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ABSTRACT

Variable selection is one of the most important tasks in statis-
tics and machine learning. To incorporate more prior infor-
mation about the regression coefficients, various constrained
Lasso models have been proposed in the literature. Compared
with the classic (unconstrained) Lasso model, the algorithmic
aspects of constrained Lasso models are much less explored. In
this paper, we demonstrate how the recently developed semis-
mooth Newton-based augmented Lagrangian framework can
be extended to solve a linear equality-constrained Lasso model.
A key technical challenge that is not present in prior works is
the lack of strong convexity in our dual problem, which we
overcome by adopting a regularization strategy. We show that
under mild assumptions, our proposed method will converge
superlinearly. Moreover, extensive numerical experiments on
both synthetic and real-world data show that our method can
be substantially faster than existing first-order methods while
achieving a better solution accuracy.

Index Terms— constrained Lasso, augmented Lagrangian,
semismooth Newton, superlinear convergence

1. INTRODUCTION

With the advent of big data era, variable selection has received
great attention in statistics and machine learning. There exist
a host of methods to address this problem, such as Lasso [20],
SCAD [8], elastic net [24] and so on. Benefiting from the
simple formulation and the powerful modeling concerning the
variable selection task, Lasso has been extensively applied in
various instances [2, 3]. In spite of its overwhelming success,
Lasso still suffers from the limited information induced by
l1 norm. To circumvent this issue, researchers proposed the
constrained Lasso model [9, 12] to incorporate more prior
information. Motivated by the above discussions, we propose
an efficient algorithm to tackle the constrained Lasso problem

min
x∈Rn

1

2
‖Ax− b‖2 + λ‖x‖1 s.t. Bx = d, (1)

where b ∈ Rm is the response vector, A ∈ Rm×n is the design
matrix, and B ∈ Rs×n, d ∈ Rs are given constraints.

An important example which falls into the constrained
Lasso problem is Lasso with sum-to-zero constraint, i.e.

eTx = 0. This constraint has been adopted in microbiome
data regression [19] and variable selection [15] where the
covariates come from compositional data. Another example
widely used in statistics is the generalized Lasso problem

min
x∈Rn

1

2
‖Ax− b‖2 + λ‖Dx‖1, (2)

where D ∈ Rp×n. When rank(D) = p and p ≤ n, Tibshirani
[21] has derived that (2) can be transformed into a Lasso
problem. In fact, (2) is a special case of constrained Lasso
with d = 0 [9, 12] when p ≥ n and D has full column rank n.

Our contributions. In this paper, we propose a semis-
mooth Newton augmented Lagrangian method to solve the
constrained Lasso problem. To fully exploit the sparsity struc-
ture, we focus on the dual formulation of our problem and
propose an inexact augmented Lagrangian method. The main
challenge lies in how to solve the subproblem of augmented
Lagrangian method efficiently. To overcome this difficulty,
we apply the semismooth Newton method to solve the inner
subproblem. Our numerical experiments indicate that we only
need tens of outer iterations. For the subproblem, we need
about ten iterations to reach the desired accuracy. Hence, the
total running time is small. The key insights behind this im-
pressive performance are three-fold: (a) Regarding the outer
loop, we have superlinear convergence to achieve highly ac-
curate solution. (b) Besides, we attain fast convergence in the
inner subproblem solver and hence the total iteration number
is still small. (c) When solving the inner subproblem, we
extensively exploit the underlying sparsity structure of the gen-
eralized Hessian in the subproblem (refered to as second-order
sparsity [13]) to greatly reduce the computational cost. In sum-
mary, not only can we prove the theoretical effectiveness of our
algorithm, but also provide highly efficient implementations

2. RELATED WORK

Recently, semismooth Newton augmented Lagrangian method
is attracting more and more attention due to its fast conver-
gence and good experimental performance. Such a method has
been used to tackle semidefinite programming [23], Lasso [13]
and fused Lasso [14] and so on. Our work is closely related
to [13], which proposed a semismooth Newton augmented
Lagrangian method to solve the (standard) Lasso. However,
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Algorithm 1 Inexact ALM for (D)

1: Input: u0, v0, w0, x0.
2: for k = 0, 1, . . . do
3: Get an approximate solution

zk+1 := (uk+1, vk+1, wk+1)

≈ argmin
z:=(u,v,w)

{
Θk(z) := Lσk

(u, v, w;xk)
}
.

(3)

4: Update x by xk+1 = xk − σk(ATuk+1 − BT vk+1 +
wk+1) and update σk+1 ↑ σ∞ ≤ ∞.

5: end for

it is not clear whether the constrained Lasso problem can be
solved by the same method, as it involves multiple nonsmooth
terms including both the `1 norm and linear equality constraint
set. Moreover, unlike the setting considered in [13], our dual
problem is not strongly convex, which hinders fast solution of
the inner subproblem. We circumvent this by using a modi-
fied semismooth Newton method and give the corresponding
convergence analysis.

It should be noted that some first-order methods can also
be applied to solve (1), which includes first-order primal-dual
methods [4], linearized augmented Lagrangian method [22],
and alternating direction method of multipliers (ADMM) [1].
Moreover, three-operator-splitting [7] and proximal-proximal
gradient method [18] are also proposed to handle such kind of
problems with multiple nonsmooth terms.

3. PROBLEM FORMULATION AND AN
AUGMENTED LAGRANGIAN METHOD

We propose an augmented Lagrangian method to solve the
dual of problem (1) in this section. We first derive the dual
problem (D) of our constrained Lasso problem. Our problem
(1) can be written in the following way:

min
x∈Rn
{f(x) = h(Ax) + p(x)} s.t. Bx = d, (P)

where A ∈ Rm×n, B ∈ Rs×n, d ∈ Rs, h(x) = 1
2‖x − b‖

2,
and p(x) = λ‖x‖1. The dual problem of (P) can be written as

min
u∈Rm,v∈Rs,w∈Rn

{g(z) := h∗(u)− 〈v, d〉+ p∗(w)}

s.t. ATu−BT v + w = 0,
(D)

where h∗(u) = 1
2‖u‖

2 + bTu and p∗(w) = I{‖w‖∞≤λ} are
conjugate functions of h and p respectively, I is the indicator
function, and we denote z := (u, v, w).

The augmented Lagrangian function for (D) is given by

Lσ(u, v, w;x) = l(u, v, w;x) +
σ

2
‖ATu−BT v + w‖2,

where l(u, v, w;x) is the Lagrangian function given as
l(z;x) ≡ l(u, v, w;x) := h∗(u)−〈v, d〉+p∗(w)−〈x,ATu−
BT v + w〉. We propose Algorithm 1 to solve (D). For effi-
ciency, we solve the subproblem (3) inexactly. We use one of
the following stopping criteria by Rockafellar [16]:

Θk(zk+1)− inf Θk ≤ ε2k/2σk, (A)

Θk(zk+1)− inf Θk ≤ ζ2k‖xk+1 − xk‖2/2σk, (B)

where
∑∞
k=0 εk <∞ and

∑∞
k=0 ζk <∞.

4. INEXACT SEMISMOOTH NEWTON METHOD TO
SOLVE ALM SUBPROBLEM

The main challenge of solving (D) via the inexact ALM lies
in how to solve the subproblem (3) efficiently. Due to the
nonsmoothness of the subproblem, we propose a semismooth
Newton method to solve ALM subproblem (3) and provide a
highly efficient implementation by exploiting structures.

We first define the proximal mapping associated with p
as Proxp(x) := argminu

{
p(u) + 1

2‖u− x‖
2
}
. For a fixed x

and given σ, we consider
min
y,w

Θ(y, w) := Lσ(y, w;x), (4)

where y = (u, v) ∈ Rm+s, and for convenience we set
h̄∗(y) = h∗(u)− 〈v, d〉. Then, we define θ(y) by
θ(y) = inf

w
Lσ(y, w;x) = h̄∗(y) + p∗

(
Proxp∗/σ(x/σ − ĀT y)

)
+

1

2σ

∥∥Proxσp(x− σ(ĀT y)
∥∥2 − 1

2σ
‖x‖2

= h̄∗(y) + σEp∗/σ(x/σ − ĀT y)− 1

2σ
‖x‖2,

where the last equality follows from the Moreau decompo-
sition, Ep∗/σ is the Moreau envelope of p∗/σ, and Ā =
[AT ,−BT ]T . Hence, if we let (ỹ, w̃) = argmin Θ(y, w),
then (ỹ, w̃) can be computed in the following manner:{

ỹ = argmin θ(y),

w̃ = Proxp∗/σ(x/σ − ĀT ỹ).
(5)

Since the Moreau envelope Ep∗/σ is continuously differen-
tiable [17], θ is a convex continuously differentiable function
in y with

∇θ(y) =

[
∇h∗(u)−AProxσp(x− σ(ĀT y))
−d+BProxσp(x− σ(ĀT y))

]
.

Moreover, (5) is equivalent to the following:
∇θ(y) = 0. (6)

For any y ∈ dom(y), we define

∂̂2θ(y) := H + σĀ∂Proxσp(x− σ(ĀT y))ĀT ,

where H =

[
∇2h∗(u)

0

]
and ∂Proxσp(x− σ(ĀT y)) is the

Clarke subdifferential [6] of Proxσp(·) at x− σ(ĀT y). From
[10], we know that

∂̂2θ(y)(du, dv) = ∂2θ(y)(du, dv),

where ∂2θ(·) denotes the generalized Hessian of θ(·) . Define
V := H + σĀQĀT , (7)

with Q ∈ ∂Proxσp(x− σ(ĀT y)), then we have V ∈ ∂̂2θ(y).
Note that in our problem, h∗(·) is twice continuous dif-

ferentiable and Proxλ‖x‖1(·) is piecewise linear, which are
all strongly semismooth [13]. Hence we give a semismooth
Newton (SSN) method in Algorithm 2 to solve equation (6) .



Algorithm 2 Semismooth Newton (SSN) for subproblem

1: Input: Given µ ∈ (0, 0.5), η̄ ∈ (0, 1), τ ∈ (0, 1], τ1, τ2 ∈
(0, 1) and δ ∈ (0, 1). Choose y0 = (u0, v0).

2: for j = 0, 1, . . . do
3: Choose Qj ∈ ∂Proxσp(x−σ(ĀT yj)). Let Vj be given

as in (7) and εj = τ1 min{τ2, ‖∇θ(yj)‖}. Solve the
following linear system

Vjd
j
y + εj(0, d

j
v) = −∇θ(yj), (8)

exactly where djy = (dju, d
j
v) or by CG algorithm to

find an approximate solution such that
‖Vjdjy + εj(0, d

j
v) +∇θ(yj)‖ ≤ min(η̄, ‖∇θ(yj‖1+τ ).

4: (Line search) Set αj = δlj , where lj is the first nonneg-
ative integer l for which

θ(yj + δldjy) ≤ θ(uj , vj) + µδl〈∇θ(yj), djy〉.
5: Set uj+1 = uj + αjd

j
u and vj+1 = vj + αjd

j
v .

6: end for

Due to lack of strongly convexity, which is a setting different
from [13], we introduce a regularized term on v to obtain (8).

4.1. Efficient implementation of SSN
As mentioned before, the key step of the whole algorithmic
framework is how to solve (3) quickly. We use the semismooth
Newton method to tackle (3) and the main computational cost
lies in (8), which computes the inexact Newton direction. Thus
we will give efficient implementations to compute (8).

Recall the definition of V in (7) and h∗(u) = 1
2‖u‖

2+bTu
in our problem, we haveH = diag(1m, 0s), where 1m denotes
the all-onesm-dimensional vector and the same for 0s, diag(x)
is the diagonal matrix with vector x. Hence, we rewrite (8) as

(Hε + σĀQĀT )dy = −∇θ(y), (9)
where Hε := H + diag(0m, ε1s) = diag(1m, ε1s). Since Hε

is positive definite, our linear system is well defined.
Before solving (9), we do Cholesky decomposition on Hε

via Hε = LLT with L = LT = diag(1m,
√
ε1s). By some

basic calculations, we rewrite (9) as
(Im+s + σÂQÂT )d̂y = −∇θ̂(y), (10)

where Â = L−1Ā, d̂y = L−1dy, ∇θ̂(y) = L−1∇θ(y) and
Im+s denotes the identity matrix. Note that the cost of com-
puting both ĀQĀ and ÂQÂT are O((m+ s)2n). Therefore,
the matrix multiplication can be computational prohibitive
when n is large. Fortunately, we can overcome this difficulty
by exploiting the sparsity structure of Q which we call this
second-order sparsity of our problem in the following way.

For the subdifferential of proximal mapping, we can al-
ways choose Q ∈ ∂Proxσλ‖x‖1(x) to be Q = diag(q), a
diagonal matrix whose i-th element is given by

qi =

{
1, if |xi| > σλ,

0, otherwise.
(11)

Set J = {j : |xj | > σλ} with cardinality |J | = r. By

utilizing the diagonal structure of Q, we can write
ĀQĀT = ĀJ Ā

T
J , ÂQÂT = ÂJ Â

T
J , (12)

where ĀJ ∈ R(m+s)×r is the submatrix of Ā with those
columns contained in J preserved and the same for ÂJ .

Now we analyze the reduction of computational cost by ex-
ploring the second-order sparsity of the problem. By utilizing
(12), we can reduce the cost of computing ĀQĀ and ÂQÂT

from O((m + s)2n) to O((m + s)2r). Due to the sparsity-
inducing property of p(x) = λ‖x‖1, r is usually much smaller
than n, we greatly reduce the computational cost. Conse-
quently, the total computational cost of solving (9) reduces
from O((m+ s)2(m+ s+ n)) to O((m+ s)2(m+ s+ r)),
meaning that the computational cost has no relationship with
n. Thus, even for large dimension n, we can tackle the linear
system (9) by Cholesky factorization.

In fact, when r � m+ s, we can also directly invert the
matrix using the Sherman-Morrison-Woodbury formula:

(Im+s + σÂQÂT )−1 = (Im+s + σÂJ Â
T
J )−1

= Im+s − ÂJ (σ−1Ir + ÂTJ ÂJ )−1ÂTJ .

As a result, the total computational cost to solve (9) can be
further reduced from O((m+ s)2(m+ s+ r)) to O(r2(m+
s+ r)). Note that whichever way we choose to solve (9), the
computational cost only depends on m+ s. Thus, when m+ s
is not too large (smaller than 104), we can always solve (9)
exactly by Cholesky factorization or by computing the inverse.
Otherwise, we can choose CG to solve (9) inexactly.

5. CONVERGENCE ANALYSIS

We first provide the convergence result and corresponding
superlinear convergence rate of Algorithm 1 in the following
theorems. More details and proofs about these two theorems
are deferred to the full version of our paper.

Theorem 1. Suppose that the solution set X∗P to (P) is
nonempty. Let {(zk, xk)} be the sequence generated by Algo-
rithm 1 with stopping criterion (A). Then the sequence {xk} is
bounded and converges to some point x∞ ∈ X∗P .

Theorem 2. Suppose that both (P) and (D) have optimal
solution sets X∗P and Z∗D respectively. Let {(zk, xk)} be the
sequence generated by Algorithm 1 with stopping criterion
(B). Then the sequence {xk} converges to some x∞ ∈ X∗P
superlinearly.

Moreover, we establish the convergence of Algorithm 2
under a mild assumption that rank(B) = s. The proof closely
follows that of Theorem 3.4 of [23].

Theorem 3. Suppose that rank(B) = s. Then Algorithm 2 is
well defined and any accumulation point (û, v̂) is an optimal
solution to problem (6).

6. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our algorithm
for solving (1) on both synthetic and real datasets. We com-



Table 1: Performance of our SSNAL method (a), primal dual method (b), linearized ALM (c), ADMM (d) and PPG (e) with generalized Lasso
problem on synthetic and real datasets. ’nnz’ denotes the number of nonzero elements in the optimal solution obtained by our baseline method.

(a) synthetic datasets

λl nnz running time (seconds)
size m;n a b c d e

500;5000
10−2 499 1.0 19 29 21 19
10−3 505 1.5 19 30 21 19
10−4 508 2.0 20 29 21 19

800;8000
10−2 777 2.7 49 65 53 48
10−3 784 3.8 49 65 52 48
10−4 789 5.6 49 65 51 49

1000;10000
10−2 970 4.8 75 95 80 73
10−3 978 6.1 74 94 81 70
10−4 982 7.7 70 89 74 69

(b) real datasets

λl nnz running time (seconds)
problem name a b c d e

m;n

abalone7 10−3 46 49 176 191 258 177
4177;6435 10−4 78 12 178 190 102 175
bodyfat5 10−3 44 1.5 23 45 17 22

252;11628 10−4 63 1.2 24 47 3.3 22
housing5 10−3 103 1.9 32 49 31 32
506;8568 10−4 223 2.0 34 51 12 31
space ga9 10−3 46 14 106 115 150 105
3107;5005 10−4 73 6.4 105 114 32 104

pare with four state-of-the-art first-order methods: primal-
dual method [4], linearized ALM [22], ADMM [1], proximal-
proximal gradient (PPG) [18].

We set the penalty parameter λ in the constrained Lasso
problem as λ = λl‖AT b‖∞, where 0 < λl < 1. The accuracy
of solution {x, u, v, w} generated by our algorithm is mea-
sured by ηcLasso = max{ηP , ηD}, where ηP = ‖Bx−d‖

1+‖d‖ and
ηD = ‖ATu−BT v + w‖ are the primal and dual feasibility.
We stop our algorithm when ηcLasso < ε for a given tolerance ε
and stop other compared algorithms when both the primal and
dual residuals are smaller than ε. Before the comparison, we
run our algorithm with high accuracy ε = 10−10 and set this
optimal value as the baseline. The optimality gap is measured
by ηgap = f(x)− f(x∗). For our numerical experiments, we
set ε = 10−6. All the algorithms will be stopped when they
reach the maximum iteration number, which is set at 100 for
our algorithm and at 10000 for other algorithms. The codes
were written in MATLAB and run on a PC with i5-6500 CPU
at 3.2 GHz with 16 GB memory.

For both synthetic and real datasets, three scenarios are
tested: (a) sum to zero constraint; (b) B and d are randomly
generated; (c) generalized Lasso problem. Due to limited
space, we present last one here, and full details of the experi-
ments for all three scenarios are deferred to the full version.

Generalized Lasso. We transform the generalized Lasso
problem (2) to an equivalent constrained Lasso problem using
techniques from [9] and construct D = [DT

1 , D
T
2 ]T , where

D1 = In and D2 is an s× n random matrix and we omit the
details here.

Synthetic data. In this subsection we display the perfor-
mance of our algorithm on synthetic datasets. We generate
A ∈ Rm×n from independent and identical (iid) standard nor-
mal distribution and b = Ax̊ + %, where % ∈ N(0, 0.001 ∗
Im) and x̊ is a sparse vector. We set n = 10m with m =
200, 300, 500, 800, 1000 and λl = 10−2, 10−3, 10−4.

In Table 1a we summarize part of the numerical results.
Observe that our algorithm is 5-10 times faster than other
algorithms for all choices of λl. We plot the optimality gap
with running time in Figure 1 for the case m = 800, n = 8000
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Fig. 1: Generalized Lasso problem on synthetic dataset with
m = 800, n = 8000, s = 30 and λl = 10−2, 10−4.

and s = 30. The figures demonstrate that our algorithm is
superior to other methods both in terms of solution accuracy
and running time.

Real data. In this subsection we test on LIBSVM datasets
[5] with λl = 10−3 and 10−4. We preprocess the datasets
to expand the original features based on polynomial basis
functions as stated in [11]. For example, abalone7 means that
we expand the feature of abalone by an order 7 polynomial
basis function. We present part of numerical results in Table
1b. It is worth to note that our algorithm can also be 5-10 times
faster than other first-order methods on real datasets.

7. CONCLUSION

In this paper, we propose a semismooth Newton augmented
Lagrangian method to solve the linear-equality constrained
Lasso problem and establish convergence results for both outer
loop and inner subproblem solver. By exploiting the sparsity
structure of the problem, we provide efficient implementations
to solve the subproblem and greatly reduce the computational
cost. Extensive numerical experiments demonstrate both the
efficiency and accuracy of our algorithm. As a future work,
we plan to extend our algorithmic framework to handle more
general constraints such as inequality constraints.
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