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Abstract

In this paper we study the electricity time-of-use (TOU) tariff for an electricity company with stochastic

demand. The electricity company offers the flat rate (FR) and TOU tariffs to customers. Under the FR tariff,

the customer pays a flat price for electricity consumption in both the peak and nonpeak periods. Under the

TOU tariff, the customer pays a high price for electricity consumption in the peak period and a low price for

electricity consumption in the non-peak period. The electricity company uses two technologies, namely the

base-load and peak-load technologies, to generate electricity. We derive the optimal capacity investment and

pricing decisions for the electricity company. Furthermore, we use real data from a case study to validate

the results and derive insights for implementing the TOU tariff. We show that in almost all the cases, the

electricity company needs less capacity for both technologies under the TOU tariff than under the FR tariff,

even though the expected demand in the non-peak period increases. In addition, except for some extreme

cases, there is essentially no signicant reduction in the total demand of the two periods, although the TOU

tariff can reduce the demand in the peak period. Under the price-cap regulation, the customer pays a lower

price on average under the TOU tariff than under the FR tariff. We conduct an extensive numerical study

to assess the impacts of the model parameters on the optimal solutions and the robustness of the analytical

results, and generate managerial implications of the research findings.
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1. Introduction

Reducing the electricity demand in the peak period is a fundamental concern for electricity utilities

in their drive to save electricity cost and energy (York et al. 2007). The reason is that reducing

the peak period demand can reduce the electricity load in the peak period and the energy loss in

transmission (Faruqui et al. 2007, Triki and Violi 2009). Currently, many electricity customers

use the traditional flat-rate (FR) tariff, where the customer pays the same price for each unit of

electricity consumption at any time. Under this electricity tariff, the customer has no incentive to

reduce their electricity usage in the peak period.

We study in this paper another pricing mechanism, namely the time-of-use (TOU) tariff, under

which the customer pays a high price for electricity consumption in the peak period and a low

price for electricity consumption in the non-peak period. So the customer may change the time of

electricity usage for some activities from the peak period to the non-peak period to take advantage

of the low price in the non-peak period. For example, under the TOU tariff, the customer may

choose to do the laundry in the non-peak period, instead of in the peak period. Thus the peak

period demand will be reduced.

Nevertheless, under the TOU tariff, there will be some increase in electricity demand in the

non-peak period. As such, it is interesting and important to study the effects of introducing the

TOU tariff. To this end, it is necessary to understand the characteristics associated with electricity

demand, generation, regulation, and tariff.

• Electricity demand is stochastic in nature and depends on the pricing scheme (Faruqui and

Sergici 2010). Moreover, the customers’ electricity usage pattern also affects the demand. As such,

there are the peak period and non-peak period in a day. By the peak period, we mean the period in

a day during which the demand rate (demand per unit time) is high, and by the non-peak period,

we mean the period in a day during which the demand rate is low.

• Many electricity companies use the base-load and peak-load technologies to generate electricity.

The base-load technology (e.g., using coal or nuclear energy to generate electricity) usually has a

low production cost and a high capacity cost, and is first used to meet the demand. The peak-load

technology (e.g., using natural gas to generate electricity) usually has a high production cost and a

low capacity cost, and is used to meet the demand that cannot be met by the base-load technology

(Crew et al. 1995, Pineau and Zaccour 2007).
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• Electricity companies are usually subject to the monitoring and control of regulators under

particular regulations. One regulation is called the price-cap regulation, which has been used in

many places, e.g., the U.K. and Latin America. This regulation sets an upper bound on an index

of the electricity company’s price, below which the electricity company has full pricing freedom

(Liston 1993, Braeutigam and Panzar 1993, Joskow 2005). Some research has shown that under

this regulation, a company can reduce its costs and improve its service quality (Jamasb and Pollitt

2007). In this paper we assume that the electricity company is regulated under this regulation.

• Some electricity markets have a mixed tariff structure under which some customers use the

TOU tariff while the others use the FR tariff. Examples can be found in Australia, Canada, and

the U.S. (CEA 2009). However, the emerging trend is that regulators tend to favour increasing the

proportion of customers using the TOU tariff over time. For example, the Department of Public

Utility Control in Connecticut in the U.S. has directed all the utility companies to phase in the

mandatory TOU tariff for all the customers. In other words, in each succeeding year, the mandatory

TOU tariff may be applied to additional customers (Friedman 2011, Jessoe and Rapson 2014).

The TOU tariff has been implemented in some countries in Europe, some states in the U.S.,

and some cities in Asia (RAP 2008, CEA 2009). But some fundamental questions concerning the

implementation of the TOU tariff have remained unaddressed. We set out to explore these questions

in this paper. Specifically, we seek to answer the following fundamental questions: With stochastic

demand, how much capacity should the electricity company build for the base-load and peak-load

technologies to meet the demands in both the peak and non-peak periods? Given capacity levels,

what should be the optimal prices for the TOU and FR tariffs? What are the impacts of the

proportion of customers using the TOU tariff, the regulation, and costs (such as the capacity and

shortage costs) on the optimal solutions and profit?

In this paper we consider a vertically integrated electricity company that seeks to determine

the optimal capacity levels and prices in the non-peak and peak periods under stochastic demand.

The electricity company uses two technologies, namely the base-load and peak-load technologies,

to build capacity to meet the demands in the non-peak and peak periods, respectively. It offers

a mixed tariff structure to customers under the price-cap regulation. As discussed above, there

are real-world scenarios where the mandatory TOU tariff is applied to some customers while the
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regulator pushes to increase the proportion of customers using the TOU tariff over time. So in this

paper we first consider the case where the proportion of customers using the TOU tariff is given

and then we study the impacts of changing this proportion through a numerical study based on

real data from the literature.

We derive the optimal capacity investments for both the base-load and peak-load technologies,

and the optimal prices for both the TOU and FR tariffs. For the special case where the total

demand is not affected by the prices, we show that the upper bound on the price in the peak period

(i.e., the price cap set by the regulator) is optimal for the TOU tariff. Moreover, when the total

demand under the TOU tariff is affected by the prices, the upper bound on the price in the peak

period may not be optimal for the TOU tariff, and the optimal prices are determined by the cost

and demand parameters. In addition, for given capacity levels, we perform sensitivity analysis of

the optimal solutions with respect to changes in production and shortage costs. We also find that

the probability of using the peak-load technology to meet demand is determined by the ratio of

the difference between the unit capacity costs of the two technologies to the difference between the

unit production costs of the two technologies.

To validate the theoretically derived insights of implementing the TOU tariff, we conduct a case

study by using the cost and demand data of Ontario, Canada. We first show that the electricity

company can obtain more profit if more customers use the TOU tariff. By comparing the situation

where all the customers use the TOU tariff with the situation where all the customers use the FR

tariff, we find that under the TOU tariff, the electricity company can obtain a profit 38.52% higher

than that under the FR tariff. Intuitively, one might expect that the electricity company needs

to build more capacity for the base-load technology under the TOU tariff due to an increase in

the expected demand in the non-peak period. However, we show that in almost all the cases, the

electricity company needs less capacity for both technologies under the TOU tariff, even though

the expected demand in the non-peak period increases. This is due to the fact that the base-load

technology is used to meet the demands in both periods, and a decrease in the peak period demand

under the TOU tariff has a decreasing effect on the capacity of the base-load technology.

Policy makers and industry experts have long expected that the TOU tariff can reduce electricity

demand (Faruqui et al. 2007, Herter at al. 2007). However, we show that the TOU tariff may
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not produce the desired results in terms of reducing the expected total demand of the two periods.

Specifically, we show that except for some extreme cases (such as the case where the expected

demand in the peak period is much higher than that in the non-peak period under the FR tariff),

there is essentially no significant reduction in the total electricity demand of the two periods under

the TOU tariff, although the expected demand in the peak period can be significantly reduced.

Nevertheless, there are savings in cost and energy on the supply side, as the peak load is reduced

under the TOU tariff.

Furthermore, we show that the price-cap regulation affects both the electricity company and

customers. If the regulator sets lower price caps, both the expected demand in the peak period

and the expected total demand will increase. Then the electricity company needs to build more

capacity at least for one of the technologies and obtains less profit. If the price caps for the TOU

tariff are set very low, the customer pays a lower price on average than that under the FR tariff,

whereas in many cases the customer needs to pay a higher price on average. Thus, in order to

effectively implement the TOU tariff, the regulator needs to set appropriate price caps, and/or

consider designing a subsidy policy for the electricity company or customers.

We organize the rest of the paper as follows: In Section 2 we review the related literature. In

Section 3 we introduce the model and the assumptions. In Section 4 we derive the optimal capacity

investment and pricing decisions. In Section 5 we conduct an extensive numerical study using data

from a real case to validate the results and generate managerial insights on implementing the TOU

tariff. We conclude the paper and suggest topics for future research in Section 6. We provide all

the proofs in the Online Appendix.

2. Literature Review

Our work is related to two streams of research. The first one is on time-varying electricity prices. In

the Economics and Energy literature, some research empirically studies the impact of time-varying

electricity prices on demand by experiment or simulation, such as Henley and Peirson (1994),

Faruqui and George (2005), Holland and Mansur (2005), Herter at al. (2007), Faruqui et al.

(2007), and Faruqui and Sergici (2010). The results show that demand is affected by time-varying

electricity prices. Pineau and Zaccour (2007), and Chao (2011) modelled the effects of time-varying

electricity prices, while Pineau and Zaccour (2007) focused on the capacity investment decision,
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and Chao (2011) focused on the effects of intermittent resources. Differing from the above studies,

we explicitly model the TOU tariff problem, and derive the optimal capacity and prices for the

electricity company. On the other hand, studies on peak-load pricing in electricity markets in the

Economics literature are also related to time-varying electricity prices. They consider the pricing

and capacity investment problems with diverse technologies and different cost characteristics. For

instance, Carlton (1977), and Crew and Kleindorfer (1978) investigated some peak-load pricing

problems with stochastic demand, which Chao (1983), and Kleindorfer and Fernando (1993)

extended to consider supply uncertainty. Comprehensive reviews of this subject can be found in

Crew et al. (1995). Research on peak-load pricing is structurally similar to our study on the TOU

tariff, with the difference that the former study is from the social welfare perspective whereas our

study is from the electricity company’s perspective. Besides, our work explicitly models stochastic

demands as functions of the prices in the two periods, and considers the FR tariff co-existing with

the TOU tariff, which allows us to study the effects of the proportion of customers using the TOU

tariff and other parameters.

In the OM/OR literature, there are also studies considering time-varying electricity prices, such

as Garcia et al. (2005), Nogales and Conejo (2006), Triki and Violi (2009) and Banal-Estañol

and Micola (2009). However, most of the above studies do not consider the customer behaviour of

shifting electricity consumption from a high-price period to a low-price period. Yang et al. (2013)

analyzed the TOU tariff for an electricity company taking customer behaviour into consideration.

Yet unlike our model, theirs does not consider a mixed tariff structure where some customers

use the TOU tariff and the rest of the customers use the FR tariff, and theirs does not consider

demand uncertainty. Dong et al. (2014) studied the capacity and pricing policies for an electricity

company offering the TOU tariff. However, they considered deterministic settings and assumed

that the peak-load technology can only be used for the peak period demand. Our paper considers

stochastic demand and assumes that the peak-load technology is used to meet the demand that

cannot be met by the base-load technology, regardless whether it is the peak period demand or

non-peak period demand.

The second related stream of research is on the investment of technologies. In the Economics

and Energy literature, Wickart and Madlener (2007) developed an economic model to examine
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the optimal technology choice and investment timing with consideration of cost (e.g., input fuel

cost) uncertainty. Westner and Madlener (2012) used the spread-based real option approach to

study investment in a condensing power plant without heat utilization or a plant with combined

heat-and-power generation. Tuthill (2008) and Schwerin (2013) investigated the effects of emission

costs on investments in dirty and clean technologies.

In the OM/OR literature, many studies have modified or extended the classical newsvendor

model to study strategic capacity management (e.g., Van Mieghem (1998), Harrison and Van

Mieghem (1999), and Van Mieghem and Rudi (2002)). Van Mieghem (2003) provided a review

of research on strategic capacity management seeking to determine the types, sizes, and timing

of capacity investments and adjustments under uncertainty. The research framework has been

extended to other related settings. For example, Goyal and Netessine (2007) studied the tech-

nology choices and capacity investments of two firms with stochastic price-dependent demand in

a competitive environment. Boyabatli and Toktay (2011) considered a monopolistic firm that

decides the technology choice and capacity level with demand uncertainty in an imperfect capital

market, in which the firm is budget-constrained, which can be relaxed by borrowing money from

a creditor. Kashefi (2012) investigated the effects of a non-sale capacity market on the decisions

of the technology choices and capacity investments of two firms with competition and uncertain

demand. Recently, there has been growing literature on technology choice and capacity investment

in the energy market, and on environmental issues. For instance, Sönmez et al. (2012) studied

strategic technology selection, choice of technology configuration, and capacity for incumbent and

emerging technologies in the liquefied natural gas industry. By modelling the trade-off between

renewable and non-renewable technologies, Aflaki and Netessine (2012) investigated the incentives

for investing in renewable electricity generating capacity. Filomena et al. (2014) analyzed tech-

nology selection and capacity investment for electricity generation in a competitive market with

consideration of uncertain marginal costs. Kök et al. (2015) studied the impacts of electricity

pricing policy on carbon emissions and investment in renewable energy with deterministic demand.

Drake et al. (2016) considered technology choice and capacity investment under emission tax

and emission cap-and-trade regulation through a two-stage model, where the firm determines the

capacity levels of the two technologies in the first stage and demand information is realized at a
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certain time between the two stages, and then the firm determines the production quantities in the

second stage.

One important feature distinguishing our work from research on investment in technologies is

that the latter studies consider neither the pricing issues nor the sequence of technology use as we

do. The exceptions are Bish and Wang (2004), Chod and Rudi (2005), Biller et al. (2006), and

Bish et al. (2012), which studied capacity investment with consideration of the pricing issue. But

they focused on responsive pricing (or price postponement), where the pricing decision is made

after the demands are realized, and did not consider pricing at different times. However, in our

work, we determine the electricity prices before demand realization and we consider the pricing

issue in two different time periods.

3. Modelling

We consider a vertically integrated electricity company that not only determines the capacity for

generating electricity but also sets the electricity prices for the customers.

Capacity. Suppose that Technology 1 (the base-load technology) and Technology 2 (the peak-

load technology) are to be used for generating electricity. Let ki be the capacity of Technology

i, i ∈ {1,2} and k = (k1, k2). It should be noted that electricity capacity is measured in units of

power, e.g., megawatt. In other words, it is measured as the maximum rate of energy per unit

time. The time of electricity usage is divided into two periods, namely the peak period and the

non-peak period. Let T be the total period time, e.g., one day, and τ be the proportion of the

total period time that is the peak period time. Without loss of generality, we normalize T = 1.

Then (1− τ)ki and τki are the capacity levels of Technology i for the non-peak and peak period

demands, respectively, i∈ {1,2}. Let kp = k1 + k2 be the total capacity of the two technologies.

Costs. Let ci and βi be the unit capacity cost and unit production cost of Technology i, respec-

tively. It is well-known that the base-load technology typically has a higher unit capacity cost and a

lower unit production cost than those of the peak-load technology. Thus, c1 > c2 and β1 <β2 (Crew

et al. 1995, Pineau and Zaccour 2007). The shortage cost will be incurred whenever demand

exceeds capacity. Let v1 and v2 be the unit shortage costs for the non-peak period and peak period

demands, respectively. The shortage costs could be considered as the electricity prices to purchase
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additional electricity from outside markets. Therefore, it is reasonable to assume that v1 ≥ β2 and

v2 ≥ β2.

Prices. The electricity company offers both the TOU and FR tariffs to the customers. A fraction

α∈ [0,1] of the customers are under the TOU tariff, so the remaining fraction 1−α of the customers

are under the FR tariff. If α= 0, then only the FR tariff is offered to the customers; and if α= 1,

then only the TOU tariff is offered to the customers. We first assume that α is given, and later we

investigate the effects of α on the optimal solutions based on some real data. Under the FR tariff,

the customer pays a flat price p0 ∈ [0, p̄0] for electricity consumption in both the non-peak and peak

periods. Under the TOU tariff, the customer pays a low price p1 ∈ [0, p̄1] for electricity consumption

in the non-peak period, and pays a high price p2 ∈ [0, p̄2] for electricity consumption in the peak

period. Here, p̄0, p̄1, and p̄2 are the upper bounds (i.e., price caps) on p0, p1, and p2, respectively,

which may be imposed by the regulator under the price-cap regulation. Let p = (p0, p1, p2). We

assume that p1 ≤ p0 ≤ p2. Otherwise, no customer will use the TOU tariff if p1 > p0 and no customer

will use the FR tariff if p2 < p0. This assumption is also justified based on actual prices used in

real-life situations (Shao et al. 2010).

Demands. Let DT1 ≥ 0 and DT2 ≥ 0 be the demands in the non-peak and peak periods, respec-

tively, under the TOU tariff, and DF1 ≥ 0 and DF2 ≥ 0 be the demands in the non-peak and peak

periods, respectively, under the FR tariff. We consider stochastic demands and model them as

follows: DT1(p1, p2) = yT1(p1, p2) + εT1, DT2(p1, p2) = yT2(p1, p2) + εT2, DF1(p0) = yF1(p0) + εF1, and

DF2(p0) = yF2(p0) + εF2. Here, εTi and εFi are random variables (random noises) defined in the

ranges [ATi,BTi] and [AFi,BFi] with mean values of µTi = 0 and µFi = 0, respectively, which indi-

cate that the uncertainties are not affected by the prices. yTi(p1, p2) and yFi(p0) are functions that

capture the dependency between demands and prices. yT1(p1, p2) decreases with p1 and increases

with p2, yT2(p1, p2) decreases with p2 and increases with p1, and both yF1(p0) and yF2(p0) decrease

with p0. We define D1 = αDT1(p1, p2) + (1−α)DF1(p0) and D2 = αDT2(p1, p2) + (1−α)DF2(p0) as

the total demands in the non-peak and peak periods, respectively. Similar forms of total demand

functions for two tariffs were adopted in Borenstein and Holland (2005). Let εi be the random noise

in Di. Then, εi = αεTi + (1−α)εFi ∈ [Ai,Bi], where Ai = αATi + (1−α)AFi and Bi = αBTi + (1−

α)BFi. Using transformation, we can find the distribution of εi in terms of the joint distribution



9

of εTi and εFi. This works even if εTi and εFi are correlated. Besides, ε1 and ε2 can be correlated

or uncorrelated. We further let yi = αyTi(p1, p2) + (1−α)yFi(p0). Then, Di = yi + εi.

We consider linear demand functions in this paper. Examples of linear demand functions for

electricity can be found in Pineau and Zaccour (2007), Chao (2011), and Greer (2012). Specifically,

we let yT1(p1, p2) = aT1− bT1p1 + r1p2, yT2(p1, p2) = aT2− bT2p2 + r2p1, yF1(p0) = aF1− bF1p0, and

yF2(p0) = aF2− bF2p0. Here, the base demands (aTi and aFi) and price sensitivity parameters (bTi,

bFi and ri) are all positive. Without loss of generality, we let aTi = aFi = ai.

Assumption 1. (a) bT1 > r1 and bT2 > r2; (b) bT1 > r2 and bT2 > r1.

Part (a) of Assumption 1 states that the demand in each period is more sensitive to a unit change

in its own price than a unit change in the price of the other period. Part (b) states that when

the price of a period increases, the reduced demand in that period is greater than the increased

demand in the other period.

In order to guarantee that the demands are positive over some ranges of prices, we assume that

Ai ≥ −ai. Similar assumptions have been used in the literature to deal with demand realization

issues for additive demand functions (Petruzzi and Dada 1999, Jiang and Anupindi 2010). Let

fi(·) and Fi(·) be the probability density function (pdf) and cumulative distribution function (cdf)

of the random noise εi.

Objective function. Let x+ = max{0, x} for any real number x. The electricity company’s

expected cost function can be expressed as follows:

C(k,p) = Eε1Eε2 [c1k1 + c2k2 +β1 min{D1, (1− τ)k1}+β2 min{(D1− (1− τ)k1)
+, (1− τ)k2}

+v1(D1− (1− τ)k1− (1− τ)k2)
+ +β1 min{D2, τk1}+β2 min{(D2− τk1)+, τk2}

+v2(D2− τk1− τk2)+]. (1)

In the cost function (1), the first and second terms are the capacity costs for Technologies 1 and

2, respectively; the third and fourth terms are the production costs associated with Technologies

1 and 2, respectively, in the non-peak period; the fifth term is the shortage cost in the non-peak

period; the sixth and seventh terms are the production costs associated with Technologies 1 and

2, respectively, in the peak period; and the last term is the shortage cost in the peak period.
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Our objective is to maximize the electricity company’s expected profit Π(k,p) by optimally

determining the capacity for the two technologies, i.e., k = (k1, k2), and the prices of electricity for

the two tariffs, i.e., p = (p0, p1, p2), as follows:

max
k,p

Π(k,p) = Eε1Eε2 [α(p1DT1 + p2DT2) + (1−α)p0(DF1 +DF2)]−C(k,p)

= α(p1yT1 + p2yT2) + (1−α)p0(yF1 + yF2)−C(k,p). (2)

The objective function (2) is composed of three components. The first and second components

are the expected revenues from the customers under the TOU and FR tariffs, respectively, and the

third component is the electricity company’s expected cost. Note that we seek to maximize the

electricity company’s expected profit over prices for two reasons. The first reason is that we consider

the price-cap regulation. Below the price caps set by the regulator, the electricity company has

full pricing freedom (Braeutigam and Panzar 1993, Liston 1993). Thus the electricity company

will maximize its profit by optimally setting the prices. The second reason is that, as Crew et al.

(1995) have found, the peak-load pricing literature also focuses on optimal prices. So following the

peak-load pricing literature, we consider optimization of profit over prices. Nevertheless, when the

prices are fixed, our objective becomes a minimization problem over capacity and all of our results

hold for optimization of profit over capacity.

Note that ε1 and ε2 can be correlated or uncorrelated. This can be seen from the objective

function (2), in which the random noises only appear in C(k,p), and in the cost function (1), the

terms involving ε1 (or equivalently D1) and the terms involving ε2 (or equivalently D2) in C(k,p)

are additively separable.

Table 1 summarizes the major notation used in this paper, where i∈ {1,2}.

4. Analysis and Solution

We use the sequential decision-making approach to find the optimal solution, denoted by (k∗,p∗),

that maximizes Π(k,p) in (2). That is, we first find the optimal response of prices, i.e., p(k), for a

given k. In the second step, we find the optimal capacity, i.e., k∗, by maximizing Π(k,p(k)) over

k.

In the analysis, we assume that c1 +β1 ≤ (1−τ)v1 +τv2 and c2 +β2 ≤ (1−τ)v1 +τv2. Otherwise,

it can be shown that if c1 +β1 > (1− τ)v1 + τv2, then k∗1 = 0; and if c2 +β2 > (1− τ)v1 + τv2, then



11

Table 1 Notations

τ the peak period time as a proportion of the total time period.
ki capacity of Technology i, k = (k1, k2).
kp total capacity of the technologies, i.e., kp = k1 + k2.
ci unit capacity cost of Technology i.
βi unit production cost of Technology i.
v1, v2 unit shortage cost for the non-peak period demand and the peak period demand,

respectively.
p0 electricity price for the FR tariff, with p̄0 being the upper bound on p0.
p1, p2 electricity prices in the non-peak and peak periods, respectively, for the TOU

tariff, with p̄1 and p̄2 being the upper bounds on p1 and p2, respectively.
DT1,DT2 demands in the non-peak and peak periods, respectively, under the TOU tariff.
DF1,DF2 demands in the non-peak and peak periods, respectively, under the FR tariff.
yTi, yFi expected values of DTi and DFi, respectively.
ε1, ε2 random noises of DTi and DFi, respectively, with pdf fi(·) and cdf Fi(·).
D1,D2 total demands in the non-peak and peak periods, respectively.
yi expected value of Di.
C(·) the electricity company’s expected cost function.
Π(·) the electricity company’s expected profit function.

k∗2 = 0. The former means that if the unit cost of generating electricity by using Technology 1 (i.e.,

c1 + β1) is larger than the average unit shortage cost (i.e., (1− τ)v1 + τv2), then the electricity

company should not use Technology 1. The latter can be similarly interpreted. Besides, we also

assume that c2 + β2 ≥ c1 + β1, meaning that the total unit cost of generating electricity by using

Technology 2 is not less than that by using Technology 1. Otherwise, we can show that k∗1 = 0.

Before deriving the optimal solution, we let F11 = F1

(
(1− τ)k1− y1

)
, F12 = F1

(
(1− τ)k1 + (1−

τ)k2 − y1
)
, F21 = F2(τk1 − y2), F22 = F2(τk1 + τk2 − y2), f11 = f1

(
(1 − τ)k1 − y1

)
, f12 = f1

(
(1 −

τ)k1 + (1− τ)k2− y1
)
, f21 = f2(τk1− y2), and f22 = f2(τk1 + τk2− y2).

(1) Price decisions

Lemma 1. Given k, the objective function Π(k,p) is jointly concave in p0, p1, and p2.

Lemma 1 facilitates the finding of the optimal prices, given k. In particular, without considering

the boundaries of the prices, the first-order conditions can be used for finding the optimal prices,

which are mainly determined by the cost and demand parameters.

Proposition 1. Given k, the effects of the cost parameters on the optimal prices are as follows:

(i) dp1(k)/dc1 = dp1(k)/dc2 = dp2(k)/dc1 = dp2(k)/dc2 = dp0(k)/dc1 = dp0(k)/dc2 = 0.

(ii) When α= 0, dp0(k)/dβ1 ≥ 0, dp0(k)/dβ2 ≥ 0, dp0(k)/dv1 ≥ 0, and dp0(k)/dv2 ≥ 0.
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(iii) When α= 1, dp1(k)/dv1 ≥ 0 and dp2(k)/dv2 ≥ 0; if r1 ≥ r2, then dp1(k)/dβ1 ≥ 0, dp1(k)/dβ2 ≥

0, and dp1(k)/dv2 ≥ 0; if r2 ≥ r1, then dp2(k)/dβ1 ≥ 0, dp2(k)/dβ2 ≥ 0, and dp2(k)/dv1 ≥ 0.

Proposition 1 states the impacts of the costs on the optimal prices for given capacity levels. It

can be seen from part (i) that the optimal prices are independent of the capacity costs. This result

is intuitive. After the capacity levels are determined, the optimal prices will not be affected by

the capacity costs. In Section 5, based on the numerical results of a case study, we find that when

we determine the optimal capacity and prices together, the prices will be affected by the capacity

costs. Parts (ii) and (iii) state that, given capacity levels, the optimal prices will be affected by

the production and shortage costs. If the electricity company only offers the FR tariff, then it will

increase the price when the production and shortage costs increase. If the electricity company only

offers the TOU tariff, then it will increase the price in the non-peak period when the shortage

cost for the non-peak period demand increases, and increase the price in the peak period when the

shortage cost for the peak period demand increases. For the impacts of the production costs, we

derive the sufficient conditions associated with the demand parameters r1 and r2. That is, if the

increased non-peak period demand due to the price increase in the peak period is greater than the

increased peak period demand due to the price increase in the non-peak period (i.e., r1 ≥ r2), then

the electricity company will increase the price in the non-peak period when the production costs

increase; otherwise, the electricity company will increase the price in the peak period when the

production costs increase. It is reasonable that the prices are increasing in the production costs.

Proposition 2. The effects of capacity on the optimal prices are as follows:

(i) When α= 0, ∂p0(k)/∂k1 ≤ 0 and ∂p0(k)/∂k2 ≤ 0.

(ii) When α= 1, if r1 ≥ r2, then ∂p1(k)/∂k1 ≤ 0 and ∂p1(k)/∂k2 ≤ 0; if r2 ≥ r1, then ∂p2(k)/∂k1 ≤ 0

and ∂p2(k)/∂k2 ≤ 0.

Proposition 2 shows how the optimal prices change with capacity. If the electricity company only

offers the FR tariff, then the optimal price will decrease if the capacity increases. One reason may

be that more demands will be fulfilled when the capacity increases, and in order to stimulate more

demands, the prices need to be reduced. If the electricity company only offers the TOU tariff, we

derive the sufficient conditions similar to those in Proposition 1. That is, if the increased non-peak
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period demand due to the price increase in the peak period is greater than the increased peak

period demand due to the price increase in the non-peak period, then the price in the non-peak

period will decrease if the capacity increases; otherwise, the price in the peak period will decrease

if the capacity increases.

Suppose that p1(p0, p2) is the optimal p1 for given p0 and p2, and p2(p0, p1) is the optimal p2 for

given p0 and p1. Following the results in the proof of Lemma 1, we obtain the following result:

Proposition 3. ∂p1(p0, p2)/∂p2 ≥ 0.

Proposition 3 states that, if the price in the peak period under the TOU tariff increases, then

the price in the non-peak period under the TOU tariff will also increase. However, as shown in the

proof of Lemma 1, if the prices under the TOU tariff increase, then changes in the prices under

the FR tariff depend on the parameters and demand distributions.

(2) Capacity decisions

Lemma 2. The optimal capacity k can be uniquely determined by solving the following equations:

(1− τ)(β2−β1)F11 + (1− τ)(v1−β2)F12 + τ(β2−β1)F21 + τ(v2−β2)F22

= (1− τ)v1 + τv2− c1−β1; (3)

(1− τ)(v1−β2)F12 + τ(v2−β2)F22 = (1− τ)v1 + τv2− c2−β2. (4)

Lemma 2 shows that the optimal capacity can be determined uniquely by Equations (3) and

(4). The costs, such as capacity costs, production costs, and shortage costs, play critical roles in

rationing the capacity to meet the demands. The left-hand sides of Equations (3) and (4) are

combinations of the probability of rationing the capacity to meet the demands in both the non-peak

and peak periods, and the right-hand sides of the equations are the differences between the average

unit shortage cost and the unit cost of generating electricity by a technology. Another observation

is that, by combining Equations (3) and (4), we obtain

1− [(1− τ)F11 + τF21] =
c1− c2
β2−β1

. (5)
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Remark 1. In Equation (5), (1−τ)F11 +τF21 is the probability that the demand can be fulfilled

by the capacity of Technology 1. Then the left-hand side of Equation (5) is the probability of using

Technology 2 to meet the demand. The right-hand side is the ratio of the difference between the

unit capacity costs of the two technologies to the difference between the unit production costs of

the two technologies, which is between zero and one due to c2 +β2 ≥ c1 +β1, c1 > c2, and β2 >β1.

Thus, it is interesting to note that the probability of using Technology 2 to meet the demand is

determined by the ratio of the difference between the unit capacity costs of the two technologies

to the difference between the unit production costs of the two technologies.

Note that Dong et al. (2014) considered capacity investments in two technologies with determin-

istic demand and showed that the optimal capacity levels are mainly determined by the demands.

However, we show that, for stochastic demand, costs play a crucial role in allocating the capacity.

In Section 5 we present numerical results to show the effects of costs on capacity based on some

real data.

In the above we showed the optimal prices for the electricity company if it can freely set the

prices. However, under the price-cap regulation, the electricity prices cannot exceed the upper

bounds (i.e., price caps) set by the regulator, i.e., p̄0, p̄1, and p̄2. Due to the concavity property

of the objective function, the global optimal electricity prices are the smaller between the optimal

solutions obtained by the first-order conditions and the upper bounds set by the regulator. In

Section 5 we show the effects of the price caps on the optimal solution and expected profit of the

electricity company by a case study.

4.1. A Special Case

By now, we have considered our problem under the TOU tariff for the case where bT1 > r1 and

bT2 > r2. In this sub-section we consider the special case where bT1 = r2 and bT2 = r1. Then yT1 =

a1 − bT1p1 + bT2p2 and yT2 = a2 − bT2p2 + bT1p1. So we have yT1 + yT2 = a1 + a2 and DT1 +DT2 =

a1 + a2 + ε1 + ε2, suggesting that the total electricity demand under the TOU tariff is not affected

by the prices. Specifically, when the prices change, the expected increased demand in one period

is equal to the expected decreased demand in the other period.

For this special case, the optimal capacity levels satisfy Equations (3) and (4). As regards the

optimal prices, we have the following result.
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Proposition 4. (i) Given p2, the optimal p0 and p1 can be uniquely determined by the first-

order conditions. (ii) The upper bound on p2 is optimal for the electricity company.

Part (i) of Proposition 4 states that, given p2, the optimal price under the FR tariff and the

optimal price in the non-peak period under the TOU tariff can be uniquely determined by the

first-order conditions (see Equations (A.1) and (A.3) in the Online Appendix), which are the same

as those for the case where bT1 > r1 and bT2 > r2. Upon substituting the optimal p0 and p1 back

into the objective function, we can find the optimal p2. The optimal p2 for this special case is

different from that for the case where bT1 > r1 and bT2 > r2. Part (ii) of Proposition 4 states that,

for this special case, the upper bound on p2 is optimal under the TOU tariff. Because the total

demand for the TOU tariff is not affected by prices in this case, the company just needs to set

p2 as high as possible, for given optimal p0 and p1. Similarly, under the price-cap regulation, we

need to guarantee that the prices should not exceed the upper bounds set by the regulator. So

we first determine that the optimal price in the peak period under the TOU tariff is p̄2. Then we

substitute p̄2 into Equations (A.1) and (A.3), and find the optimal solutions for p0 and p1. Finally,

by comparing these solutions and the corresponding upper bounds set by the regulator, we can

obtain the global optimal prices for p0 and p1.

Remark 2. Similar to the results in Proposition 3, dp1(p2)/dp2 ≥ 0 in this case.

5. Case Study

In this section we use numerical examples to generate insights from the analytical results using data

from a case study of Ontario, Canada. We first study the impacts of the proportion of customers

using the TOU tariff. Then we examine the impacts of the price-cap regulation and cost parameters.

In addition, we conduct a series of robustness tests of the results by varying the cost and demand

parameters.

5.1. Settings

Generation technologies. Before presenting the numerical results, we introduce the settings of

the numerical study. We derive the data mainly from Pineau and Zaccour (2007) for the case study

of Ontario, Canada. In 2005, Ontario had a generation capacity 30,921.9 MW. Pineau and Zaccour

(2007) considered two technologies in their model where one has a relatively high capacity cost
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and a low production cost, and the other has a relatively low capacity cost and a high production

cost. Consistent with our model setting, the technologies in the Ontario case study operate in the

following sequence: When the demand is low, the electricity company uses low production cost

sources, such as nuclear energy and hydro, to generate electricity. When the capacity of the low

production cost sources is exhausted, it turns to using sources with high production costs, such as

natural gas (OEB 2015). According to Pineau and Zaccour (2007), we consider one year as the

total period and set τ = 0.4389. Although the cost and demand parameters are obtained from the

literature, they are derived or estimated based on the real data in Ontario, Canada.

Cost data. We derived the cost parameters of the two technologies based on Tables 1 and 5 in

Pineau and Zaccour (2007), i.e., c1 = 20.48, β1 = 52.20, c2 = 11.67, and β2 = 87.20. Regarding v1

and v2, we could not find the real data directly. We tested the effects of α, price-cap regulation, and

parameters using many sets of (v1, v2), such as (100,140), (150,200), (200,300) etc. We found that

(150,200) can typically represent the results in our tests. Therefore, in the following we illustrate

the effects when (v1, v2) equals (150,200), where v1 is about two times of c1 + β1 and v2 is about

two times of c2 +β2. The units of the costs are $/MWh. In Sub-section 5.5 we show the robustness

of the results by varying the values of the cost parameters over wide ranges.

Demand data. We derived the price sensitivity parameters for demands under the TOU tariff

based on Table 8 in Pineau and Zaccour (2007), i.e., a1 = 71,480,450.48, bT1 = 181,717.23, r1 =

12,118.13, a2 = 60,946,977.74, bT2 = 60,645.39, and r2 = 6,064.54. Regarding the price sensitivity

parameters for demands under the FR tariff, following the TOU setting for p1 = p2, we set bF1 =

bT1− r1 = 169599.1 and bF2 = bT2− r2 = 54,580.85. We set the parameters associated with demand

uncertainty as follows: First, we assume that the demands follow the normal distributions, i.e.,

εi ∼ Normal(µi, σi), where i ∈ {1,2} and µi = 0. Note that in the model setting, the random

variable εi is defined in the range [Ai,Bi] and we assume that Ai ≥−ai. In addition, for the normal

distribution, 99.9999% of the values lie within five standard deviations from the mean. Thus, as an

approximation, we set σi = |Ai|/5<= ai/5. We conducted many tests by setting a series of values

for σi from ai/100 to ai/5. We found that ai/10 can typically represent the patterns of the results

in our tests. Therefore, in the following we illustrate the effects when σi = ai/10. In Sub-section

5.5 we show the robustness of the results when we change the values of the demand parameters.
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5.2. Impacts of Proportion of Customers Using the TOU Tariff

In this sub-section we study the impacts of the proportion of customers using the TOU tariff (α)

on the optimal solution and expected profit. Table 2 shows the impacts of α. Note that here we set

the price caps high enough such that the optimal prices are obtained by the first-order conditions.

In Sub-section 5.3 we study the impacts of the price caps.

Table 2 Impact Of α.

α
k1 k2 kp p0 p1 p2

y1
1−τ

y2
τ

y2
τ
− y1

1−τ Π

(106) (106) (106) (106) (106) (106) (106)
0 96 12 108 327 0 0 28.55 98.2 69.64 13939.92

0.1 92 13 105 327 250 584 31.6 94.54 62.94 14483.72
0.2 88 13 101 327 250 584 34.65 90.88 56.23 15027.67
0.3 85 12 97 327 250 584 37.7 87.23 49.53 15571.51
0.4 81 13 94 327 250 584 40.75 83.57 42.82 16115.27
0.5 78 12 90 327 250 584 43.8 79.91 36.11 16658.9
0.6 74 12 86 327 251 584 46.65 76.26 29.61 17201.52
0.7 72 11 83 327 251 583 49.65 72.7 23.05 17741.47
0.8 70 10 80 328 252 581 52.31 69.27 16.95 18275.43
0.9 69 8 77 329 254 580 54.69 65.8 11.11 18799.6
1 69 6 75 0 255 577 57.27 62.66 5.39 19309.78

Note that in Table 2 the capacity levels are in MW, and the prices and profits are in $. The

expected demand rate y1/(1− τ) is the expected amount of energy used in the non-peak period

per unit time, y2/τ is the expected amount of energy used in the peak period per unit time, and

y2/τ − y1/(1− τ) is the difference in the expected demand rate between the peak and non-peak

periods. They are all in MW.

From Table 2, we can see that when α increases, the electricity company’s expected profit will

increase. Then we can conclude that, in our setting, all the customers using the TOU tariff are

optimal to the electricity company. Besides, we observe that the capacity of Technology 1 decreases

with α. Although there are no clear patterns for the capacity of Technology 2, the total capacity of

the two technologies still decreases with α. In other words, we can say that increasing the proportion

of customers using the TOU tariff may not reduce the capacity of the peak-load technology, while it

can reduce the total capacity of the two technologies and the capacity of the base-load technology.

Regarding the impacts on the prices, we can see that the prices are affected by the proportion of

customers using the TOU tariff. This result is different from that in Dong et al. (2014) in the
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setting of deterministic demand, who showed that the prices are independent of the proportion of

customers using the TOU tariff.

It is worth noting that in our numerical results, the expected non-peak period demand y1 may

be greater than the expected peak period demand y2. For example, when α = 1, p1 = 255, and

p2 = 577, we can calculate that y1 = αyT1 + (1−α)yF1 = yT1 = 32134717.84, which is greater than

y2 = αyT2 + (1− α)yF2 = yT2 = 27501045.41. However, the results are reasonable because in our

numerical study, the demands are presented as aggregate demands, rather than demand rates (i.e.,

y1/(1−τ) and y2/τ). As shown in Table 2, all the expected demand rates in the peak period (y2/τ)

are greater than the corresponding expected demand rates in the non-peak period (y1/(1− τ)).

This result holds even if we only consider the demands of the customers under the TOU tariff, i.e.,

yT2/τ > yT1/(1− τ). In Sub-section 5.5 we conduct a range of tests to check the robustness of the

results by varying the parameters over wide ranges. Moreover, from Table 2, we observe that when

α increases, the demand rate in the peak period will decrease, the demand rate in the non-peak

period will increase, and their difference will decrease. This indicates that under the TOU tariff,

the customers will shift some demands from the peak period to the non-peak period, which agrees

with our theoretical results.

5.3. Impacts of the Price-cap Regulation

In this sub-section we study the impacts of the price-cap regulation. Note that in Sub-section 5.2,

we observed that all the customers using the TOU tariff are optimal to the electricity company.

Therefore, we consider the scenario where all the customers use the FR tariff as a benchmark and

focus on the scenario where all the customers use the TOU tariff. We compare the performance

under the TOU tariff with that of the benchmark.

Let xTOU and xFR be the values of x for the cases where all the customers use the TOU and FR

tariffs, respectively. Except ∆p, we let ∆x= (xTOU −xFR)/xFR be the relative difference between

x under the TOU tariff and that under the FR tariff. For example, ∆Π = (ΠTOU −ΠFR)/ΠFR is

the relative difference between the expected profits under the two tariffs. For ∆p, we let ∆p =

((p1 + p2)/2− p0)/p0, which is the relative difference between the average prices under the two

tariffs.

We assume that the price caps for the FR tariff are very large and focus on the impacts of

the price caps for the TOU tariff (i.e., p̄1 and p̄2). When we study the impacts of p̄2, we set
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p̄1 large enough such that p∗1 is obtained by the first-order conditions. A similar setting holds

when we study the impacts of p̄1. Before presenting the performance of the TOU tariff, we first

provide the computational results for the FR tariff. When all the customers use the FR tariff,

we obtain k1 = 96,000,000MW, k2 = 12,000,000MW, p0 = $327, y1 = 16,021,544.78MWh, y2 =

43,099,039.79MWh, and Π = $13,939,921,822.12. We can verify that the demand rate in the peak

period is greater than that in the non-peak period, i.e., yF2/τ > yF1/(1− τ).

Table 3 Impact Of p̄2.

p̄2 ∆k1 ∆k2 ∆kp ∆p ∆y1 ∆y2 ∆(y1 + y2) ∆Π
400 -11.46 0 -10.19 -1.99 103.06 -11.48 19.56 24.35
450 -17.71 -8.33 -16.67 6.27 102.31 -18.46 14.27 31.19
500 -21.88 -25 -22.22 14.37 102.69 -25.45 9.27 35.82
550 -26.04 -41.67 -27.78 22.78 100.8 -32.42 3.68 38.19
600 -29.17 -41.67 -30.56 27.37 99.44 -36.18 0.57 38.52

Table 3 shows the impacts of p̄2. Note that the optimal solution for p2 by the first-order conditions

is equal to 577. Then we find that when p̄2 = 600, p∗2 is less than the price cap; when p̄2 ≤ 550,

p∗2 = p̄2. We see that for all the values of p̄2, the demand rate in the peak period is greater than

that in the non-peak period, i.e., yT2/τ > yT1/(1− τ).

It is interesting to note from Table 3 that the electricity company needs less capacity for both

technologies under the TOU tariff than under the FR tariff, even though the expected demand in

the non-peak period will increase. One reason may be as follows: When all the customers use the

TOU tariff, some peak period demand will be shifted to the non-peak period. Then the expected

demand in the non-peak period will increase and the expected demand in the peak period will

decrease. Technology 2 is used for both the non-peak and peak period demands, so its capacity

will decrease when the peak period demand decreases. Technology 1 is also used for both non-peak

and peak period demands, so the decrease in the peak period demand will cause a decrease in the

capacity of Technology 1. Therefore, although the increase in the non-peak period demand will

have the effect of increasing the capacity of Technology 1, it may be dominated by the decreasing

effect caused by the decrease in the peak period demand. Another explanation may be that the

TOU tariff can help smoothen the demands in the two periods, so the electricity company needs less

capacity for at least one of the technologies, since both technologies are used to meet the demands
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in the two periods. Another observation is that the electricity company needs less capacity when

the price caps increase. This is because when the price caps increase, the company can set a high

price for the peak period demand. Then the peak period demand will decrease, which will further

smoothen the demands between the two periods and lead to a decrease in capacity.

For the expected total demand of the two periods, we observe that it may increase under the TOU

tariff, compared with under the FR tariff. When p∗2 is less than the price cap, the expected total

demand under the TOU tariff is very close to that under the FR tariff (where ∆(y1 + y2) = 0.57%

in the above example). This shows that there is essentially no significant reduction in the total

electricity demand over the whole period by introducing the TOU tariff. Henley and Peirson (1994)

and Faruqui and George (2005) obtained similar results. However, as the peak period demand is

reduced, cost and energy savings can still be obtained on the supply side. It can also be seen that

the expected total demand decreases when the price caps increase. Besides, we also find that the

average price under the TOU tariff may be lower than the price under the FR tariff. This is due to

the effects of the price-cap regulation, under which the electricity company cannot set a high price

under the TOU tariff. Furthermore, we observe that the expected demand in the peak period and

the expected total demand decrease with the price caps, and the electricity company’s expected

profit increases with the price caps. The percentage increase in profit can be as high as 38.52%,

which is obtained when the price is less than the price caps.

Table 4 Impact Of p̄1.

p̄1 ∆k1 ∆k2 ∆kp ∆p ∆y1 ∆y2 ∆(y1 + y2) ∆Π
100 12.5 -66.67 3.7 -2.91 273.2 -32.46 50.37 3.78
150 -3.13 -66.67 -10.19 6.12 217.17 -33.03 34.78 22.27
200 -16.67 -66.67 -22.22 15.9 161.52 -34.29 18.77 33.97
250 -27.08 -50 -29.63 26.15 106.09 -35.98 2.52 38.47
300 -29.17 -41.67 -30.56 27.37 99.44 -36.18 0.57 38.52

Table 4 shows the impacts of p̄1. Here, the optimal solution for p1 by the first-order conditions

is equal to 256. Then, when p̄1 = 300, p∗1 is less than its cap; when p̄1 ≤ 250, p∗1 = p̄1. As shown in

Table 4, ∆k1 and ∆kp may be larger than zero. This means that the capacity of Technology 1 and

the total capacity of the two technologies may increase when all the customers use the TOU tariff.

The reason is that the price cap for the non-peak period is set too small in that case. Then the
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non-peak period demand could be very large due to the small price in the non-peak period. It may

lead to an increase in the capacity of Technology 1 and the total capacity of the two technologies.

In fact, we find that when p̄1 ≤ 200, the demand rate in the peak period is less than that in the

non-peak period, i.e., yT2/τ < yT1/(1− τ). These extreme cases happen because the price cap in

non-peak period is too small. The electricity company has to set a very low price in the non-peak

period, under which the customers shift too much electricity from the peak period to the non-peak

period. Thus, in order to effectively implement the TOU tariff, the government cannot set too small

a price cap for the non-peak period. When the price cap in the non-peak period is not very small,

e.g., p̄1 ≥ 250, the demand rate in the peak period is greater than that in the non-peak period, i.e.,

yT2/τ > yT1/(1− τ), and the impacts of p̄1 are similar to those of p̄2.

5.4. Impacts of Cost Parameters

In this sub-section we study the impacts of the cost parameters, i.e., c1, c2, β1, β2, v1, and v2.

Similar to the last sub-section, we focus on the case where all the customers use the TOU tariff.

When we study the impacts of one parameter, we keep the other cost parameters unchanged.
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Figure 1 Impacts of unit capacity costs.

Figures 1, 2, and 3 show the impacts of the unit capacity cost, unit production cost, and unit

shortage cost, respectively, on the optimal solution. In the figures, the horizontal axis is the value

of a cost parameter and the vertical axis is the value of the optimal solution under the TOU tariff.

It can be seen that when the capacity cost or production cost of Technology 1 (2) increases, the
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capacity of Technology 1 (2) will decrease and the capacity of Technology 2 (1) will increase. It

is worth noting that capacity may remain unchanged, even if the costs increase. For example, as

shown in Figures 1(a) and 2(a), the capacity levels remain unchanged when c1 ≥ 47 and β1 ≥ 79,

respectively. The reason is that under those situations the costs of Technology 1 are large enough,

i.e., c1 +β1 ≥ c2 +β2, that the electricity company will only use Technology 2 to fulfill the demands.

Thus, the capacity levels will remain unchanged when the costs of Technology 1 increase. This result

is consistent with our analytical results. We also observe that when the shortage cost increases, the

capacity of Technology 2 increases and the capacity of Technology 1 remains unchanged. This may

be due to the sequence of using the technologies. Technology 2 is used if the Technology 1 cannot

meet the demand and the shortage cost is incurred if both technologies cannot meet the demand.

So, when the shortage cost changes, the electricity company can keep the capacity of Technology

1 unchanged and just adjusts the capacity of Technology 2.
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Figure 2 Impacts of unit production costs.

The impacts of the cost parameters on prices are more complicated than those on capacity. It

can be seen that the price in the non-peak period increases when the capacity or production cost

of Technology 1 or the shortage cost in the non-peak period increases, or when the shortage cost in

the peak period decreases. The price in the peak period increases when the capacity or production

cost of Technology 1 increases, or when the shortage cost in the non-peak period decreases. These

results are different from those in Proposition 1, where we show that for given capacity, the prices
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are independent of the capacity costs, and the price in the non-peak period or the price in the peak

period increases with the production and shortage costs. However, we show that when we optimize

the capacity and prices together, prices are affected by the capacity cost and may decrease with

the production and shortage costs. We also observe that the prices change modestly when the costs

increase, especially for the impacts of the costs of Technology 2 and the shortage cost in the peak

period. For example, when the unit shortage cost in the peak period increases by $120, both the

prices in the non-peak and peak periods change by no more than $5. This may be welcomed by

the customers because they prefer relatively stable prices to fluctuating prices.
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Figure 3 Impacts of unit shortage costs.

Besides, our numerical study also shows other results, which are not presented in the figures. For

example, the total capacity of Technologies 1 and 2 decreases when the capacity costs or production

costs increase, or when the shortage costs decrease. Regarding the expected profit, our numerical

results also show that the expected profit decreases when all the cost parameters increase. For all

cost values in the above numerical examples, the demand rates in the peak period are greater than

the corresponding demand rates in the non-peak period, i.e., yT2/τ > yT1/(1− τ).

5.5. Robustness Tests

We conducted extensive numerical work to test the robustness of the results by varying the param-

eters over wide ranges. In this sub-section we present the results of the robustness tests of the

demand parameters, cost parameters etc.
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Demand parameters. The demand parameters include the standard deviations of the two

random noises σi, the base demand parameters ai, and the price sensitivity parameters bTi and ri,

i∈ {1,2}. For the standard deviations, we first tested many sets of (σ1, σ2), such as (a1/100, a2/100),

(a1/10, a2/10), (a1/5, a2/5) etc, to assess the impacts of α. The results are similar to those in

Table 2. We also studied changes in the optimal solution and the expected profit of the electricity

company by setting a series of values for σi from ai/100 to ai/5. We observe that when the standard

deviations of the demands increase, the total capacity of the two technologies will increase and the

expected profit will decrease, but the prices and capacity of Technology 1 and 2 may decrease or

increase. By comparing the performance under the TOU tariff with that under the FR tariff, we

find that the results are similar to those in Tables 3 and 4 when the optimal prices are less than

their price caps. Note that in Tables 3 and 4, we show that when the prices are less than their price

caps, the expected total demand under the TOU tariff is very close to that under the FR tariff,

i.e., ∆(y1 + y2) = 0.57%. However, when σi varies over wide ranges, the expected total demand

under the TOU tariff could be smaller than that under the FR tariff. In the numerical results,

we observe that the smallest value is −0.47%, which is obtained when σ1 = a1/5 and σ2 = a2/20.

With such a small value, we can still say that, when σi changes, there is essentially no significant

reduction in the total electricity demand over the whole period by introducing the TOU tariff.

Besides, in all these tests, we find that the demand rates in the peak period are greater than the

corresponding demand rates in the non-peak period for both customers under the FR and TOU

tariffs, i.e., yF2/τ > yF1/(1− τ) and yT2/τ > yT1/(1− τ).

For the base demand and price sensitivity parameters, we first define the values presented in

Sub-section 5.1 as the benchmark values. That is, we let ab1 = 71,480,450.48, bbT1 = 181,717.23, rb1 =

12,118.13, ab2 = 60,946,977.74, bbT2 = 60,645.39, and rb2 = 6,064.54. In order to let the parameters

vary over wide ranges and guarantee that bTi > rj, i, j ∈ {1,2}, we let ai change values within

{abi/100, abi/100 + abi/10, abi/100 + 2(abi/10), · · · , abi/100 + 29(abi/10)}, let bTi change values within

{r1, r1 + bbT i/10, r1 + 2(bbT i/10), · · · , r1 + 29(bbT i/10)}, and let ri change values within {0, b2/30,

2(b2/30), · · · , 29(b2/30)}. Comparing the performance under the TOU tariff with that under the

FR tariff, we still find that the results are similar to those in Tables 3 and 4. Besides, we observe

that the expected total demand under the TOU tariff may be smaller than that under the FR tariff
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in some extreme cases, such as when a1 is very small compared with a2 (e.g., a2 is several times of

a1), or when r1 is very small, and b1 and r2 are very large, under which the difference in demand

between the peak and non-peak periods is very large. For example, the value could be −11.16%

when a2 is about three times of a1. Moreover, we check the demand rates and find that the demand

rate in the peak period may be smaller than that in the non-peak period for the customers under

the FR or TOU tariff when a1 or r1 is very large, or when a2 or b1 is very small. This may be due

to the fact that under these scenarios the demand rate in the non-peak period is larger than or

close to that in the peak period when only the FR tariff is offered to the customers.

Cost parameters. For the tests of the cost parameters, we changed the values to those as

shown in the figures in Sub-section 5.4. By comparing the performance under the TOU and FR

tariffs, we find that the results are similar to those in Tables 3 and 4. Besides, we obverse that the

difference between the expected profits under the TOU and FR tariffs (i.e., ΠTOU−ΠFR) is concave

in the capacity cost of Technology 1. This indicates that there exists a point within the range of

c1 (i.e., c1 = 27) at which the TOU tariff performs the best. Regarding the other cost parameters,

the TOU tariff performs better when the production cost of Technology 1 or the shortage cost in

the non-peak period is smaller, or when the capacity or production cost of Technology 2 or the

shortage cost in the peak period is larger. We also observe that under the TOU tariff, the electricity

company needs less capacity for Technology 2 as well as less total capacity of the two technologies,

but the company may need to build more capacity for Technology 1. In other words, although

the TOU tariff can smoothen the demands in the two periods, building less or more capacity for

Technology 1 depends on the costs of the two technologies. Moreover, for all the cost parameters

we tested, the demand rate in the peak period is greater than that in the non-peak period for both

the customers under the FR and TOU tariffs.

We also tested the robustness of the results regarding the parameter of the peak period time

(τ). We observe that the expected total demand under the TOU tariff may be smaller than that

under the FR tariff and the electricity company may need more capacity for Technology 1 when

τ is very small, in which case the difference in the demand rate between the peak and non-peak

periods is very large. Besides, when τ is large, the demand rates in the peak period may be smaller

than those in the non-peak period for the customers under the FR or TOU tariff. This may be
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due to the fact that before introducing the TOU tariff, the demand rate in the non-peak period is

larger than or close to that in the peak period for a given large τ .

6. Conclusions

In this paper we study the electricity TOU tariff, under which the price in the peak period is higher

than that in the non-peak period. As a result, the customers will shift their electricity consumption

from the peak period to the non-peak period. We consider that the demands in both the non-peak

and peak periods are stochastic. The electricity company offers two tariffs to the customers, under

the price-cap regulation. A fraction of the customers use the TOU tariff and the remaining fraction

of the customers use the traditional FR tariff. The electricity company uses two technologies, i.e.,

the base-load and peak-load technologies, to generate electricity for the customers. The peak-load

technology is used to meet the demand that cannot be met by the base-load technology.

We derive the optimal capacity investment and pricing policies for the electricity company.

Through a numerical study based on the electricity generation and demand data from Ontario,

Canada, we validate the theoretical results and generate managerial insights for the electricity

company and the regulator. The TOU tariff can benefit the electricity company in terms of needing

less capacity of the technologies and obtaining more profit, compared with the FR tariff. However,

except for some extreme cases, there is essentially no significant reduction in the total electricity

demand under the TOU tariff. The price-cap regulation significantly affects both the electricity

company and customers. In order to effectively implement the TOU tariff, the regulator needs to

set appropriate price caps. Besides, we also investigate the impacts of the cost parameters. We

show that the total capacity of the two technologies decreases when the capacity or production

costs increase, or when the shortage costs decrease. We also discuss how the capacity levels of the

base-load technology and peak-load technology change when the costs change. The impacts of the

cost parameters on the prices are more complicated than those on capacity. However, we observe

that when the costs change, the electricity company can just change the prices over small ranges.

Keeping the prices stable would be preferred by the customers to fluctuating prices. Moreover, we

test the robustness of the results by varying the parameters over wide ranges. The tests show that

our results hold except for a few extreme cases. For example, we show that in most cases, there

is no reduction in the expected total demand of the two periods after introducing the TOU tariff.
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However, when the base demand in the peak period is larger than that in the non-peak period, the

expected total demand under the TOU tariff is smaller than that under the FR tariff.

The phenomenon of peak and non-peak periods exists not only in the electricity industry, but

also in other industries such as the transportation and telecommunications industries. Thus, from

the application perspective, the analysis of the capacity investment in various technologies, and

the pricing for the peak and non-peak period demands can be applied to other industries featuring

peak period and non-peak period demands.

For future research, one extension is to consider multiple electricity companies competing in the

market. Some industrial examples have shown that the mandatory TOU tariff may be applied to

some customers in some areas (RAP 2008, Friedman 2011, Jessoe and Rapson 2014). Based on this

observation, we assume that the proportion of customers using the TOU tariff is given. However,

there are examples of the case where the TOU tariff is optional to the customers (Tweed 2011).

So another future research direction would be to consider the setting in which the proportion of

customers using the TOU tariff is determined endogenously by the electricity prices and customers’

values, based on consumers’ choice behaviour. Moreover, in our model, we consider that the prices

are announced at the beginning of the planning horizon and they do not change when the TOU

tariff is implemented. It is interesting to extend our work to consider multiple periods and model

the pricing issues as a dynamic problem in future research. Finally, it is also important to extend

the study to incorporate the environmental concerns, such as CO2 emissions, and investigate the

effects of implementing the TOU tariff on the environment.
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Kök, A. Gürhan, K. Shang, S. Yücel. 2015. Impact of electricity pricing policy on renewable energy invest-

ments and carbon emissions. Working Paper, Koç University, Turkey.
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Online Appendix
“Electricity time-of-use tariff with stochastic demand”

Appendix A: Proofs

Proof of Lemma 1 Before showing the proof, we define M = (β1 − β2)F11 + (β2 − v1)F12 ≤ 0, N = (β1 −

β2)F21 + (β2 − v2)F22 ≤ 0, M̂ = (β1 − β2)f11 + (β2 − v1)f12 ≤ 0 and N̂ = (β1 − β2)f21 + (β2 − v2)f22 ≤ 0. To

prove that Π(k,p) is jointly concave in p1, p2 and p0, we show that the Hessian matrix of the profit function

H(Π) is negative semi-definite in the following, where

H(Π) =
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Next, we show the values of elements in the matrix. Taking the first and second partial derivatives of

Π(k,p) with respect to p1, p2 and p0, we have
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Then, combining with Assumption 1, we can obtain that
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∂2Π(k(p),p)

∂p1∂p2

)2

= α2
{

4bT1bT2− (r1 + r2)2 +α2(bT1bT2− r1r2)2M̂N̂ − 2α(bT1bT2− r1r2)(bT1M̂ + bT2N̂)
}
≥ 0

|H3
123| =

∂2Π(k(p),p)

∂p2
0

[
∂2Π(k(p),p)

∂p2
1

∂2Π(k(p),p)

∂p2
2

− (
∂2Π(k(p),p)

∂p1∂p2

)2]

−∂
2Π(k(p),p)

∂p0∂p1

[
∂2Π(k(p),p)

∂p0∂p1

∂2Π(k(p),p)

∂p2
2

− ∂2Π(k(p),p)

∂p1∂p2

∂2Π(k(p),p)

∂p0∂p2

]

+
∂2Π(k(p),p)

∂p0∂p2

[
∂2Π(k(p),p)

∂p0∂p1

∂2Π(k(p),p)

∂p1∂p2

− ∂2Π(k(p),p)

∂p2
1

∂2Π(k(p),p)

∂p0∂p2

]

= −α2(1−α)
{

[4bT1bT2− (r1 + r2)2][2(bF1 + bF2)− (1−α)(b2F1M̂ + b2F2)N̂ ]

−4α(bF1 + bF2)(bT1bT2− r1r2)(bT1M̂ + bT2N̂)

+2α(bT1bT2− r1r2)[α(bF1 + bF2)(bT1bT2− r1r2) + (1−α)bF1bF2(r1 + r2)

+(1−α)(bT1b
2
F2 + bT2b

2
F1)]M̂N̂

}
≤ 0

By now, we have proved that |H1
1 |=

∂2Π(k(p),p)

∂p2
0

≤ 0, |H1
2 |=

∂2Π(k(p),p)

∂p2
1

≤ 0, |H1
3 |=

∂2Π(k(p),p)

∂p2
2

≤ 0, |H2
12| ≥ 0,

|H2
13| ≥ 0, |H2

23| ≥ 0, and |H3
123| ≤ 0, indicating that Π(k(p),p) is jointly concave in p0, p1, and p2. Thus, the

optimal solutions can be uniquely determined by ∂Π(k(p),p)

∂p1
= 0, ∂Π(k(p),p)

∂p2
= 0, and ∂Π(k(p),p)

∂p0
= 0, i.e.,

a1− 2bT1p1 + (r1 + r2)p2 = −bT1v1 + r2v2− bT1M + r2N, (A.1)

a2− 2bT2p2 + (r1 + r2)p1 = r1v1− bT2v2 + r1M − bT2N, (A.2)

a1− 2bF1p0 + a2− 2bF2p0 = −bF1v1− bF2v2− bF1M − bF2N. (A.3)

�

Proof of Proposition 1 (i) Recalling that the optimal prices can be determined by Equations (A.1), (A.2)

and (A.3), which do not include c1 and c2. Thus, we obtain that the optimal prices are independent of c1

and c2, i.e., dp1(k)/dc1 = dp1(k)/dc2 = dp2(k)/dc1 = dp2(k)/dc2 = dp0(k)/dc1 = dp0(k)/dc2 = 0.

(ii) In order to prove the results for α = 1, we show the values of dp1(k)/dβ1, dp2(k)/dβ1, dp1(k)/dβ2,

dp2(k)/dβ2, dp1(k)/dv1, dp2(k)/dv1, dp1(k)/dv2, and dp2(k)/dv2.

We rearrange the Equations (A.1) and (A.2), and let

G1 = a1− 2bT1p1 + (r1 + r2)p2 + bT1v1− r2v2 + bT1M − r2N,

G2 = a2− 2bT2p2 + (r1 + r2)p1− r1v1 + bT2v2− r1M + bT2N.

By taking the first derivatives of G1 and G2 with respect to p1 and p2, we have ∂G1

∂p1
=−2bT1 + b2T1M̂ + r2

2N̂ ,

∂G1

∂p2
= r1 + r2− r1bT1M̂ − r2bT2N̂ , ∂G2

∂p1
= r1 + r2− r1bT1M̂ − r2bT2N̂ , and ∂G2

∂p2
=−2bT2 + r2

1M̂ + b2T2N̂ .

Next, we first show the results for β1. By taking the first derivatives of G1 and G2 with respect to β1, we

have

dG1

dβ1

=
∂G1

∂β1

+
∂G1

∂p1

dp1(k)

dβ1

+
∂G1

∂p2

dp2(k)

dβ1

= 0,
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dG2

dβ1

=
∂G2

∂β1

+
∂G2

∂p1

dp1(k)

dβ1

+
∂G2

∂p2

dp2(k)

dβ1

= 0,

where ∂G1

∂β1
= bT1F11− r2F21 and ∂G2

∂β1
=−r1F11 + bT2F21. By solving the above two equations, we obtain that

dp1(k)

dβ1

=
(r1− r2)bT2F21 + (2bT1bT2− r2

1 − r1r2)F11− (bT1bT2− r1r2)(r1F21M̂ + bT2F11N̂)

4bT1bT2− (r1 + r2)2 + (bT1bT2− r1r2)[(bT1bT2− r1r2)M̂N̂ − 2bT1M̂ − 2bT2N̂ ]
,

dp2(k)

dβ1

=
(r2− r1)bT1F11 + (2bT1bT2− r2

2 − r1r2)F21− (bT1bT2− r1r2)(bT1F21M̂ + r2F11N̂)

4bT1bT2− (r1 + r2)2 + (bT1bT2− r1r2)[(bT1bT2− r1r2)M̂N̂ − 2bT1M̂ − 2bT2N̂ ]
,

which indicate that if r1 ≥ r2, then dp1(k)/dβ1 ≥ 0; and if r2 ≥ r1, then dp2(k)/dβ1 ≥ 0.

Define Λ = 4bT1bT2 − (r1 + r2)2 + (bT1bT2 − r1r2)[(bT1bT2 − r1r2)M̂N̂ − 2bT1M̂ − 2bT2N̂ ]. Then, by using

the same approach, we can obtain the results for β2, v1 and v2 as follows:

dp1(k)

dβ2

=
1

Λ

{
(r1− r2)bT2(F22−F21) + (2bT1bT2− r2

1 − r1r2)(F12−F11)

−(bT1bT2− r1r2)[r1(F22−F21)M̂ + bT2(F12−F11)N̂ ]
}
,

dp2(k)

dβ2

=
1

Λ

{
(r2− r1)bT1(F12−F11) + (2bT1bT2− r2

2 − r1r2)(F22−F21)

−(bT1bT2− r1r2)[bT1(F22−F21)M̂ + r2(F12−F11)N̂ ]
}
,

which indicate that if r1 ≥ r2, then dp1(k)/dβ2 ≥ 0, and if r2 ≥ r1, then dp2(k)/dβ2 ≥ 0.

dp1(k)

dv1

=
1

Λ

{
(2bT1bT2− r2

1 − r1r2)(1−F12)− (bT1bT2− r1r2)bT2(1−F12)N̂
}
,

dp2(k)

dv1

=
1

Λ

{
(r2− r1)bT1(1−F12)− (bT1bT2− r1r2)r2(1−F12)N̂

}
,

which indicate that dp1(k)/dv1 ≥ 0, and if r2 ≥ r1 then dp2(k)/dv1 ≥ 0.

dp1(k)

dv2

=
1

Λ

{
(r1− r2)bT2(1−F22)− (bT1bT2− r1r2)r1(1−F22)M̂

}
,

dp2(k)

dv2

=
1

Λ

{
(2bT1bT2− r2

2 − r1r2)(1−F22)− (bT1bT2− r1r2)bT1(1−F22)M̂
}

which indicate that dp2(k)/dv2 ≥ 0, and if r1 ≥ r2 then dp1(k)/dv2 ≥ 0.

(iii) Next, we prove the results for α= 0. Similar to the approach in (ii), here we take the derivatives on

both sides of Equation (A.3) with respect to β1, β2, v1 and v2, respectively. By solving the resulting equations,

we can obtain the values of dp0(k)/dβ1, dp0(k)/dβ2, dp0(k)/dv1, and dp0(k)/dv2, which are presented as

follows:

dp0(k)

dβ1

= − bF1F11 + bF2F21

−2bF1− 2bF2 + b2F1M̂ + b2F2N̂
≥ 0,

dp0(k)

dβ2

= −bF1(F12−F11) + bF2(F22−F21)

−2bF1− 2bF2 + b2F1M̂ + b2F2N̂
≥ 0,

dp0(k)

dv1

= − bF1(1−F12)

−2bF1− 2bF2 + b2F1M̂ + b2F2N̂
≥ 0,

dp0(k)

dv2

= − bF2(1−F22)

−2bF1− 2bF2 + b2F1M̂ + b2F2N̂
≥ 0.

�
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Proof of Proposition 2 By using the same approach as in the proof of Proposition 1, we can obtain the

following results.

(i) When α= 1,

∂p1(k)

∂k1

=
1

Λ

{
(r1− r2)bT2τN̂ + (2bT1bT2− r2

1 − r1r2)(1− τ)M̂

−(bT1bT2− r1r2)[r1τ + bT2(1− τ)]M̂N̂
}
,

∂p2(k)

∂k1

=
1

Λ

{
(r2− r1)bT1(1− τ)M̂ + (2bT1bT2− r2

2 − r1r2)τN̂

−(bT1bT2− r1r2)[bT1τ + r2(1− τ)]M̂N̂
}
,

which indicate that if r1 ≥ r2, then dp1(k)/dk1 ≤ 0, and if r2 ≥ r1, then dp2(k)/dk1 ≤ 0.

∂p1(k)

∂k2

=
1

Λ

{
− (r1− r2)bT2τ(v2−β2)f22− (2bT1bT2− r2

1 − r1r2)(1− τ)(v1−β2)f12

+(bT1bT2− r1r2)[r1τ(v2−β2)f22M̂ + bT2(1− τ)(v1−β2)f12N̂ ]
}
,

∂p2(k)

∂k2

=
1

Λ

{
− (r2− r1)bT1(1− τ)(v1−β2)f12− (2bT1bT2− r2

2 − r1r2)τ(v2−β2)f22

+(bT1bT2− r1r2)[bT1τ(v2−β2)f22M̂ + r2(1− τ)(v1−β2)f12N̂ ]
}
,

which indicate that if r1 ≥ r2, then dp1(k)/dk2 ≤ 0, and if r2 ≥ r1, then dp2(k)/dk2 ≤ 0.

(ii) When α= 0,

∂p0(k)

∂k1

= − (1− τ)bF1M̂ + τbF2N̂

−2bF1− 2bF2 + b2F1M̂ + b2F2N̂
≤ 0,

∂p0(k)

∂k2

= −bF1(1− τ)(β2− v1)f12 + bF2τ(β2− v2)f22

−2bF1− 2bF2 + b2F1M̂ + b2F2N̂
≤ 0.

�

Proof of Proposition 3 Note that in the proof of Lemma 1, we have obtained that ∂2Π(k(p),p)

∂p1∂p2
≥ 0. Com-

bining with the results that ∂2Π(k(p),p)

∂p2
0

≤ 0 and ∂2Π(k(p),p)

∂p2
1

≤ 0, we obtain that ∂p1(p0,p2)

∂p2
=−

∂2Π(k(p),p)
∂p1∂p2

∂2Π(k(p),p)

∂p2
1

≥ 0.

�

Proof of Lemma 2 To prove the results, we show that there exists a unique global optimum for the objec-

tive function (2). Although we have obtained the optimal prices for given capacities in Lemma 1, we prove

the uniqueness of the solution for the objective function in an alternative direction. That is, in the first

step, we show that the objective function is jointly concave in k1 and k2 for given prices, and obtain the

optimal capacities k(p) by the first-order conditions of Π(k,p). In the second step, we substitute the optimal

capacities back into the objective function, and show that Π(k(p),p) is jointly concave in p0, p1 and p2, so

the optimal prices can be uniquely determined by the first-order conditions of Π(k(p),p).

(i) We first show that Π(k,p) is jointly concave in k1 and k2. Taking the first and second partial derivatives

to Π(k,p) with respect of k1 and k2, we have

∂Π(k,p)

∂k1

= −
{
c1 +β1− (1− τ)v1− τv2 + (1− τ)(β2−β1)F11 + (1− τ)(v1−β2)F12

+τ(β2−β1)F21 + τ(v2−β2)F22

}
, (A.4)

∂2Π(k,p)

∂k2
1

= −
{

(1− τ)2(β2−β1)f11 + (1− τ)2(v1−β2)f12 + τ2(β2−β1)f21 + τ2(v2−β2)f22

}
≤ 0,
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∂Π(k,p)

∂k2

= −
{
c2 +β2− (1− τ)v1− τv2 + (1− τ)(v1−β2)F12 + τ(v2−β2)F22

}
, (A.5)

∂2Π(k,p)

∂k2
2

= =
∂2Π(k,p)

∂k1∂k2

=−
{

(1− τ)2(v1−β2)f12 + τ2(v2−β2)f22

}
≤ 0.

If c1 +β1 > (1−τ)v1 +τv2, then ∂Π(k,p)

∂k1
< 0, indicating that Π(k,p) is decreasing in k1, so k∗1 = 0. Similarly,

if c2 +β2 > (1−τ)v1 +τv2, then ∂Π(k,p)

∂k2
> 0, indicating that Π(k,p) is decreasing in k2, so k∗2 = 0. Otherwise,

we consider that

∂2Π(k,p)

∂k2
1

∂2Π(k,p)

∂k2
2

−
(∂2Π(k,p)

∂k1∂k2

)2

=
(
(1− τ)2f11 + τ2f21

)
(β2−β1)

(
(1− τ)2(v1−β2)f12 + τ2(v2−β2)f22

)
≥ 0,

combining with ∂2Π(k,p)

∂k2
1
≤ 0 and ∂2Π(k,p)

∂k2
2
≤ 0, we conclude that Π(k,p) is jointly concave in k1 and k2. Then,

the optimal capacity k(p) can be uniquely determined by ∂Π(k,p)

∂k1
= 0 and ∂Π(k,p)

∂k2
= 0.

Before going to show the results in the second step, we derive the values of
∂kp(p)

∂p1
,
∂kp(p)

∂p2
,
∂kp(p)

∂p0
, ∂k1(p)

∂p1
,

∂k1(p)

∂p2
and ∂k1(p)

∂p0
. By using the similar approach as in the proof of Proposition 1, we can obtain that

∂kp(p)

∂p1

= α
−(1− τ)(v1−β2)f12bT1 + τ(v2−β2)f22r2

(1− τ)2(v1−β2)f12 + τ2(v2−β2)f22

,

∂kp(p)

∂p2

= α
(1− τ)(v1−β2)f12r1− τ(v2−β2)f22bT2

(1− τ)2(v1−β2)f12 + τ2(v2−β2)f22

,

∂kp(p)

∂p0

= (1−α)
(1− τ)(v1−β2)f12bF1 + τ(v2−β2)f22bF2

(1− τ)2(v1−β2)f12 + τ2(v2−β2)f22

≤ 0,

∂k1(p)

∂p1

= α
−(1− τ)f11bT1 + τf21r2

(1− τ)2f11 + τ2f21

,

∂k1(p)

∂p2

= α
(1− τ)f11r1− τf21bT2

(1− τ)2f11 + τ2f21

,

∂k1(p)

∂p0

= −(1−α)
(1− τ)f11bF1 + τf21bF2

(1− τ)2f11 + τ2f21

≤ 0.

Besides, given k(p), we can obtain the values of ∂F11

∂p1
, ∂F11

∂p2
, ∂F11

∂p0
, ∂F12

∂p1
, ∂F12

∂p2
and ∂F12

∂p0
.

∂F11

∂p1

= f11((1− τ)
∂k1(p)

∂p1

− ∂y1

∂p1

) = α
f11τf21

(1− τ)2f11 + τ2f21

((1− τ)r2 + τbT1)≥ 0,

∂F11

∂p2

= f11((1− τ)
∂k1(p)

∂p2

− ∂y1

∂p2

) =−α f11τf21

(1− τ)2f11 + τ2f21

((1− τ)bT2 + τr1)≤ 0,

∂F11

∂p0

= f11((1− τ)
∂k1(p)

∂p0

− ∂y1

∂p0

) = (1−α)
f11τf21

(1− τ)2f11 + τ2f21

(τbF1− (1− τ)bF2),

∂F12

∂p1

= f12((1− τ)
∂kp(p)

∂p1

− ∂y1

∂p1

)

= α
f12τ(v2−β2)f22

(1− τ)2(v1−β2)f12 + τ2(v2−β2)f22

((1− τ)r2 + τbT1)≥ 0,

∂F12

∂p2

= f12((1− τ)
∂kp(p)

∂p2

− ∂y1

∂p2

)

= −α f12τ(v2−β2)f22

(1− τ)2(v1−β2)f12 + τ2(v2−β2)f22

((1− τ)bT2 + τr1)≤ 0,

∂F12

∂p0

= f12((1− τ)
∂kp(p)

∂p0

− ∂y1

∂p0

)

= (1−α)
f12τ(v2−β2)f22

(1− τ)2(v1−β2)f12 + τ2(v2−β2)f22

(τbF1− (1− τ)bF2).

Moreover, we can find that
∂F11

∂p1

α[τbT1 + (1− τ)r2]
= −

∂F11

∂p2

α[τr1 + (1− τ)bT2]
=

∂F11

∂p0

(1−α)[τbF1− (1− τ)bF2]
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=
f11τf21

(1− τ)2f11 + τ2f21

≥ 0, (A.6)

∂F12

∂p1

α[τbT1 + (1− τ)r2]
= −

∂F12

∂p2

α[τr1 + (1− τ)bT2]
=

∂F12

∂p0

(1−α)[τbF1− (1− τ)bF2]

=
f12τ(v2−β2)f22

(1− τ)2(v1−β2)f12 + τ2(v2−β2)f22

≥ 0. (A.7)

Now, we are ready to show the results that the prices can be uniquely determined by the first-order

conditions of Π(k(p),p).

(ii) To show that the prices can be uniquely determined by the first-order conditions, we just need to show

that Π(k(p),p) is jointly concave in p0, p1 and p2. Thus, we will prove that the Hessian matrix of the profit

function H(Π) is negative semi-definite in the following, where

H(Π) =


∂2Π
∂p2

0

∂2Π
∂p0∂p1

∂2Π
∂p0∂p2

∂2Π
∂p1∂p0

∂2Π
∂p2

1

∂2Π
∂p1∂p2

∂2Π
∂p2∂p0

∂2Π
∂p2∂p1

∂2Π
∂p2

2

 .

First, we let |H1
1 |=

∂2Π(k(p),p)

∂p2
0

, |H1
2 |=

∂2Π(k(p),p)

∂p2
1

, |H1
3 |=

∂2Π(k(p),p)

∂p2
2

,

|H2
12|=

∣∣∣∣∣
∂2Π(k(p),p)

∂p2
0

∂2Π(k(p),p)

∂p0∂p1

∂2Π(k(p),p)

∂p0∂p1

∂2Π(k(p),p)

∂p2
1

∣∣∣∣∣ , |H2
13|=

∣∣∣∣∣
∂2Π(k(p),p)

∂p2
0

∂2Π(k(p),p)

∂p0∂p2

∂2Π(k(p),p)

∂p0∂p2

∂2Π(k(p),p)

∂p2
2

∣∣∣∣∣ ,

|H2
23|=

∣∣∣∣∣
∂2Π(k(p),p)

∂p2
1

∂2Π(k(p),p)

∂p1∂p2

∂2Π(k(p),p)

∂p1∂p2

∂2Π(k(p),p)

∂p2
2

∣∣∣∣∣ , |H3
123|=

∣∣∣∣∣∣∣∣
∂2Π
∂p2

0

∂2Π
∂p0∂p1

∂2Π
∂p0∂p2

∂2Π
∂p1∂p0

∂2Π
∂p2

1

∂2Π
∂p1∂p2

∂2Π
∂p2∂p0

∂2Π
∂p2∂p1

∂2Π
∂p2

2

∣∣∣∣∣∣∣∣ .
Next, we show the values of elements in the matrix. After substituting (k1(p), k2(p)) back into Π(k,p)

and taking the first derivative of Π(k(p),p) with respect to p1, we have

∂Π(k(p),p)

∂p1

=
∂Π(k,p)

∂k1

∂k1(p)

∂p1

+
∂Π(k,p)

∂k2

∂k2(p)

∂p1

+
∂Π(k,p)

∂p1

=
∂Π(k,p)

∂p1

|k=k(p)

= α

{
a1− 2bT1p1 + (r1 + r2)p2−

{
− bT1v1 + r2v2− bT1

(
(β1−β2)F11 + (β2− v1)F12

)
+r2

(
(β1−β2)F21 + (β2− v2)F22

)}}
.

The second equality holds because ∂Π(k,p)

∂k1
= ∂Π(k,p)

∂k2
= 0 when k = k(p).

From the first-order condition ∂Π(k,p)

∂k1
= 0, we can obtain that

(β1−β2)F21 + (β2− v2)F22 =
1

τ
(c1 +β1− (1− τ)v1− τv2) +

1− τ
τ

(β2−β1)F11 +
1− τ
τ

(v1−β2)F12.

Combining it with ∂Π(k(p),p)

∂p1
, we can obtain that

∂Π(k(p),p)

∂p1

= α

{
a1− 2bT1p1 + (r1 + r2)p2

−
{r2

τ
(c1 +β1) + (bT1 +

1− τ
τ

r2)
(
(β2−β1)F11 + (v1−β2)F12− v1

)}}
.
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Combining it with Equations (A.6) and (A.7), we can obtain that

∂2Π(k(p),p)

∂p1∂p0

=
∂2Π(k(p),p)

∂p0∂p1

= −α(bT1 +
1− τ
τ

r2)
(
(β2−β1)

∂F11

∂p0

+ (v1−β2)
∂F12

∂p0

)
= −1−α

τ
(τbF1− (1− τ)bF2)Θ,

∂2Π(k(p),p)

∂p2
1

= α
{
− 2bT1− (bT1 +

1− τ
τ

r2)Θ
}
≤ 0,

∂2Π(k(p),p)

∂p1∂p2

=
∂2Π(k(p),p)

∂p2∂p1

= α
{
r1 + r2− (bT1 +

1− τ
τ

r2)
(
(β2−β1)

∂F11

∂p2

+ (v1−β2)
∂F12

∂p2

)}
= α

{
r1 + r2 + (r1 +

1− τ
τ

bT2)Θ
}
≥ 0,

where Θ = (β2−β1) ∂F11

∂p1
+ (v1−β2) ∂F12

∂p1
≥ 0.

Similarly, we can obtain that

∂Π(k(p),p)

∂p2

= α

{
a2− 2bT2p2 + (r1 + r2)p1−

{
− bT2

τ
(c1 +β1)

−(r1 +
1− τ
τ

bT2)
(
(β2−β1)F11 + (v1−β2)F12− v1

)}}
,

∂2Π(k(p),p)

∂p2∂p0

=
∂2Π(k(p),p)

∂p0∂p2

=
1−α
τ

τr1 + (1− τ)bT2

τbT1 + (1− τ)r2

[τbF1− (1− τ)bF2]Θ,

∂2Π(k(p),p)

∂p2
2

= α
{
− 2bT2−

[τr1 + (1− τ)bT2]2

τ [τbT1 + (1− τ)r2]
Θ
}
≤ 0,

∂Π(k(p),p)

∂p0

= (1−α)

{
a1− 2bF1p0 + a2− 2bF2p0−

{
− bF2

τ
(c1 +β1)

+(bF1−
1− τ
τ

bF2)
(
(β2−β1)F11 + (v1−β2)F12− v1

)}}
,

∂2Π(k(p),p)

∂p2
0

= (1−α)
{
− 2(bF1 + bF2)− (1−α)[τbF1− (1− τ)bF2]2

ατ [τbT1 + (1− τ)r2]
Θ
}
≤ 0.

Then, combining with Assumption 1, we can obtain that

|H2
12| =

∂2Π(k(p),p)

∂p2
0

∂2Π(k(p),p)

∂p2
1

− (
∂2Π(k(p),p)

∂p0∂p1

)2

= 4α(1−α)bT1(bF1 + bF2) +
{2α(1−α)

τ
(bF1 + bF2)[τbT1 + (1− τ)r2]

+
2bT1(1−α)2[τbF1− (1− τ)bF2]2

τ [τbT1 + (1− τ)r2]
)
}

Θ≥ 0,

|H2
13| =

∂2Π(k(p),p)

∂p2
0

∂2Π(k(p),p)

∂p2
2

− (
∂2Π(k(p),p)

∂p0∂p2

)2

= 4α(1−α)bT2(bF1 + bF2) +
2Θ

τ [τbT1 + (1− τ)r2]

{
α(1−α)(bF1 + bF2)[τr1 + (1− τ)bT2]2

+bT2(1−α)2[τbF1− (1− τ)bF2]2
}
≥ 0,

|H2
23| =

∂2Π(k(p),p)

∂p2
1

∂2Π(k(p),p)

∂p2
2

− (
∂2Π(k(p),p)

∂p1∂p2

)2

= α2
{

4bT1bT2− (r1 + r2)2 + 2(bT1bT2− r1r2)(
(1− τ)[τr1 + (1− τ)bT2]

τ [τbT1 + (1− τ)r2]
+ 1)Θ

}
≥ 0,

|H3
123| =

∂2Π(k(p),p)

∂p2
0

[
∂2Π(k(p),p)

∂p2
1

∂2Π(k(p),p)

∂p2
2

− (
∂2Π(k(p),p)

∂p1∂p2

)2]

−∂
2Π(k(p),p)

∂p0∂p1

[
∂2Π(k(p),p)

∂p0∂p1

∂2Π(k(p),p)

∂p2
2

− ∂2Π(k(p),p)

∂p1∂p2

∂2Π(k(p),p)

∂p0∂p2

]

+
∂2Π(k(p),p)

∂p0∂p2

[
∂2Π(k(p),p)

∂p0∂p1

∂2Π(k(p),p)

∂p1∂p2

− ∂2Π(k(p),p)

∂p2
1

∂2Π(k(p),p)

∂p0∂p2

]

= −α2[4bT1bT2− (r1 + r2)2]
{

2(1−α)(bF1 + bF2) +
(1−α)2[τbF1− (1− τ)bF1]2

ατ [τbT1 + (1− τ)r2]
Θ
}
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−4α2(1−α)(bF1 + bF2)(bT1bT2− r1r2)
{ (1− τ)[τr1 + (1− τ)bT2]

τ [τbT1 + (1− τ)r2]
+ 1
}

Θ≤ 0.

By now, we have proved that |H1
1 |=

∂2Π(k(p),p)

∂p2
0

≤ 0, |H1
2 |=

∂2Π(k(p),p)

∂p2
1

≤ 0, |H1
3 |=

∂2Π(k(p),p)

∂p2
2

≤ 0, |H2
12| ≥ 0,

|H2
13| ≥ 0, |H2

23| ≥ 0, and |H3
123| ≤ 0, indicating that Π(k(p),p) is jointly concave in p0, p1, and p2. Thus, the

optimal solutions can be uniquely determined by the first-order conditions of Π(k(p),p).

Combining (i) and (ii), we can conclude that the optimal prices and capacities for the objective function

(2) can be uniquely determined by the first-order conditions of the objective functions.

�

Proof of Proposition 4 Recalling that in the proof of Lemma 2, we show that |H2
23| ≥ 0. However, if bT1 = r2

and bT2 = r1, then |H2
23|=−α2(bT1− bT2)2 ≤ 0, indicating that the objective function is not jointly concave

in the prices. Then we can obtain the optimal prices by a sequential decision approach. That is, we first

derive the optimal p1 and p0 for a given p2, then we substitute the optimal responses of p1 and p0 into the

objective function and derive the optimal p2.

(i) Given p2, by following the similar approach as in the proof of Lemma 2, we can show that

∂2Π(k(p),p)

∂p2
1

= α
{
− 2bT1−

bT1

τ
M
}
≤ 0,

∂2Π(k(p),p)

∂p2
0

= (1−α)
{
− 2(bF1 + bF2)− (1−α)[τbF1− (1− τ)bF2]2

ατbT1

Θ
}
≤ 0,

∂2Π(k(p),p)

∂p2
0

∂2Π(k(p),p)

∂p2
1

− (
∂2Π(k(p),p)

∂p0∂p1

)2 = 4α(1−α)bT1(bF1 + bF2)

+
{2α(1−α)

τ
(bF1 + bF2)bT1 +

2(1−α)2[τbF1− (1− τ)bF2]2

τ
)
}

Θ≥ 0.

It implies that Π(k(p),p) is jointly concave in p1 and p0 for a given p2. Then, the optimal p1 and p0 can be

obtained by solving Equations (A.1) and (A.3).

(ii) Next, we prove that the upper bound on p2 is optimal. By substituting the optimal p1 and p0 into the

objective function, and taking the first derivative of the objective function with respect to p2, we obtain that

dΠ(k(p),p)

dp2

=
∂Π(k(p),p)

∂p1

dp1(p2)

dp2

+
∂Π(k(p),p)

∂p0

dp0(p2)

dp2

+
∂Π(k(p),p)

∂p2

=
∂Π(k(p),p)

∂p2

|{p1=p1(p2),p0=p0(p2)}

= α

{
a2− 2bT2p2 + (r1 + r2)p1

−
{
− bT2

τ
(c1 +β1)− (r1 +

1− τ
τ

bT2)
(
(β2−β1)F11 + (v1−β2)F12− v1

)}}
.

The second equality holds because ∂Π(k(p),p)

∂p1
= 0 and ∂Π(k(p),p)

∂p0
= 0 when p1 = p1(p2) and p0 = p0(p2).

Combining it with ∂Π(k(p),p)

∂p1
= 0, we obtain that

dΠ(k(p),p)

dp2

=
1

bT1 + 1−τ
τ
r2

{
(bT1 +

1− τ
τ

r2)
(
a2− 2bT2p2 + (r1 + r2)p1 +

bT2

τ
(c1 +β1)

)
+(r1 +

1− τ
τ

bT2)
(
a1− 2bT1p1 + (r1 + r2)p2−

r2

τ
(c1 +β1)

)}
.
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Given bT1 = r2 and bT2 = r1, we obtain that

dΠ(k(p),p)

dp2

=
1

bT1

(bT1y2 + bT2y1)≥ 0,

implying that given the optimal responses of p1 and p0, the objective function is increasing in p2. Thus, the

upper bound on p2 is optimal for the electricity company. �
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