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Abstract. This paper studies the portfolio management problem for an in-
dividual with a non-exponential discount function and habit formation in fi-

nite time. The investor receives a deterministic income, invests in risky as-
sets, buys insurance and consumes continuously. The objective is to maximize

the utility of excessive consumption, heritage and terminal wealth. The non-

exponential discounting makes the optimal strategy adopted by a naive person
time-inconsistent. The equilibrium for a sophisticated person is Nash sub-

game perfect equilibrium, and the sophisticated person is time-consistent. We

calculate the analytical solution for both the naive strategy and equilibrium
strategy in the CRRA case and compare the results of the two strategies. By

numerical simulation, we find that the sophisticated individual will spend less

on consumption and insurance and save more than the naive person. The dif-
ference in the strategies of the naive and sophisticated person decreases over

time. Furthermore, if an individual of either type is more patient in the future

or has a greater tendency toward habit formation, he/she will consume less
and buy less insurance, and the degree of inconsistency will also be increased.

The sophisticated person’s consumption and habit level are initially lower than
those of a naive person but are higher in later periods.

1. Introduction. Merton[21] studied the optimal consumption and investment
strategy for a individual in continuous time. He assumed the individual’s income
generated by returns on two assets: a risky asset and a risk-free asset. In addi-
tion, this is the first article to introduce the portfolio optimization problem. Later,
Richard[23] introduced the uncertain lifetime into the model and allowed the in-
dividual to purchase life insurance to mitigate the risk of death. The individual’s
income comes from not only returns on assets but also his/her wage, which is certain
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during his/her whole life. In addition, he/she extended one risky asset to n risky
assets to prove the Tobin-Markowitz separation theorem. This is the benchmark
work in the study of the optimal life insurance rule for uncertain-lived individuals.

Habit formation is an important individual characteristic. Many researchers,
such as Lally et al.[17], have found evidence of habit formation in field experiments.
The existence of habit indicates that the current consumption of the individual is
affected by his/her past consumption. For example, an individual who is accus-
tomed to eating one apple a day will feel disappointed if he/she does not eat an
apple today but will feel happier if he/she has two apples. People commonly be-
come accustomed to daily consumption patterns. Habit formation was first used to
explain the equity premium puzzle by Constantinides[8]. Detemple and Zapatero[9]
studied the optimal consumption-portfolio policies for individuals with habit. Liu
et al. [19] revisited Detemple and Zapatero[9]’s work by including life insurance.
Diaz et al.[10] studied the role of habit formation in savings decisions, and they
found that habit formation increases precautionary savings. The model becomes
more reasonable when we consider habit formation for the individual.

Numerous works have studied the portfolio management problem based on max-
imizing the individual’s intertemporal utility, and they solve for the optimal strat-
egy by using the Hamilton-Jacobi-Bellman (HJB) equation. The key assumption
in using the HJB equation is that the individual discount function is exponential.
However, the results from some experimental studies have shown that this assump-
tion is not suited to human behaviour. Loewenstein and Prelec[20] suggested that
the discount rate decreases with time. Ainslie[1] noted that the discount function
is almost hyperbolic for humans. For more works on hyperbolic discounting, see
[15], [16], [3]. When we discard exponential discounting, using the HJB equation to
solve the problem will lead to time inconsistency.

The time-inconsistency problem is widely studied in many fields. This problem
occurs when
(i) the objective function depends on the initial point (t, x), for example, when the
general form of the discount function (see [11],[27], [31]) or wealth-dependent risk
aversion (see [18], [4], [29]) is used in the model or
(ii) the terminal evaluation is allowed to be a nonlinear function of Et,x[X

u
T ]. The

classic example is the mean-variance portfolio (see [28], [14], [25]).

This means that the objective function is of the form

J(t, x;u) = E

[ ∫ T

t

H(t, x, s,Xu
s ,us(X

u
s ))ds+ F (t, x,Xu

T )

]
+G(t, x, Et,x[X

u
T ]),

where G(t, x, y) is a non-linear function of y.
Such an objective function breaks the recursion of the value function, and the

Bellman equation loses its effect in this case. If we still use the HJB equation
to obtain the optimal strategy, we will find that the individual will not follow it in
later periods. We call this a time-inconsistency problem. Strotz[24] introduced three
types of individuals in the time-inconsistent problem. The first one will ‘precommit’
his/her future action at the very first so that he/she can maximize the utility at
the beginning. But such decision may not be optimal in the future. The second
one,i.e. the so called naive person, will attempt to optimize his/her intertemporal
utility at every time. Both the two type individual cannot recognize the time
inconsistency in his/her decision, so their decisions are time-inconsistent. The third
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type of individual is the sophisticated person, who realizes the time inconsistency
and considers the problem as a game between him and himself in the future. The
sophisticated person will find a strategy that he/she will follow in the future once
he/she makes his/her decision. Such strategy is a time-consistent strategy.

The discussion about the difference between the naive and sophisticated person is
popular recently. Zhao et al[30] compared the difference between the naive insurer
and sophisticated insurer in consumption-investment-reinsurance problem. Chen
et al[6] discussed the dividend strategy for the naive and sophisticated managers.
Chen and Li[7] studied the consumption, investment and life insurance strategy for
naive and sophisticated agents. In our paper, we shall also focus on the difference
between the naive and sophisticated strategies.

Since the sophisticated strategy is a solution of a game, it is also called equilib-
rium strategy in many literatures. There are two kinds of equilibrium strategies.
One is the open-loop control, which is mainly used in linear-quadratic control prob-
lem (see [12], [13], [26]) and the main way to get an open-loop control is stochas-
tic maximum principle. Alia[2] found the open-loop control of Merton’s problem
with non-constant discounting. The other is the close-loop control, Björk et al[5]
derived the extended HJB equation to solve the close-loop control in a general
time-inconsistent problem by using Nash subgame perfect theory.

In this paper, we consider the close-loop equilibrium strategy for the consump-
tion, investment and insurance purchasing problem with an uncertain lifetime within
[0, T ]. At time t, the individual receives a deterministic rate of income and decides
how much to invest in risky assets and how much to spend to consume and buy life
insurance. To make the model more reasonable, we make two changes to the lifecy-
cle model. We substitute the exponential discount function in the tradition lifecycle
model with a general form. This change produces a time-inconsistent problem in
our model. The portfolio management problem with non-exponential discounting
function was studied in [11]. We will extend the problem to individual with habit
formation. Following [9], the consumption will only bring utility to decision maker
if the consumption exceeds the habit formation when we take the habit formation
into consideration. In other words, habit formation is regarded as the living stan-
dards of the individual, which is the weighted average of past consumption. Thus,
the utility of the individual consists of excess consumption, legacy and wealth at the
final time T . Furthermore, we derive both time-inconsistent strategy for the naive
individual and time-consistent strategy for the sophisticated individual, while most
articles in literature such as [11] only consider equilibrium strategy. Then, we obtain
the naive strategy and the equilibrium strategy in the case of the CRRA utility to
observe the difference between the two strategies. Numerical simulation results are
also provided to demonstrate the impacts of habit as well as the discount function,
and the difference between the strategies of the naive person and the sophisticated
person.

The remainder of this paper is organized as follows. In section 2, we describe
some main assumptions of the model. In section 3, we derive the HJB equation
for the time-inconsistent strategy and the extended HJB equation for the time-
consistent strategy. Section 4 addresses the CRRA utility and shows the difference
between the naive strategy and the equilibrium strategy. Section 5 presents some
numerical results. In section 6, we draw our conclusions.
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2. The Model. We consider the consumption-investment-insurance choice in a fi-
nancial market for an individual during period [0, T ]. (Ω,F , {Ft}t∈[0,T ],P) is a
filtered complete probability space, where Ft is the information about the market
available up to time t. [0, T ] is a fixed time horizon. All the processes introduced be-
low are defined on (Ω,F , {Ft}t∈[0,T ],P) and assumed to be adapted to {Ft}t∈[0,T ].

2.1. Market. Assume that the financial market consists of a savings account and
one stock (the risky asset). The individual can invest part of his/her wealth into
the risky asset and place the remaining wealth into the savings account. Here, we
only consider the case of one risky asset because the case of additional risky assets
in the market can be easily solved by the Tobin-Maekowitz separation theorem if
we solve the problem with one risky asset. The savings account accrues with an
interest rate r > 0. The stock price per share follows exponential Brownian motion:

dS(t) = S(t)(αdt+ σdW (t)),

where W (t) is a standard Brownain motion, α and σ are constants.
Assume that the individual is alive at time 0 and has a lifetime denoted by τ ,

which is a random variable independent of the Brownian motion W (t). Given that
the hazard function is λ(t), the probability that τ > s given τ > t can be written
as:

P (τ > s|τ > t) = e−
∫ s
t
λ(µ)dµ.

The insurance company sells the life insurance with infinitesimal horizon to the
individual with a premium rate of η(t), which means that the insured should pay
η(t) per unit of insurance. The individual spends p(t) per unit time covered by life

insurance. In other words, an individual at time t will leave X(t) + p(t)
η(t) to his/her

beneficiaries if he/she dies immediately after purchasing life insurance.

2.2. The characteristics of the individual. To make the model more realistic,
we consider three characteristics of the individual. Those characteristics describe
the risk preference, time preference and habit formation for the individual.

First, the individual has a strictly increasing and strictly concave differentiable
real-valued utility function U(x) defined on [0,+∞). The utility function means
that the individual prefers greater consumption, and he/she is risk averse; this is a
classic assumption made in many studies.

Second, the individual has an inner habit H(t), which is defined as H(t) =

e−atH0 + b
∫ t

0
ea(s−t)c(s) ds. Thus, H(t) satisfies

dH(t) = [bc(t)− aH(t)]dt. (1)

We can regard H(t) as a living standard for the individual. In addition, an in-
dividual with habit H(t) will only obtain utility from the exceeded consumption
c(t)−H(t). From the definition of H(t), we can see that H(t) is actually a weighted
average of past consumption.

Finally, the individual at time t discounts the intertemporal utility at time s with
the discount function ϕ(s − t). Many studies set ϕ(s − t) = e−δ(s−t). Exponential
discounting means that the individual shows no difference in the time delay when
comparing goods at two time points. Muellbauer[22] has suggested that people may
exhibit a common difference effect when discounting the utility in the future. For
example, if an individual with an exponential discount function feels no difference
between an apple now and two apples tomorrow, he/she also will feel no difference
between an apple 50 days later and two apples 51 days later. However, in reality, the
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individual may prefer two apples 51 days later. Such property cannot be described
by an exponential discount function; thus, we do not limit the discount function to
an exponential form and use a general form instead of the exponential form in the
following analysis.

2.3. Wealth dynamics. The strategy for the decision maker is the set of con-
trol strategy {c(t, x, h), θ(t, x, h), p(t, x, h)}. Given X(t) = x, at time s ∈ [t, T ] the
individual is continuously investing θ(s,X(s), H(s)) in the stock and bond, consum-
ing c(s,X(s), H(s)) and spending p(s,X(s), H(s)) on life insurance and receiving
income at the continuous deterministic rate i(s) during period [t, T ]. Thus, the
individual’s wealth at time s satisfies

dX(s) =r[X(s)− θ(s,X(s), H(s))]ds+ θ(s,X(s), H(s))[αds+ σdW (s)] + i(s)ds

− c(s,X(s), H(s))ds− p(s,X(s), H(s))ds

=[rX(s) + θ(s,X(s), H(s))µ+ i(s)− c(s,X(s), H(s))− p(s,X(s), H(s))]ds

+ θ(s,X(s), H(s))σdW (s), X(t) = x,

where µ = α− r is the excess return on the stock.
Let u(t, x, h) = {c(t, x, h), θ(t, x, h), p(t, x, h)}.

Definition 2.1. For t ∈ [0, T ], a map u : [t, T ] × R × R+ → R+ × R2 is called an
admissible strategy, if it satisfies£º
(i) For each initial point (t, x, h) ∈ [0, T ]× R× R+, the pair of SDEs for X(s) and
H(s)

dX(s) =[rX(s) + θ(s,X(s), H(s))µ+ i(s)− c(s,X(s), H(s))− p(s,X(s), H(s))]ds

+ σθ(s,X(s), H(s))dW (s), X(t) = x,

dH(s) =[bc(s,X(s), H(s))− aH(s)]ds, H(t) = h

has a pair of unique strong solution.

(ii) c(s, y, k) ≥ k, y + p(s,y,k)
η(s) ≥ 0 for all (s, y, k) ∈ [t, T ]× R× R+ a.s.;

(iii) E[
∫ T

t
|θ(s,X(s), H(s))σ(s)|2ds] < +∞; E[

∫ T

t
|c(s,X(s), H(s))|ds] < +∞ and

such that X(T ) ≥ 0 a.s.
Set A as the collection of all admissible strategies.

As mentioned above, the discount function here is not limited to an exponential
form; thus, for a naive individual who always wants to maximize his/her intertempo-
ral utility, the strategy that he/she applies is time-inconsistent. The sophisticated
person will realize the time-inconsistent problem faced by the naive individual;
therefore, he/she will attempt to apply a time-consistent strategy instead of simply
maximizing the utility. Then, we look for the equilibrium strategy for the sophis-
ticated person based on Nash subgame perfect theory to compare with the naive
strategy.

2.4. Intertemporal utility. The individual evaluates the performance of a strat-
egy with investment, consumption and insurance by the expected utility criterion.
Given the wealth and habit formation X(t) = x, H(t) = h at time t, respectively,
for an admissible strategy u, we denote the intertemporal utility by

J(t, x, h;u) ≜E

[ ∫ T∧τ

t

ϕ(s− t)U(c(s,X(s), H(s))−H(s))ds
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+ ϕ(τ − t)U

(
X(τ) +

p(τ,X(τ), H(τ))

η(τ)

)
I{τ≤T}+

ϕ(T − t)U(X(T ))I{τ>T}|τ > t,X(t) = x,H(t) = h

]
.

Because the death time is independent of the Brownian motion that drives the
stock price, we can rewrite a simplified expression for J(t, x, h;u) as

J(t, x, h;u) =Et,x,h

[ ∫ T

t

Q(s, t)U(c(s,X(s), H(s))−H(s))ds+∫ T

t

λ(s)Q(s, t)U

(
X(s) +

p(s,X(s), H(s))

η(s)

)
ds+Q(T, t)U(X(T ))

]
,

(2)

where Q(s, t) = ϕ(s − t)e−
∫ s
t
λ(u)du, Q(t, t) = 1 and Et,x,h is the expectation

conditioned on X(t) = x and H(t) = h.

3. Time-inconsistent strategy vs time-consistent strategy. In this section,
we will derive two types of strategy: the naive strategy for a naive person and the
equilibrium strategy for a sophisticated person.

3.1. Time-inconsistent strategy and HJB equation. To obtain the naive
strategy, we first need to derive the t-optimal strategy, which is a strategy ut,x,h

made by the naive individual at time t to maximize his/her intertemporal utility
J(t, x, h;u). Then, the naive strategy is constructed based on the t-optimal strategy.

For any given pair (t, x, h), and s > t we define

J t,x,h(s, y, k;u) = Es,y,k

[ ∫ T

s

Q(v, t)U(c(v,X(v), H(v))−H(v))dv+∫ T

s

Q(v, t)λ(v)U

(
X(v) +

p(v,X(v), H(v))

η(v)

)
dv +Q(T, t)U(X(T ))

]
.

Problem 1. For any given initial pair (s, y, k) ∈ [t, T ]×R2, find a ût,x,h ∈ A such
that

J t,x,h(s, y, k; ût,x,h) = sup
u∈A

J t,x,h(s, y, k;u).

As t, x, h are constants here, Problem 1 is actually a time-consistent problem,
so we can derive the HJB equation to obtain ut,x,h. Define the optimal func-
tion as V t,x,h(s, y, k) = J t,x,h(s, y, k; ût,x,h). From dynamic programming principle,
V t,x,h(s, y, k) satisfies the following HJB equation:

sup
u∈A

{Q(s, t)U(c− k) +Q(s, t)λ(s)U
(
y +

p

η(s)

)
+ V t,x,h

s + V t,x,h
k [bc− ak]+

V t,x,h
y [ry + θµ+ i(s)− c− p] +

1

2
V t,x,h
yy θ2σ2} = 0,

V (T, y, k) = Q(T, t)U(y).

(3)

Thus,

ût,x,h =arg sup{Q(s, t)U(c− k) +Q(s, t)λ(s)U
(
y +

p

η(s)

)
+ V t,x,h

s +

V t,x,h
k [bc− ak] + V t,x,h

y [ry + θµ+ i(s)− c− p] +
1

2
V t,x,h
yy θ2σ2}.
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Then, we define the t-optimal value function

V̂ t,x,h(s, y, k;u) ≜
V t,x,h(s, y, k;u)

Q(s, t)
.

We can rewrite equation (3) as
sup
u∈A

{U(c− k) + λ(s)U
(
y +

p

η(s)

)
+ V̂ t,x,h

s + V̂ t,x,hQ1(s, t)

Q(s, t)
+ V̂ t,x,h

k [bc− ak]+

V̂ t,x,h
y [ry + θµ+ i(s)− c− p] +

1

2
V̂ t,x,h
yy θ2σ2} = 0,

V̂ t,x,h(T, y, k) = U(y).

(4)
When we return to time t, we can see J t,x,h(t, x, h;u) = J(t, x, h;u). Therefore,

J t,x,h(t, x, h; ût,x,h) = sup
u∈A

J t,x,h(t, x, h;u)

= sup
u∈A

J(t, x, h;u)

Proposition 1. If there exists V̂ t,x,h ∈ C1,2,1([t, T ]×R×R+) satisfy equation (4)
and 

ĉt,x,h(s, y, k) = I
[
V̂ t,x,h
y − bV̂ t,x,h

k

]
+ k,

p̂t,x,h(s, y, k) = η(s)
[
I(V̂ t,x,h

y

η(s)

λ(s)
)− y

]
,

θ̂t,x,h(s, y, k) = −
µV̂ t,x,h

y

σ2V̂ t,x,h
yy

,

(5)

where I(U ′(x)) = x, we have J(t, x, h; ût,x,h) = supu(·)∈A J(t, x, h;u).

Thus, ût,x,h is the t-optimal strategy. From the t-optimal strategy, we can see
that, if the naive individual at time t wants to maximize his/her intertemporal utility
J(t, x, h;u), he/she needs to insist on ût,x,h. Given that X(s) = y and H(s) = k, it
means that the strategy he/she should take at time s > t is ût,x,h(s, y, k). However,
at time s, the naive individual will also want to maximize his/her intertemporal
utility J(s, y, k;u); then, he/she will take ûs,y,k(s, y, k) at that time, which may
not be the same as ût,x,h(s, y, k).

Following equation (4), we can obtain the HJB equation for the s-optimal value

function V̂ s,y,k(v, z, l), v ≥ s as

sup
u∈A

{U(c− l) + λ(v)U
(
z +

p

η(v)

)
+ V̂ s,y,k

v + V̂ s,y,kQ1(v, s)

Q(v, s)
+

V̂ s,y,k
l [bc− al] + V̂ s,y,k

z [rz + θµ+ i(v)− c− p] +
1

2
V̂ s,y,k
zz θ2σ2} = 0

(6)

From equation (6), we can derive the s-optimal strategy us,y,k(v, z, l). Let v =
s, z = y, l = k, and we obtain ûs,y,k(s, y, k). Comparing (4) and (6), if we want

ût,x,h(s, y, k) and ûs,y,k(s, y, k) to be equal, we need Q1(s,s)
Q(s,s) = Q1(s,t)

Q(s,t) . By the

definition of Q(s, t), we will have ϕ′(s − t) = ϕ′(0)ϕ(s − t), which means that ϕ(t)
is an exponential function. Hence, ût,x,h(s, y, k) and ûs,y,k(s, y, k) are equal only
if the discount function is exponential. As we do not limit the discount to being
exponential, the individual may change his/her strategy in the future, and we can
see time inconsistency appears in the t-optimal strategy ût,x,h.
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As the naive person wants to maxmize his intertemporal utility every time, he
will take only ut,x,h(t, x, h) at time t. Defining û(t, x, h) = ût,x,h(t, x, h), the naive
strategy is û(t, x, h) for t ∈ [0, T ].

3.2. Time-consistent strategy and extended HJB equation. From the above
analysis, we explain why the t-optimal strategy is time-inconsistent and derive the
naive strategy based on the t-optimal strategy. Because we do not force the individ-
ual to commit to a decision made previously, we need to find a strategy whereby a
sophisticated individual will not have an incentive to change his/her strategy in the
future. This is the so-called time-consistent equilibrium strategy. The definition of
the equilibrium strategy follows [5], which is given below:

Definition 3.1. For any fixed (t, x, h) ∈ [0, T ]×R2, consider an admissible strategy
ū. For any fixed admissible control strategy u and ε > 0, one can define the control
strategy uε by

uε(s, y, k) =

{
ū(s, y, k) for t+ ε ≤ s ≤ T,

u(s, y, k) for t ≤ s ≤ t+ ε,

where u is any strategy such that uε ∈ A .
If

lim
ε→0

inf
J(t, x, h; ū)− J(t, x, h;uε)

ε
≥ 0,

then ū is called an equilibrium control strategy, and the equilibrium value function
is given by V (t, x, h) = J(t, x, h; ū)

A sophisticated person who recognizes the time inconsistency in the t-optimal
strategy regards portfolio management as a non-cooperative game among his/her
selves at different times in [0, T ]. For example, at time t, he/she is player t. All
players from 0 to T need to negotiate with one another to find a strategy whereby
no one has an incentive to defect. The definition of the equilibrium strategy follows
the Nash subgame perfect equilibrium strategy. For any time t, if players other than
player t apply the equilibrium strategy, player t’s best choice is also the equilibrium
strategy. Thus, once the individual decides to apply the equilibrium strategy, he/she
will follow it in the future and have no incentive to change strategies. This is why
the equilibrium strategy is time-consistent.

Definition 3.2. Given the objective functional J(t, x, h;u) as (2), the extended
HJB equation for V is given by

sup
u∈A

{
U(c− h) + λ(t)U

(
x+

p

η(t)

)
+AuV (t, x, h)

}
=

Et,x,h

[ ∫ T

t

∂Q(s, t)

∂t
U(c̄(s, X̄(s), H̄(s))− H̄(s))+

∂Q(s, t)

∂t
λ(s)U

(
X̄(s) +

p̄(s, X̄(s), H̄(s))

η(s)

)
ds+

∂Q(T, t)

∂t
U(X̄(T ))

]
,

V (T, x, h) = U(x).

(7)

where
(i)

AuV (t, x, h) ≜ Vt +
[
rx+ θµ+ i(t)− c− p

]
Vx + (bc− ah)Vh +

1

2
θ2σ2Vxx;
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(ii)X̄(s) and H̄(s) are the wealth and habit formation under ū, which satisfy:

dX̄(s) =[rX̄(s) + θ̄(s, X̄(s), H̄(s))µ+ i(s)− c̄(s, X̄(s), H̄(s))− p̄(s, X̄(s), H̄(s))]dt

+ θ̄(s, X̄(s), H̄(s))σdW (s) X̄(t) = x;

dH̄(s) =[bc̄(s, X̄(s), H̄(s))− aH̄(s)]dt H̄(t) = h.

(iii)ū(s, y, k) = {c̄(s, y, k), θ̄(s, k, y), p̄(s, k, y)} attains the supremum in (7);

Theorem 3.3. (Verification Theorem) Assume that V ∈ C1,2,1([0, T ]×R×R+) is
a classical solution to the extended HJB equation given in Definition 3.2, and the
supremum is attained for each (t, x, h) ∈ [0, T ] × R × R+ given a control strategy
ū ∈ A . Then ū is the equilibrium control strategy, and V is the corresponding
equilibrium value function.

The proof of Theorem 3.3 is given in the appendix.

4. CRRA case. In this section, we are going to focus on the CRRA case, and we
will find the analytical solution of both the time-inconsistent and time-consistent
strategy to compare the difference between them. For the CRRA case, we assume

that U(x) = x1−γ

1−γ with γ > 0 and γ ̸= 1.

4.1. Naive strategy for CRRA case. To obtain the naive strategy, we need to
derive the t-optimal strategy first. We attempt an optimal value function of the
form V̂ t,x,h(s, y, k) = Ât(s)U [y + B̂(s)k + D̂(s)]. According to (5), the t-optimal
strategy would be

ĉt,x,h(s, y, k) = [Ât(s)− bÂt(s)B̂(s)]−
1
γ [y + B̂(s)k + D̂(s)] + k,

p̂t,x,h(s, y, k) = (
Ât(s)

λ(s)
)−

1
γ η

γ−1
γ (s)[y + B̂(s)k + D̂(s)]− yη(s),

θ̂t,x,h(s, y, k) =
µ

σ2γ
[y + B̂(s)k + D̂(s)].

Substituting the t-optimal strategy into the HJB equation (4), we obtain{
D̂′(s)− [r + η(s)]D̂(s) + i(s) = 0,

D̂(T ) = 0,{
B̂′(s)− [r + η(s)− b+ a]B̂(s)− 1 = 0,

B̂(T ) = 0,

and 
Ât

s(s) + Ât(s)
γ−1
γ γ

{
[1− bB̂(s)]

γ−1
γ + λ

1
γ (s)η

γ−1
γ (s)

}
+ (1− γ)

[
1

2

µ2

σ2γ
+

Q1(s, t)

(1− γ)Q(s, t)
+ η(s) + r

]
Ât(s) = 0,

Ât(T ) = 1.



10 J.Z LIU, L.Y LIN, K.F.C YIU AND J.Q WEI

Solving the ODEs above, we have

D̂(s) =

∫ T

s

i(u)e−
∫ u
s

[r+η(ξ)]dξdu,

B̂(s) = −
∫ T

s

e−
∫ u
s

[r+η(ξ)−b+a]dξdu,

Ât(s) =

[
e
∫ T
s

1−γ
γ

[
1
2

µ2

σ2γ
+

ϕ′(u−t)
(1−γ)ϕ(u−t)

−λ(u)
1−γ +η(u)+r

]
du
+∫ T

s

{
[1− bB̂(u)]

γ−1
γ + λ

1
γ (u)η

γ−1
γ (u)

}
e
∫ u
s

1−γ
γ

[
1
2

µ2

σ2γ
+

ϕ′(ξ−t)
(1−γ)ϕ(ξ−t)

−λ(ξ)
1−γ +η(ξ)+r

]
dξ
du

]γ
.

Thus, the naive strategy would be

ĉ(t, x, h) = [Ât(t)− bÂt(t)B̂(t)]−
1
γ [x+ B̂(t)h+ D̂(t)] + h,

p̂(t, x, h) = (
Ât(t)

λ(t)
)−

1
γ η

γ−1
γ (t)[x+ B̂(t)h+ D̂(t)]− xη(t),

θ̂(t, x, h) =
µ

σ2γ
[x+ B̂(t)h+ D̂(t)].

(8)

4.2. Equilibrium strategy for CRRA case. According to Theorem 3.3, we
assume an equilibrium value function of the form V (t, x, h) = Ā(t)U [x + B̄(t)h +
D̄(t)]. Then, we will have

c̄(t, x, h) = I[Vx − bVh] + h = [Ā(t)− bĀ(t)B̄(t)]−
1
γ [x+ B̄(t)h+ D̄(t)] + h,

p̄(t, x, h) = η(t)

[
I(Vx

η(t)

λ(t)
)− x

]
=

(
Ā(t)

λ(t)

)− 1
γ

η
γ−1
γ (t)[x+ B̄(t)h+ D̄(t)]− xη(t),

θ̄(t, x, h) = − µVx

σ2Vxx
=

µ

σ2γ
[x+ B̄(t)h+ D̄(t)].

(9)

Under the equilibrium strategy, the equilibrium wealth X̄(t) satisfies

dX̄(t) =

[
[r + η(t)]X̄(t) +

(
µ2

σ2γ
− [Ā(t)− bĀ(t)B̄(t)]−

1
γ − (

Ā(t)

λ(t)
)−

1
γ η

γ−1
γ (t)

)
[X̄(t)

+ B̄(t)H̄(t) + D̄(t)] + i(s)− H̄(t)

]
dt+

µ

σγ
[X̄(t) + B̄(t)H̄(t) + D̄(t)]dW (t).

In addition, the equilibrium habit under the equilibrium strategy would follow

dH̄(t) = b[Ā(t)− bĀ(t)B̄(t)]−
1
γ [X̄(t) + B̄(t)H̄(t) + D̄(t)]dt+ (b− a)H̄(s)dt.

Let Y (t) = X̄(t) + B̄(t)H̄(t) + D̄(t). Then, Y (·) satisfies

dY (t) = dX̄(t) + B̄(t)dH̄(t) + B̄′(t)H̄(t)ds+ D̄′(t)ds

=Y (t)

{[
r+η(s)+

µ2

σ2γ
−Ā− 1

γ (s)
{
[1−bB̄(s)]

γ−1
γ +λ

1
γ (s)η

γ−1
γ (s)

}]
ds+

µ

σγ
dW (t)

}
+
[
− (r+η(t))D̄(t)+i(t)+D̄′(t)

]
ds+H̄(t)[B̄′(t)−(r+η(t)−b+a)B̄(t)−1]ds.

(10)



NON-EXP DISCOUNT PORTFOLIO MANAGEMENT WITH HF 11

Here, we choose D̄(·),B̄(·) satisfying{
D̄′(t)− [r + η(t)]D̄(t) + i(t) = 0,

D̄(T ) = 0,

and {
B̄′(t)− [r + η(t)− b+ a]B̄(t)− 1 = 0,

B̄(T ) = 0.

From the equations above, we know that D̄(t) and B̄(t) are exactly the same as

D̂(t) and B̂(t) in the naive strategy.

Define β(s) = r+ η(s)+ µ2

σ2γ − Ā− 1
γ (s)

{
[1− bB̄(s)]

γ−1
γ +λ

1
γ (s)η

γ−1
γ (s)

}
. Given

that X̄(t) = x and H̄(t) = h, let Y (t) = x+ B̄(t)h+ D̄(t) = y, from (10), we obtain

Y (s) = ye
∫ s
t
[β(u)− µ2

2σ2γ2 ]du+
∫ s
t

µ
σγ dW (u)

, s > t. (11)

As a result, X̄(T ) = Y (T ) = ye
∫ T
t

[β(u)− µ2

2σ2γ2 ]du+
∫ T
t

µ
σγ dW (u)

.
By substituting (9) and (11) into the extended HJB equation (7), we can obtain

the ODE of Ā(·) as

Ā′(t) + Ā
γ−1
γ (t)

{
[1− bB̄(t)]

γ−1
γ + λ

1
γ (t)η

γ−1
γ (t)

}
+ (1− γ)[β(t)− 1

2

µ2

σ2γ
]Ā(t) =∫ T

t

∂Q(s, t)

∂t
Ā

γ−1
γ (s)e

∫ s
t
(1−γ)[β(ξ)− 1

2
µ2

σ2γ
]dξ{

[1− bB̄(s)]
γ−1
γ + λ

1
γ (s)η

γ−1
γ (s)

}
ds+

∂Q(T, t)

∂t
e
∫ T
t

(1−γ)[β(ξ)− 1
2

µ2

σ2γ
]dξ

,

Ā(T ) = 1,

(12)
which can be rewritten as

Ā(t) =

∫ T

t

Q(s, t)e
∫ s
t
(1−γ)[β(ξ)− 1

2
µ2

σ2γ
]dξ

Ā
γ−1
γ (s)

{
[1− bB̄(s)]

γ−1
γ + λ

1
γ (s)η

γ−1
γ (s)

}
ds

+Q(T, t)e
∫ T
t

(1−γ)[β(ξ)− 1
2

µ2

σ2γ
]dξ

.

(13)
By the advantage of the following theorem, we can show that the solution Ā(·)

of (13) is unique.

Theorem 4.1. Assume that Zt(s) ∈ C[t, T ] and f ∈ C([0, T ]) are both positive,
then there exists a unique positive solution of A(t) ∈ C([0, T ]) such that

A(t) =

∫ T

t

Zt(s)e
∫ s
t
(1−γ)[β(ξ)− 1

2
µ2

σ2γ
]dξ

A
γ−1
γ (s)ds+ f(t)e

∫ T
t

(1−γ)[β(ξ)− 1
2

µ2

σ2γ
]dξ.

Proof. Let

Ã(t) = A(t)e
−

∫ T
t

(1−γ)[β(ξ)− 1
2

µ2

σ2γ
]dξ

=

∫ T

t

Zt(s)A
− 1

γ (s)Ã(s)ds+ f(t)

and

M = max
0≤t≤s≤T

Zt(s)A
− 1

γ (s).



12 J.Z LIU, L.Y LIN, K.F.C YIU AND J.Q WEI

Define T Ã(t) =
∫ T

t
Zt(s)A

− 1
γ (s)Ã(s)ds+ f(t); then,

|T Ã1(t)− T Ã2(t)| = |
∫ T

t

Zt(s)A
− 1

γ (s)[Ã1(s)− Ã2(s)]ds|

≤
∫ T

t

|Zt(s)A
− 1

γ (s)||Ã1(s)− Ã2(s)|ds

≤ M
∥∥∥Ã1 − Ã2

∥∥∥
∞
(T − t).

Furthermore,

|T 2Ã1(t)− T 2Ã2(t)| = |
∫ T

t

Zt(s)A
− 1

γ (s)[TÃ1(s)− TÃ2(s)]ds|

≤
∫ T

t

|Zt(s)A
− 1

γ (s)||TÃ1(s)− TÃ2(s)|ds

≤ M2
∥∥∥Ã1 − Ã2

∥∥∥
∞

∫ T

t

(T − s)ds

= M2
∥∥∥Ã1 − Ã2

∥∥∥
∞

(T − t)
2

2
.

By mathematical induction, we can conclude that

|T nÃ1(t)− T nÃ2(t)| =
[M(T − t)]

n

n!

∥∥∥Ã1 − Ã2

∥∥∥
∞
.

Thus, there exists an N such that [M(T−t)]N

N ! < 1. According to the contracting

mapping principle, we know that T N is a contracting mapping. Therefore, there
exists a unique Ã that satisfies T Ã = Ã, which implies that there exists a unique
solution for

A(t) =

∫ T

t

Zt(s)e
∫ s
t
(1−γ)[β(ξ)− 1

2
µ2

σ2γ
]dξ

A
γ−1
γ (s)ds+ f(t)e

∫ T
t

(1−γ)[β(ξ)− 1
2

µ2

σ2γ
]dξ

□
Now, let Zt(s) = Q(s, t){[1− bB̄(s)]

γ−1
γ + λ

1
γ (s)η

γ−1
γ (s)} and f(t) = Q(T, t) in

the theorem above, we can obtain the uniqueness of Ā(t) in (13).
Here, we obtain the equilibrium strategy of the individual at time t, which is

c̄(t, x, h) = [Ā(t)− bĀ(t)B̄(t)]−
1
γ [x+ B̄(t)h+ D̄(t)] + h,

p̄(t, x, h) = (
Ā(t)

λ(t)
)−

1
γ η

γ−1
γ (t)[x+ B̄(t)h+ D̄(t)]− xη(t),

θ̄(t, x, h) =
µ

σ2γ
[x+ B̄(t)h+ D̄(t)].

(14)

4.3. Difference between the naive strategy and equilibrium strategy. Given
X(t) = x and H(t) = h, we call Y (t) = x + B̂(t)h + D̂(t) = x + B̄(t)h + D̄(t) the
available asset because both the naive strategy and the equilibrium strategy are
based on Y (t). Y (t) consists of three parts:
(1) the wealth of the individual at time t, x;

(2) the accumulated value of the discounted income from time t to T , D̂(t) or D̄(t),
which is also called individual human capital in many studies; and
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(3) the debt ensuring that the individual can keep his/her habit after time t, B̂(t)h
or B̄(t)h.

Compared with the result in Richard[23], when the individual makes his/her
decision, he/she will not only consider his/her wealth and the future income but
also the reserve fund for maintaining future habit formation. From (11), we know
that Y (t) > 0 for both the naive strategy and the equilibrium strategy. In other

words, x+ D̄(t) > |B̄(t)h| and x+ D̂(t) > |B̂(t)h|, which means that the individual
will set his/her habit within a reasonable range based on his/her income and wealth.

From (8) and (14), it is obvious that ĉ(t, X̂(t), Ĥ(t)) > Ĥ(t) and c̄(t, X̄(t), H̄(t)) >
H̄(t). Therefore, habit formation serves as the standard of living for the individual.
Moreover, the standard of living will increase over time if a > b because dH(t) >
0 here. In addition, the parameter a, b in habit formation also appears in the
expression Ât(t) and Ā(t). When we set a = b = 0, Ât(t) and Ā(t) will return to
the expression without considering habit formation.

The naive strategy and the equilibrium strategy are very similar: they are both
based on the available asset Y (t) at time t. The consumption consists of the habit
and the extra consumption, which is part of the available asset. The role of insurance
here is to translate future assets into a legacy for inheritance, and the legacy at

time t is Z(t) = Ât(t)
− 1

γ (λ(t)η(t) )
− 1

γ Y (t) or Z(t) = Ā− 1
γ (t)(λ(t)η(t) )

− 1
γ Y (t) based on the

available asset. Thus, the premium is also a function of the available asset. Because
we choose a constant asset return rate here, the investment in the risky asset is a
constant proportion of the available asset at all times.

However, clearly, the naive strategy is not exactly the same as the equilibrium
strategy. The only difference between them is in the multiplier in the value function,
which is Ât(t) in the optimal value function and Ā(t) in the equilibrium value
function.

If we set U(x) = ln(x), we can easily obtain the expression for Ât(t) and Ā(t) by
setting γ = 1. In fact, we have in this case

Ât(t) =

∫ T

t

[1 + λ(u)]e
∫ u
t

ϕ′(ξ−t)
ϕ(ξ−t)

−λ(ξ)dξdu+ e
∫ T
t

ϕ′(u−t)
ϕ(u−t)

−λ(u)du,

and

Ā(t) =

∫ T

t

[1 + λ(u)]ϕ(u− t)e−
∫ u
t

λ(ξ)dξdu+ ϕ(T − t)e−
∫ T
t

λ(u)du.

Hence,

Ā(t)− Ât(t) =

∫ T

t

[1 + λ(u)]e−
∫ u
t

λ(ξ)dξ[ϕ(u− t)− e
∫ u
t

ϕ′(ξ−t)
ϕ(ξ−t)

dξ]du+

[ϕ(T − t)− e
∫ T
t

ϕ′(u−t)
ϕ(u−t) ]e−

∫ T
t

λ(u)du

=

∫ T

t

[1 + λ(u)]e−
∫ u
t

λ(ξ)dξ[ϕ(u− t)− eln[ϕ(u−t)]]du+

[ϕ(T − t)− eln[ϕ(T−t)]]e−
∫ T
t

λ(u)du

=0.

Therefore, when U(x) = ln(x), we can see that Ât(t) = Ā(t), which means that the
naive strategy and equilibrium strategy are the same. Furthermore, from the HJB
equation (4) and extended HJB equation (7), we know that the naive strategy is
exactly the same as the equilibrium strategy if the discount function is exponential.
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However, expect for the case in which U(x) = ln(x) and we have an exponential

discount function, the difference between Ā(t) and Ât(t) is quite complex. We
cannot obtain an analytical solution for Ā(t) in the time-consistent strategy case.
Hence, we need to analyse the impact of different habit formation settings and
different discount functions on the difference between Ā(t) and Ât(t) by numerical
simulation, which we do in the following section.

5. Numerical results. As discussed above, when we consider an individual with
non-exponential discounting, the naive strategy and the equilibrium strategy are
different. In addition, the difference mainly appears in the multipliers Ā(t) and

Ât(t). We call the difference between Ât(t) and Ā(t) the degree of inconsistency.

The closer Ât(t) and Ā(t) are, the more similar the two strategies are. Thus, the
sophisticated individual who applies the time-consistent strategy would very likely
maximize their utility. In other words, it would be less expensive for the naive
individual at time t to force an individual (himself as well) to apply the strategy
that he/she made at time t. We are going to analyse the impact of the discount
function and habit on the degree of inconsistency using a numerical method in this
section.

The basic parameters are as follows: T = 40, r = 0.03, α = 0.3, σ = 2.5,
X(0) = 200000, H(0) = 0.11 ∗X(0), γ = 2.2, a = 0.1, b = 0.093, i(t) = 50000e0.04t,
λ(t) = 0.001 + e−9.5+0.1t, η(t) = λ(t), and ϕ(t) = (1 + 0.4t)log(0.9)/log(1.4).

When we compare different cases, we will change the corresponding parameters.

5.1. The impact of the discount function. The discount function that we use
here is the hyperbolic discount function. The form of the hyperbolic discount func-

tion is ϕ(t) = (1 + ρt)−
β
ρ ρ > 0, β > 0. As previously mentioned, the hyperbolic

discount function exhibits a common difference effect. It can also be described by
the following equation:

U(x) = U(y)ϕ(s) ⇔ U(x)ϕ(t) < U(y)ϕ(t+ s).

In other words, we can rewrite it as:

U(x) = U(y)ϕ(s) ⇔ U(x)ϕ(t) = U(y)ϕ(kt+ s) k > 1.

This means that after waiting a time delay t, to make x and y equal, the time
interval should be longer than s. When we take the hyperbolic discount function
and the time interval s = 1, we have k = 1 + ρ > 1. A larger k means that the
individual is more sensitive to the time delay occurring early, which means that the
individual is more patient in the future. When ρ → 0, ϕ(t) → e−βt. Thus, for an
exponential discount function, k = 1.

Then, we take three cases, k = 1, k = 1.1, and k = 1.2, to calculate Ā(t) and

Ât(t). The results are shown in figure 1.

As we can see, Ā(t) coincides with Ât(t) in the case of k = 1, as we have shown

before. From figure 1, we can see that Ā(t) is greater than Ât(t) when k > 1. Both

Ā(t) and Ât(t) increase with increasing k. From the naive strategy and equilibrium
strategy, i.e., (8) and (14), consumption and insurance are decreased with increasing
multiplier. Because the multiplier of the equilibrium strategy is higher than the
naive strategy, the sophisticated individual will consume less and purchase less life
insurance. Applying the equilibrium strategy means that the individual needs to
make an agreement with their future self; thus, he/she needs to give up some of
his/her utility to the future. Therefore, it is reasonable that the sophisticated person
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Age
20 25 30 35 40 45 50 55 60

Ā
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Figure 1. The impact of k on Ā and Â

needs to spend less on consumption and insurance than does the naive person.
However, if the sophisticated individual and the naive individual have the same
initial wealth and habits, the sophisticated individual may be richer when he/she is
older because he/she saved more in the past; then, he/she will consume more later.

We can also find that the degree of inconsistency decreases over time. As the indi-
vidual becomes older, the difference between the naive strategy and the equilibrium
strategy tends to decrease. This result agrees with intuition. Because we utilize the

hyperbolic discount function here, the discount rate ϕ′(t)
ϕ(t) decreases with time. The

naive individual does not consider the change in the discount rate. However, he/she
would actually be more patient than he/she thought in the future. That is why the
inconsistency appears. When he/she is young, the change in the discount rate in
the future is huge, whereas when he/she is older, the change is smaller. Thus, the
degree of inconsistency decreases over time.

Figure 2 shows the degree of inconsistency for three types of individuals. The
image clearly shows that as k increases, the degree of inconsistency increases because
a larger k indicates the more patient that he/she will be in the future, and the change
in the discount rate between now and the future would also be larger. Thus, an
increase in the degree of inconsistency is rational.

Age
20 25 30 35 40 45 50 55 60

Ā
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Figure 2. The impact of k in the degree of inconsistency

5.2. The impact of habit formation. There are two parameters in the habit
formation function: a and b. From (1), we know that a larger b or a smaller a
results in a higher habit level. We say that an individual with a higher b and a
lower a has a greater tendency to form a consumption habit. In this section, we
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want to see how the two parameters affect Ā(t) and Ât(t). We take three types of
habit formation functions to compare the difference between them. The first type
is a benchmark, with a = 0.1 and b = 0.1. For the second type, we increase a to
0.11 but do not change b. For the third type, we increase b to 0.11 and keep a
unchanged. Then, we calculate Ā(t) and Ât(t) for these three types of individuals.
The results are given in figure 3.

Age
20 25 30 35 40 45 50 55 60

Ā
(t
)/
Â

t (
t)

0

500

1000

1500

2000

2500
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3500

a = 0.1, b = 0.1, Ât(t)

a = 0.1, b = 0.1, Ā(t)

a = 0.11, b = 0.1, Ât(t)

a = 0.11, b = 0.1, Ā(t)

a = 0.1, b = 0.11, Ât(t)

a = 0.1, b = 0, 11, Ā(t)

Figure 3. The impact of habit on Ā and Â

We can see that Ā(t) is higher than Ât(t) for all three types of individuals all
the time, and the difference decreases with time. This coincides with what we
found previously. Moreover, both Ā(t) and Ât(t) increase as a decreases and b
increases. This is highly similar to the situation where k is increased. The degree of
inconsistency for the three types of individuals is shown in figure 4. We can see that
an individual with a greater tendency to form a habit will see a larger difference
between the naive strategy and the equilibrium strategy. This is also the same as
when k increases. An intuitive explanation is that an individual with a higher k
and higher habit level is more concerned about the future.

Age
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(t
)
−
Â

t (
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60
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a = 0, b = 0

a = 0.11, b = 0.1

a = 0.1, b = 0.11

Figure 4. The impact of habit on the degree of inconsistency

From (8) and (14), we can know that individual with the same available asset
who have a greater tendency to form habits will spend less of their available asset for
consumption and life insurance in both naive and equilibrium strategy because both
Ā(t) and Ât(t) is higher. The income of the individual is deterministic in our model;
thus, the resources of the individual are limited. Without habits, an individual has
no limit on consumption during their entire life. After considering the habit, the
individual should take the habit as the lowest standard line for consumption. An
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individual with a higher tendency to form a habit will have a higher standard of
living in the future, which means that he/she needs to commit more resources to
the future; thus, he/she will spend less now and save more for the future.

In figure 5, we show the strategy in different ages for an individual with the
first type habit formation(a = 0.1, b = 0.1) and the individual without habit
formation(a = 0, b = 0, H(0) = 0). It illustrates our analysis above. In figure
5(a) and figure 5(b), for both naive strategy and equilibrium strategy, the con-
sumption (ĉ(t) or c̄(t)) need to be higher than the corresponding strategies with

habit formation (Ĥ(t) or H̄(t)). The consumption for individual with habit forma-
tion is lower than the case without habit formation in the early period, and higher
in later period. In figure 5(c), the individual with habit will buy less life insurance
compare with the individual without habit in both naive strategy and stochastic
strategy. Figure 5(d) shows that the individual with habit will be more prudent in
risk investment and have more precautionary saving for future, which is also shown
by Dı́az et al[10].
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a = 0, b = 0, ĉ(t)

(a) Naive consumption strategy
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(b) Equilibrium consumption strategy
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(c) Insurance strategy
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(d) Investment strategy

Figure 5. Strategy for individual with or without habit

5.3. Habit formation for naive or sophisticated individual. Figure 6 presents
the consumption and habit formation for a naive person and for a sophisticated per-
son with the basic parameters.

As we found previously, the naive person will consume more if he/she has the
same wealth and habit as the sophisticated person. In this example, the naive
person and the sophisticated person have the same initial wealth and habit; thus,
the naive person will consume more initially. In addition, because the habit consists
of past consumption, the habit of the naive person will be larger than that of the
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Age
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H̄(t)− Ĥ(t)

c̄(t)− ĉ(t)

Figure 6. Example of H̄(t)− Ĥ(t) and c̄(t)− ĉ(t)

sophisticated person. Figure 6 clearly shows that c̄(t)− ĉ(t) < 0 before age 45 and

H̄(t) − Ĥ(t) < 0 before age 50. Because the sophisticated person saves more at
a younger age, he/she will be richer at later times and consume more. Then, the
habit of the sophisticated person will be larger than that of the naive person at
later times. Finally, the time at which H̄(t) surpasses Ĥ(t) is later than the time
at which c̄(t) surpasses ĉ(t).

6. Conclusions. In this article, we consider the effect of both habit formation and
the general discount function in the consumption-investment-insurance problem. If
the discount function is exponential, the optimal strategy is time-consistent, which
means that the individual follows a strategy that continuously maximizes intertem-
poral utility. However, when we replace the exponential discount function with a
non-exponential discount function, the optimal strategy becomes time-inconsistent.
We consider two types of individuals: a naive individual and a sophisticated in-
dividual. Both the time-inconsistent strategy and the time-consistent strategy for
the individual are derived. Instead of using the HJB equation to obtain the naive
strategy, we derive the extended HJB equation to obtain the equilibrium strategy.

We also obtain the analytical solution of both the naive strategy for the naive
person and the equilibrium strategy for the sophisticated person in the CRRA case.
The two strategies are very similar and are both based on the available asset Y (t).

There is only one difference, which appears in the multiplier: Ât(t) for the naive
strategy and Ā(t) for the equilibrium strategy. Because they are too complex to
analyse in mathematical form, we use a numerical simulation for analysis.

We use the hyperbolic discount function ϕ(t) = (1 + ρt)−
β
ρ in the numerical

simulation to describe the common difference effect. In addition, we use k = 1+ρ >
1 to show the attitude for the future of the individual. A higher k means that the
individual is more patient in the future. From the numerical results, we found
that the individual will spend less for consumption and insurance if he/she applies
the time-consistent strategy rather than the time-inconsistent strategy because the
individual needs to give up some utility to make an agreement with his/her future
self. In addition, over time, the degree of inconsistency decreases. Moreover, we
found that the increase in k has the same effect as an increase in the habit level.
Specifically, if the individual is more patient in the future or has a higher tendency to
form a habit, he/she will spend less for consumption and insurance at a younger age
compared to in later years. We can say that this type of individual is more concerned
about the future. We also determine the consumption and habit formation for the
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naive person and for the sophisticated person with the same parameter. In addition,
our example agrees with the analysis that the sophisticated person would spend less
and save more in early times and be richer and consume more in later times. Thus,
the habit formation of the sophisticated person is smaller in early times than the
naive person and larger when they are older.

7. Appendix. Proof. The proof of this theorem can be done in two steps.
Step 1: we show that V is the value function corresponding to ū.
By Dynkin’s formulation, we have

V (t, x, h) =Et,x,h[V (T, X̄(T ), H̄(T ))]− Et,x,h

[ ∫ T

t

AūV (t, X̄(s), H̄(s))ds

]
=Et,x,h[U(X̄(T ))]− Et,x,h

[ ∫ T

t

AūV (t, X̄(s), H̄(s))ds

]
.

(15)

It follows from (7) that

AūV (t, x, h) =Et,x,h

[ ∫ T

t

∂Q(s, t)

∂t
U(c̄(s, X̄(s), H̄(s))− H̄(s))+

∂Q(s, t)

∂t
λ(s)U

(
X̄(s) +

p̄(s, X̄(s), H̄(s))

η(s)

)
ds+

∂Q(T, t)

∂t
U(X̄(T ))

]
−

U(c̄(t, x, h)− h)− λ(t)U

(
x+

p̄(t, x, h)

η(t)

)
.

Thus,

Et,x,h

[ ∫ T

t

AūV (s, X̄(s), H̄(s))ds

]
= Et,x,h

[ ∫ T

t

∫ T

s

∂Q(z, s)

∂s
U(c̄(z, X̄(z), H̄(z))− H̄(z))+

∂Q(z, s)

∂s
λ(z)U

(
X̄(z) +

p̄(z, X̄(z), H̄(z))

η(z)

)
dzds+∫ T

t

∂Q(T, s)

∂s
U(X̄(T ))− U(c̄(s, X̄(s), H̄(s))− H̄(s))−

λ(s)U

(
X̄(s) +

p̄(s, X̄(s), H̄(s))

η(s)

)
ds

]
= Et,x,h

[ ∫ T

t

∫ t

z

∂Q(z, s)

∂s
U(c̄(z, X̄(z), H̄(z))− H̄(z))+

∂Q(z, s)

∂s
λ(z)U

(
X̄(z) +

p̄(z, X̄(z), H̄(z))

η(z)

)
dsdz +

∫ T

t

∂Q(T, s)

∂s
U(X̄(T ))ds−∫ T

t

U(c̄(s, X̄(s), H̄(s))− H̄(s)) + λ(s)U

(
X̄(s) +

p̄(s, X̄(s), H̄(s))

η(s)

)
ds

]
= Et,x,h

[ ∫ T

t

[1−Q(z, t)]U(c̄(z, X̄(z), H̄(z))− H̄(z))+

[1−Q(z, t)]λ(z)U

(
X̄(z) +

p̄(z, X̄(z), H̄(z))

η(z)

)
dz + [1−Q(T, t)]U(X̄(T ))−
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t

U(c̄(s, X̄(s), H̄(s))− H̄(s)) + λ(s)U

(
X̄(s) +

p̄(s, X̄(s), H̄(s))

η(s)

)
ds

]
= Et,x,h

[ ∫ T

t

[1−Q(z, t)]U(c̄(z, X̄(z), H̄(z))− H̄(z))+

[1−Q(z, t)]λ(z)U

(
X̄(z) +

p̄(z, X̄(z), H̄(z))

η(z)

)
dz + [1−Q(T, t)]U(X̄(T ))−∫ T

t

U(c̄(s, X̄(s), H̄(s))− H̄(s)) + λ(s)U

(
X̄(s) +

p̄(s, X̄(s), H̄(s))

η(s)

)
ds

]
= −J(t, x, h; ū) + U(X̄(T )).

That is,

Et,x,h

[ ∫ T

t

AūV (s, X̄(s), H̄(s))ds

]
= −J(t, x, h; ū) + U(X̄(T )).

Substituting Et,x,h

[ ∫ T

t
AūV (s, X̄(s), H̄(s))ds

]
into (15), we obtain

V (t, x, h) = J(t, x, h; ū).

Step 2: We show that ū is the equilibrium control strategy which is defined in
Definition 3.1.

Let uε(s, y, k) =

{
ū(s, y, k), t+ ε < s ≤ T
u(s, y, k), t ≤ s ≤ t+ ε.

, where u is any strategy that

makes uε an admissible strategy.
To simplify the expression, We set Xuε

t,x,h(s) and Huε

t,x,h(s) as the corresponding

processes under the control strategy uε given X(t) = x and H(t) = h.
Let {c(s), θ(s), p(s)} = u(s,Xuε

t,x,h(s), H
uε

t,x,h(s)) for t ≤ s < t+ ε.While in t+ ε <

s ≤ T , we have {c̄(s), θ̄(s), p̄(s)} = ū(s,Xuε

t,x,h(s), H
uε

t,x,h(s)). Set Xε = Xuε

t,x,h(t+ ε)

and Hε = Xuε

t,x,h(t+ ε).

Moreover, V (t, x, h) = J(t, x, h; ū).

J(t, x, h;uε)

=Et,x,h

[ ∫ t+ε

t

Q(s, t)U(c(s)−Huε

t,x,h(s))ds

+

∫ t+ε

t

λ(s)Q(s, t)U

(
Xuε

t,x,h(s) +
p(s)

η(s)

)
ds

+

∫ T

t+ε

Q(s, t)U(c̄(s)−Huε

t,x,h(s))ds+

∫ T

t+ε

λ(s)Q(s, t)U

(
Xuε

t,x,h(s) +
p̄(s)

η(s)

)
ds

+Q(T, t)U(Xuε

t,x,h(T ))

]
=[U(c(t)− h) + λ(t)U

(
x+

p(t)

η(t)

)
]ε+ Et,x,h

[
J(t+ ε,Xε, Hε; ū)

+ Et+ε,Xε,Hε

[ ∫ T

t+ε

(Q(s, t)−Q(s, t+ ε))U(c̄(s)−H ū
t+ε,Xε,Hε

(s))ds

+

∫ T

t+ε

λ(s)(Q(s, t)−Q(s, t+ ε))U

(
X ū

t+ε,Xε,Hε
(s) +

p̄(s)

η(s)

)
ds+



NON-EXP DISCOUNT PORTFOLIO MANAGEMENT WITH HF 21

(Q(T, t)−Q(T, t+ ε))U(X ū
t+ε,Xε,Hε

(T ))
]]

=[U(c(t)− h) + λ(t)U
(
x+

p(t)

η(t)

)
]ε+ Et,x,h

[
V (t+ ε,Xε, Hε)

+ Et+ε,Xε,Hε

[ ∫ T

t+ε

(Q(s, t)−Q(s, t+ ε))U(c̄(s)−H ū
t+ε,Xε,Hε

(s))ds+∫ T

t+ε

λ(s)(Q(s, t)−Q(s, t+ ε))U

(
X ū

t+ε,Xε,Hε
(s) +

p̄(s)

η(s)

)
ds+

(Q(T, t)−Q(T, t+ ε))U(X ū
t+ε,Xε,Hε

(T ))
]]
.

Hence, we will have

lim
ε→0

J(t, x, h;uε)− V (t, x, h)

ε

=U(c(t)− h) + λ(t)U(x+
p(t)

η(t)
) + lim

ε→0

Et,x,h[V (t+ ε,Xε, Hε)]− V (t, x, h)

ε

+ lim
ε→0

Et,x,hEt+ε,Xε,Hε
[
∫ T

t+ε
(Q(s, t)−Q(s, t+ ε))U(c̄(s)−H ū

t+ε,Xε,Hε
(s))ds]

ε

+ lim
ε→0

Et,x,hEt+ε,Xε,Hε
[
∫ T

t+ε
λ(s)(Q(s, t)−Q(s, t+ ε))U(X ū

t+ε,Xε,Hε
(s) + p̄(s)

η(s) )ds]

ε

+ lim
ε→0

Et,x,hEt+ε,Xε,Hε
[(Q(T, t)−Q(T, t+ ε))U(Xt+ε,Xuε

t,x,h,H
uε
t,x,h

(T ))]

ε

=U(c(t)− h) + λ(t)U(x+
p(t)

η(t)
) +Au

t,x,hV (t, x, h)−

Et,x,h[

∫ T

t

∂Q(s, t)

∂t
U(c̄(s)− H̄(s))ds+

∫ T

t

λ(s)
∂Q(s, t)

∂t
U(X̄(s) +

p̄(s)

η(s)
)ds

+
∂Q(T, t)

∂t
U(X̄(T ))].

From equation (7), we know that limε→0
J(t,x,h;uε)−J(t,x,h;ū)

ε ≤ 0. Therefore,
ū satisfies the Definition3.1, which is an equilibrium strategy, and V (t, x, h) =
J(t, x, h; ū) is the equilibrium value function.

□
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