problems with
bound constraints as well as having a large number of equality and/or inequality constraints.
The solver has been demonstrated to be fairly robust and highly efficient in solving various
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Table 5: Summary of numerical results obtained by Sdpnal+ in solving 707 SDP problems
(each with the computation time of more than one second). In each cell, the first number is
the number of problems solved, and the second number is the average time taken to solve the
problems. Here K means a thousand.

m + p ≤ 1K (1K, 4K] (4K, 16K] (16K, 64K] (64K, 256K] (256K, 1024K] > 1024K

n ≤ 100
36
2.04

16
2.16

11
8.74

100 < n ≤ 200
101
6.29

4
9.48

43
25.67

43
61.57

200 < n ≤ 400
127
29.17

8
14.07

15
3.88

40
95.25

20
269.95

400 < n ≤ 800
44
134.97

14
603.19

8
55.52

16
34.75

14
22.62

15
2067.98

800 < n ≤ 1600
10
168.62

56
871.80

22
496.73

7
115.58

10
250.14

5
172.92

1600 < n ≤ 3200
1
2672.64

8
2867.77

1
439.11

5
2291.35

1
966.32

n > 3200
1
12817.94

5
11512.53

classes of SDP problems arising from the relaxation of combinatorial optimization problems
such as maximum stable set problems, quadratic assignment problems, frequency assignment
problems, binary quadratic integer programming problems. It has also worked well on SDP
problems arising from the relaxation of robust clustering problems, rank-one tensor approxi-
mation problems, as well as problems arising from electronic structure calculations in quantum
chemistry.

Our solver is expected to work well on nondegenerate well-posed SDP problems, but much
more future work must be done to make the solver to work well on degenerate and/or ill-posed
problems. Currently our solver is not catered to problems with SOCP or exponential cone
constraints. As an obvious extension, we are currently extending the solver to handle problems
with the aforementioned cone constraints.

We have also designed a basic user friendly interface for the user to input their SDP model
into the solver. One of our future works is to expand the flexibility and capability of the interface
such as the ability to handle Hermitian matrices.
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