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Abstract

This paper analyzes the effect of carrier collaboration on fleet capacity, fleet structures in

terms of the number and the size of vehicles, and load factors. The model features com-

plementary networks, scheduling, price elastic demands, and demand uncertainty. For the

case of a given number of vehicles, the analysis shows that carrier collaboration increases

vehicle sizes (thus, fleet capacity) if marginal seat costs are low while fleet capacity re-

mains unchanged if marginal seat costs are high. If both vehicle sizes and vehicle numbers

can be varied, then collaboration will always increase vehicle numbers and fleet capacity,

while the effects on vehicle sizes and, thus, also load factors, are ambiguous and therewith

hard to predict. Numerical simulations indicate that collaboration increases expected load

factors also when the number of vehicles is endogenous.

Keywords: Collaboration; fleet capacity; load factors; scheduling; uncertainty.



1 Introduction

A single trip often involves various carriers with complementary networks. Consider an

air trip as an example. Passengers may use the taxi in order to travel from their home

to the airport, and fly from there with one airline to a hub airport where they transfer to

the flight of a different airline to a third airport and there travel by rail or metro to their

final destination. Key questions for the involved carriers are how to choose fares, service

qualities and fleets in such an environment. Because carriers are often exempted from

antitrust law (for example, this is true for airlines and liner shipping companies), another

question is how to evaluate from the social perspective carrier collaboration where firms

jointly maximize aggregate profit.1 This perspective is relevant for policy makers but also

for firms that would like to receive exemption from antitrust law.

Striking theoretical and empirical evidence that carrier collaboration can lower fares

and at the same time increase profits of the involved carriers has been developed (e.g.,

Brueckner and Whalen, 2000; Brueckner, 2001; Bamberger et al., 2004; Armantier and

Richard, 2008). This is because collaboration can eliminate the excessive pricing caused by

double marginalization and, thus, reduce fares for passengers who are served by multiple

carriers (called interline passengers).2 An important side effect is that the reduction in

fares can increase social welfare defined by the sum of profits and consumer surplus. This

provides one explanation why carriers may be exempted from antitrust law.

Let schedule delays describe the difference between the passengers’ most preferred and

actual travel times (e.g., Miller, 1972; Douglas and Miller, 1974). Adler and Hanany

(2015) concentrate on parallel airline networks and capture the effect of collaboration on

schedule delays in their analysis. They find that collaboration can increase consumer and

social surplus through an increase in airline frequency supply. This may provide another

reason for exempting carriers from antitrust law.3

1The type of collaboration considered in the present paper may be considered as a form of vertical

collaboration because carrier services are complements. However, services are not complementary in the

more traditional sense of, for example, an upstream firm supplying a raw product to a downstream man-

ufacturing firm.
2Czerny (2009) shows that non-stop passengers may be charged a higher fare with carrier collaboration

because with carrier collaboration carriers can price discriminate between non-stop and interline passengers

(also see Zhang and Czerny (2012) for a discussion of this issue).
3Another study that is worthwhile mentioning although less closely related to the study presented in

this paper is Zhang and Zhang (2006). This study shows that rivalry between complementary alliances can

further enhance social welfare, because of a strategic effect that results in a higher degree of alliance, and
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A common, restrictive feature of this existing literature dealing with the evaluation of

carrier collaboration is that either capacities or load factors, i.e., the ratio of passengers

over seat capacity, is considered as fixed. But, the effect of carrier collaboration on capaci-

ties and load factors is of interest for several reasons. If carrier collaboration does not only

lower fares but also increases capacities and load factors, this may bring another profit and

welfare gain as they allow carriers to adjust their fleet and make more efficient use of it.

Load factors are also commonly used as measures for the market performance of carriers.

Consistent financial information to evaluate carrier performance is sometimes unavailable.

This is particularly true for international markets where different accounting standards

may apply, and in such situations researchers have reverted back to non-financial infor-

mation such as load factors to (indirectly) analyze the effects of carrier collaboration on

profits (Lazzarini, 2007).4 Two conditions must be satisfied for non-financial information

being a good substitute for financial information: Carriers and policy makers need to un-

derstand the relationships between (i) carrier collaboration and load factors, and between

(ii) load factors, profits and social welfare.

The evidence for the relationship between carrier collaboration and load factors, point

(i), is mixed.5 Chen and Chen (2003) use a newsvendor model with exogenous fares and

uncertain demand to derive hypotheses about the effect of carrier collaboration on load

factors. They find theoretical and empirical evidence which indicates that load factors are

unchanged by carrier collaboration in the case of complementary networks and increasing

in carrier collaboration in the case of parallel networks. Their analysis considers fares

as exogenous and abstracts away from schedule effects, which are strong assumptions in

the context of, for example, airline markets. Iatrou and Alamdari (2005) provide sur-

vey data, where carriers state that collaboration increases load factors. Lazzarini (2007)

empirically studies the impact of airline alliances on carriers’ operational performance

greater output levels, than would be the case in the absence of such rivalry. In their study, the degree of

alliance is measured by the share of the partner airlines’ profits that airlines take into account when they

decide upon fares. These shares may have the interpretation of “prorates” considered in further detail by

Hu et al. (2013), who analyzed equilibrium shares of airline fares (prorates) for given airline fares and

stochastic demand.
4The difficulties to calculate load factors for airlines using available airline statistics is considered by

Devrient et al. (2009).
5Viton (1986) is interested in the effect of deregulation on the industry from the policy viewpoint. In

line with Douglas and Miller (1974), he considers load factors as a measure for service quality, and finds

that load factors remained too low after a year of deregulation.
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measured by load factors. He finds that both alliance membership or close relations to

other airlines that are members of an alliance can increase load factors. Li and Netessine

(2011) consider airline collaborations for parallel networks, and empirically find that load

factors are reduced by carrier collaboration. Bilotkach and Hüschelrath (2015) find that

for transatlantic flights collaboration raises load factors. With the exception of Chen and

Chen (2003), all the literature on load factors mentioned above is empirical. Again, this

is partly because it is common in the theoretical literature to assume that fleet sizes are

given or that vehicles are fully booked.6 The latter essentially means that outputs and

capacities are equal (e.g., Hu, 2010).

On the other hand, empirical evidence indicates a positive effect of load factors on

carrier profits, point (ii). Behn and Riley (1999) empirically found a positive relation-

ship between load factors and operating income and load factors and operating revenue.

Graham et al. (1983) and Bailey et al. (1985) empirically demonstrate that when travel

distance or market density increases, the airlines will operate larger aircraft at higher load

factors. If vehicle sizes are endogenous, load factors (together with vehicle sizes and fares)

determine average cost per passenger and thus the degree to which carriers may be able

to exploit scale economies. This may explain the positive relationship between profits and

load factors.

To our knowledge, there is no theoretical study that provides insights about how

exactly carrier collaboration may affect load factors and profits through the choices of

fares, fleet capacity and the fleet composition determined by the choice of vehicle sizes

and frequencies. The main contribution of the present study is therefore to analyze these

relationships for the case of complementary networks.

2 The Basic Model

There are two risk neutral and symmetric carriers that operate perfectly complementary

networks. Think of two equidistant city pairs A-B and B-C, where the connection between

A and B is operated by carrier 1 and the connection between B and C is operated by carrier

2. The non-negative quantity of passengers traveling between A and C is denoted as ;

6Brueckner and Zhang (2010) and Czerny (2015) analyze the effect of emission charges on aircraft design

when carriers choose the aircraft fleet in terms of the size and the number of aircraft so that load factors

are endogenous. However, they abstract away from carrier collaboration and complementary networks

(among other differences in the modeling).
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i.e., there is no origin-destination travel on the short distances between A and B and

between B and C. Furthermore, there is no direct connection between A and C available,

so that passengers have to use the services of both carriers 1 and 2 in order to reach

their final destination. These simplifications allow us to concentrate on the impacts of

collaboration in the simplest possible network set-up, so that no corrective terms for related

substitute or complement markets, routes or links enter the analytical results. Including

such interactions would leave the direct mechanisms for passengers shared between the two

firms intact, but obviously for the optimization of fares, frequencies and vehicle sizes the

firms would have to compromise between markets, and also take into account substitution

possibilities between them.

Passenger benefits are denoted as . To capture the notion of uncertainty it is assumed

that benefits are concave, stochastic and given by = (; ) with00  0 and 0  0

for   0, i.e., inverse demand shifts up with  for all  (primes denote partial derivatives).

The term  is a random term that follows a Bernoulli distribution with zero expectation

and standard deviation   0, which means that  = − , and that high and low
demands will occur with the same probability. Fares are denoted as 1 and 2 for carriers

1 and 2, respectively. The sum of these fares yields the total fare of traveling, denoted

 with  = 1 + 2. Demand is determined by the equilibrium condition 0 = , which

implicitly defines the downward sloping demand function (; ) with 0 = 100  0 and

  0.

Deterministic demand fluctuations could be part of an alternative set of assumptions

that would further justify the consideration of a risk-neutral company without affecting

our main results. For instance, business travelers’ preferred travel times may be in the

morning and the evening leading to predictable morning and evening travel demand peaks.

The individual fleet sizes (capacities) are denoted 1 and 2 for carriers 1 and 2,

respectively. For example, capacity limits may be determined by the sizes of a given

number of vehicles (if the vehicle numbers are normalized to 1, vehicle sizes are given by

). Airports where the quantity of flights are constrained by slots, which entitle airlines

to make use of airport capacity at a specific point in time, justifies the scenario with fixed

vehicle numbers (Czerny, Verhoef and Zhang, 2015). The existence of capacity limits

together with the perfect complementarity of carrier networks means that the passenger

quantity, , is limited by the minimum capacity  with  = min {1 2}. Thus,  ≤ ,
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which is called the capacity constraint.7

Operating costs are normalized to zero and independent of the demand-capacity ratio;

i.e., there is no congestion. It may be increasingly costly to increase an already large

capacity because it may be difficult to find new qualified staff or to rent additional in-

frastructure space required for the operation of larger vehicles. Letting  with  = ()

denote the strictly convex capacity costs, it is therefore assumed that 0, 00  0. With this

formulation, capacity costs per passenger, , are decreasing in the passenger quantity.

This reflects the presence of economies of traffic density. The carrier profits denoted 

can be written as  =  ·min {(; ) }−(). The right-hand side shows the revenue,
which is constrained by capacity, less the capacity costs.

The time structure involves two stages: In the first stage, the carriers choose capacities

1 and 2, while in the second stage the carriers choose fares 1 and 2 knowing the demand

state, i.e., the value of the random error . This sequential structure captures that pricing

decisions can be easily changed relative to capacity decisions, which are typically more long

term (Czerny, Verhoef and Zhang, 2015). This feature (among other features) distinguishes

the present study from other studies, for example, Hu, Caldentey and Vulcano (2013), who

analyzed proration rates for given airline fares.

We distinguish between two scenarios called the independent carriers scenario and the

alliance carriers scenario. In the independent carriers scenario, carriers choose fares and

capacity to maximize own expected profit. In the alliance carriers scenario, fares and

capacities are chosen in order to maximize joint expected profits. The two scenarios are

solved backwards.

3 Vehicle Sizes Endogenous (Vehicle Numbers Fixed)

It is useful to distinguish between cases with “low” and “high” demand uncertainty, as

measured by the standard deviation parameter . In the case of low demand uncertainty,

stochastic demand fluctuations are relatively small so that the capacity constraint can

be binding for both positive and negative values of  (i.e., for  = − ). This accord-
7Carriers could sometimes lease additional vehicles to address, for example, predictable seasonal demand

patterns. However, some demand changes may be more short term, for example, daily changes in demand

such as morning and evening peaks of demand, which justifies the assumption of a binding capacity

constraint of the form considered in our study.
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ingly implies expected load factors of one-hundred percent.8 To capture that expected

load factors can be below one-hundred percent (which is a crucial element of the present

analysis), sufficiently high demand uncertainty has to be considered and is assumed in the

present study. More specifically, we will assume that the stochastic demand fluctuations

determined by  are sufficiently high to ensure that the capacity constraint is binding

only in the high state of demand (i.e., for  = ), thus, not binding in the low state

of demand (i.e., for  = −). We further assume that this is true with and without
cooperation. The profits, denoted , in the low state of demand can then be written

as  = (;−) − (). Derivation of profits in the high state of demand is more

complicated because of the possibility of corner solutions, as will be discussed in detail

below.

Independent carriers choose fares to maximize their own revenue. In the low state

of demand, fares are then implicitly determined by the first-order conditions  =

(;−) + 
0(;−) = 0.9 But, this means that independent carriers ignore the effect

of an increase in their fares on the other carrier’s profit, where this effect is negative

and determined by 
0(;−)  0 with  6= , which reflects double marginalization.

With carrier collaboration and joint profit maximization double marginalization can be

eliminated, which leads to a reduction in the total fare of traveling  relative to when

carriers are independent. That collaboration can lead to reduced prices relative to the

prices charged by independent firms and products has first been shown by Spengler (1950)

for the case of a vertical structure with upstream and downstream firms. The case of

horizontal integration has been considered by, for example, Economides and Salop (1992),

Brueckner and Whalen (2000), and Brueckner (2001).

To derive equilibrium fares for the high state of demand, it is useful to remember that in

this demand state the capacity constraint is binding. If the capacity constraint would not

be binding in the high-demand state, then carriers would clearly have invested into excess

capacity because it is also not binding in the low state of demand by assumption. This

however cannot be optimal as marginal capacity costs are strictly positive, which means

that the total fare (i.e., ) is given by 0(;) in the high-demand state. Because carrier
8Hu (2010) concentrates on scenarios with relatively low demand uncertainty in the sense that aircraft

are always fully booked in his analysis of endogenous airline network structures.
9The second-order conditions are satisfied if the benefit function is sufficiently concave in the sense that

the elasticity of the slope of the inverse demand 0 is strictly less than the absolute value of the demand

slope 0 = 100 (Czerny, Verhoef and Zhang, 2015).
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services are perfectly complementary, it can also not be optimal for a carrier to invest into

larger vehicles than the other carrier. This is because some of the costly capacity would

again be unused. In equilibrium, therefore 1 = 2. Anticipating this result, quantities

in the high state of the demand, , can be written as 1 or 2. One question is how the

total fare 0(;) translates into individual fares. In principle, all non-negative individual

fares that ensure that the sum of individual fares exactly sum up to 0(;) satisfy the

condition of a Nash equilibrium when the capacity constraint is binding in equilibrium:

The sum of fares cannot be higher than 0(;) in equilibrium because this would mean

that the capacity constraint is not binding in the high state of demand. The sum of fares

can also not be lower than 0(;) because carriers could sell the same quantities at

a higher fare in such situation. However, in a symmetric environment the equilibrium

where the total fare is evenly split up between carriers may be considered as a focal point.

Therefore, as a starting point, we impose:

Assumption 1 Carriers evenly share the total fare in the high state of demand so that

1 = 2 = 0(;)2 when  = .

As will be discussed below, the assumption of an even split of revenues in the high

state of demand will be important for some of our results. We use Assumption 1 to

write individual profits in the high state of demand as 0(;)2− (), which helps

to derive first insights about equilibrium capacity choices. The capacity constraint is

binding in the high-demand state only if, in the pricing stage, it is ensured that carriers

cannot increase profit by an individual increase of the own fare. Without loss of generality,

consider carrier 1 and assume that carrier 2’s fare is given by 0(;)2 with  = 1 = 2.

A marginal reduction in the quantity  can be achieved by an increase in the own fare.

The corresponding increase in 1’s profit can be written as −0(;)2 − 
00(;) for

 =  (which abstracts from capacity costs because quantities are reduced while capacities

are fixed in the pricing stage). Thus, there is an upper limit for capacities , denoted

, implicitly determined by the condition −0(;)2 − 
00(;) = 0, which ensures

that for any capacity less than the upper limit , the capacity constraint is binding in

the pricing stage for  =  (i.e., in the high state of demand). The condition  ≤ 

is henceforth called the regime constraint. Anticipating that the capacity constraint is

binding in the high state of demand, using Assumption 1 and that fares 1 and 2 are the
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same in equilibrium, expected individual profits, denoted , can be written as

 =
1

2

µ
(;−) + 0(;)

2


¶
− () (1)

There is a continuum of symmetric equilibrium capacities; for example, zero capacities

are an equilibrium outcome because given that one carrier chooses zero capacity, the other

carrier will also choose zero capacity. Nevertheless, with the assumption that carriers do

not expect the other carrier’s capacity to be strictly binding, there is only one equilibrium

candidate, which satisfies the first-order condition  = 0. If both carriers would

choose capacities accordingly, the carriers’ beliefs that the other capacity is not strictly

binding, is indeed fulfilled because capacity is just binding in this scenario, where “just”

means that capacity choice is an interior and a corner solution at the same time (therefore,

the capacity constraint is binding but not strictly binding). We concentrate on this candi-

date, as it is the most efficient in the sense of Pareto superiority among the set of candidates

for equilibrium capacity choices and therefore keeps our assessments of the efficiency gain

from merging, and the efficiency loss from non-coordination, conservative. We can write

the first-order condition for capacity choices as (
00(;) +0(;)) 4− 0 = 0. The

first term on the left-hand side is scaled by 14 because it refers to the high state of de-

mand, which occurs with a probability of one half, and because the total fare is evenly

divided between carriers in the high state of demand.10 Comparing this condition with

the condition 0(;)2 + 
00(;) = 0 that implicitly determines the upper limit for

equilibrium capacity , reveals:

Lemma 1 If marginal capacity cost, 0, is sufficiently high in the sense that they exceed

− (300(;) +0(;)) 4 in equilibrium, the regime constraint is not binding and

equilibrium capacities are smaller than the upper limit , while the regime constraint is

binding and equilibrium capacities are equal to the upper limit , otherwise.

Thus, for high enough marginal capacity costs, carrier capacities are so small in equi-

librium that the regime constraint is not binding. If, on the other hand, marginal capacity

costs are low, this tends to increase equilibrium capacities so that the regime constraint

becomes binding. The regime constraint therefore is useful to distinguish between regimes

10Again, the second-order conditions are satisfied if the marginal benefit function is sufficiently concave

(Czerny, Verhoef and Zhang, 2015). The consideration of an interior solution can further be justified by

the fact that carriers will typically also serve some non-stop passengers in their home market, which may

ensure the existence of interior solutions.
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Figure 1: Demand and capacity: Regime constraint binding when capacities are sufficiently

large (A  B).

Figure 2: Demand and capacity: Regime constraint not binding when capacities are suf-

ficiently small (A  B).
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with high and low marginal capacity costs. Figures 1 and 2 illustrate these cases. Figure

1 assumes large capacities relative to Figure 2. In both Figures 1 and 2, a unilateral

increase in fare reduces aggregate revenue. However, the firm that increases the fare gains

by increasing its share in revenues. The overall individual gain from a unilateral increase

in the fare is given by the difference between areas A and B. This difference is positive

when capacities are large and negative when capacities are small.

Consider the case where the regime constraint is not binding. In this case, the first-

order conditions,  = 0, imply that the carriers’ incentives to invest in capacity

are reduced because carriers receive only a share of one half of the revenues in the high

demand state. But, note that carriers also evenly share capacity costs because both

carriers have to increase capacity in order to be able to increase passenger volume. Thus,

the independent carriers’ incentives to invest in vehicle size are not different from the

collaborating carriers’ incentives when marginal capacity costs are sufficiently high. This

is because alliance carriers take into account the entire increase in revenues but also the

entire increase in capacity costs on the two connections. Consider the case where the

regime constraint is binding. In this case, the alliance carriers’ incentive structures are

essentially the same as in the previous case, while for independent carriers the incentives

to invest in capacity are reduced. This leads to:

Proposition 1 Capacities are the same for independent and collaborating carriers when

the regime constraint is not binding as specified in Lemma 1, while carrier collaboration

increases capacities relative to independent carriers, otherwise.

That collaboration can increase capacity relative to independent carriers is the result

of a special form of double marginalization in capacity that occurs when carriers are

independent. Recall that carriers reduce capacity to  because carriers have an incentive

to increase markups while ignoring the effect of their increase in markups on the other

carrier’s profit. This shows how double marginalization can enter the picture in the high

state of demand. A similar result — centralization can lead to an increase of capacity when

firms’ produce complementary products — has been derived by Netessine and Zhang (2005).

Their analysis, however, assumes that retail prices are exogenously given. Furthermore,

they model complementarity in a more ad hoc fashion assuming that a retailer’s demand

is increasing in the other carrier’s demand. In our case, a carrier’s demand is increasing

in the other carrier’s output only if the capacity constraint is binding.11

11Netessine and Shumsky (2005) use a similar framework (for example, they consider exogenous air fares)
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The result presented in Proposition 1 that capacities can be the same with independent

and collaborating carriers does not depend on the structure of the stochastic process

(Bernoulli distribution of ) but only on the fact that revenue shares are equal to the

cost shares.12 Similar results can also be obtained when carrier costs differ. For instance,

assume that land costs are higher for carrier 1 than for carrier 2 and denote individual

carrier costs as  with  = () and 01(1)  02(2) for 1 = 2. In this situation,

capacity investments are the same for independent and collaborating carriers if revenue

shares are determined by the fraction of marginal capacity costs 01(1) (
0
1(1) + 02(2)).

With asymmetric capacity costs, the sharing of revenues according to the fraction of

marginal capacity costs may indeed be considered as a focal point because it leads to

asymmetric revenue shares and ensures that the carrier with the higher marginal cost

receives a higher share of revenues. If revenues are not shared according to the fraction of

marginal capacity costs, then carrier collaboration can have a positive effect on capacity

even when the regime constraint is not binding. This is because the carriers’ incentives to

invest in capacity are positively related to the own share in the total fare, which means

that the overall capacity is determined by investments of the carrier that receives the small

share relative to the fraction of marginal capacity costs when carriers are independent.

Consider the case where the regime constraint is not binding, again (when Assumption

1 is true and carriers charge the same fares in the high state of demand): Carrier collabo-

ration reduces fares in the low state of demand but does not change capacity. Letting 

with  = ((;−) + )  (2) denote the expected load factor, this leads to:

Proposition 2 Collaborating carriers increase expected load factors relative to indepen-

dent carriers when (i) capacity is one-dimensional in the sense that carriers can only vary

vehicle sizes (and vehicle numbers are fixed) and (ii) the regime constraint is not binding.

This result is in line with the empirical findings from previous studies that showed that

carrier collaboration can increase load factors. However, the effect of carrier collaboration

on load factors is more difficult to derive when the regime constraint is binding. This is

as the one developed by Netessine and Zhang (2005) to analyze airline booking limits for low and high fare

classes. They find that the effect of centralization on booking limits is highly ambiguous when networks

are complementary.
12 In a parallel but independent study, Xiao et al. (2016) show that airport capacity choices can be

independent of airport-airline vertical arrangements when passenger demand is uncertain and the airport

pursues the social goal of welfare maximization, while such arrangements will always increase.airport

capacity in such environments when the airport pursues the goal of profit maximization.

11



because equilibrium quantities are increased by carrier collaboration but also capacity is

increased by carrier collaboration. The following example shows that collaboration can

increase load factors also when the regime constraint is binding.

Example 1 Benefits are quadratic and of the form  = (+ ) −22 with    0.13

Capacity costs are  = 2 2. Consider independent carriers. In the low state of demand,

the total fare is 1+2 = 2 (− ) 3 and the passenger quantity is  = (− )  (3) for

  , where the latter constraint ensures that quantities are non-negative. Capacities

are  =  = (+ )  (3) for   4 and  = (+ )  (2 (+ 2)) for  ≥ 4.

Altogether this leads to an expected load factor  =  (+ ) for low capacity costs in

the sense that   4, where the regime constraint is binding. Consider collaborating

carriers. In the low state of demand, the total fare is 1 + 2 = (− ) 2 and the

passenger quantity is  = (− )  (2). Capacity is  = (+ )  (2 (+ 2)). Expected

load factor is  =  (+ ) +  (− )  ( (+ )). Comparison with expected load

factors of independent carriers for   4 reveals that load factors can be increased

by carrier collaboration independent of whether the regime constraint is binding or not

binding (recall that expected load factors increase for   4 by Proposition 2). The

capacity cost parameter, , must be sufficiently low to ensure that the capacity constraint

is not binding in the low state of demand. More specifically, to ensure that expected

load factors are less than one-hundred percent in the collaborating carrier scenario,  

2 (− ) (⇔    (+ )) must be satisfied.

To derive the welfare effects of carrier collaboration consider expected welfare, which

is the sum of expected consumer surplus and expected aggregate producer surplus. The

latter, 1+2, unambiguously increases by carrier collaboration. Collaborating carriers

can easily replicate the behavior of independent firms, and if they deviate, this means

that aggregate expected profit is increased by collaboration. Furthermore, collaborating

carriers deviate from the behavior of independent firms by reducing fares in the low state

of demand. On the hand, behavior is unchanged in the high state of the demand when

the total fare is evenly shared between carriers in the high state of demand or increases

capacity investments when the total fare is not evenly shared between carriers or the regime

constraint is binding in the high state of demand. Thus, consumer surplus, −(1 + 2)·,
13The multiplication of the noise term with the demand slope parameter, , means that errors are added

to the demand function, i.e., demand is separable into two additive parts,  =  + , rather than the

inverse demand function as would be the case for  = (+ ) − 22.
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in the low and high states of demand increases with collaborating carriers relative to

independent carriers. Thus, collaboration increases expected welfare.

A feature of the present study is that capacity and load factors are endogenous, and

this is relevant for the evaluation of carrier collaborations for both firms and policy makers.

The evaluation of carrier collaboration can be too optimistic if load factors are considered

as fixed. This is because the positive effects of carrier collaboration on revenue due to

the elimination of double marginalization, may only exist in periods of low demand (when

only vehicle sizes are endogenous). Thus, in periods of high demand, the effects of carrier

collaboration on revenue may be overestimated if one abstracts away from the fact that

the organizational structure, i.e., whether carriers are independent or collaborate, may

not change market outcomes in the high state of demand. A similar line of reasoning can

be constructed for welfare. More specifically, this means that the welfare effects of carrier

collaboration may be overestimated when load factors are considered as fixed.

4 Vehicle Sizes and Vehicle Numbers Endogenous

While the previous section treated carrier capacity as one-dimensional, i.e., fleet sizes could

only be changed by changes in vehicle sizes, this section considers vehicle sizes and vehicle

numbers as endogenous. More specifically, it is assumed that vehicle sizes and vehicle

numbers are simultaneously determined in the first stage. This is to derive insights on

the equilibrium fleet size and structure when carrier networks are complementary. In

modelling the choice of the number of vehicles, we will take into acount that having more

vehicles means that a higher frequency can be offered. In reality, these two variables can be

optimized independently, at least to some extent, but obviously there is a strong relation

between the two: offering a higher frquency requires having more vehicles, and acquiring

more vehicles than necessary given the time table will not be rational. We will simplify

matters by equating the two, an assumption that reflects the close connection that these

two variables will have in reality.

Assume that the carriers’ capacities are determined by the product of the number of

vehicles, denoted , and the size of vehicles, denoted , which implies  = . Costs are

still a convex function of . In addition, and to ensure the existence of solutions, there is

a given cost, denoted  with   0, per unit of .
14 This leads to (strictly convex) cost

14For  = 0, it is optimal to choose an arbitrarily small seat capacity and increase frequency supply to

infinity because frequency supply increases demand, which is not true for seat capacity (Czerny, Verhoef
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+(). Another feature is that a carrier’s service quality can be related to . This is

true because passengers are more likely to travel at their preferred time, which reduces so

called schedule delay costs, when more vehicles are in operation (e.g., Douglas and Miller,

1974). To capture this, assume that schedule delay costs, denoted Γ, are decreasing in

frequencies and a strictly convex function of frequencies 1 and 2, i.e., Γ = Γ(1 2) with

Γ  0, 2Γ2  0 and
¯̄
2Γ12

¯̄

p
2Γ21 · 2Γ22 . Thus, frequencies

can be substitutes (i.e., 2Γ12 ≥ 0) or complements (i.e., 2Γ12  0) from the

passengers’ viewpoint. In the case of substitutes, overall schedule delays may be unchanged

if one carrier increases frequency and the other carrier reduces frequency. In the case of

complements, an increase in one carrier’s frequencies becomes more effective if the other

carrier also increases frequencies. One reason may be that a joint increase in frequencies

facilitates schedule coordination. This leads to the generalized price of traveling denoted

as  with  =  + Γ(1 2).

With one-dimensional capacity, the pricing decisions in the low-demand state and the

capacity decisions, which are only relevant in the high-demand state, are separated in

the sense that the sequential structure of the decisions is irrelevant for the result. This

changes in the current scenario with two-dimensional capacity, where the decision about

the frequencies  affects fares in the low state of the demand and both capacities as well

as fares in the high state of demand.

Second stage. Consider the low state of demand. The carriers’ best responses in terms

of fares are implicitly determined by the first-order conditions  = (;−) +


0(;−) = 0 when carriers are independent. As before, with one-dimensional capacity,
this leads to double marginalization, which can be eliminated by carrier collaboration.

However, because the current version of the model assumes that service quality in terms

of frequency supply is endogenous, it is useful to understand how changes in frequencies

affect equilibrium fares in the second stage. Given that (standard) assumptions on the

convexity of demand, , are satisfied, totally differentiating these first-order conditions,

 = 0, with respect to fares and frequency  reveals (the proof is relegated to

Appendix A.2):

Lemma 2 Consider independent carriers in the low state of demand: An increase in

own frequency  increases the own equilibrium fare  (i.e.,   0) and the other

and Zhang, 2015).
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carrier’s equilibrium fare  (i.e.,   0) but reduces the generalized price  (i.e.,

  0) when frequency is chosen before the state of demand is revealed.

This result can be explained as follows. Fares are strategic substitutes in the sense

of Bulow, Geanakoplos and Klemperer (1985), which means that the other carrier’s best

response in terms of fares is a decreasing function of the own fare.15 Since an increase in

one carrier’s frequency increases the own fare but reduces the generalized price of traveling

(because the reduction in schedule delays dominates the increase in the own fare), this

leads to an increase in the other carrier’s fare as well.

Consider the high state of demand. The capacity constraint is assumed to be bind-

ing in the high state of the demand leading to the total fare 0(;) − Γ(1 2).
For the sake of a conservative assessment of collaboration strategies, we further assume

that carriers evenly share the total fare in the high state of demand, i.e., 1 = 2 =

(0(;)− Γ(1 2)) 2. This is analogue to Assumption 1. With endogenous vehicle
numbers the upper limit for equilibrium capacity, , is implicitly determined by the con-

dition − (0(;)− Γ(1 2)) 2− 
00(;) = 0.

First stage. For the same reasons as discussed in the previous section with one-dimensional

capacity, capacities 11 and 22 are the same in equilibrium. Expected profits can then

be written as16

 =
1

2

µ
(;−) + 0(;)− Γ(1 2)

2


¶
−  − () (2)

For the sake of conservativeness, consider (interior) best responses in terms of seat capaci-

ties in the sense that best responses are implicitly determined by the first-order conditions

 = 0, which can be written asµ
1

4

¡
00(;)  +0(;)− Γ(1 2)

¢− 0()
¶
 = 0 (3)

Another way of writing this first-order condition is  ·  = 0. This shows

that the first-order condition (3) is equivalent to  = 0, which means that

15Fares are strategic substitutes only if the demand function is sufficiently concave, which is a maintained

assumption in the present study.
16One may wonder whether negotiation power may be related to frequency supply in the sense that

the carrier offering higher frequency receives a higher revenue share. While this may be true, capturing

this effect would complicate the analysis. We believe that our main results are largely independent of the

assumption that revenues are shared evenly.
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seat capacities are only used to optimize capacities . This condition implies that the

regime constraint is binding if the marginal capacity costs are low in the sense that

0  − (300(;) +0(;)− Γ(1 2)) 4.
Similarly to before, where capacity could be varied only by a change in vehicle size,

the individual carrier’s incentives to invest into capacity are the same for independent and

collaborating carriers when frequencies are given and the same for carriers 1 and 2 (and

the total fare is evenly shared in the high state of demand) and the regime constraint

is non-binding. If frequency supplies change, the effects on the incentives to invest in

capacity can be described as follows (the proof is relegated to Appendix A.3):17

Lemma 3 Assume a non-binding regime constraint. Equilibrium capacities,  = ,

are increasing in joint frequency supply.

An increase in frequencies reduces schedule delays and increases demand because this

reduces generalized prices in the second stage by Lemma 2. Intuitively, such an increase

in demand increases the incentives to invest in capacity as pointed out in Lemma 3. The

following analysis shows indeed that the incentives to invest in frequencies are higher for

collaborating carriers relative to independent carriers, which is true for the cases of binding

and non-binding regime constraints.

The choice of frequency is more complex compared to the choice of vehicle sizes because

frequency affects both capacity and demand. To see this, assume that the regime constraint

is non-binding and write the first-order condition for an interior solution for equilibrium

seat capacity and frequency supply, which anticipates the second-stage pricing behavior in

the sense that  is set equal to zero, as  ·  + Γ · Γ +
 · = 0. The left-hand side shows that frequency is also chosen to optimize
capacity (the first term on the left-hand side), and in addition it is chosen to optimize

service quality in terms of schedule delays, and to strategically manipulate the other

carrier’s fare in the low-demand state. But, the first term is zero by the choice of seat

capacity; thus, only the remaining two effects on schedule delay costs and the strategic

manipulation of fares are relevant for frequency choices, and their sum should therefore be

equal to zero in optimum. Since capacity is optimized by the choice of seat capacity, the

same is true when the regime constraint is binding; so the rationale for frequency supply

does not depend on whether the regime constraint is binding or non-binding.

17The following lemma assumes that standard assumptions on the convexity of the inverse demand

function, 0, are satisfied (see Footnote 9).

16



Using expected profit in (2), best responses in terms of frequencies are implicitly de-

termined by the first-order conditions  = 0, which can be written as

−1
2

µ
0(;−)


+

µ
(;−) + 

2

¶
Γ



¶
− − 0()  = 0 (4)

The left-hand side can be used to show that the independent carriers’ choice of frequency

is too low from the collaborating carriers’ viewpoint for two reasons. First, the reduction

in schedule delay costs achieved in the high state of demand,  ·Γ, is scaled by one
half because the total fare is divided evenly between carriers 1 and 2 in the high state of

demand.18 Second, carriers anticipate that an increase in own frequency increases the other

carrier’s fare in the low state of demand because   0 by Lemma 2. This means

that carriers strategically reduce frequency supply in the first stage in order to lower the

other carrier’s equilibrium fare (in the low state of demand). Because generalized prices

are determined by schedule delays (besides ticket prices), both of these effects can be

described as a form of double marginalization in the generalized prices, , which can be

eliminated by carrier collaboration. If functional forms for capacity and schedule delay cost

functions  and Γ, respectively, are sufficiently convex, this implies (the proof is relegated

to Appendix A.3):

Proposition 3 Collaborating carriers increase fleet capacities  (= ) and frequency

supplies  relative to independent carriers when vehicle numbers are endogenously deter-

mined.

While capacity is increased by carrier collaboration, the effect of carrier collaboration

on expected load factors is difficult to predict when both vehicle sizes and vehicle numbers

are endogenous. This is because an increase in frequency supply (and, thus, service quality)

increases both capacity and demand. The following example extends Example 1 in order to

illustrate that expected load factors can be substantially increased by carrier collaboration

when both vehicle sizes and vehicle numbers are endogenously determined.

Example 2 Assume quadratic benefits and costs with  = 2,  = 1 and  = 120.

The schedule delays are given by the sum of schedule delays at each connection, i.e.,

18A similar effect would also occur if the total fare is divided according to an arbitrary share between

carriers.
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Γ = (11 + 12) 2.
19 The latter captures that frequencies can be substitutes from the

passengers’ viewpoint. Figure 3 depicts equilibrium capacities of independent and collabo-

rating carriers for low (dashed lines) and high (solid lines) values of the standard deviation

parameter where  = 14 and  = 12, respectively. The range of the capacity cost pa-

rameter, , is chosen to ensure that expected load factors are below one-hundred percent

(dashed lines) and that expected profits are non-negative (solid lines). The parameter

ranges further ensure that quantities are non-negative. The figure shows that equilibrium

fleet capacities (weakly) increase in uncertainty measured by the uncertainty parameter,

which is independent of whether the regime constraint is binding or non-binding. Fur-

thermore, equilibrium fleet capacities of independent carriers are constant in the capacity

cost parameter as long as it is less than 14 because the regime constraint is binding in

these cases. For sufficiently high values of the capacity cost parameter, the equilibrium

fleet capacities of independent carriers are decreasing in the capacity cost parameter, and

this reduction in equilibrium fleet capacities increases expected load factors as shown by

Figure 4. For the relevant parameter instances, fleet capacities and expected load factors

are increased by collaborating carriers relative to independent carriers.

Using symmetry, welfare depending on vehicle sizes and vehicle numbers can be writ-

ten as  − (min { } · Γ+ 2 ( +  ())). To understand that carrier collaboration

unambiguously increases welfare when both vehicle sizes and vehicle numbers are endoge-

nous, it is useful to understand that a monopoly carrier can perfectly internalize any

reduction in schedule delay costs by an increase in fares when schedule delay costs are

the same for all passengers (Czerny and Zhang, 2015). This is because the generalized

price of traveling, , is the same for all passengers; thus, a reduction in schedule delay

costs can be perfectly internalized by a corresponding increase in fares. More specifically,

collaborating carriers can perfectly internalize the reduction in schedule delay costs in the

high state of demand,  ·Γ, and will not choose frequencies strategically in order to
manipulate the other carrier’s fare, which means that collaborating carriers abstract away

from   0. Thus, if collaborating carriers increase frequencies, this is in line with

19Brueckner (2004) uses similar functional forms for schedule delay costs on a single connection. Silva,

Verhoef and v. d. Berg (2014) assume that the overall schedule delays are given by the sum of schedule

delays at each connection, which implies that frequencies are substitutes. A more general approach is to

describe schedule delay costs Γ by a CES function  of the form  =  ((1 + 2 )
1), while we consider

the special case  = 1 in the example.
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Figure 3: Capacities for low and high uncertainty in the sense that  = 14 (dashed

lines) and  = 12 (solid lines), respectively, depending on capacity cost parameter .

Parameters:  = 2  = 1  = 120.

Figure 4: Expected load factors for low and high uncertainty in the sense that  = 14

(dashed lines) and  = 12 (solid lines), respectively, depending on capacity cost parameter

. Parameters:  = 2  = 1  = 120.

19



the frequency choice of a social optimizer (for given passenger quantities). Furthermore,

since capacities, , are increased by carrier collaboration, this means that the gener-

alized price is reduced in the high state of demand, which increases consumer surplus,

 − , in the high state of demand. Altogether, this means that collaborating carriers

increase welfare relative to independent carriers independent of whether vehicle numbers

are considered as fixed or variable. This strengthens the case of antitrust exemption when

networks are perfectly complementary.

5 Conclusions

Our study indicates that load factors can be valuable predictors for the financial and social

performance of carriers. This is true in the sense that carrier collaboration increases load

factors of the carriers involved, profits, and social welfare when networks are perfectly

complementary. To show this, we distinguished between situations where a given number

of vehicles could be varied only in size from situations where vehicles could be varied in

size and in numbers.

For the case of a given number of vehicles that can be varied only in size, carrier

collaboration can eliminate double marginalization in fares and further eliminate double

marginalization in the choice of fleet sizes, where the latter implies an increase in vehicle

sizes. For the case of flexible vehicle numbers and vehicle sizes, collaboration increases fleet

sizes (given by the product of the number and the size of vehicles) and vehicle numbers.

The number of vehicles increases because collaborators avoide double marginalization in

generalized prices by recognizing that increasing the own service quality in terms of fre-

quency supply increases own demand but also the demand of their partners. Fleet size

increases because (i) an increase in frequency increases demand, which increases the incen-

tives to invest into fleet size and (ii) double marginalization in terms of capacity choices

can be avoided. However, the effects of collaboration on vehicle sizes (thus, also load

factors) are hard to predict when both vehicle sizes and vehicle numbers are endogenous

because carrier collaboration increases both passenger quantities and fleet sizes. Numeri-

cal simulations showed that collaboration can lead to an increase in expected load factors

also in these situations. In all these scenarios we considered, carrier collaboration increases

load factors, profits and social welfare by it reducing generalized prices through reductions

in fares and schedule delays.
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The analysis provides several avenues for future research. First off, we concentrated

on perfectly complementary networks and abstracted away from the existence of non-stop

passengers. On the other hand, carrier networks can be overlapping in practice and es-

pecially the overlapping parts may be characterized by a strong demand from non-stop

passengers.20 Airline networks are a prominent example. International airline markets

are typically served in a hub-and-spoke fashion, which means that some passengers have

to change aircraft at the hub to reach their final destination. In such situations, air-

lines often serve hub-to-hub connections with high demand in parallel, and policy makers

are concerned that carrier collaboration will lead to collusive pricing and higher fares on

the parallel parts of the networks, which changes the welfare evaluation.21 Another is-

sue that changes the welfare evaluation is the existence of passenger types with distinct

time valuations (Czerny and Zhang, 2011, 2014 and 2015). More specifically, the present

analysis abstracts away from the existence of business passengers who possibly attach a

higher time valuation to schedule delays relative to leisure passengers. With passenger

types, profit maximizing carriers are concerned with marginal time valuations attached to

schedule delays (i.e., average time valuation of incremental passengers) and not average

time valuations over all passengers, where the latter are of concern to a social optimizer

(e.g., Czerny and Zhang, 2014 and 2015). Furthermore, business passengers exert less

elastic demand relative to leisure passengers, which implies that marginal time valuations

are smaller than average time valuations. Altogether this means that the collaborating

carriers’ incentives for frequency supply can be too low from the social viewpoint, which

further complicates the welfare analysis of carrier collaboration. Finally, it would be useful

to empirically validate the theoretical insights derived in this paper.

20See Zhang and Czerny (2012) for a discussion of the relevant literature on overlapping airline networks.
21For example, Zhang and Czerny (2012) mention that carrier collaboration may also lead to market

exit of one partner airline on the hub-to-hub part and thus change carrier networks.
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Appendix

A Proofs

A.1 Proof of Lemma 2

Denote the first-order conditions for fares in the low state of demand as

1 = (−) + 1
0(−) = 0 (5a)

2 = (−) + 2
0(−) = 0 (5b)

Totally differentiating with respect to fares and carrier 1’s frequency yields the system of

equations

1 =
1

1
1 +

1

2
2 +

1

1
1 = 0 (6a)

2 =
2

1
1 +

1

2
2 +

2

1
1 = 0 (6b)

In matrix form this can be written as⎛⎝ 1
1

1
2

2
1

2
2

⎞⎠⎛⎝ 1

2

⎞⎠ = −1

⎛⎝ 1
1

2
1

⎞⎠ (7)

or, more specifically,⎛⎝ 20 + 1
00 0 + 1

00

0 + 2
00 20 + 2

00

⎞⎠⎛⎝ 1

2

⎞⎠ = −1

⎛⎝ − (0 + 1
00) Γ

1

− (0 + 2
00) Γ

1

⎞⎠  (8)

where arguments are omitted to economize notation.

It is useful to let (()) denote the elasticity of the slope of an arbitrary function ()

with respect to  with (()) = −000 for 0  0 and (()) = 000 for 0  0.

This elasticity can be used as a measure for the convexity of function .22 For example, if

(())  0, function  is strictly convex in , while it is strictly concave if (())  0

and linear if (()) = 0. Furthermore, denote the determinant of the first matrix on the

left-hand side as Ψ with

Ψ = det

⎛⎝ 20 + 1
00 0 + 1

00

0 + 2
00 20 + 2

00

⎞⎠ =
¡
0¢2 (3− 2(()))  (9)

where the right-hand side is positive by assumption. Applying Cramer’s rule yields




=




= − (1− (()))

(3− 2(())) ·
Γ


 (10)

22Aguirre et al. (2010) use a similar convexity measure for demand functions.
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The right-hand side is strictly positive when (())  1 in equilibrium ((()) =

−000). Furthermore, an increase in own frequency leads to an increase in the sum of

fares,

 ( + )


= −(2− 2(()))

(3− 2(())) ·
Γ


 − Γ


 (11)

but this increase is less than the reduction in schedule delays when (())  1 in

equilibrium, which is satisfied by standard assumptions on the curvature of the demand

function.23 Altogether, these results establish the lemma.

A.2 Proof of Lemma 3

Using the first-order condition for optimal vehicle sizes (3) and with symmetry in frequency

supply, the first-order condition  = 0 can be written as

1

4

¡
00(;)  +0(;)− Γ(1 2)

¢− 0() = 0 (12)

Totally differentiating this first-order condition with respect to capacity  and schedule

delay cost Γ and applying the implicit function theorem yields



Γ
=

1

(2− (0()))00 − 400  (13)

The right-hand side is negative in sign for (0())  2, which is a standard assumption

on the convexity of the inverse demand function and ensures the existence of a solution.

Finally, a joint increase in frequency supplies reduces schedule delay costs, i.e., 1 +

2 = Γ · 2Γ  0 for 1 = 2, which completes the proof.

A.3 Proof of Proposition 3

To show that carrier collaboration increases frequency supply, it is useful to consider the

unifying objective 1 + 2, where  is called the collaboration parameter. For  = 0,

the objective is maximization of carrier 1’s expected profit (this represents the independent

carrier scenario), while the objective becomes maximization of joint expected profit for

 = 1 (this represents the collaborating carrier scenario). Expected profits in (2) imply

that own expected profit is independent of the other carrier’s vehicle sizes, which leads

to  = 0 for  = 1 2. Vehicle sizes and frequency supplies are therefore implicitly

23Czerny, Verhoef and Zhang (2015) show that (())  1 can be ensured for sufficiently concave

marginal benefits, i.e., (0())  −100().
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determined by the first-order conditions

1 =
1

1
= 0 (14a)

2 =
1

1
+ 

2

1
= 0 (14b)

Totally differentiating these first-order conditions with respect to the collaboration para-

meter, , and using symmetry as well as  = 0 for  = 1 2, yields the system of

equations ⎛⎝ 1
1

1
1

+ 1
2

2
2

2
1

+ 2
2

⎞⎠⎛⎝ 1

1

⎞⎠ = 

⎛⎝ −1


−2


⎞⎠ (15)

with 1 = 0. Before applying Cramer’s rule, it is useful to denote

Φ = det

⎛⎝ 1
1

1
1

+ 1
2

2
2

2
1

+ 2
2

⎞⎠ (16)

where the right-hand side is positive, i.e., Φ  0, for sufficiently convex functional forms

for capacity and schedule delay cost functions. To see this, note that 00 and 2Γ2

enter 11 and 21, respectively, in such a way that Φ  0 can be ensured when

(()) and (Γ(1 2)) (=  ·
¡
2Γ2

¢
 (Γ)) are sufficiently high in equilibrium.

Applying Cramer’s rule further yields:

1


= − 1

Φ

21

21

2

1
 (17)

1


=

1

Φ

µ
1

1
+

1

2

¶
2

1
 (18)

The right-hand side of (17) is strictly positive by the second-order conditions for best

responses, which imply 21
2
1  0, and because an increase in the other carrier’s fre-

quency supply increases own demand and profit, i.e., 21  0. In contrast, the sign

of the right-hand side in (18) is difficult to predict. This means that the effect of carrier

collaboration on overall carrier capacity, , can be positive or negative in principle. How-

ever, since carrier collaboration unambiguously increases frequency, carrier collaboration

also increases optimal overall capacities  by Lemma 3 (which shows that an increase in

frequencies increases the optimal overall capacities ).
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