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Abstract 

This paper proposes a practical tactical-level liner container assignment model for liner 

shipping companies, in which the container shipment demand is a non-increasing function of 

the transit time. Given the transit-time-sensitive demand, the model aims to determine which 

proportion of the demand to fulfill and how to transport these containers in a liner shipping 

network to maximize the total profit. Although the proposed model is similar to multi-

commodity network-flow (MCNF) with side constraints, unlike the MCNF with time delay 

constraints or reliability constraints that is NP-hard, we show that the liner container 

assignment model is polynomially solvable due to its weekly schedule characteristics by 

developing two link-based linear programming formulations. A number of practical 

extensions and applications are analyzed and managerial insights are discussed. The 

polynomially solvable liner container assignment model is then applied to address several 

important decision problems proposed by a global liner shipping company.   
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1 Introduction 

Container transportation is vital to international trade and continues to grow. 

Approximately half of all of the sea cargos in dollar terms are containerized. In 2013, the 

total container trade volume amounted in 160 million twenty-foot equivalent units (TEUs) 

(UNCTAD, 2014). Containers are transported by container shipping lines. A liner shipping 

company provides regular services to transport containerized cargos (containers) from their 

origin ports to their destination ports over its shipping network. The shipping network 

comprises a number of ship routes served by ships with different capacities measured by 

twenty-foot equivalent units (TEUs). Given a weekly port-to-port container shipment demand 

pattern, it is vital for the liner shipping company to assign the containers to ship routes in the 

shipping network in order to maximize its weekly profit while satisfying some level-of-

service (LOS) constraints. This problem is referred to as liner container assignment (LCA) 

(Bell et al., 2011, 2013). The importance of LCA is two-fold. At the operational level, it 

allows a liner shipping company to use the container paths with minimal cost to ship 

containers, thereby maximizing its profit. At the tactical or strategic level, it provides 

important evaluation criteria for the tactical and strategic-level decisions such as ship 

capacity utilization and profitability of a shipping network.  

Global liner shipping companies usually provide weekly shipping services (see, e.g., 

APL, 2015; COSCO, 2015; OOCL, 2015), which means each port of call is visited on the 

same day every week. The establishment of the convention of weekly services in the industry 

has the following reasons. First, shippers prefer more frequent services and liner shipping 

companies wish to accumulate more cargos by providing less frequent services. A weekly 

service is a trade-off between the two conflicting interests. Second, weekly services imply 

that ships on the same ship route arrive at each port of call in different weeks but on the same 

day of each week (e.g., Tuesday). Consequently, container terminal operators can also 

allocate berth time windows on a weekly basis. If a ship route does not have a weekly service 

frequency, then it is difficult for container terminal operators to allocate suitable time 

windows as each time a ship arrives on a different day of a week. It should be mentioned that 

twice weekly services and thrice weekly services can easily be transformed to weekly 

services by repeating the port rotation twice or three times, respectively.  

In the near-homogeneous liner shipping market, the most important differentiating factor 

is the transit time of containers from their origin port to their destination port (Notteboom, 

2006). In face of the competitive pressure, liner shipping companies seek to offer short transit 

time, especially when the goods involved are time sensitive; typical examples are perishable 

goods and consumer goods with a short life cycle or elevated economic/technical 

depreciation, such as fashion and computers. Therefore, container shipment demand from an 

origin port to a destination port is dependent on the level of service in terms of origin port–

to–destination port (OD) transit time. We call it the transit-time-sensitive (TTS) demand. The 

TTS demand is a non-increasing function of transit time, schematically shown in Fig. 1c, and 

the demand is 0 when the transit time exceeds a threshold value. Fig. 1a shows a case in 

which the demand is constant when the transit time is shorter than or equal to the threshold. 
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This is a special case of the general TTS demand. Fig. 1b shows a case of constant demand 

with no transit time requirement, which is the case assumed in most existing studies. LCA 

aims to determine which proportion of the TTS demand to fulfill and how to allocate the 

demand to container paths in order to maximize profit at the tactical level.  

 

(a) Constant demand when the 

transit time is less than a threshold
(c) General TTS demand

( )odD x

x
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x

(b) Fixed demand without 

transit time requirement
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Fig. 1 TTS demands  

1.1 Literature review 

Most of the existing literature on liner shipping studies focus on tactical-level decisions 

and consider the LCA as a sub-problem (see Christiansen et al., 2004, 2013; Fransoo and Lee, 

2013; Meng et al., 2014, for reviews). As a result, the number of containers can be formulated 

as continuous quantities (Wang, 2013).  

Almost all of the prior studies assume fixed container shipment demand without transit 

time requirement like the one shown in Fig. 1b. One exception is Wang et al. (2013), which 

examined ship speed optimization for a single ship route in order to maximize profit in view 

of the TTS demand shown in Fig. 1c. Other exceptions are Karsten et al. (2015) and Akyüz 

and Lee (2016), which have incorporated the threshold transit time as shown in Fig. 1a in 

their container routing models by identifying proper paths. 

When there is no transit time requirement, LCA becomes a multi-commodity network-

flow (MCNF) problem: the link cost is the transshipment cost and the link capacity is the 

capacity of the ships deployed. As a result, link-based formulations can be used: the decision 

variables represent the flow of containers on each link. The containers on each link can either 

be differentiated by both the origin and destination (e.g., Agarwal and Ergun, 2008; Brouer et 

al., 2011; Mulder and Dekker, 2014; Dong et al., 2015; Zheng et al., 2015), or just the origin 

(e.g., Wang et al., 2015a, b), or just the destination (e.g., Wang and Meng, 2013; Brouer et al., 

2014), or some origins and some destinations (Wang, 2014). Path-flow formulation can also 

be used with decision variables being the flow on each path (Ng, 2015; Wang et al., 2015c). 

The paths are usually dynamically generated in a column-generation scheme as the large 

number of paths increases exponentially with the size of the liner shipping network (e.g., 

Brouer et al., 2011; Karsten et al., 2015; Akyüz and Lee, 2016).  

The general LCA is much more challenging than MCNF. There are some similarities 

between the LCA model and MCNF with side constraints (Holmberg and Yuan, 2003). For 

instance, in telecommunication networks, the transmission time delay of an established path 
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depends on the links and nodes that this path contains. The time delay of a path can be 

measured by, for example, adding the estimated link delays. For each commodity, it is 

desirable that this time delay is less than a certain limit for all paths that are used for 

communication. Another issue in telecommunication networks is reliability. Assuming that 

for each link, there is a certain probability that it could fail, the failure probability of a path 

can be calculated. For each commodity, it is desirable that all of the used paths have a failure 

rate not exceeding a specified limit. By taking the logarithm of the link failure probabilities, 

such considerations can be formulated as additive constraints. Holmberg and Yuan (2003) 

proved that the MCNF with time delay constraints or reliability constraints is NP-hard and 

claimed that they do not believe there exists an exact formulation without using variables 

explicitly associated with paths. As a consequence, path-based formulations and column 

generation in view of an exponential number of possible paths are almost the only choice. 

What is worse, finding the resource-constrained shortest path in the column-generation sub-

problem is also NP-hard (Gamst et al., 2010). It is not difficult to see that the special case of 

LCA having constant demand with a threshold transit time, as show in Fig. 1a, is almost 

identical to the MCNF with time delay constraints or reliability constraints. Therefore, one 

might conjecture that the general LCA is also NP-hard. 

1.2 Objectives and contributions 

The main objective and contribution of this study is to formulate the tactical-level LCA 

and to show its important applications. LCA with general TTD is a new research topic with 

practical significance for the liner shipping industry. We first demonstrate that the LCA 

problem is polynomially solvable by building two link-based linear programming 

formulations whose decision variables and constraints are polynomially bounded by the 

problem size. Although the structure of LCA is similar to the NP-hard MCNF with time delay 

constraints or reliability constraints, the underlining liner shipping network of the LCA model 

has a fundamental property of weekly periodicity because liner ship routes have weekly 

service schedules in practice. As a result of this fundamental property, in contrast to the 

MCNF with time delay constraints or reliability constraints, LCA is no longer NP-hard.  

Some LCA instances may also be solved by path-based formulations with column 

generation, especially if the liner shipping network is very sparse. Our model provides a 

polynomial-time algorithm to find the resource-constrained shortest path in the column 

generation sub-problem, in contrast to the general resource-constrained shortest path problem 

that is NP-hard.  

We further show how the model can be applied to solve several crucial decision issues 

currently faced by the liner shipping industry. In particular, the LCA model can help a liner 

shipping company in the following aspects: 

(i) Provide a tangible decision support tool for the company to deal with port operators, 

other liner shipping companies, and shippers. In particular, the proposed LCA model 

can provide answers to the following questions: (a) Should the shipping company 

commit to a certain number of container handling operations at a particular port to 
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enjoy a premium handling price? (b) What is a suitable price for purchasing 

container slots from other shipping companies? (c) What is the lowest freight rate the 

company should accept from a shipper with large container shipment demand?  

(ii) Assist the company in strategic decision-making. For example, should a new 

shipping market such as East Africa be explored? Should new mega-containerships 

be ordered? Should a regional or global hub port be relocated?  

(iii) Provide necessary and detailed information on how containers are transported in the 

network. This information is helpful for the liner shipping company to improve its 

liner shipping network, such as launching new services, changing ship fleet 

deployment, skipping a port, and changing port rotation directions.  

(iv) Facilitate the determination of the amount of container equipment to charter or 

purchase by incorporating empty container repositioning and by calculating the 

number of empty containers required.  

The remainder of the paper is organized as follows. Section 2 introduces liner shipping 

networks and TTS demand. Section 3 proposes two link-based linear programming 

formulations for LCA that are polynomially solvable. Section 4 examines how the model can 

incorporate a number of practical constraints and how to utilize the results obtained from the 

model to assist various decisions. Section 5 reports numerical experiments based on data 

provided by a global liner shipping company. Section 6 concludes this study. For better 

readability, symbols used throughout the paper are listed in Appendix 1. 

2 Problem Description 

Consider a liner shipping company which operates a set of ship routes R  to transport 

containers over a group of ports denoted by the set P . Each ship route has a fixed port 

rotation, and fixed arrival and departure times at each port of call. An illustrative liner service 

network is shown in Fig. 2, including three ship routes (SRs) denoted by {1,2,3}R  and 

seven ports denoted by ={CC, CN, CB, HK, JK, SG, XM}P . The itinerary of each ship route 

rR  forms a loop. Let rN  represent the number of ports of call on a round trip of ship 

route r  and rip P  be the physical port corresponding to the thi  port of call. We can 

arbitrarily define one port of call as the first. For example, in Fig. 2 Hong Kong is the first 

port of call on Ship Route 1 (SR1), Jakarta and Singapore are the second and third ports of 

call, respectively, and the number of ports of call on SR1 is 1 3N  . It should be mentioned 

that although Singapore is visited twice during a round trip of SR2, these two calls can easily 

be differentiated using the port calling sequence to refer to a port of call. Let 

{1,2, , }r rNI  be the set of port calling sequences for ship route r . We define 
, 1 1rr N rp p   

and call the voyage between two adjacent ports of call rip  and 
, 1r ip 

 leg i  of ship route r  , 

riI .  
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Every ship route has fixed service schedules. The arrival time at each port of call i  for 

each ship route r , denoted by arr

rit , is tabulated in Table 1. (The departure time does not affect 

the problem, and hence is not reported in Table 1.) In Table 1 we actually define the time 

00:00 of a particular Sunday as time 0 (h) and focus on a ship that visits the first port of call 

on each ship route in week 1 (between time 0 and time 168). The arrival time of the focal ship 

at port of call i  on the ship route is arr

rit . 

 

Ship Route 1 (SR1): 

HK(1)→JK(2)→SG(3)→HK

Ship Route 2 (SR2): 

HK(1)→XM(2)→SG(3)→CB(4)

→SG(5)→HK

Ship Route 3 (SR3): 

CB(1)→CN(2)→CC(3)→CB

Colombo 

(CB)

Hong Kong 

(HK)

Singapore 

(SG)

Jakarta 

(JK)

Xiamen 

(XM)

Chennai 

(CN)

Cochin 

(CC)

 

Fig. 2 A liner shipping network with three ship routes   

 

Table 1 Schedules of the three ship routes 

Ship route 1  Ship route 2  Ship route 3 

ID Port Arrival time (h)  ID Port Arrival time (h)  ID Port Arrival time (h) 

1 HK 10 (10:00 Sun)  1 HK 0 (00:00 Sun)  1 CB 0 (00:00 Sun) 

2 JK 188 (20:00 Sun)  2 XM 66 (18:00 Tue)  2 CN 60 (12:00 Tue) 

3 SG 218 (02:00 Tue)  3 SG 238 (22:00 Tue)  3 CC 130 (10:00 Fri) 

1 HK 346 (10:00 Sun)  4 CB 386 (02:00 Tue)  1 CB 168 (00:00 Sun) 

    5 SG 514 (10:00 Sun)     

    1 HK 672 (00:00 Sun)     

2.1 Weekly service frequency   

It is assumed that each ship route has a weekly service frequency, which means that 

every port of call (not every port) on the ship route will be visited once a week. For example, 

Fig. 3 plots the port rotation and transit times of American President Line (APL)’s current 

Asia-Europe Loop 4 service route (APL, 2015). Ships depart from each port of call on a 

given day every week. The round-trip time of the Asia-Europe Loop 4 is equal to 77 days. 

The number of ships serving this ship route, denoted by m ,  can be calculated as follows: 

 
77 days

11
7 days (one week)

m     (1) 
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11 22 33 44 55 66 77 88 99

leg 1 leg 2 leg 3 leg 4 leg 5 leg 6 leg 7 leg 8

leg 9leg 10leg 11

1:Le Havre

2:Southampton

3:Rotterdam

4:Hamburg

5:Jeddah

6:Singapore

7:Yantian

8:Ningbo

9:Shanghai

Tue (+3)

Wed Sat Tue(+1) Fri(+2) Thu(+1) Tue(+1) Fri Sun(+1)

WedMon(+1)

Note: Tue(+1) means the next Tuesday.
           Tue(+3) means the Tuesday in three weeks.  

Fig. 3 Schematic representation of Asia-Europe Loop 4  

 

A weekly service frequency has two implications. First, the round-trip journey time of a 

ship route, including the time at sea and the time at port, is an integer number of weeks. 

Second, this integer number equals the number of ships deployed on the ship route, as shown 

in Eq. (1). The ships deployed on ship route r  form a string and have the same capacity 

denoted by Capr  (TEUs). 

2.2 OD transit time  

To be precise, the OD transit time of containers is defined by the time interval between 

when the ship that is to carry the containers arrives at the origin port and when the ship that 

carries the containers (it can be a different ship from the one at the origin port) arrives at the 

destination port. The schedules of ship routes affect the OD transit time. For example, 

consider containers from Australia to Europe that are transshipped at the port of Singapore. If 

the ship from Australia to Singapore arrives at Singapore on Monday, and the ship from 

Singapore to Europe arrives at Singapore on Tuesday, the connection time of the containers at 

Singapore (or dwell time, defined as the time interval from the arrival of the ship that carries 

the containers from Australia to the arrival of the ship that will carry the containers to 

Europe) is one day. By contrast, if the ship from Australia arrives at Singapore on Tuesday, 

and the ship to Europe arrives at Singapore on Monday, the connection time will be six days 

because containers have to wait at Singapore until the next Monday as a result of the weekly 

service. The schedules of liner ship routes are input for LCA. At a port that is visited more 

than once a week, containers can be transshipped from a ship that arrives earlier to one that 

arrives later, but not vice versa.  

2.3 Transit-time-sensitive demand   

There is a set of OD pairs in the network, denoted by {( , ), , }o d o d  W P P . 

Represent by odg   (USD/TEU) the freight rate paid by shippers for OD pair ( , )o d . We 

assume odg   is independent of the real transit time. However, our models to be shown later 



 8 

can easily accommodate the case where odg   is a function of the transit time. Since the 

additional cost for transporting one more container at sea is marginal compared with the 

handling cost, we only consider the container handling cost as the variable cost. Let ˆ
pc , 

pc  

and 
pc  represent the loading, discharge, and transshipment cost (USD/TEU) at port pP , 

respectively. The maximum profit that can be yielded from shipping one TEU for OD pair 

( , )o d  can be calculated by  

 ˆ:od od o dg g c c     (2) 

Therefore, the liner shipping company seeks to determine which containers to transport and 

assign the containers to the ship routes to maximize its total profit, which is the total revenue 

minus the total transshipment cost.  

For each OD pair ( , )o d W  with a given transit time x  the corresponding demand is 

represented by ( )odD x  (TEUs/week). It is also reasonable and practical to assume that there 

is an upper bound on the transit time for each OD pair ( , )o d , referred to as the threshold 

transit time and denoted by maxˆ
odT , which satisfies 

maxˆ( ) 0,od

odD x x T  . For instance,  maxˆ
odT  

will not exceed half a year in practice. Since in practice there are many paths to ship 

containers from an origin port to a destination port, the actual transit time is not a single value 

for an OD pair. Suppose that there are odn  distinct transit times for OD pair ( , )o d , denoted 

by 1 2, , , od

od od od

n
   , arranged in an increasing order:   

 
max

1 2
ˆ

od

od od od

odn
T        (3) 

Note that we are not interested in transit times longer than 
maxˆ

odT . Since no container will be 

delivered with transit time in the interval 
maxˆ( , ]od

od

odn
T , without loss of generality, we can set 

maxˆ
od

od

od n
T  , and modify ( )odD x  such that 

 
( ),

( )
0,

od

od

od od

od n

od

n

D x x
D x

x

  
 

 




  (4) 

Let y
od

i  be the number of TEUs delivered for the OD pair ( , )o d  with transit time od

i , 

1,2, , odi n .  It can be seen that for any feasible container assignment, we must have 

 ( ), 1,2, ,

odn
od od od od

j i

j i

y D i n


     (5) 

Eq. (5) means that the curve of 
odn od

jj i
y

 , as shown by the stepwise thick-dashed line in Fig. 

4, should not be above the value of ( )odD x .  
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( )odD x

x
1

od0 2

od max

3
ˆod

odT 

1

ody

3

ody

2

ody

odn od

jj i
y

 ( )odD x

 
Fig. 4 Relation between a general TTS demand and the fulfilled demand 

2.4 LCA model with TTS demand   

We now formally state the liner container assignment model with the input—a liner 

shipping network ( , , )R P W —and the following assumptions: 

A1: A string of homogeneous ships with the same capacity deployed on each ship route with 

weekly service frequency and fixed arrival times at each port of call; 

A2: Fixed loading cost, discharge cost, and transshipment cost per TEU at each port; 

A3: Each OD pair ( , )o d  has a given freight rate and given transit-time-sensitive demand 

( )odD x  (TEUs/week); ( )odD x  is the same for different weeks as we consider a tactical-

level decision problem; 

A4: At a transshipment port, containers can be transshipped from a ship that arrives earlier to 

a ship that arrives later, but not vice versa; 

A5: The liner shipping company can freely choose which containers to accept and which 

containers to reject.  

The LCA model hence determines the number of TEUs per week for each OD pair 

( , )o d  to deliver, and how to transport the containers in the liner shipping network 

considering that the demand is transit-time-sensitive, in order to maximize the weekly profit. 

3 Two Linear Programming Formulations 

As a consequence of the TTS demand, a natural choice is to enumerate all the possible 

paths for each OD pair and check their transit times. However, the number of paths increases 

exponentially with the size of the shipping network (Holmberg and Yuan, 2003), and hence 

this approach is not applicable for finding exact solutions for large-scale networks. In this 

section we develop two linear programming models that do not need path 

enumeration/generation by taking advantage of the unique property of LCA that all of the 

ship routes have the weekly service frequency. We first construct a novel space-time network 

for the liner shipping network and analyze the properties of the space-time network; we then 
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develop an OD-link-based linear programming model and an origin-link-based linear 

programming model. 

3.1 Space-time network representation   

The liner shipping network ( , , )R P W  can be transparently represented by a space-time 

network built using the following procedure: 

Space-time network building procedure: 

Input: liner shipping network ( , , )R P W  

Output: space-time network ( , )G N A  where N  is the set of nodes and A  is the set of arcs 

Step 1: (Determine the time horizon) Construct a space-time network, where the space-axis 

corresponds to ports of call (not ports) in the liner shipping network, and the time-axis 

represents the arrival time (hour) at each port of call. The time-horizon ˆ
TN  (weeks) 

for the time-axis is calculated below: 

 
max

( , )

ˆ ˆmax /168 1T od
o d

N T


  
  W

  (6) 

where x    means the smallest integer greater than or equal to x . For example, if the 

maximum threshold transit time for all OD pairs is 30 days (720 hours), the time-

horizon should be 720 /168 1 6     weeks. The addition of one week in Eq. (6) is 

because the container may be loaded at the origin port at the end of the first week. 

Step 2: (Construct nodes) The number of ports of call in the liner shipping network is 

rr
N

 R
. The space-axis is hence divided into 

rr
N

 R
 segments, each segment 

corresponding to one port of call. For each port of call i  on ship route r , we construct 

ˆ
TN  nodes in the space-time network, and all of these ˆ

TN  nodes correspond to the 

same port of call i  on ship route r  on the space-axis. The arrival times of the ˆ
TN  

nodes indicated by the time-axis are: 

 
arr arr arr ˆmod168, ( mod168) 168, , ( mod168) 168( 1)ri ri ri Tt t t N     (7) 

In other words, these ˆ
TN  nodes represent the visit of the same port of call in week 1, 

week 2, … and week ˆ
TN . Therefore, the node set N  in the space-time network has a 

total of ˆ
T rr

N N
 R

 nodes. A node can be represented by a triplet ( , , )r i t , that is, the 

visit at port of call i  on ship route r  at time t . 

Step 3: (Construct a voyage arc set denoted by vA ) For each node ( , , )r i t N , after a ship 

visits it, the ship will visit the next port of call at time 
arr arr

, 1r i rit t t  . If 
arr arr

, 1
ˆ168r i ri Tt t t N   , then node 

arr arr

, 1( , 1, )r i rir i t t t   is also in the space-time 

network. Hence, we construct a voyage arc from node ( , , )r i t  to 
arr arr

, 1( , 1, )r i rir i t t t   .  

Step 4: (Construct a transshipment arc set denoted by tA ) Many nodes correspond to the 

same physical port and containers can be transshipped between these nodes. For each 

node ( , , )r i t N , we check all the other nodes ( ', ', ')r i t N . If ' 'ri r ip p  and 

' 168t t t   , that is, these two nodes represent the same physical port, and a ship 
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arrives at ( ', ', ')r i t  not earlier than t  and not later than 168 t , then we construct a 

transshipment arc from ( , , )r i t  to ( ', ', ')r i t . (Due to weekly services and weekly 

demand, the connection time at a transshipment port will not exceed 1 week.) The set 

of arcs in the space-time network is v tA A A . □ 

 

The nodes and arcs in the space-time network have attributes elaborated below. 

Attribute allocation method  

Step 1: (Attributes of nodes) Instead of using ( , , )r i t , we can also represent a node in set N  

by n . Node n N  contains information about ship route nr r , port of call ni i  on 

ship route nr , the corresponding physical port np , and arrival time arr

nt t . Note that 
arr

nt  is the time that node n  is visited, and arr

nt  may be different from arr

rit , as shown in 

Eq. (7). 

Step 2: (Attributes of voyage arcs) We use the tail node m  and head node n  to represent an 

arc ( , ) , ,m n A m n N  . A voyage arc ( , ) vm n A  has the attribute of transit time, 

denoted by arr arr

mn n mt t t  . The cost of transporting a container on the arc, denoted by 

mnc , is equal to 0  as the cost of transporting one more container on a ship is much 

smaller than the handling cost. 

Step 3: (Attributes of transshipment arcs) A transshipment arc ( , ) tm n A  has the attribute of 

connection time, denoted by arr arr

mn n mt t t  . Its cost mnc  is equal to the transshipment 

cost 
mpc  at port m np p . □ 

 

Let us illustrate how to build a space-time network using the example of the liner 

shipping network in Fig. 2. Suppose that max

( , )
ˆmax 480odo d

T


W  hours, the corresponding 

space-time network representation is shown in Fig. 5 . To construct the space-time network, 

we consider a time horizon of ˆ 4TN   weeks according to Eq. (6) (168, 336, and 504 in Fig. 

5  are the number of hours in one, two, and three weeks, respectively). The liner shipping 

network in Fig. 2 has a total of 
1 2 3

3 5 3 11r r rN N N       ports of call. Hence, the space-

axis is divided into 11 segments, each representing a port of call. We plot four copies for each 

port of call, and hence there are 44 nodes in the space-time network. Each node has attributes 

of ship route, port of call, port, which can be read from the space-axis, and the arrival time, 

which can be read from the time-axis. Fig. 5 shows the ID of a few nodes and their arrival 

times. For instance, the arrival time at node 1n  is 66 (the 66th hour, or 18:00 of Tuesday). We 

do not plot the arrival times for all of the nodes in Fig. 5 for better readability. Because the 

round trip time of SR1 is two weeks, two ships (Ship 1 and Ship 2) are deployed on SR1. 

Similarly, four ships (Ships 3 to 6) and one ship (Ship 7) are deployed on SR2 and SR3, 

respectively. Containers may be transshipped at ports visited more than once a week, i.e., 

Hong Kong, Singapore, and Colombo. The thick solid lines in Fig. 5 represent transshipment 

operations, which connect two calls at the same port. The liner services in any two weeks are 
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identical due to the weekly service frequency. For example, the nodes and arcs in week 2 and 

week 3 of the space-time network are identical. Week 1 and week 4 are slightly different 

because arcs with head or tail not in the time horizon are not drawn. 

Recall that we consider a tactical-level problem in which the container shipment demand 

function for an OD pair in different weeks are the same. Since the shipping services in each 

week are also identical, the same container routing decisions are made each week. Therefore, 

we only need to focus on container routing decisions of a particular week. Here we look at 

the containers that leave their origin ports in the first week and examine how to transport 

them. The transportation of containers that leave their origin ports in the second week follows 

the same manner as the containers in the first week. We stress that our model captures 

containers transported in every week, rather than just those in the first week. 

We analyze the container flows in the constructed space-time network using the example  

of OD pair (XM,SG) . Since we look at the containers that leave their origin ports in the first 

week, the origins of containers in the port pair (XM,SG)  can be any node n  in the space-

time network satisfying XMnp   and arr0 168nt  . In this example, only node 1n  in the 

space-time network can serve as the origin node of the containers. Similarly, if we are to 

consider the OD pair (HK,SG) , then both node 21n  and node 22n  can serve as the origin. The 

set of nodes in the space-time network that can serve as origin nodes for the OD pair ( , )o d  is 

represented by od

oN . For each node od

omN , we can identify the set of destination nodes 

that satisfy the threshold transit time constraint, represented by 

 arr arr maxˆ ˆ: | ,od

m n n m odn N p d t t T    N . For instance, assuming max

XM,SG
ˆ 330T   for OD pair 

(XM,SG) , the corresponding destination node set for origin node 1n  is 

1

XM,SG

2 3 4 5 6 7 8 9
ˆ { , , , , , , , }n n n n n n n n nN . Of course, it is not difficult to see that there is no 

feasible flow (or, no path) from 1n  to any node in the subset 2 3 4 5 6{ , , , , }n n n n n . (In this 

example there will be no flow from 1n  to 8n  or 9n  in the optimal solution.) In practice, we 

only need a simple preprocessing step to exclude those nodes in ˆ od

mN  that are unreachable 

from node m . It is possible that some origin nodes od

omN  have an empty destination node 

set ˆ od

mN . These origin nodes can be excluded from the set od

oN . Define 

ˆ: od
o

od od

d mm


N
N N  as the set of all possible destination nodes for the OD pair.  

 



 13 

XM SR2, i=2

HK SR2, i=1

HK SR1, i=1

JK SR1, i=2

SG SR1, i=3

SG SR2, i=3

CB SR2, i=4

CB SR3, i=1

CN SR3, i=2

CC SR3, i=3

Time (hr)0 168 336 504

Week 1 Week 2 Week 3 Week 4

SR1

Transshipment

SR3

SR2

Ship 7

Ship 1

Ship 2

Ship 6 Ship 5

Ship 4

Ship 3

66

1n

2n

3n

4n

50 218

10

70

178

238

346

406

386
5n

6n

7n

8n

9n

10n

21n

22n

101n

SG SR2, i=5

102n

11n

201n
202n 203n

 

Fig. 5 Space-time network representation of liner services 

 

We will analyze the flow of containers in the space-time network rather than the original 

liner shipping network. Therefore, we transform each OD pair ( , )o d W  to sets of new OD 

pairs in the space-time network denoted by ˆ: {( , ) | , }od od od

o uu v u v  W N N . 

New OD pair set 
odW  generation method: 

Step 1: Construct the set od

oN , which is defined below: 

  arr| ,0 168od

o n nn N p o t    N   (8) 

Step 2: For each od

omN , define a set below: 

 arr arr maxˆ ˆ: { | , }od

m n n m odn N p d t t T    N   (9) 

For each ˆ od

mnN , if it is not reachable from node m , remove n  from set ˆ od

mN . 

Step 3: For each od

omN , if ˆ od

m N , remove m  from set od

oN . 

Step 4: The set of new OD pairs odW  is defined below: 

  ˆ: ( , ) | ,od od od

o uu v u v  W N N   (10) 

For example, assuming max

XM,SG
ˆ 330T  , we have the set of new OD pairs 

 XM,SG

1 7 1 8 1 9( , ), ( , ), ( , )n n n n n nW . The number of all of the new OD pairs for a space-time 

network is bounded by a polynomial expression of the size of the network: 

  
2

2

( , )

ˆ| | | |od

T rr
o d

N N N




   R
W

W   (11) 
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In Eq. (11), ˆ
TN  is related to the threshold transit time. The threshold transit time may not 

increase with the size of the liner shipping network because a larger network means more 

ports and ship routes, but the longest distance between an OD pair will not change. Hence, 

the largest possible ˆ
TN  is less than e.g. 26 weeks (half a year) whatever size the liner 

shipping network is. Hence ˆ
TN  is bounded. 

rr
N

 R
 is an indication of the size of the liner 

shipping network. 

Using new OD pairs odW   in the space-time network, the transit time is implicitly 

considered because the head node of an arc always corresponds to a later time than the tail 

node. In detail, the transit time of new OD pair ( , ) odu v W  can be calculated by  
arr arr:uv v ut t   . We sequence the set of new OD pairs ( , ) odu v W  such that 

 
1 1 2 2 | | | |

, ( , )
od odu v u v u v o d       

W W
W   (12) 

Represent by uvy  the volume of containers (TEUs/week) in the new OD pair ( , )u v  that are 

delivered by the liner shipping company. The TTS demand constraints which are equivalent 

to Eq. (5) can be restated as:  

 
| |

( ), 1,2, ,| |, ( , )

od

i i

j j

u v od od

u v

i j

y D j o d


    
W

W W   (13) 

Therefore, the TTS demand can be handled by the new OD pairs ( , ) odu v W  in the space-

time network with constraints (13). It should be mentioned that for constant demand with a 

threshold transit time as shown in Fig. 1a, Eq. (13) can be simplified as: 

 
( , )

(0), ( , )
od

uv od

u v

y D o d


  
W

W   (14) 

3.2 OD-link-based linear programming formulation 

To formulate the ship capacity constraint, we define a new set riA , which is the set of 

voyage arcs in the space-time network corresponding to leg i  of ship route r . The set riA   

may not be a singleton. For example, in Fig. 5, all of the arcs 1 7( , )n n , 101 10( , )n n  and 

102 11( , )n n  correspond to leg 2 of Ship Route 2. That is,  2 ,2

1 7 101 10 102 11( , ), ( , ), ( , )
r

A n n n n n n . 

We will explain later why we need the notation riA  to formulate the ship capacity constraint. 

The decision variables for LCA are as follows. uvy  is the volume of containers 

(TEUs/week) between the new OD pair ( , ) odu v W , ( , )o d W , that are delivered; uv

mnf  is 

the volume of containers (TEUs/week) in the new OD pair ( , )u v  that flow on the arc 

( , )m n A . Sequencing the set of new OD pairs ( , ) odu v W  by Eq. (12), the LCA with TTS 

demand can be formulated as an OD-link-based linear programming (LP) model:   

 

[OD Model] 
,

( , ) ( , )( , ) ( , ) ( , )

max
uv uv

od t odmn

uv uv

od mn mn
f y

o d o du v m n A u v

g y c f
   

    
W WW W

 (15) 
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subject to: 

,( , ) ,( , )

   ,          

,         , , ( , ) , ( , )

    0,  otherwise

uv

uv uv uv od

mn nm

n m n A n n m A

y m u

f f y m v m N o d u v
 

 


         



  W W  (16) 

 
( , )( , ) ( , )

Cap , ,
ri od

uv

mn r r

o dm n A u v

f r i
 

      
W W

R I  (17) 

 
| |

( ), 1,2 | |, ( , )

od

i i

j j

u v od od

u v

i j

y D j o d


    
W

W W  (18) 

 0, ( , ) , ( , )uv ody o d u v    W W  (19) 

 0, ( , ) , ( , ) , ( , )uv od

mnf m n A o d u v      W W  (20) 

The objective function (15) maximizes the total weekly profit, which is the revenue minus the 

container handling cost. This objective function demonstrates that the model can easily 

handle the case where the freight rate odg   in Eq. (2) depends on the transit time. Eq. (16) is 

the flow conservation equation. Eq. (17) requires that the sum of flows on all of the arcs 

corresponding to leg i  of ship route r  cannot exceed the capacity Capr
 of the ship route. We 

will explain this constraint in the next sub-section. Eq. (18) imposes the TTS demand 

constraint. Eqs. (19) and (20) define nonnegative decision variables. 

3.2.1 Capacity constraints 

We design a simple example to appreciate constraint (17). Consider a liner shipping 

network with three ship routes: SR1 visits HK and SG, SR2 visits HK and SG, and SR3 visits 

SG and CC. Suppose that the corresponding space-time network is the one shown in Fig. 6. 

Suppose further that there is only one OD pair (HK, CC) with max

HK,CC
ˆ 297T  . Then it has two 

new OD pairs HK,CC

11 61 21 62: {( , ),( , )}n n n nW  (the potential new OD pair 21 61( , )n n  is 

infeasible as 61n  is unreachable from 21n , and 11 62( , )n n  violates max

HK,CCT̂ ).  
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Fig. 6 Space-time network representation of a simple liner network 

 

Table 2 Container flow in different weeks 

Container flow  

Containers  

loaded in week 1 

Containers  

loaded in week 2 

Containers  

loaded in week 3 

Arc 51 61( , )n n   
11 61

51 61

n n

n nf  
0 0 

Arc 52 62( , )n n  
21 62

52 62

n n

n nf  Equal to 11 61

51 61

n n

n nf  
0 

Arc 53 63( , )n n  0 
Equal to 21 62

52 62

n n

n nf  Equal to 11 61

51 61

n n

n nf  

Arc 54 64( , )n n  0 0 Equal to 21 62

52 62

n n

n nf  

 

We look at the capacity constraint on the first leg SG to CC of SR3. Since containers 

from the new OD pair 11 61( , )n n  do not flow on arc 52 62( , )n n  and containers from the new OD 

pair 21 62( , )n n  do not flow on arc 51 61( , )n n , we just consider decision variables 11 61

51 61

n n

n nf  and 

21 62

52 62

n n

n nf . In this simple example, 11 61

51 61

n n

n nf  TEUs are loaded at 11n  and transported via 31n  and 51n  

to 61n ; 21 62

52 62

n n

n nf  TEUs are loaded at 21n  and transported via 41n  and 52n  to 62n . Note that 11 61

51 61

n n

n nf  

and 12 62

52 62

n n

n nf  represent the flow of containers that leave their origin ports in the first week, and 

we consider a tactical problem that covers many weeks with the same demand functions. 

Hence, in week 2, 11 61

51 61

n n

n nf  TEUs are loaded at 12n  and transported via 32n  and 52n  to 62n ; 

21 62

52 62

n n

n nf  TEUs are loaded at 22n  and transported via 42n  and 53n  to 63n ; in week 3, 11 61

51 61

n n

n nf  TEUs 

are loaded at 13n  and transported via 33n  and 53n  to 63n ; 21 62

52 62

n n

n nf  TEUs are loaded at 23n  and 

transported via 43n  and 54n  to 64n . Table 2 summarizes the flow of containers that are loaded 

in the three weeks. We can see that, for instance, arc 52 62( , )n n  carries 21 62

52 62

n n

n nf  TEUs from week 1 

and 11 61

51 61

n n

n nf  TEUs from week 2. The sum of 12 62

52 62

n n

n nf  and 21 62

52 62

n n

n nf  must be less than or equal to the ship 

capacity. In sum, the left-hand side of Eq. (17) is the total number of containers from all weeks 

carried on any arc that corresponds to leg i  of ship route r . (Note that arc 51 61( , )n n  in Table 2 
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carries few containers because of the start-up effect.) This is the rationale behind the summation 

over riA  in Eq. (17). 

3.2.2 Computational complexity 

We now formally analyze the computational complexity of the OD-link-based linear 

programming (LP) model. In a liner shipping network, the number of ports is | |P , the 

number of voyage legs, denoted by V , is equal to 
rr

N
 R

. Evidently, | | VP  because 

each port is visited at least once a week. Therefore, we use V  as the indicator of the problem 

size. 

The number of OD pairs | |W  is bounded by 2| |P , or 2V . The number of nodes in the 

space-time network | |N  is bounded by ˆ
TN V , or ( )O V . The number of new OD pairs 

( , )
( , ) od

o d
u v


 WW  is bounded by 2| |N , or 2( )O V . The number of voyage arcs | |vA  in the 

space-time network is bounded by ˆ
TN V , or ( )O V . The number of transshipment arcs can be 

estimated as follows. Suppose that each port is visited the same number of times in one week, 

calculated by / | |V P , the total number of transshipment arcs over all the | |P  ports in the 

planning horizon of ˆ
TN  weeks is  ˆ| | / | | ( / | | 1)TN V V   P P P . This number achieves the 

maximum when | | 1P , and the maximum is bounded by 2( )O V . Hence, the total number of 

arcs | |A  in the space-time network (both voyage and transshipment arcs) is also bounded by 
2( )O V . 

Proposition  1: The OD-link-based linear programming model has at most 4( )O V  decision 

variables and 3( )O V  constraints. 

Proof: The number of decision variables in OD-link-based model is bounded by the number 

of new OD pairs 
( , )

( , ) od

o d
u v


 WW  multiplied by the number of arcs ( , )m n A , i.e., 

4( )O V . The number of constraints (excluding the lower and upper bounds on decision 

variables) is bounded by the number of new OD pairs 
( , )

( , ) od

o d
u v


 WW  multiplied by the 

number of nodes m N , or 3( )O V . □ 

Since both the number of decision variables and the number of constraints are bounded 

by polynomial expressions of the size of the problem V , and an LP problem can be solved in 

polynomial time with regard to its input (interior point method or ellipsoid method), the OD-

link-based LP model can be solved in polynomial time with regard to the size of the liner 

shipping network V . 

Remark 1: As mentioned in section 1, twice weekly services and thrice weekly services can 

easily be transformed to weekly services by repeating the port rotation twice or three times, 

respectively. If there are other service frequencies, for example, if a particular ship route has 

a six-day service frequency, then we have to transform all the services to their common 

service frequency, and in this case it is 6 7 42   days. When all the services have the same 

frequency, we can apply the OD-link-based LP model. 
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Remark 2: If the ships deployed on a ship route are not homogeneous in terms of capacity, 

for example, if the round-trip journey time is 2 weeks and 2 ships of different sizes are 

deployed, then we can consider this service as two new services: one ship is deployed on 

each service, and both services have a 14-day service frequency. Now all the services are 

deployed with homogeneous ships and we can use the OD-link-based model. 

Remark 3: The problem of finding a resource-constrained shortest path is generally NP-hard. 

However, finding a resource-constrained shortest path is polynomially solvable over the 

space-time network proposed in the study for LCA due to the weekly frequency property of 

liner ship routes.  

3.3 Origin-link-based linear programming formulation  

We can also adopt an origin-link-based (or destination-link-based) LP formulation in the 

space-time network. In an origin-link-based model, we need to formulate the container flow 

from any node u  in the first week of the space-time network, i.e., 
1 arr: { | 0 168}uu N u N t      to any node v N in the space-time network. Represent by 

uvy  the volume of containers (TEUs/week) from node u  to node v  that are delivered by the 

liner shipping company, 1( , )u v N N  . We have 0uvy   if 
( , )

( , ) od

o d
u v


 WW . Let u

mnf  

be the decision variable representing the total volume of containers (TEUs/week) with origin 

node u  in terms of new OD pairs and any destination that flow on the arc ( , )m n A . The 

origin-link-based LP formulation is: 

 

[Origin Model] 
1,

( , ) ( , ) ( , )

max
u uv

od tmn

uv u

od mn mn
f y

o d u v m n A u N

g y c f
   

   
W W

 (21) 

subject to: 

 1

,( , ) ,( , )

,u u uv

un nu

n u n A n n u A v N

f f y u N
  

       (22) 

 1

,( , ) ,( , )

, , ,u u um

mn nm

n m n A n n m A

f f y m N u N m u
 

          (23) 

 
1( , )

Cap , ,
ri

u

mn r r

m n A u N

f r i
 

      R I  (24) 

 
| |

( ), 1,2, ,| |, ( , )

od

i i

j j

u v od od

u v

i j

y D j o d


    
W

W W  (25) 

 0, ( , ) , ( , )uv ody o d u v    W W  (26) 

 1

( , )
0, ( , )  and ( , )uv od

o d
y u v N N u v


     WW  (27) 

 10, ( , ) ,u

mnf m n A u N      (28) 
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Similar to Proposition 1, we have: 

Proposition 2: The origin-link-based linear programming model has 3( )O V  decision 

variables and 2( )O V  constraints, and can be solved in polynomial time with regard to the size 

of the liner shipping network V .□ 

It should be noted that as a consequence of the construction of odW , the number of 

origins is much smaller than the number of destinations. Therefore, the origin-link-based 

formulation is preferable to destination-link-based formulation. There is no fundamental 

difference between the OD-link-based formulation, the origin-link-based formulation, and the 

destination-link-based formulation. Any one of them is valid and can be programmed to solve 

realistic problems. 

The [OD Model] and [Origin Model] provide decision support tools for tactical-level 

plans. The space-time network idea can also be applied to assist operational-level plans. In 

particular, every week the shipping line predicts the demand functions for the next few weeks 

and makes the container acceptance/rejection and routing decisions for the current week. The 

transit time constraints in the operational-level model can also be easily captured by the 

space-time network. 

4 Extensions and Applications  

The link-based LP formulations are flexible enough to handle many practical 

considerations and provide useful managerial insights. In this section, we analyze some 

extensions and implications of the link-based LP formulations using the example of the OD-

link-based model as it is more compact to present than the origin-link-based formulation. 

Numerical examples in practice will be reported in the next section. 

4.1 Interactions with port operators, shippers and other liner shipping companies  

Port operators are facing increased competition to attract shipping companies. For 

example, Hong Kong and Yantian are competing for the export containers from China, 

Singapore and Tanjung Pelepas are competing for transshipment containers in Southeast Asia. 

To increase the throughput, port operators usually sign confidential contracts with large liner 

shipping companies, offering a competitive handling price if a liner shipping company could 

commit a certain number of container handling operations. 

For instance, suppose that the normal loading, discharge, and transshipment prices at port 

pP  are ˆ
pc , 

pc , and 
pc , respectively. If the liner shipping company commits to at least 

p  

loading or discharge or transshipment operations per week, then it enjoys preferable prices of  

ˆ
pc , 

pc , and 
pc , respectively. ˆ ˆ

p pc c  , p pc c  , p pc c  , and at least one of ˆ ˆ
p pc c  , p pc c  , 

p pc c   must hold. The liner shipping company needs to determine whether it should make 

such a commitment. To this end, we only need to solve the proposed LP model twice: one 

using the normal price (the values of ˆ
pc and 

pc are incorporated in odg ) and the other one 
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using the preferable price while adding the constraint that the total handling operations at port 

pP  is no less than 
p : 

 
( , ) ( , ) ( , )( , ) ( , ) ( , ) , ( , )pd op t od

m

uv uv uv

mn p

p d o p o du v u v m n A p p u v

y y f
      

         
W W WW W W

 (29) 

The first term in Eq. (29) is the loading operations at port p , the second term is the discharge 

operations, and the third term is the transshipment operations.  

In a liner shipping network with many OD pairs and many paths to ship containers from 

origin to destination, it may not be an easy task to identify which potential container shipment 

demand is the most profitable. In the OD-link-based model, the dual variable 
od

j  associated 

with Eq. (18) reflects the change of profit with respect to a unit change of demand ( )odD x  at 

the transit time 
j ju vx t . 

od

j  is useful for a liner shipping company to evaluate the 

profitability of a potential shipping order. For constant demand with a threshold transit time 

in Fig. 1a, the dual variable od  associated with Eq. (14) reflects the change of profit with 

respect to a unit change of demand (0)odD . Having obtained the dual variables, the liner 

shipping company can easily identify which OD pairs need more efforts in sales and hence 

the most capable sales team can be sent to attract more demand in those OD pairs. 

Some large shippers may sign a confidential contract with the global liner shipping 

company, committing a certain container shipment volume and enjoying a preferable freight 

rate. The global liner shipping company may need to evaluate whether such a business is 

profitable, which again is no easy task without sophisticated decision support tools. To 

address this problem, we only need to solve an additional LP model. For simplicity, suppose 

that the demands for all OD pairs are constant with a threshold transit time as in Fig. 1a. A 

shipper has (0)odD  TEUs for ( , )o d W , and requires a freight rate of odg   (USD/TEU) 

(note that the shipper may have containers of many OD pairs). Define ˆ:od od o dg g c c   . We 

need to solve: 
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subject to  
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W
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and constraints (16)-(17), (19)-(20). If the profit is larger than not accepting this order, the 

liner shipping company should sign the contract (here we are focusing solely on the 

profitability; it is possible that the liner shipping company accepts the business even if it loses 

money in order to increase its market share). 

 It is often the case that a ship route is operated by more than one liner shipping company 

in an alliance (see, Agarwal and Ergun, 2010). For example, if Orient Overseas Container 

Line (OOCL) and Nippon Yusen Kaisha (NYK) Line jointly operate a ship route, on which 

six 6000-TEU ships are deployed, and two ships belong to OOCL and four ships belong to 



 21 

NYK Line, then in practice OOCL controls 2000-TEU ship capacity on each of the six ships 

and NYK Line manages 4000-TEU capacity. It is also the case that a global liner shipping 

company purchases ship slots from local shipping companies that provide feeder shipping 

services between small ports and large/hub ports. For example, if the total export and import 

volume at the port of Palembang, a small port in Indonesia near Singapore, is 20 TEUs/week, 

it does not make sense for the global liner shipping company to operate a ship route that visits 

Palembang. To earn profit, it will buy the slots of ships that provide services between 

Palembang and Singapore. The dual variable ri  associated with Eq. (17) reflects the change 

of profit with respect to a unit change of ship capacity on leg i  of ship route r . If a ship route 

is solely operated by the liner shipping company, it is impossible to change the capacity 

unless the company redeploys the ships. However, if the ship route is jointly operated with 

other companies, or is solely operated by another liner shipping company, it is possible that 

the global liner shipping company buys more ship slots to transport its own containers. In the 

above example, OOCL may purchase additional ship capacity from NYK on one leg, a few 

legs, or even all legs of the ship route. ri  would provide useful information for negotiating 

the slot-purchasing price. 

4.2 Strategic decisions about new shipping market, ship fleet planning, and hub 

location 

The OD-link-based model can also assist for making decisions about whether a new 

container shipping market should be explored. For example, a liner shipping company does 

not serve the East Coast of Africa (East Africa) may consider whether it should deploy a 

feeder service connecting East Africa to a regional hub in the Middle East, e.g., Salalah or 

Sokhna. The company can then predict the OD demand for East Africa, and then compute the 

total profit by choosing one candidate regional hub each time. If the highest profit among all 

the candidate regional hubs (the cost of providing the feeder service should be subtracted) is 

larger than the current situation, the East Africa feeder service should be deployed. 

The model is also helpful for ship fleet planning. For example, Maersk Line ordered a 

total of 10 mega-containerships with a capacity of 18,000 TEUs that will be deployed on the 

Asia-Europe trade lane. Other liner shipping companies are thus interested in knowing 

whether they should also book mega-containerships. To answer this question, a liner shipping 

company first plans how to deploy the mega-containerships in the network if they are booked 

and delivered, and then predicts the new container shipment demand in the network with the 

mega-containerships. The OD-link-based model can be solved for the new network and new 

demand, and the change of profit can be used for the ship fleet planning decision. 

The model is also capable of evaluating the choice of hubs. For example, a company 

might be interested in whether it should shift its Southeast Asian hub from Singapore to 

Tanjung Pelepas, which has a lower handling cost and a smaller handling capacity. To apply 
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the OD-link-based model, suppose that quay cranes at Tanjung Pelepas, denoted by port p , 

can only load or discharge 
p  TEUs per week. In the OD-link-based model for evaluating the 

profit of using Tanjung Pelepas as the Southeast Asian hub, we need to modify odg  in Eq. (2)

using the handling costs at Tanjung Pelepas and include the following constraint: 
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The number 2 in the constraint means that a transshipment operation consists of two quay 

crane moves (discharging a container and reloading it). 

4.3 Liner shipping network improvement  

The OD-link-based model could provide all the necessary information on how the 

containers are transported in the network. This information is helpful for the liner shipping 

company to improve its liner shipping network. We can also obtain the unshipped demand 

from the model. If the unshipped demand is significant, the liner shipping company may 

launch new services, or increase the freight rate for some OD pairs to increase its profit. 

The capacity utilization on a leg of a ship route, defined as the ratio of the left-hand side 

over the right-hand side of Eq. (17), not only provides information on the quality of the liner 

shipping services, but also information for ship fleet deployment. For example, if 5000-TEU 

ships are deployed on SR1 in Fig. 2, but capacity utilizations on all the three voyage legs are 

lower than 80%, then deploying 4000-TEU ships on the ship route might be preferable. 

The OD-link-based model also yields the container handling volume when a ship calls at 

a port. This information is valuable for designing ship routes and deploying ships on ship 

routes. For instance, if only 10 TEUs are handled at Hong Kong on SR1 in Fig. 2, the liner 

shipping company may need to remove Hong Kong from the ship route. 

In addition, the model is capable of answering “what-if” questions from the managers of 

the liner shipping company, such as what if a particular service is out of operation, what if the 

port rotation direction of a service between Singapore and Australia is changed from 

clockwise to counter-clockwise, and what if another type of ships is deployed on a ship route. 

4.4 Empty container repositioning and equipment management  

Liner shipping companies not only transport laden containers, but also need to reposition 

empty containers due to the imbalance of world trade (Song and Dong, 2012, 2013). The 

empty container repositioning issue can easily be incorporated in the OD-link-based model. 

Empty containers are not as sensitive to transit time as laden containers. To simplify the 

notation, we assume that the threshold transit time for empty containers is equal to the longest 

threshold transit time for laden containers of all OD pairs so that the number of weeks in the 

space-time network does not need to change. Let 
p  be the number of surplus empty 

containers at port pP  if 0p  , and 
p  represents the number of deficit empty 
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containers if 0p  . Note that 
p  depends on how many net laden containers are shipped 

into port p . The additional decision variables are as follows: emp

mnf  represents the volume of 

empty containers (TEUs/week) that flow on the arc ( , )m n A , empˆ
mz  represents the volume of 

empty containers (TEUs/week) that are loaded at node m N  (not including transshipment 

empty containers), and emp

mz  represents the volume of empty containers (TEUs/week) that are 

discharged at node m N  (not including transshipment empty containers). Let the loading, 

discharge, and transshipment prices for empty containers at port pP  be 
empˆ
pc , 

emp

pc , and 
emp

pc , respectively. The additional cost for transporting one more empty container is also 

assumed to be 0. Now a transshipment arc ( , ) tm n A  is associated with two costs: mnc  

represents the transshipment cost for laden containers and emp

mnc  for empty containers. The 

OD-link-based model with empty container repositioning is: 
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subject to  
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 emp 1ˆ 0, \mz m N N    (38) 

 emp empˆ 0, 0,m mz z m N     (39) 

 emp 0, ( , )mnf m n A    (40) 

and constraints (16), (18)-(20). The third term in the objective function (33) is the loading 

and discharge cost for empty containers, and the fourth term is the transshipment cost for 

empty containers. Eq. (34) defines the empty container repositioning requirement. Eq. (35) 

enforces empty container flow conservation. Eq. (36) is ship capacity constraints considering 

both empty and laden containers. Eq. (37) imposes that all empty container repositioning 

requirement must be satisfied. Eq. (38) defines that the empty containers are all loaded in the 

first week, which has no loss of generality because liner shipping services in each week are 

identical. Eqs. (39) and (40) are nonnegativity constraints. It should be mentioned that the 

above model is still polynomially solvable. 
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It happens in practice that the liner shipping company has many cargos to ship, but it 

does not have enough containers for these cargos. For clarity, we use CT (Container 

equipmenT) to refer to a container as equipment. If laden containers spend too long time on 

the trip from their origin to their destination, or if empty container repositioning is inefficient, 

the liner shipping company might be short of CTs. Assuming that the company has a total of 
CTN  CTs in its fleet, ensuring that the total number of used CTs does not exceed CTN  is a 

necessary constraint in the LCA model. Since this study is focused on maritime transportation 

of containers, we assume that after a laden container arrives at its destination port, on average 

it spends two weeks (inland transportation, packing, unpacking, etc.) before it is reloaded to 

ships at the port. To ensure that the used CTs does not exceed CTN , we have 

 emp CT

( , ) ( , ) ( , )( , ) ( , )

/168 2
od od

uv uv

mn mn mn
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The dual variable   associated with Eq. (41) is the additional profit if the liner shipping 

company has one more CT. Comparing   with the market price for chartering a CT, the liner 

shipping company can decide whether it should charter more CTs from other companies, or 

rent CTs to other companies. Combined with other relevant information, the liner shipping 

company can determine whether it should purchase more CTs. 

5 Numerical Examples  

5.1 Problem settings  

We apply the origin-link-based formulation to assign the container flow of the intra-Asia 

service network of a liner shipping company. This network has a total of 65 ports. The 

company provides 33 ship routes, with a total of 147 voyage legs, as shown in Table 3. The 

names of the ports shown in Table 3 use a three-letter code, however, majors ports can easily 

be identified, for example, MNL, SIN, and HKG represent Manila, Singapore, and Hong 

Kong, respectively. The transshipment cost ˆ
pc  at each port is provided by the company. 

There are 963 OD pairs in the network. The container shipment demand in each OD pair is in 

the category of Fig. 1a, and the value of the demand and the threshold transit time are 

provided by the company. We choose the functional form of Fig. 1a rather than Fig. 1c 

because our discussions with liner shipping companies show that it is very hard at present for 

them to provide the function in Fig. 1c. They could estimate the function in Fig. 1a as only 

two parameters are required. Evidently, using the functional form of Fig. 1c will slightly 

increase the number of constraints compared with Fig. 1a; using the functional form of Fig. 

1b will overestimate the profit relative to Fig. 1a. The total demand over these 963 OD pairs 

is 43,095 TEUs/week. As the freight rate is confidential, we assume that odg  equals 

500+0.2×distance (n mile) from the origin port to the destination. The longest threshold 



 25 

transit time is 7 weeks. Therefore, the time horizon ˆ
TN  of the space-time network is 8 weeks. 

As a consequence, the number of nodes in the space time network is 8×147=1,176. Because 

the space-time network only contains arcs with both head and tail nodes in it, the number of 

voyage arcs is actually 1,111, which is smaller than 8×147=1,176. The number of 

transshipment arcs in the network is 5,950. This number is much larger than the number of 

voyage arcs, because Singapore is visited 23 times in a week and hence the number of 

transshipment arcs associated with Singapore is already more than 3000. 

 

Table 3 Ship routes in the intra-Asia network 

ID Sequence of ports of call 

1 SUB MNL NMP MNL KAO          

2 CIW KAO MNL CEB MLL KAO HKG        

3 DAD DVO SIN DVO HKG          

4 S4U OOU HH9 PUS UBJ JKO PUS        

5 VLA PUS             

6 VOS PUS             

7 CMB CHT             

8 CHT SIN             

9 CHT SIN             

10 MAA C2M             

11 PKL MAA VIS PKL SIN          

12 HLD CCU HLD SIN           

13 BLA SIN             

14 HKG CIW HPZ            

15 JKT SIN             

16 PLM SIN             

17 PND SIN             

18 KOE SIN             

19 SEM SIN             

20 SGN AT0 SIN            

21 SUR SIN             

22 AT0 SGN SIN            

23 LCB SIN             

24 UHQ BAH DOH JEB           

25 AJM JEB DOH JEB           

26 SCZ SHG BAH JEB           

27 SHR KHI FUJ JEB           

28 SGN KAO TYO YOK NGO KOB CIW HKG LCB      

29 KWY PUS KAO HKG NSS CIW PKL SIN JKT SIN KAO TPS LYG  

30 YOK SHM NGO PUS LCB MNL TYO        

31 KWY TSI NGB SIN JEB DAM BAH SIN NGB SHA PUS    

32 SIN NSH KHI NSH CMB SIN LCB        

33 DAI TSI PUS KWY HKG CIW SIN CMB NSH IPX PKL SIN HKG HSN 

 

The 963 OD pairs correspond to 31,593 new OD pairs ( , )u v . Each OD pair has at least 

one new OD pair and at most 1,155 new OD pairs, as shown in Fig. 7 . The OD pair (Hong 

Kong, Singapore) has 1,155 new OD pairs, because both ports are major transshipment hubs 

and are visited a large number of times every week. Fig. 7 shows that most OD pairs have 

fewer than 50 new OD pairs. In fact, 831 OD pairs have fewer than 50 new OD pairs, as 

shown in Fig. 8 . 
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Fig. 7 Number of OD pairs according to the number of associated new OD pairs 

 

 

Fig. 8 Number of OD pairs according to the number of associated new OD pairs that are not greater than 50 

 

The number of decision variables u

mnf  is 147×(1,111+5,950)= 1,037,967, the number of 
uvy  is 31,593 (excluding those uvy  that are set at 0), and therefore the total number of 

decision variables is 1,037,967+31,593=1,069,560. The constraints (25) should be replaced 

by (14). The total number of constraints (22)-(23) is 147×1,176=172,872, the number of 

constraints (24)  is 147, and the number of constraints (14) is 963. Hence, the total number of 

constraints (excluding nonnegativity constraints) is 173,982. We solve the origin-link-based 

linear programming model with CPLEX 12.1 of default settings, and obtain the optimal 
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solution in 57 seconds. A total of 31,917 TEUs are shipped, and the profit is 3.45117×107 

USD. 

5.2 Negotiation with port operators  

The model provides the transshipment volume at each port. Major transshipment ports 

and their transshipment throughputs are shown in Fig. 9 . The liner shipping company 

chooses the port of Singapore as a very important hub because of its special geographical 

location, its capacity and efficiency, and other business considerations. Therefore, many of 

the intra-Asia ship routes visit Singapore. In fact, the port of Singapore is visited 23 times a 

week. The transshipment throughput at Pusan is 886 TEUs/week (in the case study, the 

transshipment price at Pusan is 97.5 USD/TEU). Now suppose that the port of Pusan provides 

a few options: if the liner shipping company transships more than 900 TEUs per week, the 

price is lowered down to 95 USD/TEU; if the volume is 1000, then the price is 90; if the 

volume is 2000, the price is 70. For each of these options, the liner shipping company 

recalculates its total profit, and the result is shown in Table 4. Therefore, the company would 

choose the option of 90 USD/TEU with the transshipment volume commitment of at least 

1000 TEUs. 

 

 

Fig. 9 Major transshipment ports and transshipment throughputs (TEUs/week) 

 

Table 4 Scenarios for negotiating with port of Pusan regarding transshipment volume and price 

Minimum commitment Price  Total profit (1×107 USD/week)  Transshipped volume 

0 97.5 3.45117 886 

900 95 3.45134 900 

1000 90 3.45151 1000 

2000 70 3.45076 2000 
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5.3 Negotiation with shippers  

The dual variable od  associated with Eq. (14) is 2627.61 for the OD pair (SUB, IPX) 

(Subic Bay to Pipavav), which is the largest among all the OD pairs. This means that if there 

is one more TEU for this OD pair to ship, the company would make an additional profit of 

2,627.61 USD. The current demand is 10 TEUs for this OD pair, and the total profit is 

3.45117×107 USD. If the demand is increased to 11 TEUs, the total profit is 3.45143×107 

USD. If the demand is 110 TEUs, the total profit is 3.47744×107 USD, as shown in Table 5. 

Therefore, the sales team of the liner shipping company should try their best to obtain 

shipping demand for this OD pair so that the profitability of the company could be enhanced. 

It should be mentioned that when the demand for this OD pair exceeds a certain limit, a unit 

increase in demand will lead to an increase in profit less than 2,627.61 USD. 

 

Table 5 Total profit for different demand scenarios of the OD pair (SUB, IPX) 

Weekly demand (TEUs)  Total profit (1×107 USD/week) 

10 3.45117 

11 3.45143 

110 3.47744 

 

5.4 Negotiation with other liner shipping companies  

Ship route No. 15 that visits Jakarta and Singapore is actually a feeder ship route that is 

not directly operated by the liner shipping company. A local (Indonesian) shipping company 

operates ships of 500 TEUs to provide weekly services between Jakarta and Singapore, and 

the global liner shipping company purchases 120 TEUs ship slots to transport its containers. 

The dual variable associated with the capacity of leg JKT-SIN is 729.35, which means that if 

the global liner shipping company has one more TEU slot on the leg JKT-SIN, it will make 

729.35 USD more profit. We computed the result when the slot capacity on the leg JKT-SIN 

is increased to 170 TEUs, and the profit is increased by 50×729.35, which means that the 

dual variable value does not change within the range of 0 to 50 additional containers. As a 

result, the global liner shipping company needs to buy more ship slots as long as the price is 

not higher than 729.35 USD/TEU. Of course, if the global company finds that a large number 

of slots need to be purchased, for example, 1500 TEUs, then it should consider operating its 

own ship route. 

5.5 Liner shipping network improvement  

Some of the unfulfilled demand is shown in Table 6. Kaohsiung, Laem Chabang, Jakarta, 

Port Klang, and Singapore are all located in Southeast Asia. Therefore, it might be 
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worthwhile to design a new ship route KAO-LCB-PKL-SIN-JKT deployed with ships of a 

capacity of 1000 TEUs to fulfill the demand. Karachi is far away from Kaohsiung, and 

fulfilling the unshipped demand from Kaohsiung to Karachi may not be economically 

justifiable. Of course, there are many options to design new ship routes. 

 

 

Table 6 Some unfulfilled demand 

OD pair  Unfulfilled demand (TEUs/week) 

KAO-JKT (Kaohsiung-Jakarta) 121 

KAO-KHI (Kaohsiung-Karachi) 109 

KAO-LCB (Kaohsiung-Laem Chabang) 305 

KAO-PKL (Kaohsiung-Port Klang) 231 

KAO-SIN (Kaohsiung-Singapore) 273 

 

Ship route No. 17 that visits Panjang and Singapore is a feeder ship route deployed with 

ships of 1000 TEUs operated by the liner shipping company. The container flow on the leg 

PND-SIN is 174 TEUs, and the flow in the other direction is 150 TEUs. Evidently, ship 

capacity utilization is too low on this ship route. The liner shipping company may need to 

deploy ships of 200 TEUs, or cancel this ship route and buy ship slots from other shipping 

companies providing services between Panjang and Singapore. 

Ship route No. 3 (Dadiangas-Davao-Singapore-Davao-Hong Kong) is deployed with 

ships of 1500 TEUs operated by the liner shipping company. Only six TEUs are loaded or 

discharged at the second port of call. Therefore, it may not be necessary to visit Davao twice 

in a round trip, and this ship route should be altered. 

5.6 Empty container repositioning and equipment management  

We incorporate empty container repositioning in the model to see its impact on the 

fulfilled demand and total profit. We assume that for empty containers, the loading and 

discharge cost is 60 USD/TEU, and the transshipment cost is 100 USD/TEU at all ports. The 

result is shown in the second row of Table 7. The fulfilled demand is less than that when 

empty container repositioning is not considered, and the total profit is reduced. The total 

profit is lower because the revenue is decreased as fewer laden containers are shipped, and 

the container handling cost is increased because of the loading, discharge, and transshipment 

operations of empty containers. 

We further conduct experiments to see what if there are not sufficient CTs for use. In the 

case with empty container repositioning, 99,086 CTs are required. If there are only 90,000 

CTs, the total profit is reduced by about 1×105 USD/week, as shown in Table 7. Therefore, if 

the price of a CT is 2,000 USD and the liner shipping company decides to purchase 10,000 

more CTs, it takes about four years to earn enough profit to cover the purchasing cost of the 

10,000 CTs. 
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Table 7 Impact of empty container repositioning and the number of available CTs 

Scenarios 

Number of available CTs 

(TEUs) 

 Fulfilled demand 

(TEUs/week) 

 Total profit 

(1×107 USD/week) 

Do not consider repositioning  infinite 31,917 3.45117 

Consider repositioning infinite 26,403 2.57174 

Consider repositioning 90,000 26,199 2.56142 

 

5.7 A case with a general TTS demand  

We present a simple case with a general TTS demand as the one in Fig. 1c. We consider 

one origin and one destination. There are three ship routes that connect the two ports with 

transit times 5 days (
1

od ), 6 days (
2

od ), and 7 days (
3

od ), and capacities all equal to 1,000. 

The profit for shipping one container is normalized to be 1. The TTS demand is assumed to 

be linear. Note that if the TTS demand is convex (concave), then the demand is very (not) 

sensitive to the transit time in that the demand quickly (slowly) decreases as the transit time 

increases. A liner demand means the sensitivity is neither very high nor very low. We assume 

a linear demand function also because in reality it is easier to estimate a linear function as we 

only need two parameters: (0)odD  and 
maxˆ

odT . We can calculate that  
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We maximizes the total profit, which is equal to 1 2 3

od od ody y y  , subject to the following 

constraints: 

 
3 3( )od od ody D    (43) 

 
2 3 2( )od od od ody y D     (44) 

 
1 2 3 1( )od od od od ody y y D      (45) 

 0 1000, 1,2,3od

iy i     (46) 

It is not difficult to see that the optimal solution is  *

3 3min ( ),1000od od ody D  , 

 * *

2 2 3min ( ) ,1000od od od ody D y  ,  * * *

1 1 3 2min ( ) ,1000od od od od ody D y y   . We try different 

values of 
maxˆ

odT  from 5 days to 10 days and (0)odD  from 2,000 to 10,000, and plot the optimal 

profit in Fig. 10. As expected, the total profit increases with 
maxˆ

odT  and (0)odD . Due to limited 
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capacities of the ships, at most 3,000 containers can be transported, and this is why we see the 

plateau at the top of the diagram. Moreover, because the number of container routes is finite, 

meaning that the possible transit times are discrete, we observe two “steps” in the figure 

which show that (i) the used container routes are fully loaded, (ii) there are unshipped 

containers, and (iii) the unused container routes’ transit times are too long to transport the 

containers. 
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Fig. 10 Sensitivity of the profit with maximum demand and maximum transit time 

 

6 Conclusions 

This paper has investigated a practical liner container assignment model with transit-

time-sensitive demand. In view of the weekly service property of liner shipping, we construct 

a special space-time network that implicitly incorporates the OD transit time. Based on this 

space-time network, two novel link-based linear programming formulations are developed to 

maximize the total profit. The linear programming formulations are proved to be solvable in 

polynomial time of the size of the liner shipping network. Practical considerations, such as 

empty container repositioning and limited container fleet size, can easily be incorporated in 

the model. Insights into the interpretation of dual variables associated with the constraints in 

the model are analyzed. How to use the LCA solutions to negotiate with port operators and 

designing liner services are discussed. 

There are two future research directions worth exploring. The first should consider the 

dynamic and stochastic nature of container shipment demand. In dynamic LCA, the container 
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shipment demand may vary from one week to the next; in stochastic LCA, only probabilistic 

information on the container shipment demand is known. Both models are more difficult than 

their deterministic counterpart. The second direction is to design liner services and assign 

containers with TTS demand in a holistic approach. This problem is NP-hard since liner 

shipping network design with fixed demand is already NP-hard (Agarwal and Ergun, 2008; 

Brouer et al., 2014; Wang and Meng, 2014). One cannot expect to find the optimal solution to 

general large-scale problems. Nevertheless, the space-time network proposed in this study 

might provide useful information for designing heuristic algorithms. 
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Appendix 1: Symbols  

Sets 
riA :  Set of arcs in the space-time network that correspond to leg i  of ship route 

rR ; 

A :  Set of arcs in the space-time network; 
vA :  Set of voyage arcs in the space-time network; 
tA :  Set of transshipment arcs in the space-time network; 

rI :  Set of port calling sequences of ship route r ; 

G :  The space-time network; 

N :  Set of nodes in the space-time network;  
1N :  Set of nodes in the first week of the space-time network;  

od

oN :  Set of nodes in the space-time network that can serve as origin nodes for the 

OD pair ( , )o d , 1od

o NN ; 

ˆ od

mN :  Set of destination nodes for each origin node od

omN ;  

od

dN :  Set of nodes in the space-time network that can serve as destination nodes for 

the OD pair ( , )o d ; 

P :  Set of ports;  

R :  Set of ship routes; 

W :  Set of OD pairs; 
odW :  Set of new OD pairs in the space-time network for each OD pair ( , )o d ; 

Parameters 

mnc :  Cost per unit flow on arc ( , )m n  (USD/TEU); 

ˆ
pc :  Loading cost (USD/TEU) at port pP ; 

pc :  Discharge cost (USD/TEU) at port pP ; 

pc :  Transshipment cost (USD/TEU) at port pP ; 
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Capr :  Capacity (TEUs) of a ship deployed on ship route rR ; 

( )odD x :  TTS demand (TEUs/week) for OD pair ( , )o d ; 

odg  :  Freight rate paid by shippers for delivering one TEU for OD pair ( , )o d  

(USD/TEU); 

odg :  odg   minus the load cost at the origin port and discharge cost at the destination 

port; 

ni :  The corresponding port of call of node n N ; 
odn :  Number of distinct transit time threshold values for port pair ( , )o d ; 

rN :  Number of ports of call on ship route r ; 

ˆ
TN :  Time horizon (weeks) of the space-time network; 

rip :  The thi  port of call of ship route r ; 

np :  The corresponding physical port of node n N ; 

nr :  The corresponding ship route of node n N ; 

mnt :  Time (h) associated with arc ( , )m n ; 

arr

rit :  Arrival time (h) at the thi  port of call of ship route r ; 

uv :  Transit time (h) of new OD pair ( , )u v ; 

maxˆ
odT :  Threshold transit time (h) for OD pair ( , )o d ; 

V :  Total number of voyage legs in the liner shipping network; 

Decision variables 
u

mnf :  Total volume of containers (TEUs) with origin node u  in terms of new OD 

pairs that flow on the arc ( , )m n  in the space-time network; 
uv

mnf :  Volume of containers (TEUs/week) in the new OD pair ( , ) odu v W  that flow 

on arc ( , )m n  in the space-time network; 
uvy :  Volume of containers (TEUs/week) from node u  to node v  that are delivered 

in the space-time network. 

 

References 

Agarwal, R., Ergun O., 2008. Ship scheduling and network design for cargo routing in liner 

shipping. Transportation Science 42 (2), 175–196. 

Agarwal, R., Ergun O., 2010. Network design and allocation mechanisms for carrier alliances 

in liner shipping. Operations Research 58 (6), 1726–1742. 

Akyüz, M.H., Lee, C.Y., 2016. Service type assignment and container routing with transit 

time constraints and empty container repositioning for liner shipping service networks. 

Transportation Research Part B 88, 46–71. 

APL. Asia-Europe Routes. http://www.apl.com/routes/html/asia_europe.html. Accessed 10 

February 2015. 

Bell, M.G.H., Liu, X., Angeloudis, P., Fonzone, A., Hosseinloo, S.H., 2011. A frequency-

based maritime container assignment model. Transportation Research Part B 45 (8), 

1152–1161. 

Bell, M.G.H., Liu, X., Rioult, J., Angeloudis, P., 2013. A cost-based maritime container 

assignment model. Transportation Research Part B 58, 58–70. 



 34 

Brouer, B.D., Pisinger, D., Spoorendonk, S., 2011. Liner shipping cargo allocation with 

repositioning of empty containers. INFOR 49 (2), 109–124. 

Brouer, B., Alvarez, J. F., Plum, C., Pisinger, D., Sigurd, M., 2014. A base integer 

programming model and benchmark suite for linear shipping network design. 

Transportation Science 48 (2), 281–312. 

Christiansen, M., Fagerholt, K., Ronen, D., 2004. Ship routing and scheduling: Status and 

perspectives. Transportation Science 38 (1), 1–18. 

Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D., 2013. Ship routing and scheduling 

in the new millennium. European Journal of Operational Research 228 (3), 467–478. 

COSCO. Service. http://www.coscon.com/ourservice/service.do?f=servicemap&locale=en. 

Accessed 10 February 2015. 

Dong, J.X., Lee, C.Y., Song, D.P., 2015. Joint service capacity planning and dynamic 

container routing in shipping network with uncertain demands. Transportation 

Research Part B 78, 404–421. 

Fransoo, J. C., Lee, C. Y., 2013. The critical role of ocean container transport in global 

supply chain performance. Production and Operations Management, 22(2), 253–268. 

Gamst, M., Neergaard Jensen, P., Pisinger, D., Plum, C., 2010. Two-and three-index 

formulations of the minimum cost multicommodity k-splittable flow problem. 

European Journal of Operational Research 202 (1), 82–89. 

Holmberg, K., Yuan, D., 2003. A multicommodity network-flow problem with side 

constraints on paths solved by column generation. INFORMS Journal on Computing 

15 (1), 42–57. 

Karsten, C. V., Pisinger, D., Ropke, S., Brouer, B. D., 2015. The time constrained multi-

commodity network flow problem and its application to liner shipping network design. 

Transportation Research Part E 76, 122–138. 

Ng, M.W., 2015. Container vessel fleet deployment for liner shipping with stochastic 

dependencies in shipping demand. Transportation Research Part B 74, 79–87. 

Meng, Q., Wang, S., Andersson, H., Thun, K., 2014. Containership routing and scheduling in 

liner shipping: overview and future research directions. Transportation Science 48 (2), 

265–280.  

Mulder, J., Dekker, R., 2014. Methods for strategic liner shipping network design. European 

Journal of Operational Research 235 (2), 367–377. 

Notteboom, T.E., 2006. The time factor in liner shipping services. Maritime Economics and 

Logistics 8 (1), 19–39. 

OOCL. Service Routes. http://www.oocl.com/eng/ourservices/serviceroutes/tpt/. Accessed 10 

February 2015. 

Song, D.P., Dong, J.X., 2012. Cargo routing and empty container repositioning in multiple 

shipping service routes. Transportation Research Part B 46 (10), 1556-1575. 

Song D.P., Dong, J.X., 2013. Long-haul liner service route design with ship deployment and 

empty container repositioning. Transportation Research Part B 55, 188–211. 

UNCTAD, 2014. Review of Maritime Transportation: Paper presented at the United Nations 

Conference on Trade and Development. New York and Geneva. 

http://unctad.org/en/publicationslibrary/rmt2014 en.pdf. Accessed 28 Nov 2014 

Wang, S., 2013. Essential elements in tactical planning models for container liner shipping. 

Transportation Research Part B 54, 84–99. 

Wang, S., 2014. A novel hybrid-link-based container routing model. Transportation Research 

Part E 61, 165–175. 

Wang, S., Liu, Z., Bell, M.G.H., 2015a. Profit-based maritime container assignment models 

for liner shipping networks. Transportation Research Part B 72, 59–76. 



 35 

Wang, S., Liu, Z., Meng, Q., 2015b. Segment-based alteration for container liner shipping 

network design. Transportation Research Part B 72, 128–145. 

Wang, S., Meng, Q., 2013. Reversing port rotation directions in a container liner shipping 

network. Transportation Research Part B 50, 61–73. 

Wang, S., Meng, Q., 2014. Liner shipping network design with deadlines. Computers & 

Operations Research 41, 140–149. 

Wang, S., Meng, Q., Liu, Z., 2013. Containership scheduling with transit-time-sensitive 

container shipment demand. Transportation Research Part B 54, 68–83. 

Wang, Y., Meng, Q., Du, Y., 2015b. Liner container seasonal shipping revenue management. 

Transportation Research Part B 82, 141–161. 

Zheng, J., Gao, Z., Yang, D., Sun, Z., 2015. Network design and capacity exchange for liner 

alliances with fixed and variable container demands. Transportation Science 49 (4), 

886–899. 

 

 




