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Abstract

In 2008, we published a survey paper on machine scheduling with processing set

restrictions [Leung, J.Y.-T., Li, C.-L., 2008. Scheduling with processing set restrictions:

A survey. International Journal of Production Economics 116 (2), 251–262]. Since the

appearance of that survey paper, there has been a significant increase in interest in this

field. In this paper, we provide an expository update of this line of research. Our survey

covers five types of processing set restrictions, namely inclusive processing sets, nested

processing sets, interval processing sets, tree-hierarchical processing sets, and arbitrary

processing sets, and it covers both offline and online problems. While our main focus

is on scheduling models with a makespan objective, other performance criteria are also

discussed.

Keywords: Scheduling; parallel machines; processing set restrictions; computational

complexity



1 Introduction

In 2008, we published the survey paper “Scheduling with Processing Set Restrictions: A Survey”

(Leung and Li 2008). Since then, there has been a significant increase in interest in machine

scheduling problems with processing set restrictions. In this paper, we provide an expository update

of this line of research. Note that some of the works covered in this survey have been included in the

paper by Lim (2010), who has conducted a survey on scheduling problems with inclusive processing

set restrictions, and in the papers by Lee et al. (2010, 2013), who have conducted surveys on online

algorithms for scheduling problems with processing set restrictions.

1.1 Definitions

As recalled from Leung and Li (2008), the problem concerned can be stated as follows: We are

given a set of n jobs J = {J1, J2, . . . , Jn} and a set of m parallel machines M = {M1, M2, . . . , Mm}.

Each job Jj has a processing time pj and a set of machines Mj ⊆ M to which it can be assigned.

We aim to find a schedule such that each job Jj is assigned to one of the machines in Mj and

that the makespan Cmax is minimized. This problem is denoted as P |Mj|Cmax if the machines are

identical, Q|Mj|Cmax if the machines are uniform, and R|Mj|Cmax if the machines are unrelated.

These three problems are denoted as Pm|Mj|Cmax, Qm|Mj|Cmax, and Rm|Mj|Cmax, respectively,

if the number of machines, m, is fixed. Note that R|Mj|Cmax is equivalent to the classical unrelated

parallel machine problem R||Cmax (see Leung and Li 2008). Because of this equivalence, we will

not review any work about R|Mj|Cmax.

There are several important special forms of processing set restrictions, namely the inclusive

processing set, nested processing set, interval processing set, and tree-hierarchical processing set

restrictions. The inclusive processing set restriction has the property that for each pair Mj and

Mk, either Mj ⊆ Mk or Mk ⊆ Mj. The nested processing set restriction has the property

that for each pair Mj and Mk, either Mj ∩ Mk = ∅, Mj ⊆ Mk, or Mk ⊆ Mj. The interval

processing set restriction has the property that for any job Jj, Mj = {Maj , Maj+1, . . . , Mbj} for

some 1 ≤ aj ≤ bj ≤ m. The tree-hierarchical processing set restriction has the property that

each machine Mi is represented by a node of a tree, and that the processing set of a job Jj is the
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set of machines consisting of its associated node, say Maj , and all the nodes on the unique path

from Maj to the root of the tree. We denote a problem with such a special form of processing set

restriction as α|Mj(δ), β|γ, where α is the machine environment (α ∈ {P, Q}), δ is the processing

set restriction (δ ∈ {inclusive, nested, interval, tree}), γ is the scheduling criterion, and β states

the special processing characteristics (if any). While the main focus of this survey is on scheduling

models with a makespan minimization objective (i.e., γ = Cmax), other performance criteria are

also discussed. We let
∑

Cj ,
∑

wjCj,
∑

wjTj,
∑

Uj , Lmax, and Cmin denote the objectives of

minimizing the sum of job completion times, minimizing the weighted sum of job completion times,

minimizing the total weighted tardiness, minimizing the number of tardy jobs, minimizing the

maximum lateness, and maximizing the minimum machine load (i.e., minimum completion time of

all the machines), respectively. Special processing characteristics β include, but not limited to, job

release dates (rj), identical job processing times (pj = p), unit processing times (pj = 1), fractional

assignment or job splitting (split), and job preemption (pmtn).

Note that P |Mj(inclusive)|Cmax and Q|Mj(inclusive)|Cmax are NP-hard in the strong sense

(see, e.g., Leung and Li 2008). Note also that P |Mj(nested)|Cmax, P |Mj(interval)|Cmax, and

P |Mj(tree)|Cmax are generalizations of P |Mj(inclusive)|Cmax but are special cases of P |Mj|Cmax.

Similarly, Q|Mj(nested)|Cmax, Q|Mj(interval)|Cmax, and Q|Mj(tree)|Cmax are generalizations of

Q|Mj(inclusive)|Cmax but are special cases of Q|Mj|Cmax. We refer to the most general form of

processing set restrictions, where Mj can be an arbitrary subset of M, as arbitrary processing set.

In this survey, our emphasis is on optimal and approximation solution methods for these schedul-

ing models, and we consider both online and offline models. An underlying assumption of an offline

scheduling model is that all the input data are known in advance. In an online scheduling model,

the scheduler obtains the job data piece by piece and has to make decision with only a partial

knowledge of the input. There are two versions of online algorithms: “online over list” and “on-

line over time.” In the former case, all the jobs arrive at time zero, but the jobs are given to the

scheduler one at a time. The scheduler has to schedule the job as soon as it is released, and the

scheduling decision cannot be revoked. In the latter case, the jobs arrive at different times and the

scheduler has no information about the release times of the jobs. When a job Jj is released at rj,
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the scheduler can schedule the job or delay scheduling the job.

Worst-case error bounds are often used for measuring the performance of an offline approxima-

tion algorithm. For a given instance I of an offline problem and an approximation algorithm A,

let A(I) and OPT (I) denote the objective value obtained by algorithm A and an optimal algo-

rithm, respectively, when applied to I. For a minimization (respectively maximization) problem,

we say that algorithm A has an absolute worst-case error bound (or simply worst-case bound) q

if A(I)/OPT (I) ≤ q (respectively OPT (I)/A(I) ≤ q) for all I, and we say that algorithm A

has an asymptotic worst-case error bound q if there exists N > 0 such that A(I)/OPT (I) ≤ q

(respectively OPT (I)/A(I) ≤ q) for all I satisfying OPT (I) ≥ N . A polynomial time approxima-

tion scheme (PTAS) for a minimization (respectively maximization) problem with input size N is

an approximation algorithm which takes an accuracy requirement ε > 0 as input and produces a

solution with a running time polynomial in N for any fixed ε, such that A(I)/OPT (I) ≤ 1 + ε

(respectively OPT (I)/A(I) ≤ 1+ε). An efficient PTAS (EPTAS) is a PTAS with an O(f(1/ε)N c)

running time, where f(·) is an arbitrary function and c is a constant independent of ε. If f(·) is

a polynomial function, then the EPTAS is called a fully polynomial time approximation scheme

(FPTAS).

Competitive ratios are often used for measuring the performance of an online algorithm. An on-

line algorithm A for a minimization (respectively maximization) problem is said to be c-competitive

if A(I) ≤ c · OPT (I) (respectively OPT (I) ≤ c · A(I)) for all instances I of the problem, where

OPT (I) is the objective value obtained by an optimal offline algorithm. If algorithm A is c-

competitive, then we say that it has a competitive ratio of c (Leung and Li 2008). Thus, an online

algorithm A is 1-competitive, or, equivalently, has a competitive ratio of 1, if it produces a solution

whose objective value is exactly the same as that of an optimal offline algorithm.

1.2 Examples of applications

Problem P |Mj(inclusive)|Cmax has many applications. For example, Ou et al. (2008) describe an

application in scheduling vessel-loading cranes where multiple cranes with different weight capacity

limits are working in parallel. Machines with inclusive processing set restrictions are also known as
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machines with a “linear hierarchy” (see Bar-Noy et al. 2001) as well as machines with “Grade of

Service” (GoS) provision (see Hwang et al. 2004). Hwang et al. (2004) describe an application in

the service industry in which a service provider has customers categorized as platinum, gold, silver,

and regular members. Those “special members” are entitled to premium services. In order to

provide premium services to “special members”, servers (i.e., machines) and customers (i.e., jobs)

are labeled with GoS levels, and a customer is allowed to be served by a server only when the GoS

level of the customer is not lower than the GoS level of the server. In this paper, we will use GoS

provision and inclusive processing set restrictions interchangeably.

An example of the nested processing set model is given as follows: Consider the Operations

Management and Information Systems department of a university. Each undergraduate of this

department is majoring in either Operations Management (OM) or Information Systems (IS).

Every year the department has to assign students to different academic advisors, where an academic

advisor is a faculty member in either the OM discipline or the IS discipline. Each of these two

disciplines has a faculty member serving as a discipline coordinator. Each student has to be

assigned to one faculty member, and each faculty member can serve as academic advisors of multiple

students. Academic advisors are assigned to students according to the following rules: (i) A first-

year student who is not on academic probation can be assigned to any faculty member in the

department; (ii) a second-, third-, or fourth-year student must be assigned to a faculty member

in the student’s discipline; (iii) a student who is on academic probation must be assigned to the

discipline coordinator of the student’s discipline. Assigning a student to a faculty member will

bring some work to the faculty member, and the objective is to minimize the maximum workload

among all faculty members in the department. In this example, the processing sets (i.e., sets of

eligible academic advisors for the students) has a nested structure.

The nested processing set restriction is a special case of the interval processing set restriction

(see, e.g., Lee et al. 2013). Hence, the above example is also an example of the interval processing set

model. Suppose that there are u faculty members M1, M2, . . . , Mu in the OM discipline and v faculty

members Mu+1, Mu+2, . . . , Mu+v in the IS discipline, where M1 is the OM discipline coordinator

and Mu+1 is the IS discipline coordinator. Then, the processing set of a (non-probationary) first-
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year student is {M1, M2, . . . , Mu+v}; the processing set of a (non-probationary) second-, third-, or

fourth-year OM major is {M1, M2, . . . , Mu}; the processing set of a (non-probationary) second-,

third-, or fourth-year IS major is {Mu+1, Mu+2, . . . , Mu+v}; the processing set of an OM major

who is on academic probation is {M1}; and the processing set of an IS major who is on academic

probation is {Mu+1}.

An example of the tree-hierarchical processing set model is given as follows: Consider the

purchasing office of a university in which a team of administrators whose daily tasks are to process

purchase requisitions submitted by various departments. There are two divisions in the purchasing

office. One division supports the procurement activities of academic departments, and the other

division supports the administrative departments. Each division has a supervisor and a group

of clerical staff, and the head of the purchasing office oversees both divisions. Each clerical staff

in a division is designated to a specific category of purchases such as equipment, office furniture,

stationeries, etc. If a purchase requisition involves a monetary amount no more than a threshold

$X , then it can be handled by any clerical staff member in the division, the supervisor of the

division, or the head of the purchasing office. If a purchase requisition involves an amount higher

than $X but no more than $Y , where Y > X , then it must be handled by the supervisor of the

division or the head of the purchasing office. A purchase requisition involving an amount higher

than $Y can only be handled by the head of the purchasing office, regardless of whether it comes

from an academic department or an administrative department. Assigning a purchase requisition

to a person will increase the workload of that person, and the objective is to minimize the maximum

workload among all staff in the purchasing office. In this example, the “machines” have a tree-

hierarchical structure. The head of the purchasing office is the root of the tree. The supervisors of

the two divisions are directly underneath the root. The clerical staff members in each division are

directly under the supervisor of the division.

1.3 Outline of the paper

In Section 2 we review the works on inclusive processing sets. In Section 3, we review the works

on nested, interval, tree-hierarchical, and arbitrary processing sets. In these sections, unless stated
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otherwise, the scheduling objective is always makespan minimization. In Section 4, we review some

related works, including models with batch processing, models with resource constraints, etc. We

conclude the paper by providing some suggested future research directions in Section 5.

2 Inclusive Processing Sets

In this section we review the recent works on scheduling with inclusive processing set restrictions.

We divide our discussions into offline and online models.

2.1 Offline models

We first consider the problem P |Mj(inclusive)|Cmax. As stated in Leung and Li (2008), a

polynomial-time algorithm with an absolute worst-case error bound of 4/3 has been developed

by Ou et al. (2008). A PTAS has also been given by Ou et al. (2008), which has been extended to

include release dates by Li and Wang (2010).

Theorem 1 (Li and Wang 2010). There exists a PTAS for P |Mj(inclusive), rj|Cmax.

Li et al. (2012) give an EPTAS for the special case where the GoS level of the machines is

either 1 or 2. Several FPTASs are known for the case where the number of machines m is fixed;

see Woeginger (2009) and Li et al. (2012). Epstein and Levin (2011) study the “speed hierarchical

model,” where the machines are uniformly related machines and each job has a minimum speed

level necessary for a machine to process the job. They develop a PTAS for this problem.

Theorem 2 (Epstein and Levin 2011). There exists a PTAS for Q|Mj(inclusive)|Cmax when each

job has a minimum speed level necessary for a machine to process the job.

For a set of equal processing time jobs, the problem can be solved in polynomial time even

when there are release dates. Li and Li (2015) present an O(n2 + mn logn) time algorithm

for P |Mj(inclusive), rj, pj = p|Cmax (i.e., problem P |Mj(inclusive)|Cmax with job release dates

and equal processing times). For uniform machines, they show that Q|Mj(inclusive), rj, pj =

p|Cmax can be solved by an O(mn2 log m) time algorithm. Recently, Li and Lee (2016) develop
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a modified algorithm for P |Mj(inclusive), rj, pj = p|Cmax with an improved running time of

O(min{m, logn}n log n).

Theorem 3 (Li and Li 2015; Li and Lee 2016). P |Mj(inclusive), rj, pj = p|Cmax can be solved

in O(min{m, logn}n log n) time, whereas Q|Mj(inclusive), rj, pj = p|Cmax can be solved in

O(mn2 logm) time.

The preemptive case can also be solved in polynomial time. Huo et al. (2009a) provide an

O(nk logP + mnk2 + m3k) time algorithm for P |Mj(inclusive), rj, pmtn|Cmax, where k is the

number of distinct release dates and P is the total processing time of all the jobs. They show that

there is no 1-competitive online algorithm for this problem.

Theorem 4 (Huo et al. 2009a). P |Mj(inclusive), rj, pmtn|Cmax can be solved in O(nk log P +

mnk2 + m3k) time, where k is the number of distinct release dates and P =
∑n

j=1 pj.

In some scheduling models, the objective is to maximize the minimum completion time of all

the machines. Li et al. (2009) present a PTAS with running time of O(mnO(1/ε2)) for problem

P |Mj(inclusive)|Cmin. When the number of GoS level is bounded above by a fixed constant k,

their PTAS has a running time O(n). When the number of machines is fixed, they give an FPTAS

with running time O(n). Table 1 summarizes the major results for the offline models with inclusive

processing set restrictions.

2.2 Online models

As mentioned in Section 1.1, there are two versions of online algorithms, namely online over list

and online over time. In the following, we will review online scheduling over list, unless stated

otherwise.

As mentioned in Leung and Li (2008), Bar-Noy et al. (2001) have given an online algorithm

with a competitive ratio of e + 1 ≈ 3.718 for problem P |Mj(inclusive)|Cmax. Tan and Zhang

(2011) provide improved competitive ratios of 2.333 and 2.610 for the 4-machine and 5-machine

cases, respectively. Lim et al. (2011) further improve the competitive ratios to 2.294 and 2.501 for

these two cases.
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Theorem 5 (Bar-Noy et al. 2001; Lim et al. 2011). There exist online (over list) algorithms for

P |Mj(inclusive)|Cmax, P4|Mj(inclusive)|Cmax, and P5|Mj(inclusive)|Cmax with competitive

ratios 3.718, 2.294, and 2.501, respectively.

Recently, Zhang (2015) studies the fractional assignment model P |Mj(inclusive), split|Cmax,

where each job can be arbitrarily split between the machines, and the split jobs can be processed,

possibly in parallel, by different machines. He provides an optimal online algorithm for this problem

based on the solution of linear programming.

Zhang et al. (2009) examine online scheduling of problem P |Mj(inclusive)|Cmax with two GoS

levels. They present an online algorithm with a competitive ratio of 1 + m2−m
m2−km+k2 < 7

3 , where k

is the number of machines that can process all the jobs and m− k is the number of machines that

can only process a subset of jobs.

Lee et al. (2011b) study online scheduling over time for the two-machine problem

P2|Mj(inclusive), rj, pj = p|Cmax in which the jobs have release dates and the job processing

times are identical. They present an optimal online algorithm with a competitive ratio of
√

2. (An

online algorithm is optimal if its competitive ratio matches the lower bound of the problem.) Xu

and Liu (2015) give an optimal online algorithm with a competitive ratio of
√

2 for a more general

problem P |Mj(inclusive), rj, pj = p|Cmax which has an arbitrary number of machines.

Theorem 6 (Xu and Liu 2015). There exists an optimal online (over time) algorithm for

P |Mj(inclusive), rj, pj = p|Cmax with a competitive ratio of
√

2.

Shabtay and Karhi (2012a) consider the two-machine problem P2|Mj(inclusive), pj = 1|∑Cj,

where all jobs have unit processing time and the objective is to minimize the total job completion

time. They present an online algorithm with a competitive ratio of ρLB + O( 1
n), where ρLB is

a lower bound on the competitive ratio of any online algorithm. The lower bound ρLB is given

by 1 +
(−α+

√
4α3−α2+2α−1
2α2+1

)2
, where α = 1

3 + 1
6

(

116 − 6
√

78
)1/3

+ (58+3
√

78)1/3

3(2)2/3 ≈ 1.918. Since the

competitive ratio differs from the lower bound by O( 1
n), it approaches the lower bound arbitrarily

closely when n gets arbitrarily large. Thus, their algorithm can be regarded as asymptotically

optimal.
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Hou and Kang (2012) consider online scheduling on uniform machines. There are k machines

with speed s that can schedule all the jobs, and m − k machines with speed 1 that can schedule

only a subset of jobs. They present an online algorithm with the following competitive ratio. Let

s1 ∈ (0, 1) be the real root of the equation k2s3+k(2m−2k−1)s2+(m−k)(m−2k)s−(m−k)2 = 0

and s2 be the positive root of the equation ks2 − (2k − 1)s − (m − k) = 0. When 0 < s < 1, the

competitive ratio is











max
{

1 + k−1
k , 1 + ks+m−k−1

m−k

}

, if 0 < s ≤ s1;

1 +
(m−1)(ks+m−k)

k2s2+k(m−k)s+(m−k)2
, if s1 < s < 1.

When s ≥ 1, the competitive ratio is











1 +
k(k−1)s2+(m−k)(m+k−1)s

k2s2+k(m−k)s+(m−k)2
, if 1 ≤ s < s2;

1 + (k−1)s+m−k
ks , if s ≥ s2.

Liu et al. (2009) study online scheduling on two uniform machines; that is, the problem

Q2|Mj(inclusive)|Cmax. They assume that M1 has speed 1 and can process any job, while M2 has

speed s > 0 and can only process a subset of jobs. They derive a lower bound on the competitive

ratio, and propose and analyze two online algorithms. Lee et al. (2009c) point out an error in

Liu et al. (2009) and propose several online algorithms for the problem. They derive the following

competitive ratios for these algorithms: Let s1 =
√

5−1
2 and s2 be the solution of the equation

s3 − s − 1 = 0 for 1.3 < s < 1.4. When s ∈ (0, s1], the High Speed Machine First (HSF) algorithm

has a competitive ratio of 1 + s, which matches its lower bound (i.e., the algorithm is optimal).

When s ∈ [s2,∞), HSF is also optimal and has a competitive ratio of 1+ 1
s . When s ∈ (s1, 1), they

propose a “Modified ONLINE1” algorithm and show that it has a competitive ratio of 1 + 2s
s2+s+1

,

which does not match its lower bound. When s ∈ (1, s2), they propose a “Modified ONLINE2”

algorithm and show that it has a competitive ratio of 1 + s2+s
s2+s+1

, which also does not match its

lower bound.

Tan and Zhang (2010) consider the same problem as in Lee et al. (2009c). They assume that M1

has speed s > 0 and can process any job, while M2 has speed 1 and can only process a subset of jobs.

For s < 1, they propose an optimal algorithm with a competitive ratio of min{1+s, 1+ 1+s
1+s+s2 }. For
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s > 1, they propose another optimal algorithm with a competitive ratio of min{1+s
s , 1 + 2s

1+s+s2 }.

Chassid and Epstein (2008) study the online problem Q2|Mj(inclusive)|Cmin. They assume

that the first machine has speed s > 0 that can process all the jobs, while the second machine

has speed 1 that can only process a subset of jobs. They show that no online algorithm with a

constant competitive ratio exists for this problem. They then design an optimal online algorithm

with competitive ratio 2s+1
s+1 for the fractional assignment model Q2|Mj(inclusive), split|Cmin.

Hou and Kang (2011) consider online scheduling on uniform machines with two GoS levels.

There are k machines with speed s that can process all the jobs, and there are m − k machines

with speed 1 that can only process a subset of jobs. Both the Cmax and Cmin objectives are

considered. For the Cmin objective, they show that no online algorithm can achieve bounded

competitive ratio. They also consider the fractional assignment model, for which they propose an

optimal online algorithm with a competitive ratio of 2ks+m−k
ks+m−k for the Cmin objective, and an optimal

online algorithm with a competitive ratio of (ks+m−k)2

k2s2+ks(m−k)+(m−k)2
for the Cmax objective. Table 2

summarizes the major results for the online models with inclusive processing set restrictions.

Studies have also been conducted on semi-online scheduling problems with inclusive processing

set restrictions, where some partial information about the jobs such as sum of processing require-

ments of all jobs, bounds on job processing times, etc., are known to the scheduler. These works

include Chassid and Epstein (2008), Hou and Kang (2011), Liu et al. (2011), Wu et al. (2012a,b),

Chen et al. (2013), Lu and Liu (2013), Lee et al. (2014), Luo and Xu (2014a,b, 2016), Luo et

al. (2014), Wu et al. (2014), Chen et al. (2015), Lu and Liu (2015), and Zhang et al. (2015), who

consider various models with different partial information given to the schedulers.

Wang and Xing (2010) study an “online over list” scheduling model with inclusive processing set

restrictions where the definition of online scheduling is different from what is defined above. They

consider a problem with two GoS levels and derive competitive ratios for several service policies.

There are ordinary and special jobs, and there are dedicated and flexible machines. Special jobs

can only be processed by flexible machines, while ordinary jobs can be processed by any machine.

Unlike the definition of “online over list” defined above, their service policies assume that the

scheduler may select a special job waiting in the list and schedule it before some ordinary jobs in
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front of it. Wang et al. (2009) study the “online over time” version of Wang and Xing’s (2010)

problem where each job has a given release date.

3 Nested, Interval, Tree-Hierarchical, and Arbitrary Processing Sets

In this section, we review the works on nested, interval, tree-hierarchical, and arbitrary processing

sets. We divide our discussions of these four types of processing set restrictions into four subsections.

Major results for the offline and online models are summarized in Table 3 and Table 4, respectively.

3.1 Nested processing sets

As mentioned in Leung and Li (2008), Glass and Kellerer (2007) have provided a simple polynomial-

time algorithm for P |Mj(nested)|Cmax with an absolute worst-case error bound of 2 − 1/m. Huo

and Leung (2010b) present a polynomial time algorithm with an improved absolute worst-case

error bound of 7/4. For two- and three-machine cases, their algorithm offers a better worst-case

error bound of 5/4 and 3/2, respectively. Huo and Leung (2010a) present a better algorithm with

a worst-case error bound of 5/3. Muratore et al. (2010) and Epstein and Levin (2011) develop

PTASs independently for this problem.

Theorem 7 (Muratore et al. 2010; Epstein and Levin 2011). There exists a PTAS for P |Mj(nested)|Cmax.

Biró and McDermid (2014) study the problem P |Mj(nested), pj ∈ {1, 2, 4, . . . , 2k}|Cmax. They

show that this problem can be solved optimally in O(ke logn) time, where e =
∑n

j=1 |Mj|.

Huo et al. (2009b) consider the problem P |Mj(nested), pmtn|Cmax, where job preemption is

permitted. They propose an O(n logn) time algorithm to find an optimal schedule. They also

present an O(mn + n logn) time algorithm to find a maximal schedule, where a schedule is said to

be maximal if it processes as much work as any other schedule in any time interval [0, t], t > 0.

Theorem 8 (Huo et al. 2009b). P |Mj(nested), pmtn|Cmax can be solved in O(n logn) time.

Lim et al. (2011) consider the online version of problem P |Mj(nested)|Cmax. They present

several lower bounds on the competitive ratio for problems with different number of machines. Lee
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et al. (2011b) study online scheduling over time and point out that the Least Flexible Job first (LFJ)

algorithm, which processes jobs in nondecreasing order of the cardinality of their processing sets,

is 1-competitive for the problem P |Mj(nested), rj, pj = 1|Cmax. Xu and Liu (2015) study online

scheduling over time for the more general problem P |Mj(nested), rj, pj = p|Cmax and provide an

optimal online algorithm with a competitive ratio of
√

5+1
2 .

Theorem 9 (Lee et al. 2011b; Xu and Liu 2015). There exist online (over time) algorithms for

P |Mj(nested), rj, pj = 1|Cmax and P |Mj(nested), rj, pj = p|Cmax with competitive ratios 1 and
√

5+1
2 , respectively.

3.2 Interval processing sets

Shabtay and Karhi (2012b) study a special case of P |Mj(interval), pj = 1|Cmax with two job

types. The processing set of the first job type is {M1, M2, . . . , Mk}, while the processing set of

the second job type is {Ms+1, Ms+2, . . . , Mm}, where 1 ≤ s ≤ k ≤ m. They provide a linear-time

offline algorithm for constructing an optimal schedule. They also give an optimal online algorithm

with a competitive ratio of mk
(m−s)k+s2 . This online algorithm becomes 1-competitive when k = s

and becomes 4/3-competitive when k = m = 2s. Karhi and Shabtay (2013) show that the online

algorithm of Shabtay and Karhi is also optimal for two other special cases, namely the case where

the processing times are job type dependent and the case where the processing times are machine

set dependent.

Karhi and Shabtay (2014) study the same problem as in Shabtay and Karhi (2012b), except

that the processing times of the jobs are arbitrary. They give an online algorithm with competitive

ratio of 1 + k(m−1)
k(m−s)+s2 as well as lower bounds for the competitive ratio. Although their online

algorithm has not been shown to be optimal, the gap between its competitive ratio and the lower

bound is quite small.

Lim et al. (2011) study the online version of problem P |Mj(interval)|Cmax and present several

lower bounds on the competitive ratio for problems with different number of machines.
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3.3 Tree-hierarchical processing sets

Huo and Leung (2010a) present a fast approximation algorithm for problem P |Mj(tree)|Cmax with

an absolute worst-case error bound of 4/3. Epstein and Levin (2011) develop a PTAS for this

problem.

Theorem 10 (Epstein and Levin 2011). There exists a PTAS for P |Mj(tree)|Cmax.

Li and Li (2015) consider problem P |Mj(tree), rj, pj = p|Cmax in which the jobs have release

dates and the job processing times are identical. They develop an O(n2 +mn logn) time algorithm

for this problem. They also present an O(mn2 logm) time algorithm for the uniform machine case.

Recently, Li and Lee (2016) provide an improved algorithm for P |Mj(tree), rj, pj = p|Cmax with a

running time of O(mn logn).

Theorem 11 (Li and Li 2015; Li and Lee 2016). P |Mj(tree), rj, pj = p|Cmax can be solved in

O(mn logn) time, whereas Q|Mj(tree), rj, pj = p|Cmax can be solved in O(mn2 logm) time.

Xu and Liu (2015) study online scheduling over time for the three-machine problem

P3|Mj(tree), rj, pj = p|Cmax. They design an optimal algorithm with a competitive ratio of 3/2.

3.4 Arbitrary processing sets

Low (2006) propose an approximation algorithm for problem P |Mj|Cmax and present an absolute

worst-case error bound. Lee et al. (2009a) point out an error in Low’s analysis and show that his

algorithm does not have a constant approximation ratio. Huang and Yu (2010) present a simple

heuristic for problem P |Mj|Cmax and test its effectiveness computationally.

Recalde et al. (2010) propose four different neighborhood search methods for the problem

Q|Mj|Cmax: the jump, swap, push, and lexicographical jump (lexjump) neighborhood. The

jump/swap/push/lexjump-optimal assignment is one where the jump/swap/push/lexjump

neighborhood is applied until no further improvement can be made. Recalde et al. show that the

jump/swap/push-optimal assignment for Q|Mj|Cmax has an absolute worst-case error bound of

1/2 +
√

1/4 + (m− 1)s̃, where s̃ = max{si}
min{si} is the ratio of the maximum machine speed versus the
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minimum machine speed. They also show that the lexjump-optimal assignment for Q|Mj|Cmax

has an absolute worst-case error bound of O( log
P

s̃i

log log
P

s̃i
), where s̃i = si

min{si} is the relative speed of

machine Mi. For equal-processing-time jobs, they show that jump/swap/push-optimal assignment

has an absolute worst-case error bound of
√

(1 + m−1
n )

∑

s̃i, while lexjump-optimal assignment has

an absolute worst-case error bound of O( log n
log logn ). Rutten et al. (2012) show that the above bounds

are tight up to a constant factor.

For the problem P |Mj|Cmax, Recalde et al. (2010) show that the “jump/swap/push-optimal

assignment” has an absolute worst-case error bound of 1/2+
√

m − 3/4 while the lexjump-optimal

assignment has an absolute worst-case error bound of O( logm
log logm). Both results are obtained by

specializing the bounds in Q|Mj|Cmax to identical speeds of the machines.

Lee et al. (2009b) consider the problem P |Mj, |Mj| ≤ 2|Cmax (i.e., the problem in which each

eligible set contains at most two machines). They formulate the problem as a graph balancing

problem which is defined as follows: Given an undirected multigraph with weights on the edges,

we would like to orient the edges so that the maximum of the loads of the vertices is minimized,

where the load of a vertex is the sum of the weights of the incoming edges. Lee et al. develop an

FPTAS when the simplified graph of the multigraph is a tree (the simplified graph of a multigraph

is obtained by deleting all self loops and replacing the multiple edges by a single edge that connects

the same vertices). Recently, Ebenlendr et al. (2014) design a polynomial-time 1.75-approximation

algorithm for the problem P |Mj, |Mj| ≤ 2|Cmax.

Lee et al. (2011b) analyze the problem P |Mj, rj, pj = p|Cmax, where jobs have release dates

and identical processing times. They design an O(m3/2n5/2 log n) algorithm for the problem. They

also extend the result to solve problem Q|Mj, rj, pj = p|Cmax in O(m3/2n5/2 log nm) time.

Theorem 12 (Lee et al. 2011b). P |Mj, rj, pj = p|Cmax can be solved in O(m3/2n5/2 logn) time,

whereas Q|Mj, rj, pj = p|Cmax can be solved in O(m3/2n5/2 lognm) time.

Biró and McDermid (2014) study the problem P |Mj, pj ∈ {1, 2, 4, . . . , 2k}|Cmax. They give a

polynomial-time approximation algorithm with a worst-case error bound of 2 − 1
2k . The running

time of their algorithm is O(2kne), where e =
∑n

j=1 |Mj|.

14



Some studies consider online scheduling of problems with arbitrary processing sets. Lim et

al. (2011) study the online version of problem P |Mj|Cmax and show that Algorithm AW developed

by Azar et al. (1995) achieves a competitive ratio of blog2 mc + m
2blog2 mc .

Theorem 13 (Lim et al. 2011). There exists an online (over list) algorithm for P |Mj|Cmax with

a competitive ratio of blog2 mc + m
2blog2 mc .

Lee et al. (2009c) study the online version of problem Q2|Mj|Cmax. Assuming that M1 has

speed 1 and M2 has speed s > 0, they show that the HSF algorithm is an optimal online algorithm

with competitive ratio 1+min{s, 1
s}. Mandelbaum and Shabtay (2011) study a semi-online version

of P |Mj, pj = 1|Cmax in which the job types of the next h jobs beyond the current one in the

job list, as well as the total number of jobs, are known to the scheduler. Lee et al. (2011b) study

online over time for the problem P2|Mj, rj, pj = p|Cmax and present an optimal algorithm with a

competitive ratio of
√

5+1
2 .

Theorem 14 (Lee et al. 2011b). There exists an optimal online (over time) algorithm for

P2|Mj, rj, pj = p|Cmax with a competitive ratio of
√

5+1
2 .

Some studies consider arbitrary processing set models with non-makespan objectives. Hao et

al. (2009) develop a chaotic particle swarm optimization based hybrid algorithm for the prob-

lem P |Mj|
∑

Uj. Hao et al. (2010) develop a particle swarm based algorithm for the problem

P |Mj|
∑

wjTj.

4 Other Related Works

In this section, we consider other scheduling problems with processing set restrictions.

4.1 Models with batch processing

Inclusive processing set restrictions have been extended to parallel-batching (p-batch) machines.

Each p-batch machine Mi has a size capacity Si. Each job Jj has a size sj , where 0 < sj ≤

15



maxi=1,...,m{Si} for all j. Several jobs can be batched together and assigned to a machine Mi, pro-

vided that the total size of the jobs in the batch does not exceed Si. The processing time of a batch

is the longest processing time of all the jobs in the batch. We use P |p-batch,Mj(inclusive)|Cmax

to denote problem P |Mj(inclusive)|Cmax with p-batch machines. For the problem

P |p-batch,Mj(inclusive), pj = 1|Cmax, Wang and Leung (2014) present an O(n logn) time al-

gorithm with an absolute worst-case error bound of 2. They show that, unless P = NP , there is

no polynomial-time approximation algorithm with an absolute worst-case error bound less than 2.

They also provide an O(mn2) time algorithm with an asymptotic worst-case error bound of 3/2.

For the problem P |p-batch,Mj(inclusive)|Cmax, Jia et al. (2015) give a deterministic algorithm

based on the first-fit-decreasing rule and a meta-heuristic based on the max-min ant system to

solve the problem, and they show that both heuristics outperform previously studied heuristics.

Motivated by the operation of a restaurant, Tadayon and Salmasi (2012, 2013) study a hybrid

flowshop with jobs arriving the system in groups at different times. There are parallel machines with

arbitrary processing set restrictions in each stage, and the objective is to minimize a combination

of (i) the sum of completion times of the groups and (ii) the sum of the differences between the

completion time of each job and the completion time of the group that the job belongs to. A

particle swarm optimization algorithm is presented.

Wang et al. (2012) consider a two-stage hybrid flowshop problem encountered in semiconductor

manufacturing. Each job has a given release date and a given due date. In the first stage, each

machine processes at most one job at a time with an arbitrary processing set restriction. In the

second stage, each machine can process a batch of no more than two jobs of the same “recipe”

simultaneously, again with an arbitrary processing set restriction. The objective is to minimize

the makespan of the schedule. Dispatching rules and reoptimization techniques are proposed for

tackling the problem.

4.2 Models with resource constraints

Motivated by the operation of an injection molding department of an electrical appliance company,

Edis et al. (2008) consider the problem P |Mj|
∑

Cj with additional resource constraints due to
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the limited number of available operators. Each job Jj requires resj operators during the time

period the job is processed, and b operators are available. They present a Lagrangian-based so-

lution method and a problem-specific heuristic, and evaluate their performance via computational

experiments. Edis and Ozkarahan (2011) consider problem P |Mj|Cmax with the same resource

constraints as in Edis et al. (2008). They study three optimization models: (1) an integer program-

ming (IP) model, (2) a constraint programming (CP) model, and (3) a combined IP/CP model.

Computational results show that the combined IP/CP model outperforms the IP model and the

CP model. Wang et al. (2015) study a surgical operations scheduling problem and model it as

problem P |Mj|Cmax with resource constraints. In their model, there are λ types of resource with

one unit of each type, and each job requires only one unit of resource to process. They propose

heuristic algorithms and evaluate them via computational experiments.

Su et al. (2011) consider the maximum lateness minimization problem P |Mj|Lmax with resource

constraints, but the resources are allocated to machines and not to jobs. There are R units of a

resource available. The speed of a machine Mi depends on the amount of resource ri allocated to

it. All machines have a common minimum and maximum number of units of the resource, rmin

and rmax, respectively. Thus, ri needs to satisfy rmin ≤ ri ≤ rmax and
∑m

i=1 ri ≤ R. A network

flow algorithm and a heuristic are developed for this problem. The effectiveness of the heuristic is

tested computationally.

4.3 Models with coordination mechanisms

Lee et al. (2011a) study coordination mechanisms for scheduling jobs on m parallel machines with

processing set restrictions, where agents who own the jobs acts selfishly to minimize his/her own

completion time. To resolve the conflict, each machine will announce in advance the local policy

(i.e., sequencing rule) adopted by the machine to sequence the jobs assigned to that machine. Each

agent is aware of the local policy of each machine as well as all the information about the other

jobs. The social objective is to minimize the makespan. The price of anarchy (POA), which is the

ratio between the worst objective function value of an equilibrium of the game and the objective

function value of an optimal outcome, is used to quantify the inefficiency of the equilibrium.
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Lee et al. (2011a) consider the Lowest Grade and Longest Processing Time first (LG-LPT) local

policy which processes jobs in nondecreasing order of the flexibility of the job, and in case of a tie,

in nonincreasing order of their processing times. For the case with inclusive processing sets, they

show that the POA of the LG-LPT policy is 5
4 when m = 2, and is 2 − 1

m−1 when m ≥ 3. For the

case with interval processing sets, they show that the POA of the LF-LPT policy is 5
4 when m = 2,

at most 4 − 3
m when m ≥ 3, and at least 4 − 28

m+12 when m is a multiple of 8. For the case with

arbitrary processing sets, they consider the LFJ local policy which processes jobs in nondecreasing

order of the cardinality of their processing sets. They show that the POA of the LFJ policy is 3
2

when m = 2, and is within the interval
[

dlog2(m + 1)e − 1, log2 m + 1
2

]

when m ≥ 3.

Guan and Li (2013) also consider the LG-LPT local policy for the case with inclusive processing

sets. Same as Lee et al. (2011a), they show that the POA of this policy is 5
4 when m = 2, and is

2− 1
m−1 when m ≥ 3. They also consider a makespan policy where jobs are ordered arbitrarily and

show that its POA is 3
2 when m = 2, and is Θ

( logm
log logm

)

when m ≥ 3.

4.4 Models with uncertainty

As mentioned in Section 3.4, Mandelbaum and Shabtay (2011) study a semi-online version of

P |Mj, pj = 1|Cmax, where the scheduler has lookahead abilities. In this study, they also consider

a stochastic version of this problem in which the scheduler only knows the probability distribution

of the jobs types, and the objective is to minimize the expected makespan of the schedule. They

develop optimal dynamic programming algorithms for the problem.

Pinedo and Reed (2013) consider a stochastic uniform machine scheduling problem with nested

processing sets. Each job has an exponentially distributed arrival time and an exponentially dis-

tributed processing time. Job preemption is permitted. They show that the “least flexible job to

the fastest machine” rule minimizes the expected makespan as well as the total expected completion

time.

Some studies investigate the robustness of scheduling models with processing set restrictions.

Rossi et al. (2011) consider problem Q|Mj, split|Cmax, where “split” indicates that job splitting

and preemption are allowed. They conduct sensitivity analysis for this problem by analyzing how a

18



change in demand of the job types affect the makespan of the optimal schedule. Rossi (2010) studies

the robustness measures of the configuration of the machines in problem Q|Mj, split|Cmax, where

the configuration is a Boolean matrix {Qji} such that Qji = 1 if and only if machine Mi ∈ Mj.

Aubry et al. (2012) consider a model which maximizes the robustness of the configuration in problem

Q|Mj, split|Cmax, subject to a setup cost constraint, where a setup cost is incurred when a machine

is made eligible for a job.

4.5 Models with other structures or requirements

Shabtay et al. (2015) study uniform machine scheduling of equal-processing-time jobs with rejection

and arbitrary processing set restrictions. A job Jj can either be rejected and incur a cost of ej , or

be accepted and scheduled on a machine that belongs to processing set Mj. Their model consists

of two criteria Criterion F1 is either fmax(A) = maxJj∈A{fj(Cj)} or
∑

Jj∈A fj(Cj), where A is

the set of accepted jobs, Cj is the completion time of Jj, and fj is a nondecreasing function of

Cj . Criterion F2 is the total rejection cost; that is, F2 =
∑

Jj∈Ā ej. They study four bi-criteria

problems: (1) minimize F1 + F2; (2) minimize F1 subject to the constraint that F2 is not greater

than a given threshold; (3) minimize F2 subject to the constraint that F1 is not greater than a

given threshold; and (4) identify a Pareto-optimal solution for each Pareto-optimal point. They

show that if F1 is fmax(A), then all four problems can be solved in polynomial time. On the other

hand, if F1 is
∑

Jj∈A fj(Cj), then only the first problem is solvable in polynomial time, while the

other three problems are NP-hard.

Eliiyi et al. (2009) also study a problem with job rejection. They consider the setting where

each job has a time window and a processing set; that is, each job has to be scheduled completely

inside its given time window on a machine that belongs to its processing set. The objective is to

maximize the total profit of the scheduled jobs, and no penalty is incurred on the rejected jobs. A

constraint-graph based construction algorithm is developed for solving the problem.

Liao (2009) consider a parallel-machine makespan minimization scheduling problem in which

each machine Mi has a set of time intervals {[br
i , f

r
i ) | 1 ≤ i ≤ m; 1 ≤ r ≤ qi} that the jobs can

be processed. Each availability interval [br
i , f

r
i ) has a service level k, where 1 ≤ k ≤ h, and h is
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the total number of service levels. Each job Jj has a unit processing time and a required service

level rsj (1 ≤ rsj ≤ h). Each availability interval with service level k can serve jobs with required

service level less than or equal to k. Liao shows that a modified least flexible job (LFJ) rule is

optimal for this problem.

Scheduling problems with processing set restrictions appear in various industrial applications.

Hu et al. (2010) describe an application in block erection in shipbuilding and solve the problem

as a parallel-machine scheduling problem with arbitrary processing set restrictions and precedence

constraints. Gokhale and Mathirajan (2012) describe an application automobile gear manufac-

turing and solve the problem as a parallel-machine scheduling problem with arbitrary processing

set restrictions and sequence-dependent setup time. Xu et al. (2012) apply a scheduling model

with inclusive processing sets to berth allocation in container terminal operation. Ghandour et

al. (2014) apply a scheduling model with arbitrary processing sets to safety message dissemination

in vehicular networks. Jin et al. (2015) consider energy consumption control of parallel processors

and formulate the problem as a parallel-machine scheduling model with arbitrary processing sets.

5 Future Research and Recommendations

We have presented an update of recent results related to scheduling problems with processing set

restrictions. There are many interesting problems in this area remain to be resolved. A partial list

of these problems is given below.

1. As mentioned in Section 4.1, Wang and Leung (2014) have given a fast heuristic for problem

P |p-batch,Mj(inclusive), pj = 1|Cmax with an asymptotic worst-case error bound of 3/2.

Could there be a fast heuristic for the more general problem P |p-batch,Mj(inclusive)|Cmax

with an asymptotic worst-case error bound less than 2?

2. As mentioned in Section 3.1, Huo and Leung (2010a) have given a 5/3-approximation algo-

rithm for problem P |Mj(nested)|Cmax. Could there be a fast heuristic for this problem with

a smaller absolute worst-case error bound?
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3. Is there any polynomial-time approximation algorithm for P |Mj|Cmax with a constant worst-

case error bound? Or can we prove that no such algorithm exists?

4. Besides the work of Xu and Lu (2015), there is a pronounced absence of online (over time)

algorithms for P |Mj(tree), rj|Cmax. It will be useful to develop online algorithms and analyze

their competitive ratios.

There are also some important related research topics that are worth investigating, including

the following:

1. The current research on scheduling problems with processing set restrictions is dominated by

models with a makespan objective. However, scheduling objectives such as
∑

Cj and
∑

wjCj

are useful when the waiting time of the jobs is the main concern of the system. Developing

efficient approximation algorithms for scheduling problems with processing set restrictions

involving these objectives is an important direction.

2. Processing set restrictions do not only appear in scheduling models. Kellerer et al. (2011)

have studied a problem of packing a given set of items into a given set of bins so that the total

weight of the items packed is maximized (i.e., a multiple subset sum problem), where the bins

have inclusive processing set restrictions. Interesting extensions of Kellerer et al.’s model that

are worth investigating include (i) problem with heterogeneous bin capacities, (ii) problem

with a profit maximization objective where each item is associated with a given profit, and

(iii) problem with other processing set restrictions (see Kellerer et al. 2011, Sec. 5).
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Table 1: Offline algorithms for inclusive processing set models

Problem Algorithmic result References

P |Mj(inclusive), rj|Cmax PTAS Li and Wang (2010)

P |Mj(inclusive)|Cmax with EPTAS Li et al. (2012)

1 or 2 GoS levels

Pm|Mj(inclusive)|Cmax FPTAS Woeginger (2009);

Li et al. (2012)

P |Mj(inclusive), rj, pj = p|Cmax O(n2 + mn logn) Li and Li (2015)

O(min{m, logn}n logn) Li and Lee (2016)

Q|Mj(inclusive), rj, pj = p|Cmax O(mn2 logm) Li and Li (2015)

Q|Mj(inclusive)|Cmax PTAS Epstein and Levin (2011)

(speed hierarchical model)

P |Mj(inclusive), rj, pmtn|Cmax O(nk log P + mnk2 + m3k), Huo et al. (2009a)

where k = no. of release

dates and P =
∑

j pj

P |Mj(inclusive)|Cmin PTAS Li et al. (2009)

Pm|Mj(inclusive)|Cmin FPTAS Li et al. (2009)
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Table 2: Online algorithms for inclusive processing set models

Problem Competitive ratio References

P |Mj(inclusive)|Cmax e + 1 ≈ 3.718 Bar-Noy et al. (2001)

P4|Mj(inclusive)|Cmax 2.333 Tan and Zhang (2011)

2.294 Lim et al. (2011)

P5|Mj(inclusive)|Cmax 2.610 Tan and Zhang (2011)

2.501 Lim et al. (2011)

P |Mj(inclusive)|Cmax with two 1 + m2−m
m2−km+k2 < 7

3 , where Zhang et al. (2009)

GoS levels k = no. of machines that

can process all jobs

P2|Mj(inclusive), rj, pj = p|Cmax

√
2 Lee et al. (2011b)

(online over time)

P |Mj(inclusive), rj, pj = p|Cmax

√
2 Xu and Liu (2015)

(online over time)

P2|Mj(inclusive), pj = 1|∑Cj ρLB + O( 1
n), where ρLB is a Shabtay and Karhi (2012a)

lower bound of any online

algorithm

Q|Mj(inclusive)|Cmax with two See Section 2.2 Hou and Kang (2012)

speeds and GoS levels

Q2|Mj(inclusive)|Cmax See Section 2.2 Lee et al. (2009c);

Tan and Zhang (2010)

Q2|Mj(inclusive), split|Cmin
2s+1
s+1 , where s is the speed Chassid and Epstein (2008)

of M1 which can process all

jobs, and M2 has speed 1

Q|Mj(inclusive), split|Cmax with
(ks+m−k)2

k2s2+ks(m−k)+(m−k)2 , where Hou and Kang (2011)

two speeds and GoS levels k machines have speed s

and can process all jobs;

other machines have speed 1

Q|Mj(inclusive), split|Cmin with 2ks+m−k
ks+m−k , where k machines Hou and Kang (2011)

two speeds and GoS levels have speed s and can

process all jobs; other

machines have speed 1

32



Table 3: Offline algorithms for nested, interval, tree-hierarchical, and arbitrary processing set models

Problem Algorithmic result References

P |Mj(nested)|Cmax Worst-case bound∗: 7/4 Huo and Leung (2010b)

Worst-case bound∗: 5/3 Huo and Leung (2010a)

PTAS Muratore et al. (2010);

Epstein and Levin (2011)

P |Mj(nested), pj ∈{1, 2, . . . , 2k}|Cmax O(ke logn), where Biró and McDermid (2014)

e =
∑n

j=1 |Mj|
P |Mj(nested), pmtn|Cmax O(n logn) Huo et al. (2009b)

P |Mj(tree)|Cmax Worst-case bound∗: 4/3 Huo and Leung (2010a)

PTAS Epstein and Levin (2011)

P |Mj(tree), rj, pj = p|Cmax O(n2 + mn logn) Li and Li (2015)

O(mn logn) Li and Lee (2016)

Q|Mj(tree), rj, pj = p|Cmax O(mn2 + logm) Li and Li (2015)

P |Mj|Cmax Worst-case bound: Recalde et al. (2010)

1/2 +
√

m − 3/4

Q|Mj|Cmax Worst-case bound: Recalde et al. (2010)

1/2 +
√

1/4 + (m − 1)s̃,

where s̃ is the ratio of

maximum vs. minimum

machine speeds

P |Mj, |Mj| ≤ 2|Cmax Worst-case bound∗: 1.75 Ebenlendr et al. (2014)

P |Mj, rj, pj = p|Cmax O(m3/2n5/2 log n) Lee et al. (2011b)

Q|Mj, rj, pj = p|Cmax O(m3/2n5/2 log nm) Lee et al. (2011b)

P |Mj, pj ∈ {1, 2, . . . , 2k}|Cmax Worst-case bound∗: 2− 1
2k Biró and McDermid (2014)

∗Worst-case bound obtained by polynomial-time algorithm.
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Table 4: Online algorithms for nested, interval, tree-hierarchical, and arbitrary processing set models

Problem Competitive ratio References

P |Mj(nested), rj, pj = 1|Cmax 1 Lee et al. (2011b)

(online over time)

P |Mj(nested), rj, pj = p|Cmax (
√

5 + 1)/2 Xu and Liu (2015)

(online over time)

P |Mj(interval), pj = 1|Cmax with mk
(m−s)k+s2 Shabtay and Karhi (2012b)

two job types and processing sets

{M1, . . . , Mk}, {Ms+1, . . . , Mm}
P |Mj(interval)|Cmax with 1 +

(m−1)k
(m−s)k+s2 Shabtay and Karhi (2014)

two job types and processing sets

{M1, . . . , Mk}, {Ms+1, . . . , Mm}
P3|Mj(tree), rj, pj = p|Cmax 3/2 Xu and Liu (2015)

(online over time)

P |Mj|Cmax blog2 mc + m
2blog2 mc Lim et al. (2011)

Q2|Mj|Cmax 1 + min{s, 1
s}, where M1 Lee et al. (2009c)

has speed 1, and M2 has

speed s

P2|Mj, rj, pj = p|Cmax (
√

5 + 1)/2 Lee et al. (2011b)

(online over time)
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