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Dynamic programming for optimal ship refueling decision

Abstract: This study investigates an optimal control policy for a liner ship to decide at which ports 

and how much fuel the liner ship should be refueled under stochastic fuel consumption in each leg 

and stochastic fuel price at each port. Based on some properties proved in this study, a dynamic 

programming algorithm is then designed to obtain some important threshold values, which are 

used in the optimal control policy for ship refueling decision. Extensive experiments show that the 

proposed method can obtain the optimal decision within a reasonable time (about 170 seconds) for 

various scales of problem instances (up to 30 ports) as well as various settings of probability 

distributions. In addition, some comparative experiments also show that the proposed optimal 

decision policy can save at least 8% fuel consumption cost by comparing with some relatively 

simple rules and save about 1% cost on average by comparing with some brilliantly-designed rules. 

Keywords: maritime transportation; dynamic programming; optimal control; liner shipping.

1. Introduction
The fluctuating world oil price and world maritime transportation market bring a lot of

uncertainties to operations management of shipping liners. This study investigates an optimal 

control policy for a liner ship to decide at which ports and how much fuel the liner ship should be 

refueled. This paper studies this refueling decision problem for a liner ship. Suppose a ship visits 

a given sequence of ports. Due to the limitation of its tank volume, the fuel in the tank usually 

cannot support the ship to fulfill the whole sailing process without refueling at some ports in the 

voyage. Then where the ship should be refueled during its voyage as well as how much fuel the 

ship should be refueled at a port becomes an important decision for shipping companies as the 

bunker fuel expenditure is a main part of the total operation cost of a liner ship (or cruise ship). 

If all the fuel consumption during each leg in the voyage can be exactly estimated and the fuel 

price at each port in the voyage is fixed, this decision problem is trivial. In reality, the fuel price is 

usually different at each port and also fluctuates frequently. But the voyage time is usually a 

relatively long time, which implies the fuel price may have a significant dynamic nature during a 
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ship’s voyage. 

The fluctuation of fuel price is common in reality. The fuel price may sharply decline (or 

increase) at the same port in one month. Moreover, the fuel price at different ports may be quite 

different even on the same day. For example, the fuel price gap between Singapore and Vancouver 

was $54/ton on 15 Dec, 2015. In addition, a liner ship’s voyage usually covers a relatively long 

period. There are usually significant changes of fuel price during liner ships’ voyages in reality. 

Therefore, the ship refueling decision policy should also consider the stochastic feature of the fuel 

price at each port.

If the fuel price at each port can be exactly predicted, it is also not difficult to solve the optimal 

refuel decision for the ship in order to minimize the total fuel cost. However, both the fuel 

consumption during each leg and the fuel price at each port during the voyage are stochastic. 

Although the route length of each leg from one port to another port is deterministic, the fuel 

consumption in the leg is uncertain because it is influenced by many factors such as sailing speed, 

draft, trim, weather/sea conditions (e.g., wind, waves, sea currents and sea water temperature) and 

the consumption of power for all types of facilities on the ship. Due to the unpredictable number 

of containers the ship needs to unload or load at each port, the ship’s dwell time at ports becomes 

uncertain. Then the ship must adjust its sailing speed so as to meet its scheduled arrival time for 

its next port; otherwise the ship may be punished by waiting a long time at the anchorage of ports. 

The sailing speed significantly affects the fuel consumption of a leg. In addition, the uncertain 

weight of cargos or passengers (mainly for cruise ships) during each leg will influence the ship’s 

draft, which also further incurs the uncertain fuel consumption for each leg. Moreover, the 

weather/sea conditions are difficult to capture. All of these factors make the fuel consumption 

during each leg become uncertain.

Based on the above analysis, if both the fuel consumption during each leg and the fuel price at 

each port during the voyage are stochastic, how to obtain the optimal policy for refueling a liner 

ship is an interesting problem for the shipping liner. This paper makes an explorative study on this 

problem. Several properties are proved in this study. On the basis of these properties, a dynamic 

programming algorithm is then proposed to obtain some important threshold values, which are 
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used in the optimal control policy for ship refueling decision. Numerical experiments are 

conducted on the basis of a real world example of a cruise ship. The numerical results validate the 

effectiveness of the proposed method.

2. Literature review
The refueling decision is similar to the inventory replenishment problem to some extent if the 

fuel in a ship's tanker is regarded as the parts in a warehouse. The optimal refueling decision can 

also be investigated by borrowing the idea of the optimal inventory control (Lee et al. 2006), for 

which the methodology of dynamic programming is widely used (Meng and Wang 2011; Chen et 

al. 2004). Different from the optimal inventory control, the study on the optimal refueling decision 

policy for a liner ship needs to consider special features originating from the maritime shipping 

backgrounds.  This study concerns two factors: one is the fuel consumption of ships, the other is 

the fuel prices. Related works are discussed mainly through these two aspects. 

The fuel consumption is mainly influenced by the speed, draft, trim, and weather/sea conditions. 

Qi and Song (2012) and Wang and Meng (2012) studied ship schedule design problems with 

considering the speed of a ship; uncertain port time is taken into account in these two studies. 

Lindstad et al. (2013) considered the factor of ship draft to design a new bulk ship for decreasing 

fuel cost. Yang et al. (2014) identified the optimal trim configuration to improve ship energy 

efficiency. Zhen et al. (2016, 2017) examined port operations considering vessels’ fuel 

consumption. Plenty of recent studies considered weather conditions and optimized ship routes to 

minimize the bunker fuel consumption (Lin et al. 2013; Zhang et al. 2013; Fang and Lin 2015). 

Besikci et al. (2016) developed an artificial neural network model to predict fuel consumption for 

various operational conditions, which can be used on a real time basis for energy efficient ship 

operations. By using the shipping log data available in practice, Meng et al. (2016) put forward a 

practical method to combine the fuel consumption rate with a lot of determinants such as sailing 

speed, draft, sea, and weather conditions.

Few of the fuel consumption related works have mentioned the refueling decisions. Kim et al. 

(2012) considered the optimum ship speed, refueling ports and amounts of fuel for a given ship’s 
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route, and developed an epsilon-optimal algorithm to solve the problem. Its main contribution lies 

in considering a lot of realistic factors such as bunker prices, carbon taxes, and greenhouse gas 

emissions. Yao et al. (2012) designed a bunker fuel management strategy for a single shipping 

liner service, which includes refueling ports selection, refueling amounts determination and ship 

speeds adjustment; the complexity of this problem mainly lies in the fact that these three decisions 

are highly interrelated. Although the above studies considered a lot of complex factors, the fuel 

price at each port is given as deterministic parameters in their problems, which is different from 

the setting of uncertain fuel price in this study. In reality, contracts are often used for bunker 

purchasing, ensuring supply and often giving a discounted price (Pedrielli et al. 2015). Plum et al. 

(2014) proposed a mixed-integer programming model for bunker purchasing with contract and 

designed a column generation algorithm to solve the model. Ghosh et al. (2015) studied a refueling 

decision problem, which considered some special issues. For example, the ship has a contract with 

fuel supplier; ship can choose to refuel at the contract price or the spot price at a port; there is a 

penalty if the ship does not use up a certain amount of fuel stated in the contract. For the above 

two contract related studies, the second one considered more complex (realistic) factors in contract 

design, but is mainly oriented for one ship route; while the first one is oriented for a shipping 

network. Considering the real sailing speed may deviate from the planned one, Wang and Meng 

(2015) examined the ship speed and refueling decision in a liner shipping network, and developed 

a mixed-integer nonlinear optimization model under the worst-case bunker consumption scenario. 

One of its main contributions lies in proposing a close-form expression for the worst-case bunker 

consumption. Sheng et al. (2015) proposed a dynamic (s,S) policy for a liner shipping refueling 

and speed determination problem. Two variations of the progressive hedging algorithm were 

designed to tackle large-scale problem instances.  Meng et al. (2015) considered different bunker 

prices at different ports for a tramp ship routing decision problem. The main contribution is the 

design of a branch-and-price based exact solution method for maximizing the total profit by 

routing ships to carry the given cargoes as well as determining the amount of bunker refueled at 

each port. 
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By comparing with the related literature, the contribution of this study mainly includes two 

aspects: 

(1) The problem setting in this paper is much more general than those in the refueling decision 

related literature, which usually assumes that the fuel price at each port is known as deterministic 

parameters, and the fuel consumption at each leg is usually defined as a function of the sailing 

speed. However, this paper investigates a more general ship refueling decision problem, in which 

both the fuel price at each port and the fuel consumption at each leg are stochastic parameters.

(2) This paper proposes an optimal refueling decision policy for liner ships when facing the 

stochastic parameters of the fuel price at each port and the fuel consumption at each leg. In 

operations research (OR) related literature, the usual practice of modeling a problem with uncertain 

parameters is to use stochastic programming, based on which it may be difficult to design exact 

solution methods and then solve the original problem in large-scale instances. This study focuses 

on a rather general problem background and uses a dynamic programming methodology to obtain 

an optimal refueling policy. For practitioners, the optimal refueling policy is easier to use in 

realistic decision environment than the mathematical programming model based method as we 

demonstrate that the optimal refueling policy is a threshold-based one.

This study does not consider factors such as the special contracts of refueling or carbon 

emission. However, this study offers an optimal solution method for a simple but still practical 

problem.

3. Mathematical model
This section addresses a dynamic programming model for the ship refueling decision problem 

under uncertain fuel consumption and price. First some notations are defined as follow:

Index and sets

 index of a port or a leg. In a ship route, leg  is from port  to port .𝑖 𝑖 𝑖 𝑖 + 1

 set of the ports or set of the legs.𝐼

Decision variables

  amount of fuel added at port .𝑥𝑖 𝑖
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Parameters

 number of ports, .𝑛 𝑛≔|𝐼|

  capacity of the tank for storing fuel.𝑉

  actual fuel price when the ship arrives at port .𝑝𝑖 𝑖

   stochastic fuel price when the ship arrives at port .𝑝𝑖 𝑖

  expected value of , that is .𝑝𝑖 𝑝𝑖 𝑝𝑖 = 𝔼{𝑝𝑖}
 lower bound (LB) of .𝑝𝑙𝑜𝑤

𝑖 𝑝𝑖

upper bound (UB) of .𝑝ℎ𝑖𝑔ℎ
𝑖 𝑝𝑖

  actual amount of fuel consumed in leg .𝑞𝑐
𝑖 𝑖

  stochastic amount of fuel consumed in leg . 𝑞𝑐
𝑖 𝑖

LB of .𝑞𝑐𝑀𝑖𝑛
𝑖 𝑞𝑐

𝑖

UB of .𝑞𝑐𝑀𝑎𝑥
𝑖 𝑞𝑐

𝑖

  actual amount of remaining fuel when the ship arrives at port .𝑞𝑟
𝑖 𝑖

stochastic amount of remaining fuel when the ship arrives at port .𝑞𝑟
𝑖 𝑖

Constraints and objective

We have the following relations due to the conservation of fuel:

 (1)𝑞 𝑟
𝑖 + 1 = 𝑞𝑟

𝑖 + 𝑥𝑖 ‒ 𝑞𝑐
𝑖

Eq. (1) states the remaining fuel when the ship arrives at the port  equals to the remaining 𝑖 + 1

fuel at the port  plus the fuel added at the port  and minus the fuel consumption in leg   (from 𝑖 𝑖 𝑖

the port  to the port ).𝑖 𝑖 + 1

For a realization, we have:

 (2)𝑞 𝑟
𝑖 + 1 = 𝑞𝑟

𝑖 + 𝑥𝑖 ‒ 𝑞𝑐
𝑖

Eq. (2) states the case in a realization; its meaning is similar as the above explanation for Eq. 

(1). 
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We assume that if , the fuel in the tank is added to at least  no matter how 𝑞𝑟
𝑖 < 𝑞𝑐𝑀𝑎𝑥

𝑖 𝑞𝑐𝑀𝑎𝑥
𝑖

much the fuel price at port  is. Hence𝑖

      (3)𝑥𝑖 ≥ max {0 ; 𝑞𝑐𝑀𝑎𝑥
𝑖 ‒ 𝑞𝑟

𝑖}
      (4)𝑥𝑖 ≤ 𝑉 ‒ 𝑞𝑟

𝑖

Eq. (3) states that the amount of the added fuel at the port   should guarantee the ship can arrive 𝑖

at the next port; Eq. (4) ensures the capacity of the tank for storing fuel should not be exceeded 

after refueling at the port . 𝑖

Two functions are defined as follows:

 the minimum total expected cost from port  to the last port if the fuel price at port  𝑐𝑖(𝑝𝑖,𝑞
𝑟
𝑖,𝑥𝑖) 𝑖 𝑖

is , the amount of the remaining fuel at port  is , and the amount of fuel added at 𝑝𝑖 𝑖 𝑞𝑟
𝑖

port  is .𝑖 𝑥𝑖

 the minimum total expected cost from port  to the last port if the fuel price is , the 𝑢𝑖(𝑝𝑖,𝑞
𝑟
𝑖) 𝑖 𝑝𝑖

amount of the remaining fuel is , and we add the optimal amount of the fuel in the 𝑞𝑟
𝑖

tank. That is:

 (5)𝑢𝑖(𝑝𝑖,𝑞
𝑟
𝑖) = min

𝑥𝑖 ∈ [max {0; 𝑞𝑐𝑀𝑎𝑥
𝑖 ‒ 𝑞𝑟

𝑖},   𝑉 ‒ 𝑞𝑟
𝑖] {𝑐𝑖(𝑝𝑖,𝑞

𝑟
𝑖,𝑥𝑖)}

The Bellman equations for the problem are:

𝑐𝑖(𝑝𝑖,𝑞
𝑟
𝑖,𝑥𝑖) = 𝑥𝑖 ∙ 𝑝𝑖 + 𝔼{𝑢𝑖 + 1(𝑝𝑖 + 1,𝑞 𝑟

𝑖 + 1)}
(6)= 𝑥𝑖 ∙ 𝑝𝑖 + 𝔼{𝑢𝑖 + 1(𝑝𝑖 + 1,𝑞𝑟

𝑖 + 𝑥𝑖 ‒ 𝑞𝑐
𝑖)}

The Bellman equation writes the minimum expected cost at a certain port in terms of the payoff 

from some initial refueling decisions and the value of the remaining decision problem that results 

from those initial refueling decisions. This breaks a dynamic optimization problem into simpler 

subproblems. The Bellman equation is widely used in the dynamic programming related studies 

(Hsu et al. 2011; Huang and Liang 2011; Meng and Wang 2011; Zhen 2012).

The boundary condition is: 
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  (7)𝑢𝑛(𝑝𝑛,𝑞𝑟
𝑛) = 0

Then according to the above definition, the objective of the problem is to find the optimal 

refueling policy to minimize .𝑢1(𝑝1,𝑞𝑟
1)

4. Optimal refueling policy

This section addresses some properties of the optimal refueling policy. We define  as 𝑥 ∗
𝑖 (𝑝𝑖,𝑞

𝑟
𝑖)

the optimal amount of fuel to refill at port  if the fuel price is  and the amount of the remaining 𝑖 𝑝𝑖

fuel is .𝑞𝑟
𝑖

Lemma 1: At port  the optimal refueling policy is:𝑛 ‒ 1

 (8)𝑥 ∗
𝑛 ‒ 1(𝑝𝑛 ‒ 1,𝑞 𝑟

𝑛 ‒ 1) = {           0,              𝑖𝑓 𝑞 𝑟
𝑛 ‒ 1 ≥ 𝑞𝑐𝑀𝑎𝑥

𝑛 ‒ 1
𝑞𝑐𝑀𝑎𝑥

𝑛 ‒ 1 ‒ 𝑞 𝑟
𝑛 ‒ 1,  𝑖𝑓 𝑞 𝑟

𝑛 ‒ 1 < 𝑞𝑐𝑀𝑎𝑥
𝑛 ‒ 1

�
Proof: As leg  (from port  to port ) is the last leg, the ship needs not to add fuel if its 𝑛 ‒ 1 𝑛 ‒ 1 𝑛

remaining fuel is enough for the last leg (i.e., ); otherwise, the ship needs to add fuel 𝑞 𝑟
𝑛 ‒ 1 ≥ 𝑞𝑐𝑀𝑎𝑥

𝑛 ‒ 1

to the level of ‘ ’ at port  so as to guarantee the fuel is enough for the last leg, which 𝑞𝑐𝑀𝑎𝑥
𝑛 ‒ 1 𝑛 ‒ 1

means the amount of fuel added at port  is ‘ ’. 𝑛 ‒ 1 𝑞𝑐𝑀𝑎𝑥
𝑛 ‒ 1 ‒ 𝑞 𝑟

𝑛 ‒ 1 ∎

Lemma 2: If the fuel price at a port is higher than the expected price at the next port when the ship 

arrives at the port, we will only add fuel to the maximum fuel consumption of the next leg. The 

optimal refueling policy at port  ( ) is:𝑖 𝑖 = 1,2,⋯,𝑛 ‒ 2

 (9)𝑥 ∗
𝑖 (𝑝𝑖,𝑞

𝑟
𝑖) = max {0 ;  𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖} 𝑖𝑓 𝑝𝑖 > 𝑝𝑖 + 1

Proof: We prove it by contradiction. Suppose an optimal policy, denoted by , is “𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) 𝑝𝑖 >

 and ”. We slightly revise the policy as follows: , 𝑝𝑖 + 1 𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) > 𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖 𝑥𝑖(𝑝𝑖,𝑞

𝑟
𝑖) = 𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖
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, which means we refill 𝑥𝑖 + 1(𝑝𝑖 + 1,𝑞 𝑟
𝑖 + 1) = 𝑥𝑖 + 1(𝑝𝑖 + 1,𝑞 𝑟

𝑖 + 1) + [𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖)] 𝑥𝑖

 less fuel at port  and refill  more fuel at port  (𝑝𝑖,𝑞
𝑟
𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖) 𝑖 𝑥𝑖(𝑝𝑖,𝑞

𝑟
𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖) 𝑖 + 1

than the policy . The policies for ports  and ports  are not 𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) 1,2⋯𝑖 ‒ 1 𝑖 + 2,𝑖 + 3⋯𝑛 ‒ 1

changed.

The fuel cost of the new policy is lower than the policy  by  𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) 𝑝𝑖[𝑥𝑖(𝑝𝑖,𝑞

𝑟
𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖)]

at port  and higher than the latter by a random value  due to the 𝑖 𝑝𝑖 + 1[𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖)]

randomness of the fuel price at port . Therefore, the total expected fuel cost saved by the new 𝑖 + 1

policy is:

 𝑝𝑖[𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖)] ‒ 𝔼{𝑝𝑖 + 1[𝑥𝑖(𝑝𝑖,𝑞

𝑟
𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖)]}

 = (𝑝𝑖 ‒ 𝔼{𝑝𝑖 + 1})[𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖)]

 = (𝑝𝑖 ‒ 𝑝𝑖 + 1)[𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖)]

Recall the assumption of the policy  at the beginning of the proof, “  and 𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) 𝑝𝑖 > 𝑝𝑖 + 1 𝑥𝑖

”. Hence, the above formula is positive, meaning that the new policy is better. (𝑝𝑖,𝑞
𝑟
𝑖) > 𝑞𝑐𝑀𝑎𝑥

𝑖 ‒ 𝑞𝑟
𝑖

This contradicts the assumption that  is an optimal policy. 𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) ∎

Lemma 3: Given  and , the  in Eq. (6) is a convex function of .𝑝𝑖 𝑞𝑟
𝑖 𝑐𝑖(𝑝𝑖,𝑞

𝑟
𝑖,𝑥𝑖) 𝑥𝑖

Proof: Suppose that when , the optimal policy is ; when 𝑥𝑖 = 𝑥(1)
𝑖 𝑥(1) ∗

𝑗 (𝑝𝑗,𝑞
𝑟
𝑗), 𝑗 = 𝑖 + 1⋯𝑛 ‒ 1 𝑥𝑖

, the optimal policy is , . = 𝑥(2)
𝑖 𝑥(2) ∗

𝑗 (𝑝𝑗,𝑞
𝑟
𝑗) 𝑗 = 𝑖 + 1⋯𝑛 ‒ 1

Then for any , a policy “ , and 0 < 𝜆 < 1 𝑥𝑖 = 𝜆𝑥(1)
𝑖 + (1 ‒ 𝜆) 𝑥(2)

𝑖 𝑥𝑗 = 𝜆𝑥(1) ∗
𝑗 (𝑝𝑗,𝑞

𝑟
𝑗) + (1 ‒ 𝜆)

, ” is one feasible policy due to the linearity of the constraints. The 𝑥(2) ∗
𝑗 (𝑝𝑗,𝑞

𝑟
𝑗) 𝑗 = 𝑖 + 1,⋯,𝑛 ‒ 1

linearity of the cost function means the cost of the policy  for 𝜆𝑥(1) ∗
𝑗 (𝑝𝑗,𝑞

𝑟
𝑗) + (1 ‒ 𝜆)𝑥(2) ∗

𝑗 (𝑝𝑗,𝑞
𝑟
𝑗)

 is equal to . Hence, 𝑥𝑖 = λ𝑥(1)
𝑖 + (1 ‒ λ) 𝑥(2)

𝑖 𝜆𝑐𝑖(𝑝𝑖,𝑞
𝑟
𝑖,𝑥

(1)
𝑖 ) + (1 ‒ 𝜆)𝑐𝑖(𝑝𝑖,𝑞

𝑟
𝑖,𝑥

(2)
𝑖 ) 𝑐𝑖(𝑝𝑖,𝑞

𝑟
𝑖,λ𝑥(1)

𝑖

 is smaller than or equal to: . + (1 ‒ λ) 𝑥(2)
𝑖 ) 𝜆𝑐𝑖(𝑝𝑖,𝑞

𝑟
𝑖,𝑥

(1)
𝑖 ) + (1 ‒ 𝜆)𝑐𝑖(𝑝𝑖,𝑞

𝑟
𝑖,𝑥

(2)
𝑖 ) ∎
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Proposition 1: The optimal refueling policy is a threshold-based policy and depends on the 

price . That is, there exist functions  which act as the thresholds such that the 𝑝𝑖 𝑤𝑖(𝑝𝑖)≔𝑥 ∗
𝑖 (𝑝𝑖,0)

optimal policy satisfies: 

(10)𝑥 ∗
𝑖 (𝑝𝑖,𝑞

𝑟
𝑖) = {          0,            𝑖𝑓 𝑞𝑟

𝑖 ≥ 𝑤𝑖(𝑝𝑖) 
𝑤𝑖(𝑝𝑖) ‒ 𝑞𝑟

𝑖, 𝑖𝑓 𝑞𝑟
𝑖 < 𝑤𝑖(𝑝𝑖) �

where   .𝑖 = 1,2,⋯,𝑛 ‒ 1

In words, when the fuel price at port  is , the optimal policy aims to refuel the ship so that the 𝑖 𝑝𝑖

amount of fuel in the tank reaches  when the ship leaves port ; if the amount of fuel is not 𝑤𝑖(𝑝𝑖) 𝑖

less than  when the ship arrives at port , then the ship is not refueled.𝑤𝑖(𝑝𝑖) 𝑖

Proof: Lemma 1 shows the proposition holds at port  with ; Lemma 2 𝑛 ‒ 1 𝑤𝑛 ‒ 1(𝑝𝑛 ‒ 1) = 𝑞𝑐𝑀𝑎𝑥
𝑛 ‒ 1

shows the proposition holds at port  when  with ; we next 𝑖 = 1, 2,⋯,𝑛 ‒ 2 𝑝𝑖 > 𝑝𝑖 + 1 𝑤𝑖(𝑝𝑖) = 𝑞𝑐𝑀𝑎𝑥
𝑖

need to prove the proposition holds for port  when  by showing that 𝑖 = 1, 2,⋯,𝑛 ‒ 2 𝑝𝑖 ≤ 𝑝𝑖 + 1 𝑤𝑖

 is the threshold.(𝑝𝑖)≔𝑥 ∗
𝑖 (𝑝𝑖,0)

Consider a particular port  with . 𝑖 𝑝𝑖 ≤ 𝑝𝑖 + 1

(i) If , then we should refill  amount of fuel, . 𝑞𝑟
𝑖 = 0 𝑥 ∗

𝑖 (𝑝𝑖,0) 𝑥 ∗
𝑖 (𝑝𝑖,0) ≥ 𝑞𝑐𝑀𝑎𝑥

𝑖

(ii) If , then we can decompose the refueling process when  into 0 < 𝑞𝑟
𝑖≔𝑞𝑟

𝑖 ≤ 𝑥 ∗
𝑖 (𝑝𝑖,0) 𝑞𝑟

𝑖 > 0

two stages. In the first stage, we refill  amount of fuel. After the first stage, the system is the 𝑞𝑟
𝑖

same as the one with . Hence, when , the optimal amount of fuel to add is 𝑞𝑟
𝑖 = 𝑞𝑟

𝑖 𝑞𝑟
𝑖 = 𝑞𝑟

𝑖 𝑥 ∗
𝑖 (𝑝𝑖,0)

. ‒ 𝑞𝑟
𝑖

(iii) If , the proposition states the optimal solution . We prove 𝑞𝑟
𝑖≔𝑞𝑟

𝑖 > 𝑥 ∗
𝑖 (𝑝𝑖,0) 𝑥 ∗

𝑖 (𝑝𝑖,𝑞
𝑟
𝑖) = 0

it by contradiction. Suppose  is an optimal policy with , which implies:𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖) 𝑥𝑖(𝑝𝑖,𝑞

𝑟
𝑖) > 0

.    (11)𝑐𝑖(𝑝𝑖,𝑞
𝑟
𝑖,0) > 𝑐𝑖(𝑝𝑖,𝑞

𝑟
𝑖,𝑥𝑖(𝑝𝑖,𝑞

𝑟
𝑖))



11

According to Eq. (6), we have:  and 𝑐𝑖(𝑝𝑖,0,𝑞𝑟
𝑖) = 𝑞𝑟

𝑖 ∙ 𝑝𝑖 + 𝔼{𝑢𝑖 + 1(𝑝𝑖 + 1,0 + 𝑞𝑟
𝑖 ‒ 𝑞𝑐

𝑖)} 𝑐𝑖

, which means: (𝑝𝑖,𝑞
𝑟
𝑖,0) = 0 ∙ 𝑝𝑖 + 𝔼{𝑢𝑖 + 1(𝑝𝑖 + 1,𝑞𝑟

𝑖 + 0 ‒ 𝑞𝑐
𝑖)}

   (12)𝑐𝑖(𝑝𝑖,𝑞
𝑟
𝑖,0) = 𝑐𝑖(𝑝𝑖,0,𝑞𝑟

𝑖) ‒ 𝑝𝑖 ∙ 𝑞𝑟
𝑖

Similarly, we can also derive:

(13)𝑐𝑖(𝑝𝑖,𝑞
𝑟
𝑖,𝑥𝑖(𝑝𝑖,𝑞

𝑟
𝑖)) = 𝑐𝑖(𝑝𝑖,0,𝑞𝑟

𝑖 + 𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖)) ‒ 𝑝𝑖 ∙ 𝑞𝑟

𝑖

Then based on the Eq. (12 13), the Eq. (11) turns to:‒

   (14)𝑐𝑖(𝑝𝑖,0,𝑞𝑟
𝑖) > 𝑐𝑖(𝑝𝑖,0,𝑞𝑟

𝑖 + 𝑥𝑖(𝑝𝑖,𝑞
𝑟
𝑖))

Moreover, the definition of the optimal solution  implies: 𝑥 ∗
𝑖 (𝑝𝑖,0)

.   (15)𝑐𝑖(𝑝𝑖,0,𝑞𝑟
𝑖) > 𝑐𝑖(𝑝𝑖,0,𝑥 ∗

𝑖 (𝑝𝑖,0))

In addition, . The above inequalities (14 15) contradict the 𝑥 ∗
𝑖 (𝑝𝑖,0) < 𝑞𝑟

𝑖 < 𝑞𝑟
𝑖 + 𝑥𝑖(𝑝𝑖,𝑞

𝑟
𝑖) ‒

convexity of  proved in Lemma 3.𝑐𝑖(𝑝𝑖,𝑞
𝑟
𝑖,𝑥𝑖)  ∎

Proposition 2: If the fuel price at port  is lower than the expected prices at several latter ports 𝑖

 and higher than the expected price at port  when the ship arrives at port , (𝑖 + 1,𝑖 + 2,⋯,𝑗) 𝑗 + 1 𝑖

the fuel in the tank should be refilled to no more than the sum of the maximal fuel consumption 

on leg  when the ship departs from port . That is,𝑖,𝑖 + 1,⋯,𝑗 𝑖

, if (16)𝑥 ∗
𝑖 (𝑝𝑖,0) ≤ (𝑞𝑐𝑀𝑎𝑥

𝑖 + 𝑞𝑐𝑀𝑎𝑥
𝑖 + 1 + ⋯ + 𝑞𝑐𝑀𝑎𝑥

𝑗 ) 𝑝𝑖 > 𝑝𝑗 + 1

where  , similar to , also represents a realization of the random fuel price at when the ship 𝑝𝑖 𝑝𝑖

arrives at port . The difference is that the domain of  is larger than that of , as  only represents 𝑖 𝑝𝑖 𝑝𝑖 𝑝𝑖

those realizations satisfying some further requirements (e.g., higher than the expected fuel price at 

the next port).

Proof: The conclusion holds trivially if . If 𝑞𝑐𝑀𝑎𝑥
𝑖 + 𝑞𝑐𝑀𝑎𝑥

𝑖 + 1 + ⋯ + 𝑞𝑐𝑀𝑎𝑥
𝑗 ≥ 𝑉 𝑞𝑐𝑀𝑎𝑥

𝑖 + 𝑞𝑐𝑀𝑎𝑥
𝑖 + 1

, we prove the case by contradiction. + ⋯ + 𝑞𝑐𝑀𝑎𝑥
𝑗 < 𝑉
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Suppose that  is an optimal policy and the threshold with policy  for port  is 𝜋 𝜋 𝑘 = 1,2…𝑛 ‒ 1 𝑤𝜋
𝑘

 if the price is . Suppose that there exists a particular port  and port , and a particular (𝑝𝑘) 𝑝𝑘 𝑖 𝑗 + 1 𝑝𝑖

 such that:> 𝑝𝑗 + 1

.  𝑤𝜋
𝑖 (𝑝𝑖) > 𝑞𝑐𝑀𝑎𝑥

𝑖 + 𝑞𝑐𝑀𝑎𝑥
𝑖 + 1 + ⋯ + 𝑞𝑐𝑀𝑎𝑥

𝑗

Then we define  Δ≔𝑤𝜋
𝑖 (𝑝𝑖) ‒ (𝑞𝑐𝑀𝑎𝑥

𝑖 + 𝑞𝑐𝑀𝑎𝑥
𝑖 + 1 + ⋯ + 𝑞𝑐𝑀𝑎𝑥

𝑗 ) > 0

and put forward a new policy  (that may not be threshold-based) as follows:𝜋'

,𝑥𝜋'
𝑖 (𝑝𝑖,0) = 𝑞𝑐𝑀𝑎𝑥

𝑖 + 𝑞𝑐𝑀𝑎𝑥
𝑖 + 1 + ⋯ + 𝑞𝑐𝑀𝑎𝑥

𝑗 = 𝑥𝜋
𝑖 (𝑝𝑖,0) ‒ Δ

 ,𝑥𝜋'
𝑘 (𝑝𝑘,𝑞𝑘) = 𝑥𝜋

𝑘(𝑝𝑘,𝑞𝑘 + Δ), 𝑘 = 𝑖 + 1…𝑗, 𝑝𝑙𝑜𝑤
𝑘 ≤ 𝑝𝑘 ≤ 𝑝ℎ𝑖𝑔ℎ

𝑘 , 0 ≤ 𝑞𝑘 ≤ 𝑉

. 𝑥 𝜋'
𝑗 + 1(𝑝𝑗 + 1,𝑞𝑗 + 1) = 𝑥 𝜋

𝑗 + 1(𝑝𝑗 + 1,𝑞𝑗 + 1 + Δ) + Δ, 𝑝 𝑙𝑜𝑤
𝑗 + 1 ≤ 𝑝𝑗 + 1 ≤ 𝑝ℎ𝑖𝑔ℎ

𝑗 + 1, 0 ≤ 𝑞𝑗 + 1 ≤ 𝑉

For any sample path (i.e., realization) of , by the (𝑝𝑘,𝑘 = 𝑖 + 1…𝑗,𝑗 + 1;𝑞𝑐
𝑘,𝑘 = 𝑖,𝑖 + 1…𝑗)

definition of the two policies, the remaining fuel at port  with policy  is smaller than 𝑘 = 𝑖 + 1…𝑗 𝜋'

that with policy  by ; hence, the policy  purchases less fuel than  at port  by , the same 𝜋 Δ 𝜋' 𝜋 𝑖 Δ

amount of fuel as  at port , and more fuel than  at port  by . This means, for 𝜋 𝑘 = 𝑖 + 1…𝑗 𝜋 𝑗 + 1 Δ

any sample path, policy  pays less fuel cost than  at port  by , but more fuel cost than  at 𝜋' 𝜋 𝑖 𝑝𝑖Δ 𝜋

port  by a random number . Taking the expectation over all sample paths, the expected 𝑗 + 1 𝑝𝑗 + 1Δ

cost of policy  is smaller than that of  by . 𝜋' 𝜋 (𝑝𝑖 ‒ 𝑝𝑗 + 1)Δ ∎

Hypothesis: It is tempting to conclude that if the fuel price at port  is lower than the expected 𝑖

prices at several latter ports  and higher than the expected price at port  when (𝑖 + 1,𝑖 + 2,⋯,𝑗) 𝑗 + 1

the ship arrives at the port, the fuel in the tank should be refilled to at least the sum of the minimal 

fuel consumption on leg  when the ship departs from port , that is,𝑖,𝑖 + 1,⋯,𝑗 𝑖

, 𝑥 ∗
𝑖 (𝑝𝑖,0) ≥ (𝑞𝑐𝑀𝑖𝑛

𝑖 + 𝑞𝑐𝑀𝑖𝑛
𝑖 + 1 + ⋯ + 𝑞𝑐𝑀𝑖𝑛

𝑗 )

if   and . 𝑝𝑖 < min {𝑝𝑖 + 1,𝑝𝑖 + 2,⋯,𝑝𝑗} 𝑝𝑖 > 𝑝𝑗 + 1

Unfortunately, such an intuition is incorrect, as demonstrated by the example below.
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A counter example against the hypothesis: Suppose that the distances on leg  𝑖,𝑖 + 1,⋯,𝑗 ‒ 1

are all very short, which can be taken as 0. So we can think there is no fuel consumption on these 

legs. There is fuel consumption on leg ; the prices at port  all follow uniform 𝑗 𝑖,𝑖 + 1,⋯,𝑗

distribution ; the price at port  is  (in fact, we can consider the price at port  as [0, 1] 𝑗 + 1
1
2 𝑗 + 1

1
2

 so that it is the lowest,  being a very small positive number and ); the price at ‒ 𝜀 𝜀 lim
𝜀→0

(1
2 ‒ 𝜀) =

1
2

port  is  when the ship arrives at the port (i.e., the price is actually , so that it is lower than 𝑖
1
2

1
2 ‒

1
2𝜀

the following ports, with ). We analyze the problem backward. (i) We can consider lim
𝜀→0

(1
2 ‒

1
2𝜀) =

1
2

that if the ship arrives at port  and has not been refilled any fuel at previous ports, we have to refill 𝑗

fuel at port , and the expected cost at port  (denoted by ) is  since the price follows uniform 𝑗 𝑗 𝑝'
𝑗

1
2

distribution . (ii) If the ship arrives at port  and has not been refilled any fuel at previous [0, 1] 𝑗 ‒ 1

ports, we should refill fuel at port  when the price is lower than the expected cost (i.e., ) at 𝑗 ‒ 1
1
2

port , and we should not refill any fuel at port  when the price is higher than the expected 𝑗 𝑗 ‒ 1

cost (i.e., ) at port . The probability of the price between 0 and  is , and the expected price in 
1
2 𝑗

1
2

1
2

this area is  (i.e., ); the probability of the price between  and 1 is also , and the expected 
1
4

0 +
1
2

2 =
1
4

1
2

1
2

price in this area is  equal to the expected cost at port . Hence, we can calculate that the expected 
1
2 𝑗

cost at port  is  (i.e., ). (iii) In the same way, we only refill fuel at port 𝑗 ‒ 1
3
8

1
2 ∙

1
4 + (1 ‒

1
2) ∙

1
2 =

3
8 𝑗

 if the price is lower than the expected cost at port  (i.e., ), the expected price at port  ‒ 2 𝑗 ‒ 1
3
8 𝑗 ‒ 2

is  (i.e., ). (4) We can infer that the expected cost at port  ( ) 
39

128
3
8 ∙

3
16 + (1 ‒

3
8) ∙

3
8 =

39
128 𝑗 ‒ 𝑠 𝑗 ‒ 𝑠 ≥ 𝑖

is . If there are infinitely many ports between port  and 𝑝 '
𝑗 ‒ 𝑠 + 1 ∙

𝑝 '
𝑗 ‒ 𝑠 + 1

2 + (1 ‒ 𝑝 '
𝑗 ‒ 𝑠 + 1) ∙ 𝑝 '

𝑗 ‒ 𝑠 + 1 𝑖

, we only refill fuel at port  when the price is 0 or infinitely close to 0. As , we will not refill 𝑗 𝑖
1
2 ≫ 0

any fuel at port  in the optimal policy. 𝑖 ∎
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Proposition 3: The threshold functions  in Proposition 1 are monotonically decreasing. That 𝑤𝑖(𝑝𝑖)

is: , here .𝑤𝑖(𝑝𝑖 + ∆𝑝𝑖) ≤ 𝑤𝑖(𝑝𝑖) ∆𝑝𝑖 > 0

Proof: According to the definition ‘ ’ in Proposition 1, the proof of ‘𝑤𝑖(𝑝𝑖)≔𝑥 ∗
𝑖 (𝑝𝑖,0) 𝑤𝑖(𝑝𝑖 + ∆𝑝𝑖)

’ is equivalent to the proof of ‘ ’, which can be proved by ≤ 𝑤𝑖(𝑝𝑖) 𝑥 ∗
𝑖 (𝑝𝑖 + ∆𝑝𝑖,0) ≤ 𝑥 ∗

𝑖 (𝑝𝑖,0)
contradiction. 

Suppose that  is an optimal policy at port  for a particular ; and ‘ , 𝑥 ∗
𝑖 (𝑝𝑖,0) 𝑖 𝑝𝑖 𝑥 ∗

𝑖 (𝑝𝑖,0) + ∆𝑥𝑖

here ’ is an optimal policy when  increases by , i.e., we have:  ∆𝑥𝑖 > 0 𝑝𝑖 ∆𝑝𝑖 𝑥 ∗
𝑖 (𝑝𝑖 + ∆𝑝𝑖,0) = 𝑥 ∗

𝑖

. We will prove that such an optimal policy does not exist.(𝑝𝑖,0) + ∆𝑥𝑖

As  is the optimal policy for , we obtain that:𝑥 ∗
𝑖 (𝑝𝑖,0) 𝑝𝑖

       (17)𝑐𝑖(𝑝𝑖,0,𝑥 ∗
𝑖 (𝑝𝑖,0) + ∆𝑥𝑖) > 𝑐𝑖(𝑝𝑖,0,𝑥 ∗

𝑖 (𝑝𝑖,0))

The above inequality can be decomposed into the following specific form:

(𝑥 ∗
𝑖 (𝑝𝑖,0) + ∆𝑥𝑖) ∙ 𝑝𝑖 + 𝔼{𝑢𝑖 + 1(𝑝𝑖 + 1,(𝑥 ∗

𝑖 (𝑝𝑖,0) + ∆𝑥𝑖) ‒ 𝑞𝑐
𝑖)} > 𝑥 ∗

𝑖 (𝑝𝑖,0) ∙ 𝑝𝑖 + 𝔼
 {𝑢𝑖 + 1(𝑝𝑖 + 1,𝑥 ∗

𝑖 (𝑝𝑖,0) ‒ 𝑞𝑐
𝑖)}

Then, we propose a new policy that refills  amount of fuel for the ship at port  when 𝑥 ∗
𝑖 (𝑝𝑖,0) 𝑖

the fuel price increases by , and the minimal expected cost will be ∆𝑝𝑖 𝑥 ∗
𝑖 (𝑝𝑖,0) ∙ (𝑝𝑖 + ∆𝑝𝑖) + 𝔼

. Moreover, according to Eq. (17), we can obtain:{𝑢𝑖 + 1(𝑝𝑖 + 1,𝑥 ∗
𝑖 (𝑝𝑖,0) ‒ 𝑞𝑐

𝑖)}
 (𝑥 ∗

𝑖 (𝑝𝑖,0) + ∆𝑥𝑖) ∙ (𝑝𝑖 + ∆𝑝𝑖) + 𝔼{𝑢𝑖 + 1(𝑝𝑖 + 1,(𝑥 ∗
𝑖 (𝑝𝑖,0) + ∆𝑥𝑖) ‒ 𝑞𝑐

𝑖)}
> 𝑥 ∗

𝑖 (𝑝𝑖,0) ∙ (𝑝𝑖 + ∆𝑝𝑖) + 𝔼{𝑢𝑖 + 1(𝑝𝑖 + 1,𝑥 ∗
𝑖 (𝑝𝑖,0) ‒ 𝑞𝑐

𝑖)}
(18)

Eq. (18) implies that  is not an optimal policy when  increases by  because 𝑥 ∗
𝑖 (𝑝𝑖,0) + ∆𝑥𝑖 𝑝𝑖 ∆𝑝𝑖

refilling  is a better policy. Hence, when the fuel price increases, the threshold will not 𝑥 ∗
𝑖 (𝑝𝑖,0)

increase  . ∎

5. Dynamic programming algorithm
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The fuel price at each port and the fuel consumption on each leg are stochastic parameters with 

known probability distribution functions in this problem. For ease of calculation, we can discretize 

the fuel price and the amount of fuel consumption. Then a dynamic programming based algorithm 

is designed to obtain the optimal refueling decision policy, the core of which is to find the threshold 

functions . It should be noted that Proposition 1 and Proposition 3 are used in the algorithm 𝑤𝑖(𝑝𝑖)
to reduce the search space.

Algorithm 1: Dynamic programming algorithm to find the threshold functions .𝑤𝑖(𝑝𝑖)
Step 0: Define the step size of fuel price  (e.g.,  dollars). We assume that  and  are 𝛼 𝛼 𝑝𝑙𝑜𝑤

𝑖 𝛼 𝑝ℎ𝑖𝑔ℎ
𝑖 𝛼

both integers. 
Define a set  and the fuel prices at each port are 𝑃𝑖≔{𝑝𝑙𝑜𝑤

𝑖 ,𝑝𝑙𝑜𝑤
𝑖 + 𝛼,𝑝𝑙𝑜𝑤

𝑖 + 2𝛼,⋯,𝑝ℎ𝑖𝑔ℎ
𝑖 }

divided into discrete values in the set.
Define the step size of amount of fuel . We assume that  is an integer. Define a set 𝛽 𝑉 𝛽 𝑄≔

 and the amounts of fuel are divided into discrete values in the set. {0,𝛽,2𝛽,⋯,𝑉}
, , which means we will not refill any fuel at the last port.𝑥 ∗

𝑛 (𝑝𝑛,𝑞𝑟
𝑛) = 0 𝑞𝑟

𝑛 ∈ 𝑄
Step 1: According to Lemma 1, the threshold for the optimal policy at port  is: 𝑛 ‒ 1

, ,𝑤𝑛 ‒ 1(𝑝𝑛 ‒ 1) = 𝑞𝑐𝑀𝑎𝑥
𝑛 ‒ 1 𝑝𝑛 ‒ 1 ∈ 𝑃𝑛 ‒ 1

and the cost function is:
,  .𝑢𝑛 ‒ 1(𝑝𝑛 ‒ 1,𝑞 𝑟

𝑛 ‒ 1) = 𝑝𝑛 ‒ 1max {0;𝑤𝑛 ‒ 1(𝑝𝑛 ‒ 1) ‒ 𝑞 𝑟
𝑛 ‒ 1} 𝑝𝑛 ‒ 1 ∈ 𝑃𝑛 ‒ 1

Set port .𝑖←𝑛 ‒ 1
Step 2: Examine the optimal policy for port .𝑖

Step 2.1: if 𝑝𝑖 ≥ 𝑝𝑖 + 1
According to Lemma 2, we can know the threshold is

  for , 𝑤𝑖(𝑝𝑖) = 𝑞𝑐𝑀𝑎𝑥
𝑖 𝑝𝑖 ∈ 𝑃𝑖 𝑝𝑖 ≥ 𝑝𝑖 + 1

and the cost function: 
𝑢𝑖(𝑝𝑖,𝑞

𝑟
𝑖) = 𝑝𝑖max {0;𝑤𝑖(𝑝𝑖) ‒ 𝑞𝑟

𝑖} +

                                                                  ∑𝑝ℎ𝑖𝑔ℎ
𝑖 + 1 ‒ 1

𝑦 = 𝑝 𝑙𝑜𝑤
𝑖 + 1

∑𝑞𝑐𝑀𝑎𝑥
𝑖 ‒ 1

𝑧 = 𝑞𝑐𝑀𝑖𝑛
𝑖

Pr (𝑦 ≤ 𝛿 < 𝑦 + 𝛼) ∙ Pr (𝑧 ≤ 𝜑 < 𝑧 + 𝛽) ∙ 𝑢𝑖 + 1(𝑦,𝑞𝑟
𝑖 + 𝑥𝑖 ‒ 𝑧)

(19)
In Eq. (19), , , .                                                                                                                                                                                                                                   𝑞𝑟

𝑖 ∈ 𝑄 𝑝𝑖 ∈ 𝑃𝑖 𝑝𝑖 ≥ 𝑝𝑖 + 1
Step 2.2: if 𝑝𝑖 < 𝑝𝑖 + 1
According to Proposition 1,  𝑤𝑖(𝑝𝑖) = 𝑥 ∗

𝑖 (𝑝𝑖,0)
(i) When , we have𝑝𝑖 = 0
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𝑤𝑖(𝑝𝑖) = 𝑥 ∗
𝑖 (𝑝𝑖,0) ∈ argmin

𝑥𝑖 ∈ 𝑄,𝑥𝑖 ≥ 𝑞𝑐𝑀𝑎𝑥
𝑖

 

                                                                          [𝑝𝑖𝑥𝑖 + ∑𝑝ℎ𝑖𝑔ℎ
𝑖 + 1 ‒ 1

𝑦 = 𝑝 𝑙𝑜𝑤
𝑖 + 1

∑𝑞𝑐𝑀𝑎𝑥
𝑖 ‒ 1

𝑧 = 𝑞𝑐𝑀𝑖𝑛
𝑖

Pr (𝑦 ≤ 𝛿 < 𝑦 + 𝛼) ∙ Pr (𝑧 ≤ 𝜑 < 𝑧 + 𝛽) ∙ 𝑢𝑖 + 1(𝑦,𝑥𝑖 ‒ 𝑧)]
(20)
In Eq. (20), , .𝑝𝑖 ∈ 𝑃𝑖 𝑝𝑖 < 𝑝𝑖 + 1
Proposition 3 implies  is monotonically decreasing when  increases. Hence, when 𝑤𝑖(𝑝𝑖) 𝑝𝑖

, we only need to consider those  that are not greater than . Then the 𝑝𝑖 ≥ 𝛼 𝑥𝑖 𝑥 ∗
𝑖 (𝑝𝑖 ‒ 𝛼,0)

Eq. (20) can be replace by 
𝑤𝑖(𝑝𝑖) = 𝑥 ∗

𝑖 (𝑝𝑖,0) ∈ argmin
𝑥𝑖 ∈ 𝑄,𝑥𝑖 ≥ 𝑞𝑐𝑀𝑎𝑥

𝑖 ,𝑥𝑖 ≤ 𝑥 ∗
𝑖 (𝑝𝑖 ‒ 𝛼,0) 

 (21) [𝑝𝑖𝑥𝑖 + ∑𝑝ℎ𝑖𝑔ℎ
𝑖 + 1 ‒ 1

𝑦 = 𝑝 𝑙𝑜𝑤
𝑖 + 1

∑𝑞𝑐𝑀𝑎𝑥
𝑖 ‒ 1

𝑧 = 𝑞𝑐𝑀𝑖𝑛
𝑖

Pr (𝑦 ≤ 𝛿 < 𝑦 + 𝛼) ∙ Pr (𝑧 ≤ 𝜑 < 𝑧 + 𝛽) ∙ 𝑢𝑖 + 1(𝑦,𝑥𝑖 ‒ 𝑧)]
In Eq. (21), .𝑝𝑖 ∈ 𝑃𝑖,𝑝𝑖 < 𝑝𝑖 + 1
In both cases, the cost function is Eq. (19).

Step 3: If , output the optimal policy and stop. Otherwise, set  and go to Step 2. 𝑖 = 1 𝑖←𝑖 ‒ 1 ∎

6. Numerical experiments
This study applies the above method to a cruise ship’s itinerary in Mediterranean Sea, and 

conducts some numerical experiments. The parameters used in this study are either real data or 

estimated from real data. 

Fig. 1 shows the ship’s voyage. Table 1 shows this service, which contains seven ports of call, 

arrival time, departure time and travel time, etc. The cruise itinerary lasts for seven days. The ship 

in this study is called MSC Preziosa, which is 1092 feet long and has a gross tonnage of 137,936 

tons. The maximum passenger capacity is 3959. In addition, the fuel capacity of the ship is 3500 

tons. The speed is between 18 and 24 knots. Considering the influence of several determinants, the 

mean fuel consumption per hour follows the Truncated Normal Distribution (Ghosh et al. 2015), 

the mean value is 2800 gallons and the standard deviation is 300 gallons; here the mean value is 

based on real data and the standard deviation is estimated according to some experts in the shipping 

industry. Then the fuel consumption on each leg equals the mean consumption rate multiplied by 

sailing time.

As aforementioned in Section 1, the fuel consumption in the leg is uncertain because it is 

influenced by many factors such as sailing speed, draft, trim, weather/sea conditions (e.g., wind, 

waves, sea currents and sea water temperature). Table 1 implies the average speed of the ship 

during a leg is constant. It should be noted that due to the uncertain draft, trim, weather/sea 

conditions, the instantaneous speed of the ship may vary in a stochastic manner during the leg, 
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although the average speed in the leg is constant. In reality, the fuel consumption rate is 

significantly influenced by a ship’s instantaneous speed. In the experiments, we use a random 

number, which follows the Truncated Normal Distribution with the mean 2800 and the standard 

deviation 300, to reflect the stochastic fuel consumption per hour, which actually involves the 

multiple uncertain factors (i.e., the uncertain draft, trim, weather/sea conditions) affecting the 

ship’s instantaneous speed. Then we use the random number to multiply the constant leg duration 

time (shown in Table 1) to obtain the fuel consumption in the leg, which is also a stochastic value.

The bunker fuel prices at the six ports are different, and the prices at the same port are also 

different on different days. According to the fuel prices at the six ports in the last three months of 

2015, we assume the prices follow Uniform Distribution, and the prices are set in Table 1.

Fig. 1: An example of the cruise itinerary of Mediterranean Sea

Table 1: A Cruise Itinerary of Mediterranean Sea

Day Port Arrive Depart Travel 
Time (h)

Distribution 
fuel prices 

(USD)
1 Marseille 4:00 PM U(150,260)
2 Genoa 8:00 AM 6:00 PM 16 U(150,270)
3 Civitavecchia 8:00 AM 6:00 PM 14 U(150,270)
4 Palermo 10:00 AM 5:00 PM 16 U(150,270)
5 Valletta 10:00 AM 6:00 PM 17 U(140,260)
7 Barcelona 9:00 AM 6:00 PM 39 U(170,250)
8 Marseille 9:00 AM 15
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The results in Fig. 2 show that the bunker threshold equals the maximum consumption of the 

next leg when the fuel price at a port is higher than the average price at the next port. The maximum 

consumption of the next leg is the minimum bunker quantity needed to be held in the tank when 

the ship departs from each port. However, when the fuel price at a port is equal to or lower than 

the average price at the next port, the bunker threshold is equal to or more than the maximum fuel 

consumption of the next leg. According to Proposition 3, for a port, the lower the price is, the 

higher the bunker threshold will be. As shown in Fig. 2, the bunker threshold is a strictly decreasing 

function before the fuel price at a port reaches the average price at the next port, and then becomes 

a constant after that. Because different ports have different average fuel prices, the turning points 

of bunker thresholds (the leftmost points from which the thresholds are constant) at different ports 

are different. The sailing time between Valletta and Barcelona is the longest among all legs, which 

means that the leg between Valletta and Barcelona will consume the most fuel and the minimum 

bunker threshold of Valletta is the highest for all minimum bunker thresholds at different ports. 

The sailing times on the other legs are similar, which means the minimum bunker thresholds of 

the other ports are similar. The bunker thresholds are the same in different prices at Barcelona 

because it is the penultimate port and we assume no fuel will be used after the last leg. In addition, 

when the fuel price at a port decreases from the price of the turning point, the bunker threshold at 

the port first increase very fast and then more and more slowly. In other words, the bunker 

threshold is very sensitive when the fuel price at the port is close to and smaller than the turning 

point.
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Fig. 2: The bunker thresholds (tons) at six ports

In order to further investigate the performance of the proposed method, some numerical 

experiments on container liners are also conducted. This study collects a 62 days’ liner itinerary 

operated by Maersk Line (Fig. 3) and some parameters (Table 2) to conduct several numerical 

experiments. The parameters in Table 2 contain ten ports of call, arrival time, departure time, travel 

time and the distribution of fuel prices. We assume the prices follow Uniform Distribution 

according to the fuel prices at the eight ports in the last three months of 2015. We consider a ship 

called Adrian Maersk deployed in the itinerary, which is 352 m in length and 43 m in breadth. The 

gross tonnage is 93496 tons and the deadweight is 109000 tons. Moreover, the fuel capacity of the 

ship is 4500 tons. The average speed is 21 knots and the maximum speed is 25 knots. Considering 

the influence of speed and other determinants, we assume the mean fuel consumption per day 

follows the Truncated Normal Distribution (Ghosh et al. 2015), in which the mean value is 90 tons 

and the standard deviation is 10 tons. Then the fuel consumption on each leg equals the mean 

consumption rate multiplied by sailing time.
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Fig. 3: An example of the liner itinerary operated by Maersk Line

Table 2: A liner itinerary of Maersk Line

Port Arrive Depart Travel Time 
(d)

Distribution of fuel 
prices (USD)

Qingdao MON U(170,270)
Shanghai TUE WED 1 U(170,260)
Ningbo WED THU 0.5 U(160,260)
Busan SAT SAT 2 U(160,270)

Manzanillo SUN SUN 15 U(150,290)
Lazaro Cardenas MON MON 1 U(150,290)

Balboa FRI SUN 4 U(140,240)
Buenaventura MON TUE 1 U(140,290)

Lazaro Cardenas MON MON 6 U(150,290)
Qingdao SAT 26

Based on the above liner itinerary, comparative experiments are conducted between the 

proposed optimal refueling policy and some other decision rules. Specifically, we have consulted 

a manager with 16 years’ experience in shipping industry about the refueling policies in practice. 

In practice, shipping companies will propose several possible refueling decisions based on 
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experience considering factors such as cargo load, weather conditions, fuel prices, detour for 

bunkering ports. These refueling decisions will be compared taking into account a few scenarios 

of uncertainty in fuel prices and fuel consumption. The decision with the lowest average cost will 

be chosen. Therefore, it is hard to compare our solutions directly with the ones in practice, because 

different managers will make different decisions and even the same manager may make different 

decisions under two identical situations. We therefore proposed several rules to mimic the practical 

decision-making process. As our paper proposed the optimal policy that minimizes the expected 

cost, no other policy, either in the literature or in practice, can outperform our policy. The rules we 

propose are:

Rule 1: Refuel the least required amount of fuel each time.

Rule 2: If the fuel price at a port is higher than the expected price at the next port, add the least 

required amount of fuel at this port; otherwise, refuel till the oil tanker is full.

Rule 3: Calculate the average value of all the ports’ expected fuel prices. If a port’s actual fuel 

price is higher than that value, add the least required amount of fuel at this port; otherwise, refuel 

till the oil tanker is full.

Rule 4: When deciding the optimal amount of fuel added at each port, we assume the fuel 

consumption during each leg in the remaining voyage is the expected value of the fuel 

consumption. 

Rule 5: When deciding the optimal amount of fuel added at each port, we assume the fuel price 

of each port in the remaining voyage is the expected value of the fuel price.

Note that in all of the above five rules, we further impose that when the ship leaves a port, the 

amount of fuel in its tank is sufficient to ensure the ship can sail to the next port even if the fuel 

consumption takes its maximum value. Table 2 shows the comparative result between the optimal 

refueling policy proposed in this study and the five other decision rules in terms of the total 

expected cost. The results validate the outperformance of our method is evident by comparing to 

these simple but practical decision rules. Moreover, we change the parameter setting on the 

standard deviation (S.D.) of the fuel consumption in the cases by increasing or decreasing the S.D. 

values on the basis of the baseline case. From the results in each column of Table 2, we cannot 

observe an evident trend of changing with respect to the objective values when the variance of the 

fuel consumption increases. The outperformance degree (reflected by the ‘gap’ values) also does 

not show a uniform trend of changing along each column for all the five comparisons between our 
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method and other rules. For the comparison between our method and Rule 2 (and Rule 3), the 

results show the outperformance degree of our method is decreasing when the variance of fuel 

consumption is growing. Although the result in Table 2 reflects neither a positive nor a negative 

influence of the fuel consumption’s variance on the final cost as well as our method’s 

outperformance degree, it could further validate the effective of our proposed refueling policy.

As aforementioned, Rule 5 is to decide the optimal amount of fuel added at each port by 

assuming that the fuel price of each port in the remaining voyage is the expected value of the fuel 

price. The comparative result is shown in the last column of Table 2. The gap value is about 1%, 

which seems not a large number but can bring significant benefit (or saving) to liner companies. 

For example, the Emma Maersk is one of the largest ship in service throughout the world, whose 

total annual fuel consumption is approximately 143,400 tons and total annual fuel costs are about 

$64.5 million (http://www.instructables.com/community/Fuel-economy-of-the-worlds-longest-

in-service-shi/). For this ship, saving 1% of the total annual fuel costs means saving more than half 

a million dollars. Therefore, compared with five other decision rules, the method in this study can 

help shipping companies save a large amount of cost. 
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1 Table 2: Comparison between the proposed method and other decision rules under different setting on the S.D. (standard deviation) of 
2 the fuel consumption

Ratio of the 
S.D. in the 
case to the 
S.D. in the 

baseline case

The 
method in 
this study

Rule1 Gap Rule2 Gap Rule3 Gap Rule4 Gap Rule5 Gap 

0.3 1010867 1160825 14.83% 1294492 28.06% 1295757 28.18% 1019124 0.82% 1023723 1.27%
0.7 1084160 1253386 15.61% 1310038 20.83% 1310050 20.84% 1100390 1.50% 1094554 0.96%

Baseline case 1053212 1330272 26.31% 1244111 18.13% 1246761 18.38% 1055743 0.24% 1065465 1.16%
1.3 1177212 1403549 19.23% 1314198 11.64% 1313281 11.56% 1198589 1.82% 1186064 0.75%
1.7 1139827 1502231 31.79% 1239253 8.72% 1241503 8.92% 1142808 0.26% 1151838 1.05%

Avg. 21.55% 17.48% 17.58% 0.93% 1.04%

3 Note: Gap = ( the objective value of a rule  the objective value of our method ) / the objective value of our method.‒
4
5

6

7
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In the previous experiments, the fuel consumption and fuel price are assumed to follow the 

uniform distribution. To further investigate the performance of the proposed method under 

different settings of the probability distributions with respect to the fuel consumption and fuel 

price, some more experiments are conducted and the results are shown in Table 3. Since the 

proposed method is an exact solution method, which outputs the optimal result, Table 3 just lists 

the computation time of the method under different settings of the probability distributions.

We consider three types of probability distributions, i.e., Normal distribution, Poisson 

distribution, and Triangular distribution. Then we have nine combinations of the ‘fuel price 

distribution – fuel consumption distribution’. Moreover, we also consider three different problem 

scales, i.e., 10 ports, 20 ports, and 30 ports.  It should be noted that each value in Table 3 represents 

the average computation time of five different cases under the same combination of ‘fuel price 

distribution – fuel consumption distribution – number of ports’. These extensive experiments 

demonstrate that it takes less than three minutes to solve instances with 30 ports, which are larger 

than the scales of problems encountered in reality. Therefore, our proposed optimal decision 

method is applicable for various settings of probability distributions as well as the realistic scale 

of problem instances. 

Table 3: The average computation time of different scales under different distribution settings on 
fuel price and fuel consumption 

Fuel price Fuel consumption 10 Ports 20 Ports 30 Ports
Normal Distribution 14.8 s 31.8 s 48.8 s
Poisson Distribution 5.8 s 10.4 s 16.4 sNormal 

Distribution Triangular Distribution 5.4 s 10.6 s 16.4 s
Normal Distribution 47.8 s 98.2 s 148.4 s
Poisson Distribution 16.0 s 32.4 s 49.4 sPoisson 

Distribution Triangular Distribution 16.0 s 34.8 s 52.2 s
Normal Distribution 46.0 s 95.8 s 165.2 s
Poisson Distribution 14.8 s 32.4 s 54.6 sTriangular 

Distribution Triangular Distribution 16.4 s 33.8 s 52.2 s
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7. Conclusions
This paper studies a general decision problem on ship refueling, and proposes an optimal control 

policy for a liner ship to decide at which ports and how much fuel the liner ship should be refueled. 

Facing stochastic fuel consumption during each leg in its voyage as well as stochastic fuel price at 

each port, a liner ship can use the proposed optimal control policy to minimize the expected total 

fuel cost of the whole voyage under stochastic context with respect to fuel consumption and fuel 

price. Several properties are proved in this study. On the basis of these properties, a dynamic 

programming algorithm is then proposed to obtain some important threshold values, which are 

used in the optimal control policy for ship refueling decision. In addition, numerical experiments 

are conducted to validate the effectiveness of the proposed method. The result of the comparative 

experiments shows that the proposed optimal decision policy can save at least 8% fuel 

consumption cost by comparing with some relatively simple rules (Rules 1, 2, 3) and save about 

1% cost on average by comparing with some brilliantly-designed rules (Rules 4 and 5). In addition, 

extensive experiments also show that the proposed method can obtain the optimal decision within 

a reasonable time (about 170 seconds) for various scales of problem instances (up to 30 ports) as 

well as various settings of probability distributions (e.g., Uniform, Normal, Poisson, and 

Triangular distributions) with respect to the fuel consumption and fuel price. 

The proposed properties in this study can act as the basis for possible extensions of this problem 

to consider more realistic factors such as weather routing (Du et al. 2011 and 2015). For 

considering some complex factors in the refueling decision problems, the dynamic programming 

may need adjustment so as to reduce the complexity, which also requires decision makers to relax 

their demand for optimality. 
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