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Abstract

We consider a make-to-stock, finite-capacity production system with setup cost and delay-

sensitive customers. To balance the setup and inventory related costs, the production manager

adopts a two-critical-number control policy, where the production starts when the number of

waiting customers reaches a certain level and shuts down when a certain quantity of inventory

has accumulated. Once the production is set up, the unit production time follows an exponential

distribution. Potential customers arrive according to a Poisson process. Customers are strategic,

i.e., they make decisions on whether to stay for the product or to leave without purchase

based on their utility values, which depend on the production manager’s control decisions.

We formulate the problem as a Stackelberg game between the production manager and the

customers, where the former is the game leader. We first derive the equilibrium customer

purchasing strategy and system performance. We then formulate the expected cost rate function

for the production system and present a search algorithm for obtaining the optimal values of the

two control variables. We further analyze the characteristics of the optimal solution numerically

and compare them with the situation where the customers are non-strategic.
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1 Introduction

We consider a make-to-stock, finite-capacity production system with setup cost. Once the produc-

tion is set up, the unit production time follows an exponential distribution. Potential customers

arrive according to a Poisson process. To balance the setup and inventory related costs, the pro-

duction manager adopts a two-critical-number control policy, where the production starts when

the number of waiting customers reaches a certain level and shuts down when a certain quantity

of inventory has accumulated. Unlike what is typically covered in the literature, here we consider

strategic, delay-sensitive customers. That is, if a customer encounters a stock out upon arrival,

he/she decides whether to wait for the product or to leave without purchase according his/her

overall valuation of the purchase, which depends on the production manager’s control decisions.

This model setting is suitable for the situation where customers order products online from a

producer of high-end labor-intensive products (e.g., designer handbags, fashion clothing, or spe-

cialist bakery products), or from a producer of expensive equipment (e.g., aircraft or farming

equipment). The key feature here is that the product concerned is not a commodity; it is expensive

and takes time to set up and to produce. Because of high costs and relatively low demand rate,

the production manager may not want to hold too much inventory. On the other hand, there are

some, although only a few, competitors selling close substitutes. If the service is unsatisfactory, a

customer may choose not to purchase the product from this particular producer. To stay competi-

tive, the manager of the current system would need to determine the optimal values of the control

variables to strike the right balance between production/inventory costs and customer service.

We formulate the problem as a Stackelberg game between the production manager and the

customers, with the former being the game leader. We model the production system as an M/M/1

make-to-stock queue with two control variables, and we consider strategic customers who are delay

sensitive. Upon arrival, the customers estimate their expected waiting time and then make decen-

tralized decisions on whether to stay or to leave without purchase (i.e., the demand might be lost).

The customers’ likelihood of staying depends on their utility, which in turn depends on the control

variables that the production manager sets. We first derive the equilibrium customer purchasing

strategy and system performance. From this, we formulate the expected cost rate function for

the production system. We then present a search algorithm for obtaining the optimal values of

the two control variables. We also conduct a numerical study to analyze the characteristics of the

optimal solution, and we compare the optimal solution with the solution where the customers are
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non-strategic.

By considering strategic customers who make decentralized decisions on joining the queue for

purchase or balking (leaving without purchase), we gain new insights for controlling the production

system through two thresholds. Three conclusions are notable. First, we show that reducing the

threshold that triggers production has a greater marginal effect on customers’ expected waiting

time than increasing the inventory threshold that stops production. Second, when compared to

the traditional model with non-strategic customers, our model can yield different inventory control

decisions and result in different total costs under various demand traffic situations. Third, we

find that with strategic customers, the optimal control parameters exhibit different patterns for

patient and impatient customers. When customers are patient, the system will serve all of them,

and a slight increase in customer delay sensitivity could cause significant changes in the control

parameters. However, when customers’ delay sensitivity exceeds a certain level, it becomes optimal

for the system not to serve all customers, and under this condition, a slight increase in customer

delay sensitivity has less impact on the two control variables.

Our study also contributes to the literature of equilibrium analysis for vacation queues with

strategic customers, which mainly focuses on systems with nonnegative queue lengths and one-

critical-number policies (see, e.g., Guo and Hassin 2011). Our model is a generalized vacation

queue by adopting a two-critical-number policy and allowing negative queue lengths.

In the following, we review the related literature. In a make-to-stock queue, replenishment is

made at a finite production rate, and in the meantime the inventory level needs to be controlled.

Thus, a production-inventory system with discrete random production and demand can be viewed

as a make-to-stock queue. Hence, in the following discussion, we include some of the works on

production-inventory systems.

We begin the discussion with optimal policies and performance evaluation of make-to-stock

queues. Federgruen and Zheng (1993) consider a production-inventory system with compound

Poisson demand, random processing times, and random vacation times to minimize the long-run

average expected cost, and they prove that an (s, S) policy is optimal. Van Foreest and Wijn-

gaard (2014) consider a production-inventory system with compound Poisson demand, constant

production rate, backlogging, and fixed setup cost of production, and they obtain conditions under

which the (s, S) policy is optimal. Other related works include Wu and Chao (2014), who study

the optimal policy for a production-inventory system in which the production and demand are

modeled by a two-dimensional Brownian motion process, and Shi et al. (2014), who study the op-
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timization of two different cost metrics for a production-inventory system with compound Poisson

demand, constant production rate, and lost sales. Research related to the performance measures of

make-to-stock queues includes the development of the queueing systems’ operating characteristics

and the determination of the systems’ optimal policy parameter values. Gavish and Graves (1980)

consider an M/D/1 production-inventory system with production setup cost, inventory holding

cost, and backlogging cost. They analyze a two-critical-number policy for this system and propose

an efficient search procedure for finding the optimal policy parameter values. Gavish and Graves

(1981) and Lee and Srinivasan (1989) extend Gavish and Graves’s (1980) model to an M/G/1

production-inventory system, and they develop efficient procedures for finding the optimal policy

parameter values. Graves and Keilson (1981) extend Gavish and Graves’s (1980) model from a

Poisson demand process to a compound Poisson demand process with exponentially distributed

demand size. They use the compensation method to derive a closed-form expression for the cost

function and apply search procedures to find the optimal policy. Srinivasan and Lee (1991) examine

a random review production-inventory system with compound Poisson demand, general processing

time, and backordering. They show that under the (s, S) policy, the average cycle cost is convex

in S for a given value of S − s, and they develop a procedure for computing s and S.

The main difference between the abovementioned studies and ours is that these studies assume

exogenously given demand processes, whereas our optimal control problem is conducted with delay-

sensitive customers. There are some make-to-stock queue studies involving impatient customers.

Li (1992) considers a single-item production control problem with customers staying for service if

their utility, as determined by price, quality, and delivery time, is positive. He obtains a newsboy-

formula to characterize the optimal threshold policy for the single firm setting, and then extends

the analysis to a multiple-firm competition setting. So and Song (1998) study an M/M/1 queueing

system, where demand is sensitive to delivery time and price, and the production capacity can be

expanded at certain cost to satisfy the delivery time guarantee. They obtain joint optimal decisions

on price, delivery time guarantee, and capacity expansion. Song (2009) investigates a make-to-stock

queueing system with two independent Poisson demands with different priorities. Low-priority

demand is fully backlogged, while high-priority demand is backlogged only if the existing number

of backorders does not exceed a certain threshold. He analyzes the stability of this system and

presents an optimized solution under a prioritized base-stock policy. Benjaafar et al. (2010) study

an M/M/1 modeled production-inventory system, in which unmet demand can be rejected or

backordered. Backordered demand may be canceled if a customer’s waiting time exceeds his/her
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patience time. Both rejected demand and canceled demand incur certain costs. They show that the

optimal policy can be described by two thresholds: one for initiating the production and another for

admitting an order. Benjaafar and Elhafsi (2012) consider a production-inventory system with two

customer classes, where an unmet demand from a patient customer can be backordered if needed,

but an unmet demand from an impatient customer is lost. They show that the optimal policy to

minimize the cost can be described by two threshold functions. In these studies, when a customer

makes a decision, he/she only considers the system status (e.g., price, existing backorders, waiting

time experienced) but does not examine other customers’ behavior. However, in our model, we

assume that customers make strategic decisions by considering the system parameters and other

customers’ strategic behavior. Recently, Chen et al. (2015) consider a make-to-stock system with

strategic customers and a base stock policy. Their work differs from ours in that it uses a base stock

inventory policy, it assumes that customers are heterogeneous in delay sensitivity, and it focuses

on the optimal decisions of the base stock level and stockout price.

Less attention has been paid to strategic customer behavior in make-to-stock queues or production-

inventory systems, but the subject has been well studied in traditional queueing systems where

inventory is not considered. Naor (1969) first shows that tolls can be levied to induce strategic

customers to adopt a socially optimal behavior that might not be optimal for themselves. Since

then, a number of studies on strategic customer behavior in queueing systems have been conducted.

A comprehensive review of such works can be found in Hassin and Haviv (2003). Recently, Guo and

Hassin (2011, 2012) study M/M/1 queues with strategic customers, where the former study con-

siders identical customers and the latter considers heterogeneous customers. Both of these studies

examine the no-information scenario and the full-information scenario. They consider an N -policy

(i.e., the server starts working when the queue length reaches N and finishes all the work in the

system before taking its next “vacation”), and they obtain and compare the equilibria and socially

optimal strategies. Economou et al. (2011) study a problem with general service time and vacation

time distributions. Guo et al. (2011) consider the case with partial information on service time.

Debo et al. (2012) study an M/M/1 queue with impatient customers, where the product may be

of high or low quality. Customers may be informed or uninformed of the quality, and they observe

the queue length and decide whether to stay or not. Guo and Li (2013) conduct a complementary

study to Guo and Hassin (2011) by considering two partial-information scenarios. Guo and Zhang

(2013) investigate a multi-server queueing system with a congestion-based staffing policy, where

the number of working servers is dynamically adjusted according to the queue length. Boudali
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and Economou (2013) investigate the effects of catastrophes, where a catastrophe will force all cus-

tomers to abandon the system, and customers’ utility consists of the usual reward from receiving

the service and a failure compensation for those who are forced to abandon the system. Manou

et al. (2014) study the strategic joining decisions for the customers in a transportation station,

where a transportation facility visits the station stochastically and serves customers according to

its capacity. In this study, observable and unobservable queues are considered, and customers’

symmetric Nash equilibrium strategies are determined. Guo and Hassin (2015) consider a service

system where strategic customers can place duplicate orders, and the server has the intention of

speeding up the service. Dimitrakopoulos and Burnetas (2016) consider a model where the service

rate switches between a high level and a low level. Equilibrium analysis has also been conducted

in other related queueing systems; see, for example, Sun et al. (2010), Burnetas (2013), Economou

and Manou (2013), Wang and Zhang (2013), Debo and Veeraraghavan (2014), Xia (2014), and

Ziani et al. (2015). It should be noted that inventory holding is not allowed in the abovementioned

queueing systems.

The rest of the paper is organized as follows. In Section 2, we introduce the queueing model,

derive the performance measures, and conduct equilibrium analysis, assuming the values of the

control parameters are given. In Section 3, we derive the cost function of the production system

and present an algorithm for determining the optimal control parameter values. In Section 4, we

conduct a numerical study to analyze the characteristics of the optimal solution. Section 5 concludes

the paper. The proofs of all lemmas and propositions are presented in the Online Appendix.

2 The Queueing Model and the Equilibria

As mentioned in Section 1, our problem can be regarded as a Stackelberg game between the

production manager and the strategic customers. Specifically, the production manager first makes

a decision on the two control parameters, and then the customers make their purchasing decisions.

To solve this problem, we use a backward solution procedure: We first determine the customers

purchasing decisions by assuming that the values of the control parameters are given. Given

the customers purchasing decisions, we then analyze the firm’s optimal decision on the control

parameters.

In this section, we first provide a queueing model of the production system and derive the

important performance measures such as customer expected waiting time, the average inventory
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level and the average number of waiting customers. We then conduct the equilibrium analysis of

customer purchasing decision and derive the equilibrium arrival rate.

2.1 Queueing model for the production system

The production system can be described as follows. We have a make-to-stock production system

with a single production server, in which a two-critical-number policy is adopted. Under this policy,

the production starts when N customer orders have accumulated and stops immediately when the

inventory level reaches S, where S ≥ 0. Note that −N can be regarded the inventory level that

triggers production, and S can be regarded as the order-up-to level. Thus, we have −N ≤ S − 1,

or equivalently, N ≥ −S + 1. Note that N can be positive, zero, or negative. The customers that

place orders follow a Poisson process with rate λ. We refer to λ as the effective arrival rate. Each

customer places one order, and once an order is placed the customer will wait for the product,

where the waiting time is either zero (if some inventory of the product is available) or positive (if

the product is out of stock). During a production run, products are finished within an independent

and identically distributed exponential processing time with a mean value of 1/µ, and the first-come

first-served principle is adopted. Denote ρ = λ/µ, which is the utilization level of the queueing

model.

A special case where S = 0 has been studied by Guo and Hassin (2011). In this special case,

production is activated when N customer orders have accumulated and is shut down when all the

customers are served. Guo and Hassin (2011) model this case by a vacation queue with N -policy

and obtain the equilibrium effective arrival rates. If S > 0, then the production stops only if S

units of inventory have accumulated. We can still use a vacation queue to model such a production

system by extending the analysis to allow negative queue lengths.

The queue length is interpreted differently depending on whether it is positive or negative. A

positive queue length represents the number of customer orders that are waiting for the product,

while a negative queue length represents the inventory level of the finished product. The queue

length is bounded from below by −S because the production stops immediately when there are

S units of inventory. On the other hand, the queue length may be greater than N . Note that

the production server must be shut down when there are S units of inventory, and it must be

activated when the queue length is N or higher. However, both statuses are possible when the

queue length is within [−S +1, N−1]. Figure 1 depicts the transition diagram of the system under

this two-critical-number policy.
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Figure 1: The transition diagram.

This model can be regarded as an (N + S)-vacation queue, and the steady-state probabilities

can be readily obtained from the known literature result on such a queue (see, Jain et al. 2007,

pp. 52–53). However, the important performance measures such as the expected waiting time, the

average queue length, and the average inventory level have to be derived here, as shown in the

following subsections.

2.1.1 Expected waiting time

Given an effective arrival rate λ and the values of the control parameters N and S, the following

lemma provides the expected waiting time of a customer.

Lemma 1 Given an effective arrival rate λ, where 0 < λ < µ, the expected waiting time of a

customer is

W (λ, N, S) =







N
N+S

(

N−1
2λ + 1

µ−λ

)

+ λ[1−(λ/µ)S]
(N+S)(µ−λ)2

, if N ≥ 2;

µ[(λ/µ)−N+1
−(λ/µ)S+1]

(N+S)(µ−λ)2
, if N ≤ 1;

(1)

if the customer chooses to stay for the service.

The following propositions provide some properties of function W (λ, N, S).

Proposition 1 If N ≥ 2, then W (λ, N, S) is strictly convex in λ, for 0 < λ < µ. If N ≤ 1, then

W (λ, N, S) is strictly increasing in λ, for 0 < λ < µ.

Proposition 2 (i) W (λ, N, S) is strictly decreasing in S. (ii) W (λ, N, S) is strictly increasing in

N .

Remark 1 Proposition 1 enables us to derive the equilibrium effective arrival rate in the next

subsection. Proposition 2 states the relationship between the expected waiting time and the threshold
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values S and N . When S = 0, the system becomes an M/M/1 queue with N -policy. Clearly, by

Lemma 1,

W (λ, N, 0) =
N − 1

2λ
+

1

µ− λ
(2)

for any N ≥ 2 (it is easy to verify from Lemma 1 that this equation also holds when N = 1).

Equation (2) is exactly the expected waiting time in a traditional N -policy queue (see, e.g., Guo

and Hassin 2011). Proposition 2(i) implies that W (λ, N, S) is smaller than W (λ, N, 0) when S > 0.

In other words, there is a reduction in expected waiting time when the inventory carrying feature

is introduced to the traditional N -policy queueing system. Proposition 2(ii) is intuitive, because a

larger N will make production occur less often and lead to a higher expected customer waiting time.

Proposition 2 shows that to reduce customer expected waiting time, the production manager

may either reduce the production threshold N or increase the inventory threshold S. To see which

control variable has a greater marginal effect on the expected waiting time, we define

∆(λ, N, S) = W (λ, N + 1, S)−W (λ, N, S − 1)

for any S ≥ 1, N ≥ −S + 2, and 0 < λ < µ. Note that ∆(λ, N, S) is equal to W (λ, N + 1, S)−

W (λ, N, S) less W (λ, N, S−1)−W (λ, N, S), where W (λ, N +1, S)−W (λ, N, S) is the increase in

expected waiting time if N is adjusted upward by one unit, and W (λ, N, S−1)−W (λ, N, S) is the

increase in expected waiting time if S is adjusted downward by one unit. Thus, ∆(λ, N, S) equals

the difference in the marginal effect for the control variables. The following proposition states that

∆(λ, N, S) is always positive.

Proposition 3 ∆(λ, N, S) > 0 for any S ≥ 1, N ≥ −S + 2, and 0 < λ < µ.

Proposition 3 implies that adjusting N has a greater marginal effect on the expected waiting time

than adjusting S. This conclusion is insightful: In a quick-response industry such as the fashion

industry, to reduce customer waiting time, managers should put the first priority on initiating

production more aggressively (i.e., reducing N ) instead of increasing inventory (i.e., increasing S).

2.1.2 Average inventory level, queue length, and length of production cycle

To determine the expected average inventory level and the expected queue length, we refer to the

time period between two consecutive initiations of the production server as a production cycle. Let

I be the expected inventory level (i.e., negative queue length) and L be the expected number of
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waiting customers (i.e., positive queue length) at steady state. Let T be the expected duration of

a production cycle. Let Tbusy and Tidle be the expected duration that the server is busy and idle,

respectively, in one production cycle. Then, T = Tbusy + Tidle. We have the following lemma.

Lemma 2 Given any 0 < ρ < 1, S ≥ 0, and N ≥ −S + 1, (i) the expected average inventory level

in a production cycle equals

I =











1
N+S

[S(S+1)
2 +

ρ2(1−ρS)
(1−ρ)2

− Sρ
1−ρ

]

, if N ≥ 2;

S−N+1
2 + ρ2(ρ−N

−ρS )
(N+S)(1−ρ)2

− ρ
1−ρ , if N ≤ 1;

and (ii) the expected average number of waiting customers in a production cycle equals

L =











1
N+S

[N(N−1)
2 + ρ2(1−ρS)

(1−ρ)2
+ Nρ

1−ρ

]

, if N ≥ 2;

ρ2(ρ−N
−ρS )

(N+S)(1−ρ)2
, if N ≤ 1.

Note that Tidle is the sum of N + S interarrival times of a Poisson process with rate λ. We

refer to the time period from the moment when the queue length is k till the moment that the

queue length drops to k − 1 for the first time as a “1-busy period,” where k ≥ −S + 1 (note that

a negative queue length represents a positive inventory level). Then, Tbusy is the total time for the

server to spend N 1-busy periods to clean up the waiting queue and S 1-busy periods to build up

the required inventory. Thus, Tbusy is the sum of N + S stochastically identical 1-busy periods of

an M/M/1 queue with arrival rate λ and service rate µ. Hence,

Tidle =
N + S

λ
=

N + S

µρ

and

Tbusy =
N + S

µ− λ
=

N + S

µ(1− ρ)
, (3)

which imply that

T =
N + S

µρ
+

N + S

µ(1− ρ)
=

N + S

µρ(1− ρ)
. (4)

Remark 2 From (4), we observe that the expected cycle length is a function of the N + S. This

implies that if the customer arrival rate is fixed, increasing N has the same impact on the production

setup frequency as increasing S.

Lemma 2 and equations (3)–(4) provide the expressions for I , L, Tbusy, and T . These expressions

will be used for deriving the cost function in Section 3.
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2.2 The equilibrium effective arrival rate

The foregoing production model assumes that the demand process is Poisson with effective arrival

rate λ. However, this effective arrival rate λ is determined by customers’ decentralized decision

of whether “to purchase or not to purchase.” Since our production system can be modeled as a

vacation queue, we can view the customers’ purchasing decision as a queueing decision of whether

“to queue or not to queue.” When a customer makes a queueing decision, she needs to take the

expected waiting time into consideration, which, in turn, is affected by how other customers make

such a decision. Such a gaming behavior among customers results in an equilibrium, in which a

customer’s queueing decision is optimal when other customers’ queueing decisions are given. In

this subsection, we consider customer equilibrium queueing decision and derive the corresponding

equilibrium effective arrival rate.

The setting for the queueing game is as follows. Potential customers arrive according to a

Poisson process with rate Λ. Upon arrival, customers estimate the waiting time and then make

decentralized decisions on whether to place an order or to leave without purchase, depending on

their utility value. The queue length and server status are unobservable, a setting consistent with

the applications described in Section 1 where customers order products online. Customers make a

decision based on their perception of the system’s long-run performance measure, i.e., the expected

delay. Such a perception may derive from their past experience of patronizing the product or

word-of-mouth effect.

Customers are identical and they have a linear reward-cost function. Let R be the reward from

receiving the product and W be the expected waiting time if he/she chooses to place an order. The

customer’s utility of placing his/her order is given by

U = R− θW,

where θ is the delay-sensitivity parameter, representing how much a customer dislikes waiting. A

customer will place an order if his/her utility is nonnegative, i.e., U ≥ 0.

In a regular M/M/1 queueing system, as more customers decide to join, the system becomes

more congested and hence the joining incentive for a tagged customer is less. Such a behavior is

called avoid-the-crowd (ATC) in Hassin and Haviv (2003). What is interesting here is that when

more customers decide to join, the expected waiting time for a tagged customer may drop. The

reason is that as more customers decide to join, the production system is less likely to become idle,

and hence the chance for an incoming customer to get the product immediately is higher. In other
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words, as more customers decide to join, it can be beneficial for a tagged customer to join as well,

exhibiting the follow-the-crowd (FTC) behavior. According to Hassin and Haviv (2003), such an

FTC behavior is often associated with multiple equilibria, as is indeed the case demonstrated in

the following analysis.

Since customers are assumed identical, we can consider a symmetric equilibrium in which every

customer adopts the same strategy. A customer’s queueing strategy can be represented by his/her

joining probability, denoted as α, where 0 ≤ α ≤ 1. The effective arrival rate is then λ = αΛ. There

could exist pure- or mixed-strategy equilibria for such a queueing game. To find the equilibrium,

we consider a tagged customer’s best response, given other customers’ strategy. There exist three

possible cases.

First, if everybody else balks and the expected utility for a tagged customer is negative, that

is,

R− θW (0, N, S) < 0, (5)

where W (0, N, S) ≡ limλ→0+ W (λ, N, S), then the best response for the tagged customer is to

balk also. In this case, “all balk” is a (pure-strategy) equilibrium, and zero is the corresponding

equilibrium effective arrival rate. We can further examine the sufficient condition (5) under three

production-activation policies.

(i) Consider the policy with N ≥ 2, which means that the system cannot be activated from

idleness if the number of waiting customers is less than 2. In this case, W (0, N, S) = +∞,

and hence condition (5) always holds. This is intuitive: when everybody else balks, the system

cannot be activated, and hence it is optimal for the tagged customer to balk too.

(ii) Consider the policy with N = 1, which means that the server becomes idle if nobody is

waiting in the queue but will get back to work when the tagged customer joins the empty

queue. In this case, W (0, 1, S) = 1/[(S + 1)µ]. Hence, condition (5) holds if and only if

R− θ/[(S + 1)µ] < 0, or equivalently, S < θ
Rµ − 1.

(iii) Consider the policy with N ≤ 0, which means that as long as the inventory level drops below

−N , the production system will start to work. In this case, W (0, N, S) = 0, and condition

(5) never holds.

In summary, zero is an equilibrium effective arrival rate if (i) N ≥ 2, or (ii) N = 1 and S < θ
Rµ −1.
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Second, if everybody else joins and the expected utility for a tagged customer is nonnegative,

that is,

R− θW (Λ, N, S)≥ 0, (6)

then the best response for the tagged customer is to join as well. In this case, “all join” is a

(pure-strategy) equilibrium, and the corresponding equilibrium effective arrival rate is Λ.

Third, if everybody else joins with a probability α, where 0 < α < 1, and the expected utility

for a tagged customer is zero, that is,

R− θW (αΛ, N, S) = 0, (7)

then it is indifferent for the tagged customer to join or to balk. Hence, “joining with a probability

α” is the best response for the tagged customer too. In this case, “joining with a probability α” is

a mixed-strategy equilibrium, and the corresponding equilibrium effective arrival rate is λ = αΛ.

Sufficient conditions (6) and (7) determine the positive equilibrium effective arrival rates. Con-

dition (7) can be alternatively written as

R− θW (λ, N, S) = 0,

or equivalently,

W (λ, N, S) =
R

θ
, (8)

where W (λ, N, S) is given by (1). To examine the details of these positive equilibria, we again

consider two different cases: N ≥ 2 and N ≤ 1.

We first consider the case where N ≥ 2. From Proposition 1, W (λ, N, S) is strictly convex in

λ when 0 < λ < µ. In addition, limλ→0+ W (λ, N, S) = limλ→µ− W (λ, N, S) = +∞. Hence, for any

given N and S, function W (λ, N, S) has a unique minimum λ̃(N, S), or λ̃ for simplicity, between

0 and µ. Furthermore, equation (8) has at most two roots. Let λ1(N, S) and λ2(N, S), or λ1 and

λ2 for simplicity, be the two roots of (8), if exist, where 0 < λ1 < λ2 < µ; see Figure 2(a) for

illustration. By analyzing λ̃, λ1, and λ2, we can obtain the positive equilibrium effective arrival

rate(s), as stated in the following proposition.

Proposition 4 For any given S ≥ 0 and N ≥ 2, (i) if W (λ̃, N, S) > R/θ, then there exist no

positive equilibrium effective arrival rates; (ii) if W (λ̃, N, S) = R/θ, then there exists one positive

equilibrium effective arrival rate λ̃ if λ̃ ≤ Λ, and there exist no positive equilibrium effective arrival

12



(a) N ≥ 2 (b) N ≤ 1

Figure 2: Expected waiting time versus effective arrival rate.

rates if λ̃ > Λ; and (iii) if W (λ̃, N, S) < R/θ, then there exist two positive equilibrium effective

arrival rates λ1 and min{λ2, Λ} if λ1 ≤ Λ (which reduce to one equilibrium rate if λ1 = Λ), and

there exist no positive equilibrium effective arrival rates if λ1 > Λ.

Proposition 4 is similar to the equilibrium effective arrival rate results presented in Proposition 1

of Guo and Hassin (2011). Note that the vacation queue with N -policy analyzed by Guo and Hassin

is a special case of our model with S = 0.

Next, we consider the case where N ≤ 1. From Proposition 1, W (λ, N, S) is strictly increasing

in λ when 0 < λ < µ. Hence, equation (8) has at most one root between 0 and µ. Let λ3 denote

this root, if exists; see Figure 2(b) for illustration. We have the following proposition.

Proposition 5 (i) If N = 1, then there exists one positive equilibrium effective arrival rate

min{λ3, Λ} if S > θ
Rµ−1, and there exists no positive equilibrium effective arrival rate if S ≤ θ

Rµ−1.

(ii) If N ≤ 0, then there always exists one positive equilibrium effective arrival rate min{λ3, Λ}.

Through the above equilibrium analysis, we can see that at most three equilibria could exist

in the customer queueing game: zero effective arrival rate and two positive equilibrium effective

arrival rates. We will not consider the zero equilibrium effective arrival rate because, in real life,

production managers can use short-term price promotions to attract customers to avoid being stuck

in such an equilibrium. Between the two positive equilibrium effective arrival rates, we consider

the (locally) stable one. The stability here means that, when a small disruption happens to the

equilibrium effective arrival rate, the equilibrium will not diverge away. Consider the two positive

equilibria in the case where N ≥ 2 and λ1 < λ2 ≤ Λ as depicted in Figure 2(a). The larger one

λ2 is stable, while the smaller λ1 is unstable. To see that, note that the expected waiting time
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W (λ, N, S) is decreasing in λ at the point λ = λ1; hence, a slight increase over λ1 will reduce

the expected waiting time and attract even more arrivals, making the equilibrium diverge away.

However, this is not the case for λ2. Therefore, in the following analysis, we will focus on the

positive and stable equilibrium effective arrival rate.

For the case where N ≥ 2 (N = 1), by Proposition 4 (Proposition 5(i)), the positive stable

equilibrium effective arrival rate, if exists, can only be λ2 (λ3) or Λ, whichever is smaller. For the

case where N ≤ 0, by Proposition 5(ii), a positive stable equilibrium effective arrival rate always

exists and is equal to λ3 or Λ, whichever is smaller. This implies that the positive stable equilibrium

effective arrival rate, if exists, must be unique. To use a uniform notation, we define

λ+ =







λ2, if N ≥ 2;

λ3, if N ≤ 1.

With this definition, the positive stable equilibrium effective arrival rate, if exists, is equal to

min{λ+, Λ}.

Note that the value of λ+ depends on the control parameters as well as the system parameters,

and it possesses the following property.

Proposition 6 λ+ is strictly decreasing in θ and N , and is strictly increasing in S.

3 Determining the Optimal Control Values

In this section, we consider the system control decision with strategic customers. We aim to

determine the optimal values of the control variables N and S such that the expected cost rate

of the system is minimized. As is commonly assumed in the inventory management literature,

the expected cost rate of the system consists of four cost components: setup and operating cost,

inventory holding cost, backordering cost, and lost-sales penalty cost. We list the cost notations as

follows.

K = fixed setup cost for each initiation of production;

c = system operating cost per unit time when the server is active;

h = inventory holding cost per unit of inventory per unit time;

θ = backordering cost per waiting customer per unit time;

p = lost-sales penalty per unit.

Note that the delay-sensitivity parameter θ in the customer utility model represents the customer’s

waiting cost per unit time. This parameter can also be viewed as a backordering cost in the system.
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Using renewal theory (Ross 1996, p. 133), the expected total setup and operating cost per unit

time can be expressed as (K + cTbusy)/T . The expected inventory holding cost rate is hI , and

the expected backordering cost rate for having customers waiting in the system is θL. Also, the

expected lost-sales penalty cost rate is p(Λ− λ), where Λ− λ is the rate of customer loss. Denote

ρ̂ = Λ/µ, then p(Λ− λ) = pµ(ρ̂− ρ). Thus, the expected cost of the system per unit time is

Γ =
K + cTbusy

T
+ hI + θL + pµ(ρ̂− ρ). (9)

The expected cost rate function Γ can be expressed in terms of ρ, N , and S, as shown in the

following proposition.

Proposition 7 Given any 0 < ρ < 1, S ≥ 0, and N ≥ −S +1, the expected cost rate of the system

equals

Γ(ρ, N, S) =



































µρ
K(1−ρ)
N+S + cρ + h

N+S

[S(S+1)
2 +

ρ2(1−ρS)
(1−ρ)2

− Sρ
1−ρ

]

+ θ
N+S

[N(N−1)
2 + ρ2(1−ρS)

(1−ρ)2
+ Nρ

1−ρ

]

+ pµ(ρ̂− ρ), if N ≥ 2;

µρ
K(1−ρ)
N+S + cρ + h

[

S−N+1
2 +

ρ2(ρ−N
−ρS )

(N+S)(1−ρ)2 −
ρ

1−ρ

]

+θρ2(ρ−N
−ρS )

(N+S)(1−ρ)2
+ pµ(ρ̂− ρ), if N ≤ 1.

The closed-form cost function presented in Proposition 7 and the convexity/monotonicity of

function W (λ, N, S) presented in Proposition 1 enable us to search for the optimal values of N and

S easily. Denote

Wλ(λ, N, S) =







N
N+S

[

−N+1
2λ2 + 1

(µ−λ)2

]

+ 1−(S+1)(λ/µ)S

(N+S)(µ−λ)2
+ 2λ[1−(λ/µ)S]

(N+S)(µ−λ)3
, if N ≥ 2;

2µ[(λ/µ)−N+1
−(λ/µ)S+1]

(N+S)(µ−λ)3
+ (−N+1)(λ/µ)−N

−(S+1)(λ/µ)S

(N+S)(µ−λ)2
, if N ≤ 1;

which is the first-order partial derivative of W (λ, N, S) with respect to λ. For any given values

of N and S, we denote λe(N, S) as the positive stable equilibrium effective arrival rate, if exists;

otherwise, we let λe(N, S) = 0 (note: it is easy to check that if no positive stable equilibrium effective

arrival rate exists, then zero will be an equilibrium effective arrival rate). We can determine the

value of λe(N, S) via the following procedure.

Procedure P(N, S):

Step 1. If N = 1 and S ≤ θ
Rµ − 1, set λe(N, S) := 0 and stop.

If N ≤ 0 or (N = 1 and S > θ
Rµ − 1), set λmin := 0, go to Step 3.

If N ≥ 2, go to Step 2.
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Step 2. Search for λmin ∈ [0, µ) such that Wλ(λmin, N, S) = 0.

Step 3. If W (λmin, N, S) > R/θ, set λe(N, S) := 0.

If W (Λ, N, S)≤ R/θ, set λe(N, S) := Λ.

Otherwise, search for λe(N, S) ∈ [λmin, Λ) such that W (λe(N, S), N, S) = R/θ.

In procedure P(N, S), Step 2 searches for the minimum of W (λ, N, S). This step is only

applicable to the case where N ≥ 2. Step 3 first considers the special cases where W (λmin, N, S) >

R/θ or W (Λ, N, S)≤ R/θ (see Section 2.2 for a discussion of these two cases). If the conditions of

these two special cases are not met, then it searches for the intersection of the curve y = W (λ, N, S)

and the horizontal line y = R/θ. The searches in Step 2 and 3 can be done via some standard

search technique such as binary search or Newton-Raphson method. The procedure sets λe(N, S)

to either λ+, Λ, or zero.

Let N ∗ and S∗ denote the optimal values of N and S, respectively. The following proposition

provides us with upper bounds on N ∗ and S∗.

Proposition 8 Let Γ̂ be an upper bound on the optimal expected cost rate of the system. Let γ be

any value such that γ > 4. Let

N̄ =

⌈

max

{

4Γ̂

θ
,

8γΓ̂2

hθ(γ − 4)

}⌉

and S̄ =

⌊

γΓ̂

h

⌋

.

Then, N̄ ≥ N ∗ and S̄ ≥ S∗.

In Proposition 8, Γ̂ can be obtained by arbitrarily selecting a pair of integers (N̂, Ŝ) such that

Ŝ ≥ 0 and N̂ ≥ −Ŝ + 1, and letting Γ̂ = Γ(λe(N̂, Ŝ)/µ, N̂, Ŝ). The quantity γ can be any value

greater than 4. A larger γ will lead to a smaller N̄ but a larger S̄, while a smaller γ will lead

to a smaller S̄ but a larger N̄ . The optimal threshold values N ∗ and S∗ can be obtained via the

following exhaustive search algorithm. In this algorithm, N̄ and S̄ are upper bounds on N and

S, which can be obtained using the formulas given by Proposition 8. Variable Γ∗ stores the best

possible value of Γ(λe(N, S)/µ, N, S) obtained by the search.

Algorithm Aoptimal:

Step 1. Set Γ∗ := Γ̂, where Γ̂ is any upper bound on the optimal expected cost rate.

Step 2. For S := 0, 1, . . . , S̄ and N := −S + 1,−S + 2, . . . , N̄ :

(i) Calculate λe(N, S) using procedure P(N, S). Set ρ := λe(N, S)/µ.

(ii) If Γ(ρ, N, S) < Γ∗, then set N ∗ := N , S∗ := S, and Γ∗ := Γ(ρ, N, S).
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Remark 3 By Proposition 6, λ+(N, S) is strictly decreasing in N and strictly increasing in S.

Hence, λe(N, S) < λe(N−1, S) and λe(N, S) > λe(N, S−1). Using this property, procedure P(N, S)

can be implemented slightly more efficiently by restricting the scope of the search of λe(N, S). Instead

of searching for λe(N, S) between 0 and µ, it is sufficient to conduct the search between λe(N, S−1)

and min{µ, λe(N − 1, S)}.

4 Numerical Study

In this section we conduct a numerical study to illustrate certain characteristics of our model. This

numerical study is based on an example with the following parameter setting: µ = 10 units/day,

R = $20/unit, h = $10/unit/day, θ = $40/unit/day, p = $60/unit, c = $200/day, K = $400 per

setup, and Λ = 9.5 units/day (i.e., ρ̂ = 0.95). We have repeated our numerical study with many

other parameter settings and find that our findings are representative.

We first consider the relationship between (N, S) and expected cost rate Γ(λe(N, S)/µ, N, S).

Figure 3(a) depicts Γ(λe(N, S)/µ, N, S) versus N for four different values of S, namely S =

4, 14, 24, 34. Figure 3(b) depicts Γ(λe(N, S)/µ, N, S) versus S for four different values of N , namely

N = −18,−8, 2, 12. We observe that both functions Γ(λe(·, S)/µ, ·, S) and Γ(λe(N, ·)/µ, N, ·) may

have more than one local minimum. This justifies the use of an exhaustive search of N ∗ and S∗

in algorithm Aoptimal. In this example, (N ∗, S∗) = (2, 14). From Figure 3(a), we observe that the
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Figure 3: Expected cost rate versus N and S.
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bottom of the curve Γ(λe(·, S∗)/µ, ·, S∗) is quite flat. Similarly, from Figure 3(b), we observe that

the bottom of the curve Γ(λe(N ∗, ·)/µ, N ∗, ·) is quite flat. Thus, the optimal expected cost rate is

not very sensitive to a change in N and S when (N, S) is close to the optimum. Hence, it does not

incur a significant increase in cost if the system manager chooses to deviate the control parameter

values from (N ∗, S∗) slightly. However, the increase in cost may be substantial if the deviation is

large.

Next, we consider the relationship between ρ and the expected waiting time. Understanding

this relationship will help us understand the demand sensitivity with respect to a change of N and

S. Note that the expected waiting time function in (1) can be expressed in terms of ρ:

W̄ (ρ, N, S) =







1
µ

[

N
N+S

(

N−1
2ρ + 1

1−ρ

)

+ ρ(1−ρS)
(N+S)(1−ρ)2

]

, if N ≥ 2;

1
µ ·

ρ−N+1
−ρS+1

(N+S)(1−ρ)2
, if N ≤ 1.

Figure 4 depicts this function for S = 10 and three different values of N , namely N = −1, 2, 5.

We observe that the expected waiting times have flat bottoms and increase sharply when ρ is close
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Figure 4: Expected waiting time versus ρ.

to 1. This pattern is generally true for other combinations of N and S. Note that the stable

equilibrium λ+(N, S) is the larger root of the equation “W (λ, N, S) = R/θ.” If R/θ is large (e.g.,

when R/θ = 1.5), then the solution λ+(N, S) is close to µ. As shown in Figure 4, changing N
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brings little change in λ+(N, S), suggesting that λ+(N, S) is rather insensitive to a change in N

when R/θ is large. If R/θ is small (e.g., when R/θ = 0.3), then λ+(N, S) is attained near the

bottom of the curve, and as shown in Figure 4, λ+(N, S) is rather sensitive to a change in N . Note

that R/θ measures the maximal amount of time that a customer is willing to wait. Therefore, when

customers’ maximal willingness-to-wait time is long (short), the effective arrival rate is insensitive

(sensitive) to a change of N . Similarly, we find that the impact of S on the effective arrival rate is

also closely related to customers’ maximal willingness-to-wait time. From Figure 4, we also observe

that for N ≥ 2, W̄ (ρ, N, S) tends to infinity as ρ tends to zero. This is because the service does

not start until N or more customer orders have accumulated. Thus, when the arrival rate is very

low, an arriving customer has to wait for a long time before getting served.

We now consider the impact of demand traffic ρ̂ on the optimal solution by varying ρ̂ within the

range (0, 1.2]. Figure 5(a) shows the optimal cost rate Γ∗ versus ρ̂. We observe that Γ∗ increases

as ρ̂ increases. This is because as the demand traffic increases, the company needs to either serve

more customers or incur more lost sales, and this leads to an increase of the overall cost of the

company. However, this characteristic does not always hold. For example, if the operating cost c

and the delay-sensitivity θ are very low and the setup cost K is very high, then a higher demand

traffic may enable the production manager to choose a longer production run to avoid the expensive

setups, which may lead to a lower overall cost rate.
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Figure 5: Optimal cost rate versus ρ̂.

Figure 5(a) also depicts the optimal cost rates for the problem with non-strategic customers,

i.e., when ρ is set equal to ρ̂ for 0 < ρ̂ < 1. This “non-strategic customer model” can be solved using

the algorithm developed by Lee and Srinivasan (1989), where they consider a cost minimization
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problem in an M/G/1 production inventory system with fixed demand arrival rate. The two control

variables they considered are S and N +S, which they refer as r. Then, they show that the average

system cost rate C(r, S∗(r)) is unimodal in r, where S∗(r) is the optimal value of S for a given r,

and thus propose a searching algorithm. In the example depicted in Figure 5(a), the case “λe = 0”

occurs when ρ̂ ∈ (0, 0.28]. When ρ̂ is within this interval, the demand traffic is light, and the system

with strategic customers sets a low S value to discourage all customers from joining the queue. If

the customers are non-strategic, they must join the queue, and the system will have a higher cost

than that with strategic customers. The case “λe = Λ” occurs when ρ̂ ∈ (0.28.0.92]. When ρ̂ is

within this interval, the demand traffic is sufficiently heavy, and the system with strategic customers

admits all customers. The case “0 < λe = λ+(N ∗, S∗) < Λ” occurs when ρ̂ ∈ (0.92, 1.2]. When ρ̂ is

within this interval, only a portion of the strategic customers will join the queue. Note that for the

problem with non-strategic customers, we only consider the situation “ρ̂ < 1,” which is a necessary

condition for the existence of a steady state. When ρ̂ is close to 1, the optimal cost rate of the non-

strategic customer model is substantially higher than that of the strategic customer model. This is

because when the demand traffic is heavy, the system with non-strategic customers becomes highly

congested. On the other hand, if the customers are strategic, the production manager may set the

N and S values in such a way that some of the strategic customers will choose to leave the system.

This allows the system to maintain a reasonable cost rate. As shown in Figure 5(a), the situation

“0 < λe = λ+ < Λ” occurs only when ρ̂ is large. This can be explained as follows: Recalling

from the discussion of Figure 4, the expected waiting time curves generally have flat bottoms and

increase sharply when ρ is close to 1. Hence, unless R/θ is very small, λ+/µ is typically close to 1.

Therefore, the case “λe = λ+ < Λ” occurs when Λ/µ (i.e., ρ̂) is close to 1 or greater than 1.

Figure 5(a) indicates that in this particular example, the optimal cost rate of the problem with

strategic customers is no greater than that with non-strategic customers. However, this may not

be always true in general. Consider a modified example with R = 1 instead of R = 20. Figure 5(b)

depicts the optimal cost rates of this modified example, in which the optimal cost rate for the system

with strategic customers is higher than that with non-strategic customers in the second interval and

the beginning portion of the third interval. This is because in this example the customers’ reward

from receiving the product is very low. Thus, unless ρ̂ is high, the production manager needs to

choose a larger N ∗ and/or a larger S∗ to reduce the expected waiting time to attract customers to

join the queue. It is worth mentioning that even if all strategic customers will join the queue, it

does not necessarily mean that the optimal cost rate will be the same as that in the system with
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non-strategic customers.

Next, we consider the impact of the delay-sensitivity parameter θ on the optimal solution by

varying θ within (0, 60]. Figure 6(a) shows the optimal cost rate Γ∗ versus θ, while Figure 6(b)

shows the corresponding N ∗ and S∗ values. From Figure 6(a), we observe that Γ∗ increases as θ
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Figure 6: The optimal solution versus θ.

increases. This is because when customers are more sensitive to waiting, the production manager

either needs to put in more resources (e.g., keep more inventory, set up the production runs more

frequently, etc.) or faces more lost sales.

Figure 6(a) also depicts the optimal cost rates when the customers are non-strategic. Note that

in this example, ρ̂ = 0.95, which, according to Figure 5, leads to a significant difference between the

system with strategic customers and the system with non-strategic customers. Figure 6(a) indicates

that the difference between these two systems is also affected by the customers’ delay-sensitivity

θ. (Note: θ is also the backordering cost of the system. Thus, in the system with non-strategic

customers, the optimal cost rate is also affected by θ.) When the customers are strategic, the

increase in Γ∗ is less drastic as θ increases. This is because when customers are strategic and when

customers’ delay-sensitivity is sufficiently high (i.e., θ ≥ 19 in the current example), the production

manager will try to discourage some customers from joining the queue by choosing a larger N ∗

and a smaller S∗ (see the sharp increase in N ∗ and the sharp decrease in S∗ in Figure 6(b) when

θ reaches 19). In this case, the system is not as crowded as the case with non-strategic customers,

and the overall cost rate is lower.

Another interesting observation from Figure 6(b) is that the increasing (decreasing) rate in S∗

(N ∗) differs significantly before and after the point where θ = 19. When θ < 19, customers are
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relatively patient, implying a small backlogging cost. It is optimal to allow all customers to enter

the system to avoid the penalty cost for lost sales. Thus, the tradeoff is mainly among setup cost,

holding cost, and backlogging cost. As mentioned in Remark 2, the expected cycle length, and

hence the setup frequency, is a function of N +S. So, the manager can keep N +S relatively stable

but increase S and decrease N to reduce the expected waiting time. Therefore, the main concern

is the tradeoff between holding cost and backordering (waiting) cost. As θ increases, the weight

for backordering becomes heavier and hence the inventory threshold S should be increased while

the production threshold N should be decreased. However, when θ ≥ 19, customers are relatively

sensitive to delay, and it is no longer optimal to keep all customers in the system. In other words,

it becomes optimal to have some balking customers (i.e., lost sales) instead of keeping the queue

long. In this case, the changes in S∗ and N ∗ are less sensitive to a change in θ.

Next, we consider the impact of the setup cost K on the optimal solution by varying K within

[0, 6000]. Figure 7(a) shows the optimal cost rate Γ∗ versus K, while Figure 7(b) shows the cor-

responding N ∗ and S∗ values. Figure 7(a) also depicts the optimal cost rates when the customers
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Figure 7: The optimal solution versus K.

are non-strategic. In this example, the optimal cost rate for the case with strategic customers is

lower than that for the case with non-strategic customers.

For the strategic customer case, when K < 5100, the optimal cost rate increases as K increases.

This is because as K increases, economy of scale becomes more important, and therefore the

duration of a production run needs to be lengthened. This can be achieved by setting a larger N ∗

and/or a larger S∗, as depicted in Figure 7(b). When K ≥ 5100, the optimal cost stays constant as

K changes. This is because when the setup cost is too large, the optimal decision of the production
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manager is to discourage all customers from joining the queue.

One interesting observation is that when K < 5100, the increase in S∗ is much more significant

than the increase in N ∗. There are two reasons for this. First, in our example, h = 10 and

θ = 40. In other words, we penalize backordering more heavily than inventory holding. Second,

the marginal effect of adjusting N has a greater effect on the expected waiting time than adjusting

S; see Proposition 3. As K increases, the manager not only needs to increase N ∗ and S∗ to achieve

economy of scale, but also needs to take into consideration the strategic behavior of customers.

Therefore, the production manager would rather adjust S∗ significantly and adjust N ∗ mildly, such

that the expected waiting time can be maintained at a low level to keep customers’ interests in

joining the queue.

5 Conclusions

In this paper we consider a make-to-stock queue with a two-critical-number policy and delay-

sensitive customers. We derive the customers’ expected waiting time and equilibrium effective

arrival rate, as well as the system’s expected cost rate. We develop a search algorithm for the

optimal control decision variables and conduct a numerical study.

Our findings offer several interesting managerial insights. We find that customers’ expected

waiting time is convex in the effective arrival rate when N ≥ 2, and it is increasing in the effective

arrival rate when N ≤ 1. In the former case, there might be two positive equilibria, and only the

larger one is stable. In the latter case, there exists at most one positive equilibrium effective arrival

rate, and it is stable. These results are generalizations of those in the (make-to-order) vacation

queue system. We also show that a reduction in expected waiting time can be achieved by either

reducing the critical number on the waiting customers or increasing the critical number on the

cumulated inventory, and the former has a higher marginal impact than the latter.

From our numerical study, we find that when the demand traffic is very light or very heavy,

there might exist lost sales, and the optimal cost rate can be significantly lower than that in the

case with non-strategic customers. When the demand traffic is moderate, all customers may join

the queue, but the cost rate may not necessarily be the same as that in the case with non-strategic

customers. We also analyze how the customers’ delay-sensitivity parameter θ affects the results.

We observe that when the customers are relatively patient, the optimal control variables are rather

sensitive to a change in θ. When the customers are impatient, the optimal control variables are
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less sensitive to a change in θ. We also find that as the setup cost K increases, the values of the

control variables increase, but the increase in S is more significant than the increase in N .

In this study, for simplicity and tractability, we have adopted a standard M/M/1 make-to-stock

queue. Using an expanded Markov chain construction, a similar analysis can be generalized to an

M/Ek/1 setting. However, such a generalization is too complex to be included in the current

paper, and hence will be left to future research. Another possible extension of the current topic

is to consider two competing production systems. Under a competition environment, customers

strategically choose a company that offers them higher utility, and if so, the impact of the customers’

strategic behavior on system performance might be very different from what have been observed

in this paper.
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